
In Proceedings of the AISB’99 Workshop on Reference Architectures and Data Standards
for NLP, Edinburgh, April, 1999.

Experience with a Language Engineering
Architecture: Three Years of GATE

Hamish Cunningham; Robert Gaizauskas; Kevin Humphreys; Yorick Wilks
Natural Language Processing group,

Institute for Language, Speech and Hearing, and
Department of Computer Science,

University of Sheffield.�
hamish,robertg,kwh,yorick � @dcs.shef.ac.uk.

Abstract

GATE, the General Architecture for Text Engineering, aims to provide a software infrastructure for researchers and
developers working in the area of natural language processing. A version of GATE has now been widely available
for three years. In this paper we review the objectives which motivated the creation of GATE and the functionality
and design of the current system. We discuss the strengths and weaknesses of the current system, identify areas for
improvement and present plans for implementing these improvements.

Introduction

We think that if you’re researching human language pro-
cessing you should probably not be writing code to:

� store data on disk;

� display data;

� load processor modules and data stores into pro-
cesses;

� initiate and administer processes;

� divide computation between client and server;

� pass data between processes and machines.

A Domain-Specific Software Architecture (DSSA) for
language processing should do all this for you. You will
have to parameterise it, and sometimes deployment of
your work into applications software will require some
low-level fiddling for optimisation purposes, but in the
main these activities should be carried out by infrastruc-
ture for the language sciences, not by each researcher in
the field.

We can go further and say that you shouldn’t have to
reinvent components and resources outside of your spe-
cialism if there is already something that could do the
job. A statistician doesn’t need to know the details of the
IEEE Floating Point computation standard; a discourse
processing specialist doesn’t need to understand all the
ins and outs of part-of-speech tagging (or worse still how
to install a particular POS tagger on a particular machine).

If you’re a professional mathematician, you probably
regard a tool like SPSS or Mathematica as necessary in-
frastructure for your work. If you’re a computational lin-
guist or a language engineer, the chances are that large
parts of your work have no such infrastructural support.
Where there is infrastructure, it tends to be specific to
restricted areas. GATE, a General Architecture for Text
Engineering (Cunningham et al., 1997), represents an at-
tempt to fill this gap, and is a DSSA for language pro-
cessing R&D.

We now have three years of experience with GATE,
work on which began in 1995, with a first widespread re-
lease late in 1996. The system is currently at a pivotal
point in its development, with a new version on the draw-
ing board, so it seems appropriate to cast a critical eye
over progress so far, and then to present our plans for the
future.

We begin in section 1 with context: what is an ar-
chitecture and why might we want one? Section 2 de-
scribes GATE in its current form. Section 3 discusses the
strengths and weaknesses of the system, and draws out
some pointers for improvement to the system. Section 4
presents our plans for implementing these improvements,
and the conclusion gives final remarks.

To view this text on-line, see
http://www.dcs.shef.ac.uk/ hamish/GateAisb99.html.

1 Infrastructure for Language
Processing R&D

What does infrastructure mean for Natural Language Pro-
cessing (NLP)? What sorts of tasks should be delegated to



a general tool, and which should be left to individual pro-
jects? The position we took in designing GATE is to focus
on the common elements of NLP systems.

There are many useful tools around for performing
specific tasks such as developing feature structure gram-
mars for evaluation under unification, or collecting statist-
ical measures across corpora. To varying extents, they en-
tail the adoption of particular theories. The only common
factor of NLP systems, alas, seems to be that they very of-
ten create information about text. Developers of such sys-
tems create modules and data resources that handle text,
and they store this data, exchange it between various mod-
ules, compare results of test runs, and generally spend in-
ordinate amounts of time pouring over samples of it when
they really should be enjoying a slurp of something relax-
ing instead.

The types of data structure typically involved are large
and complex, and without good tools to manage and allow
succinct viewing of the data we work below our potential.
At this stage in the progress of our field, no one should
really have to write a tree viewing program for the out-
put of a syntax analyser, for example, or even have to do
significant work to get an existing viewing tool to process
their data.

In addition, many common language processing tasks
have been solved to an acceptable degree by previous work
and should be reused. Instead of writing a new part of
speech tagger, or sentence splitter, or list of common nom-
inal compounds, we should have available a store of re-
usable tools and data that can be plugged into our new
systems with minimal effort. Such reuse is much less
common than it should be, often because of installation
and integration problems that have to be solved afresh in
each case (Cunningham et al., 1994).

In sum, we defined our infrastructure as an architec-
ture and development environment, where an architecture
is a macro-level organisational pattern for the components
and data resources that make up a language processing
system; a development environment adds graphical tools
to access the services provided by the architecture.

2 GATE

GATE version 1.n does three things:

� manages textual data storage and exchange;

� supports visual assembly and execution of modular
NLP systems plus visualisation of data structures
associated with text;

� provides plug-in modularity of text processing com-
ponents.

The architecture does this using three subsystems:

� GDM, the GATE Document Manager;

� GGI, the GATE Graphical Interface;

� CREOLE, a Collection of REusable Objects for Lan-
guage Engineering.

GDM manages the information about texts produced
and consumed by NLP processes; GGI provides visual
access to this data and manages control flow; CREOLE is
the set of resources so far integrated. Developers work-
ing with GATE begin with a subset of CREOLE that does
some basic tasks, perhaps tokenisation, sentence and para-
graph identification and part-of-speech tagging. They then
add or modify modules for their specific tasks. They use a
single API for accessing the data and for storing their data
back into the central database. With a few lines of config-
uration information they allow the system to display their
data in friendly graphical form, including tree diagrams
where appropriate. The system takes care of data storage
and module loading, and can be used to deliver embed-
dable subsystems by stripping the graphical interface. It
supports modules in any language including Prolog, Lisp,
Perl, Java, C++ and Tcl.

3 Strengths and Weaknesses

GATE has proved successful in a number of contexts,
with users reporting a variety of work with the system,
for example:

� Teaching undergraduates and postgraduates. Our
colleagues at UMIST and the Universities of Edin-
burgh, and Sussex have reported using the system
for teaching, as have the Universities of Stuttgart
and Saarburcken.

� Information Extraction in English, Swedish, French,
Spanish and Greek. Our colleagues in Fribourg
University collaborated with us on a French IE sys-
tem; both ILSP and NKSR Demokritus in Athens
are developing a Greek IE system; the University of
Gothenburg has a Swedish system; the University
of Catalonia in Barcelona are working on Spanish.

� Integrating information extraction with Information
Retrieval. The Naval Office of R&D (NRaD) in San
Diego is using GATE for research on text summar-
isation and IE/IR integration.

� Integrating a national collection of NLP tools for
Swedish. See
http://www.sics.se/humle/projects/svensk/

� ESTEAM Inc., of Gothenburg and Athens are us-
ing the system for adding name recognition to their
MT systems (for 26 language pairs) to improve per-
formance on unknowns.

� The Speech and Hearing group at Sheffield are mod-
elling out-of-vocabulary language using VIE and
GATE (Gotoh et al., 1998).



Figure 1: Gate Architecture

� Numerous postgraduates in locations as diverse as
Israel, Copenhagen and Surrey are using the system
to avoid having to write simple things like sentence
splitters from scratch, and to enable visualisation
and management of data.

Abstracting from their experiences and that of users at
Sheffield, GATE’s strengths can be summarised as:

� facilitating reuse of NLP components by reducing
the overheads of integration, documentation and data
visualisation;

� facilitating multi-site collaboration on IE research
by providing a modular base-line system (VIE) with
which others can experiment;

� facilitating comparative evaluation of different meth-
ods by making it easy to interchange modules;

� facilitating task-based evaluation, both of “internal”
components such as taggers and parsers, and of whole
systems, e.g. by using materials from the ARPA
MUC programme (Grishman and Sundheim, 1996)
(whose scoring software is available in GATE, as
is the Parseval tree scoring tool (Harrison et al.,
1991), and a generic annotation scoring tool);

� contributing to the portability of NLP systems across
problem domains by providing a markup tool for
generating training data for example-based learning
(it can also take input from the Alembic tool (Day
et al., 1997) for this purpose, using Edinburgh’s
SGML processing library (McKelvie et al., 1997)).

There several weaknesses in the system, and some
areas that are underdeveloped or lacking polish. In rough
order of severity:

1. Version 1 is biased towards algorithmic compon-
ents for language processing, and neglects resource
components.

2. Version 1 is biased towards text analysis compon-
ents, and neglects text generation components.

3. The visual interface is complex and somewhat non-
standard.

4. Installing and supporting the system is a skilled job,
and it runs better on some platforms than on others
(UNIX vs. Windows).

5. Sharing of modules depends on sharing of annota-
tion definitions (but isomorphic transformations are
relatively easy to implement).

6. It only caters for textual documents, not for multi-
media documents.

7. It only supports 8-bit character sets.

Points 1. and 2. compromise the generality of the sys-
tem, and have limited take-up, as well as the number of
CREOLE modules integrated with the system. For mod-
ules like taggers, parsers, discourse analysers (i.e. just
about anything that performs an analysis task) the GATE
integration model provides a convenient and powerful ab-
straction layer based on storing information in association
with the text under analysis. For resources like lexicons
or corpora, no such layer exists. Similarly, for modules
that do generation-side tasks, since there is no text under
analysis, the utility of a text-based model is limited.

4 Version 2

Our main aim is to extend CREOLE to cover as many
core areas of language engineering R&D as possible. In
support of this aim, GDM and GGI will be developed in
a number of significant ways; for the purposes of this ab-
stract we will discuss only one, viz. the extension of the
currently process-oriented resources set to include pre-
dominantly data resources such as lexicons, ontologies,
thesauri and corpora. Much progress has been made over
the last decade in provision of large-scale resources of this
type (Wilks et al., 1996), but despite various standards ini-
tiatives, there are still barriers to data resource reuse:



� each resource has its own representation syntax and
corresponding access mode: relational databases in
the case of CELEX, a custom C API or Prolog rep-
resentation in Wordnet, SGML in the case of the
British National Corpus;

� resources must be installed locally to be usable (and
precisely how this happens, what operating systems
are supported etc., varies from site to site).

The consequences of the first bullet are that although
linguistic resources normally share some structure (e.g.
at the most obvious level, lexicons are organised around
words and word strings) this commonality is wasted when
using a new resource, since the developer has to learn
everything afresh, and work which seeks to investigate
or exploit commonalities between resources (e.g. to link
several lexicons to an ontology) has first to build a layer
of access routines on top of each resource. So, for ex-
ample, if we wish to do task-based evaluation of lexicons
by measuring the relative performance of an information
extraction system with different instantiations of the lex-
ical resource, we might end up writing code to translate
several different resources into SQL or SGML.

The consequence of the second bullet is that there is
no way to “try before you buy”: no way to examine a data
resource for its suitability for your needs before licens-
ing it. Correspondingly, there is no way for a resource
provider to give limited access to their products for ad-
vertising purposes, nor gain revenue through piecemeal
supply of sections of a resource. To address this problem
we plan to develop a common model of the various re-
sources types, implemented in Java, along with a distrib-
uted server for non-local access, and distribute the code
required to map them into this model.

The common model of language data resources we
propose is a set of inheritance hierarchies. At the top
of the hierarchies are very general abstractions from re-
sources (e.g. a thesaurus groups synonyms); at the leaves
are data items specific to individual resources (e.g. Word-
Net synsets have glosses). Program access will be avail-
able at all levels, allowing the developer to select an ap-
propriate level of commonality for each application. Note
that, although an exciting element of the work is to provide
algorithms dynamically to link common resources e.g.
connecting EuroWordNet to LDOCE, this proposal is not
to develop new resources, but simply to improve access to
existing ones. Notice, also, that it is a proposal about lan-
guage data quite separate from, though compatible with,
the lexical data compression ideas in recent DATR work
(Evans and Gazdar, 1996). Finally, this is NOT in any
way a new standards initiative, but a way to build on pre-
vious initiatives. The issues of standards is a vexed one:
experience with repositories of lexical materials (e.g. the
CRL Consortium for Lexical Research 1989-93) suggests
that if resources must have standardised formats, they are
not deposited or used. Our proposal acknowledges the de
facto diversity of lexical resource format, but attempts to

render these resources more usable for language engin-
eering. More details of the approach may be found in
Cunningham et al. (1998).

Conclusion

The GATE system is used in several EC Fourth Frame-
work projects and is installed at over 200 sites world-
wide. It was adopted by the US TIPSTER programme
as part of their final Architecture Capabilities Platform,
and is available free of charge on licence from Sheffield.

Based on the collective experiences of a sizeable user
base across the EU and elsewhere, the system can claim
to be a viable NLP DSSA for certain sections of the field.
Given further development, we hope that it can take on
this role for a wider variety of tasks.

Acknowledgements

This work was supported by EPSRC grant GR/K25267,
NATO science grant CRG 960752, two ARPA contracts
under the TIPSTER programme and by a contract with
the Max Planck Institute in Nijmegen.

References

H. Cunningham, M. Freeman, and W.J. Black. Soft-
ware Reuse, Object-Oriented Frameworks and Natural
Language Processing. In New Methods in Language
Processing (NeMLaP-1), September 1994, Manchester,
1994. Published in 1997 by UCL Press.

H. Cunningham, K. Humphreys, R. Gaizauskas, and
Y. Wilks. Software Infrastructure for Natural Lan-
guage Processing. In Proceedings of the Fifth Con-
ference on Applied Natural Language Processing
(ANLP-97), pages 237–244, 1997. Available as
http://xxx.lanl.gov/ps/9702005.

H. Cunningham, W. Peters, C. McCauley, K. Bontcheva,
and Y. Wilks. A Level Playing Field for Language Re-
source Evaluation. In Workshop on Distributing and
Accessing Lexical Resources at Conference on Lan-
guage Resources Evaluation, Granada, Spain, 1998.

D. Day, J. Aberdeen, L. Hirschman, R. Kozierok,
P. Robinson, and M. Vilain. Mixed-Initiative Develop-
ment of Language Processing Systems. In Proceedings
of the 5th Conference on Applied NLP Systems (ANLP-
97), 1997.

R. Evans and G. Gazdar. Datr: A language for lexical
knowledge representation. Compuational Linguistics,
22(1), 1996.

Yoshihiko Gotoh, Steve Renals, Rob Gaizauskas, Gethin
Williams, and Hamish Cunningham. Named entity



tagged language models for LVCSR. Technical Re-
port CS-98-05, Department of Computer Science, Uni-
versity of Sheffield, 1998.

R. Grishman and B. Sundheim. Message understanding
conference - 6: A brief history. In Proceedings of the
16th International Conference on Computational Lin-
guistics, pages 466–471, Copenhagen, 1996.

P. Harrison, S. Abney, E. Black, D. Flickinger,
C. Gdaniec, R. Grishman, D. Hindle, R. Ingria,
M. Marcus, B. Santorini, and T. Strzalkowski. Evaluat-
ing syntax performance of parser/grammars of english.
In Proceedings of the Workshop On Evaluating Natural
Language Processing Systems. Association For Com-
putational Linguistics, 1991.

D. McKelvie, C. Brew, and H. Thompson. Using SGML
as a Basis for Data-Intensive NLP. In Proceedings of
the fifth Conference on Applied Natural Language Pro-
cessing (ANLP-97), 1997.

Y. Wilks, L. Guthrie, and B. Slator. Electric Words. MIT
Press, Cambridge, MA, 1996.


