QA-LaSIE: A Natural Language Question
Answering System

Sam Scott! and Robert Gaizauskas?®

! sscott@ccs.carleton.ca

Institute for Interdisciplinary Studies
Carleton University, Ottawa, K1S 5B6, Canada
2 r.gaizauskas@dcs.shef.ac.uk
Department of Computer Science
University of Sheffield, Sheffield, S1 4DP, UK

Abstract. QA-LaSIE was the heart of the University of Sheffield en-
try to the Question Answering track of TREC-9. By relaxing some of
the strongest linguistic constraints, we achieved a very significant per-
formance improvement over our TREC-8 system on both the TREC-8
and TREC-9 tasks. Whereas most systems returned answers that were
always close to the maximum allowable length, our system was one of
the only entries that tried to return an “exact answer” to a question.

1 Introduction

This paper describes a system to discover answers to questions posed in natural
language against large text collections. The system was designed to participate
in the Question Answering (QA) Track of the Text Retrieval Conferences (see
http://trec.nist.gov) and therefore the definitions of “question” and “an-
swer” that we adopt for this paper are those used in the TREC QA track (see
section 2 below). While the system is a research prototype, it is clear that sys-
tems of this sort hold great potential as tools to enhance access to information
in large text collections (e.g. the Web). Unlike a search engine, which returns a
list of documents ranked by presumed relevance to a user query, leaving the user
to read the associated documents to fulfil his information need, a question an-
swering system aims to return the precise answer to a question leaving the user
no further searching (though of course a link to the source document enables the
user to confirm the answer).

The task of question answering should be of interest to the AI community for
the simple reason that some form of Natural Language Processing must be used.
There was not a single system entered in the TREC-9 QA Track that did not
use some form of linguistic knowledge — no group took a purely statistical word
counting approach.! Thus, unlike other tasks in Information Retrieval, question
answering is one in which some form of NLP seems unavoidable. Nevertheless,
our own experience over two years of participation shows that an overly strict or

! The least NLP to be found was in one of the IBM groups’ submissions. But even
this system used the WordNet hypernym hierarchy to gain an edge over a simple
bag-of-words representation. Most systems used considerably more NLP.

formalistic approach may not succeed as well as one based on a mixture of formal
NLP and ad-hoc heuristics. This year we achieved much better performance by
relaxing some of the strict constraints we had employed for TREC-8.

The essence of our approach is to pass the question to an information re-
trieval (IR) system which uses it as a query to do passage retrieval against the
text collection. The top ranked passages from the IR system are then passed to
a modified information extraction (IE) system. Partial syntactic and semantic
analysis of these passages, along with the question, is carried out to identify the
“sought entity” from the question and to score potential matches for this sought
entity in each of the retrieved passages. The five highest scoring matches become
the system’s response. It is our hypothesis that NLP techniques can contribute
positively to QA capability.

2 The TREC Question Answering Track

The TREC-9 QA Track task was to return a ranked list of up to 5 answers to
each of 693 previously unseen questions. The answers had to be passages from
texts found in a (provided) 4GB newswire text collection. In TREC-9 there were
two subtasks: 50-byte and 250-byte answers (maximum). The score assigned to
each question was the reciprocal of the rank at which the first correct answer
was found, or 0 if no answer was correct. So a system got 1 point for a correct
answer at rank 1, 1/2 for rank 2, etc. The final score assigned to the system was
the Mean Reciprocal Rank over the entire question set. For more details see the
QA track guidelines document [5].

3 System Description

3.1 Overview

The key features of our system setup, as it processes a single question, are shown
in Figure 1. First, the (indexed) TREC document collection is passed to an IR
system which treats the question as a query and returns top ranked passages
from the collection. As the IR system we use the Okapi system [6]? to retrieve
passages between 1 and 3 paragraphs in length — a configuration arrived at
experimentally (details in [7]). Following the passage retrieval step, the top 20
ranked passages are run through a filter to remove certain formatting features
which cause problems for downstream components. Finally, the question itself
and the filtered top ranked passages are processed by a modified version of the
LaSIE information extraction system [3], which we refer to below as QA-LaSIE.
This yields a set of top ranked answers which are the system’s overall output.
The reasoning behind this choice of architecture is straightforward. The IE
system can perform detailed linguistic analysis, but is quite slow and cannot
process the entire TREC collection for each query, or even realistically pre-
process it in advance to allow for reasonable question answering performance

% Software available at: http://dotty.is.city.ac.uk/okapi—pack/ .

Question

OKAPI Text Ranked
Passa Top il QA-LaSIE A
ge Retrieval Passages Filter nswers

Fig. 1. System Setup for the Q & A Task

Indexed
TREC
Document
Collection

during the test run. IR systems on the other hand are designed to process huge
amounts of data. By using an IR system as a filter to an IE system we hope to
benefit from the respective strengths of each.

3.2 LaSIE

The system used to perform detailed question and passage analysis is largely
unchanged in architecture from the LaSIE system entered in the last Message
Understanding Conference (MUC-7) [3]. The system is essentially a pipeline
consisting of the following modules, each of which processes the entire text?
before the next is invoked.

Tokenizer. Identifies token boundaries and text section boundaries (text header,
text body and any sections to be excluded from processing).

Gazetteer Lookup. Identifies single and multi-word matches against multiple
domain specific full name (locations, organisations, etc.) and keyword (com-
pany designators, person first names, etc.) lists, and tags matching phrases
with appropriate name categories.

Sentence Splitter. Identifies sentence boundaries in the text body.

Brill Tagger. Assigns one of the 48 Penn TreeBank part-of-speech tags to each
token in the text [1].

Tagged Morph. Simple morphological analysis to identify the root form and
inflectional suffix for tokens which have been tagged as noun or verb.

Parser. Performs two pass bottom-up chart parsing, pass one with a special
named entity grammar, and pass two with a general phrasal grammar. A
“best, parse” is then selected (which may be only a partial parse) and a
predicate-argument representation, or quasi-logical form (QLF), of each sen-
tence is constructed compositionally.

Name Matcher. Matches variants of named entities across the text.

Discourse Interpreter. Adds the QLF representation to a semantic net, which
encodes background world and domain knowledge as a hierarchy of concepts.
Additional information inferred from the input using this background knowl-
edge is added to the model, and coreference resolution is attempted between
instances mentioned in the text, producing an updated discourse model.

2 In the current implementation a “text” is either a single question or a candidate
answer passage.

3.3 QA-LaSIE

The QA-LaSIE system takes a question and a set of passages delivered by the
IR system and returns a ranked list of proposed answers for the question. The
system is composed of the eight modules described in the preceding section plus
one new module. Four key adaptations were made to move from the base IE
system to a system capable of carrying out the QA task:

1. a specialised grammar was added to the parser to analyse questions;

2. the discourse interpreter was modified to allow the QLF representation of
each question to be matched against the discourse model of a candidate
answer passage;

3. the discourse interpreter was modifed to include an answer identification
procedure which scores all discourse entities in each candidate passage as
potential answers;

4. a TREC Question Answer module was added to examine the discourse en-
tity scores across all passages, determine the top 5, and then output the
appropriate answer text.

Parsing: Syntactic and Semantic Interpretation In the LaSIE approach,
both candidate answer passages and questions are parsed using a unification-
based feature structure grammar. The parser processes one sentence at a time
and along with the original words of the sentence also receives as input a part-
of-speech tag for each word, morphological information for each noun and verb
(word root plus affix), and zero or more phrases tagged as named entities. As
output the parser produces a representation of the sentence in a “quasi-logical
form” — a predicate-argument representation that stands somewhere between the
surface form of the sentence and a fully interpreted semantic representation in
a standard logical language. In particular the QLF representation defers issues
of quantifier scoping and of word sense disambiguation.

To take a simple example, the sentence fragment Morris testified that he
released the worm ... is parsed and transduced to the representation

person(el) ,name(el, ’Morris’) ,gender(el,masc) ,testify(e2),
time(e2,past) ,aspect(e2,simple),voice(e2,active) ,1subj(e2,el),
release(e3) ,time(e3,past) ,aspect(e3,simple) ,voice(e3,active),
pronoun(e4,he) ,1lsubj(e3,ed) ,worm(eb5) ,number (e5,sing) ,
det(eb,the) ,lobj(e3,eb) ,proposition(e6) ,main_event (e6,e3),
lobj(e2,e6)

The name information is derived from the Gazetteer lookup stage (where Morris
is recorded as a male first name), the tense information from the morphologi-
cal analysis stage, and the grammatical role information from annotations on
context-free rules in the grammar. In this case these rules encode that in En-
glish sentences which consist of a noun phrase followed by a verb phrase, which
in turn consists of a verb in the active voice and a sentential complement, the
noun phrase prior to the verb is the subject and the sentence following it is the

object. For common nouns and verbs, the lexical root of the word becomes a
predicate in the QLF language.

Both noun phrase heads and verb group heads are given unique discourse
entity references of the form e,,. This allows modification relations (e.g. of prepo-
sitional phrases) or grammatical role information (e.g. subject and object rela-
tions) to be captured via binary predicates holding of these entities. In cases
where parsing fails to capture all this information (e.g. when only simple noun
phrase, verb group, prepositional phrase or relative clause chunks are found and
not a spanning parse for the sentence) then partial QLF information can be
returned, making the system robust in the face of grammatical incompleteness.

Each sentence in a candidate answer passage is analysed in this faghion. So is
the question, using a special question grammar. This grammar produces a QLF
for the question in much the same style as above. For example, a question such
as Who released the internet worm? would be analysed as:

qvar(el) ,qattr(el,name) ,person(el) ,release(e2),time(e2,past),
aspect(e2,simple),voice(e2,active) ,1subj(e2,el),

worm(e3), number(e3,sing),det(e3,the),lobj(e2,e3),
name(e4,’Internet’),qual(e3,ed)

Note the use of the special predicate, qvar (question variable), to indicate
the “sought entity” requested by the question. In this case the qvar can also be
typed because who tells us the entity of concern is a person, and we presume
(by encoding this in the transduction rules) that the attribute we are seeking
here is a name (and not, e.g., a definite description such as a guy at MIT). The
fact that the system should return a name is encoded in the qattr predicate. In
other cases where the interrogative pronoun is more generic (e.g. what) the type
of the qvar and the attribute sought of it may not be so readily determinable.

Discourse Interpretation of Candidate Answer Passages Once a passage
has been parsed and each sentence has been assigned a QLF representation, the
discourse interpreter integrates the passages into a discourse model - a speciali-
sation of a semantic net which supplies the system’s background domain knowl-
edge. For IE applications, this domain-specific background knowledge assists in
extraction tasks by allowing template slot values to be inferred from it together
with information supplied in the text being analyzed. However, for the TREC
QA task there is no specific domain, and so this role of the semantic net is not
relevant (though a very basic “generic” world model is employed).

The real function of the semantic net in the QA task is to provide a framework
for integrating information from multiple sentences in the input. As the QLF
representation of each sentence is received by the discourse interpreter, each
entity is added as an instance node in the semantic net associated with its type
node (the single unary predicate in which it occurs) — e.g. given worm(eb),
eb is linked to the worm node in the net, if it already exists, and to a new,
dynamically-created node labelled worm if not. Added to each such entity node
is an attribute-value structure, or property list, containing all the attribute and
relational information for this entity (all binary predicates in which it occurs).

In addition to adding a sentence’s QLF to the semantic net in this fashion,
one further node is added representing the sentence itself. This sentence entity
has a sequence number indicating the sentence’s position in the passage, and
also has an attribute recording the entity numbers of every entity occurring in
the passage. Thus, the discourse model aims to model not only the content of
the discourse, but simple aspects of the discourse structure itself.

After each sentence has been added to the discourse model, the discourse
interpreter begins its main task — to determine coreference relations between
entities in the current sentence and entities already added to the model from
previous sentences in the input. There is not space to detail this algorithm here
(see [2]), but in essence it relies upon factors including the semantic type com-
patibility, attribute compatibility, and textual proximity of potential coreferents.
Once a coreference has been established between two entities, the two are merged
by replacing all references to the two entity numbers by references to just one
of them. However, the surface realisations which initially served as triggers for
the creation of each distinct entity node are retained as attributes of the merged
entity, and can be used later, e.g. to generate a text string as an answer.

Answer Identification After the discourse model has been constructed for a
candidate answer passage, the QLF of the question is added to this model and
treated as sentence 0. The coreference procedure is run and as many coreferences
as possible are established between entities in the question and those in the
passage®.

In the TREC-8 version of QA-LaSIE [4] this procedure was the primary
question answering mechanism: if the qvar was resolved with an entity in the
candidate answer passage then this entity became the answer; if not, then no
answer was proposed. This approach had several major drawbacks. First, it
permitted only one answer per question, whereas the QA track allows up to
five answers to be proposed. Second, it was very fragile, as coreference tends to
be difficult to establish.

Given these weaknesses, the TREC-9 system follows a significantly different
approach. Instead of attempting to directly corefer the qvar with an entity in
the candidate answer passage, entities in the passage are scored in a way which
attempts to value their likelihood as answers. The best scores are then used to
select the answers to be returned from the passage.

The discourse model is transversed twice, sentence by sentence.

1. Sentence Scoring On the first pass, the sentences are given an integer score.
The entities in the question are interpreted as “constraints” and each sen-
tence in the answer passage gets one point for each constraint it contains.
This rewards sentences for containing entities that have been detected as
coreferring with entities in the question. Typically these will be sentences

4 The standard coreference procedure uses a distance metric to prefer closer to more
distant potential coreferences. Clearly this is irrelevant for questions which are not
part of the original candidate answer passage. Hence we switch off the distance-
preference heuristic for coreference in this case.

which contain named entities mentioned in the question, or sentences which
contain definite noun phrases or pronouns which have already been resolved
(as part of discourse interpretation of the passage). Sentences also get an
extra point if they contain an event entity of the same type as the event
derived from the matrix verb of the question (unless that verb is to be).

. Entity Scoring On the second pass, the system looks in each sentence for the
best possible answer entity. To be considered, an entity must be an object
(not an event), and must not be one of the constraints from the previous step.
If the qvar has a qattr, then the entity must also have the specified attribute
to be considered a possible answer. The entities in a given sentence are
compared to the qvar and scored for semantic similarity, property similarity,
and for object and event relations.

Semantic and property similarity scores are determined as for generic coref-
erencing. The semantic similarity score indicates how closely semantically
related two things are (on a scale of 0 to 1). The semantic similarity is re-
lated to the inverse of the length of the path that links the two semantic
types in the ontology. If the qvar and an entity have the same type (e.g.
person), then that entity will receive a semantic similarity of 1. If the two
semantic types are on different branches of the hierarchy, the score is 0.
The property similarity score is also between 0 and 1 and is a measure of
how many properties the two instances share in common and how similar
the properties are.

The object relation and event relation scores were motivated by failure anal-
ysis on the original system and were tuned through test runs. The object
relation score adds 0.25 to an entity’s score if it is related to a constraint
within the sentence by apposition, a qualifying relationship, or with the
prepositions of or in. So if the question was Who was the leader of the team-
sters?, and a sentence contained the sequence ... Jimmy Hoffa, Leader of
the Teamsters, ... then the entity corresponding to Jimmy Hoffa would get
the object relation credit for being apposed to Leader of the Teamsters.
The event relations score adds 0.5 to an entity’s score if:

(a) there is an event entity in the QLF of the question which is related to
the gvar by a 1subj or lobj relation and is not a be event (i.e. derived
from a copula construction), and

(b) the entity being scored stands in the same relation (lobj or 1lsubj) to
an event entity of the same type as the qvar does. So if the question
was, What was smoked by Sherlock Holmes? and the answer sentence
was Sherlock Holmes smoked a pipe, then the entity a pipe would get the
event relations credit for being in the 1obj relation to the verb to smoke.

This represents a significant weakening of the requirement in our TREC-8
system that the qvar had to match with an entity in the answer passage
which stood in the same relation to its main verb as the qvar did with the
main verb in the question, as well the main verbs and other complements
being compatible. Here a bonus is awarded if this the case; there it was
mandatory.

Finally, the entity score is normalized to bring it into the range [0,1]. This
is motivated by the idea that if two sentences have equal scores from step
1 above, the entity score should break the tie between the two, but should
not increase their scores to be higher than a sentence that had a better score
from step 1. Normalizing the score improved performance slightly in tests
on the TREC-8 questions.

3. The Total Score For every sentence, the “best” answer entity is chosen ac-
cording to the Entity Scoring described above. The sentence and entity scores
are then added together and normalized by dividing by the number of enti-
ties in the question plus 1. The sentence instance is annotated to include the
total score, the best entity (if one was found), and the “exact answer”. The
exact answer will be the name of the best entity if one was identified during
parsing. Otherwise this property is not asserted.

Answer Output The answer output procedure gathers the total scores, as
described in the preceding section, from each sentence in each of the passages
analyzed by QA-LaSIE, sorts them into a single ranking, and outputs answers
from the overall five highest scoring sentences.

We submitted four runs to the TREC-9 evaluation — two in the 50-byte
category and two in the 250 category. These four runs are explained below:

shef50ea This is the exact answer run. If a high scoring sentence was annotated
with a trec9_exact_answer attribute then this is assumed to be the answer.
If there is no exact answer, then the code looks for a trec9_answer entity
and outputs the longest realization of that entity as the answer. If there
is no answer entity, which can happen occasionally, then a default string
is output. In all cases, the string is trimmed to 50 bytes if necessary, by
trimming characters from the left hand side.

shef50 For this run, the system looks for the first occurrence of the trec9_-
answer entity in the sentence and then outputs 50 bytes of the sentence
centered around that entity. The 50-bytes will never go outside of the answer
sentence (if the first occurrence is the first word, then the 50 bytes will be
the first 50 bytes of the sentence, and so on). If the sentence is shorter than
50 bytes, then the full sentence is output as the answer. If there is no answer
entity, the middle 50 bytes are output.

shef250 Same as shef50, but up to 250-bytes or the full sentence is output
(whichever is shorter).

shef250p For this run, the answer for shef250 is computed, then the answer is
padded to 250 bytes if necessary by adding characters from the file to both
ends, going outside the confines of the sentence if necessary.

4 Results

4.1 Development Results (TREC-8)

Development results for the four run types described in the preceding section
are shown in Table 1. shef-trec8 refers to the official results obtained by our

System Run|Mean Reciprocal Rank|Correct Answers|Rank in Class
shef-trec8 50 |.081 N/A 15/17
okapi-baseline|50 |.157 N/A 14/17 (hyp)
shef50ea 50 |.329 89/164 4/17 (hyp)
shef50 50 |.368 98/164 3/17 (hyp)
shef-trec8 250 |.111 N/A 22/24
okapi-baseline|250 |.395 N/A 11/24 (hyp)
shef250 250 |.490 127/164 4/24 (hyp)
shef250p 250 |.506 130/164 4/24 (hyp)

Table 1. Results on TREC-8 Questions. Rank hypothetical where marked.

TREC-8 system in TREC-8. okapi-baseline refers to a naive approach that
simply used Okapi passage retrieval with a maximum passage length of one
paragraph and then trimmed this paragraph to 50 or 250 bytes. This method
led to Mean Reciprocal Rank scores of 0.157 for the 50 byte responses and .395
for the 250 byte responses. This totally naive approach would have placed 14th
of 17 entrants in the TREC-8 50-byte system ranking and joint 11th of 24 in the
250-byte system ranking. In both cases these results were considerably higher
than our own entries in TREC-8. Thus, we started with a sobering baseline to
contend with. However, following development of the new approach described
above in section 3.3 and numerous experiments with various parameter settings
we arrived at the best development results presented in Table 1.

4.2 Final Evaluation Results (TREC-9)

Mean reciprocal rank scores for the four Sheffield TREC-9 runs are shown in
Table 2, for both lenient and strict scorings.> We have also included our system’s
ranking over all the systems entered and the mean score for all systems entered.
In all cases the performance of the Sheflield system is very close to the mean.
We have also used the Perl patterns supplied by NIST for the TREC-9 results
to score the submitted runs and an okapi-baseline system ourselves. These
results are reported in the Auto column.

System Run|Mean Reciprocal Rank|% Correct Answers in Top 5|Rank in
Strict |Lenient|Auto [Strict |Lenient{Auto Class

shef50ea, 50 |.159 172 171 23.6 25.7 25.8 28/35

shef50 50 |.206 217 .233 31.1 32.1 35.2 21/35

mean (of 35) (50 |.220 |.227 31.0 32.2

okapi-baseline|50 111 21.9

shef250 250 |.330 343 348 485 49.4 51.5 28/43

shef250p 250 |.345 357 .365 50.9 51.3 53.7 23/43

mean (of 43) [250 |.351 .363 49.0 50.5

okapi-baseline|250 328 55.6

Table 2. TREC-9 Results

In strict scoring, an otherwise correct answer was marked as wrong if there was no
support for it in the text from which it was extracted.

5 Discussion

The TREC-9 results also reported on the mean byte length of answers for each
submitted run. Most participants gave as much text as was allowed, resulting in
mean byte lengths of more than 45 bytes in the 50 byte category for all but a
handful of systems. Our shef50ea run (the exact answer run) was one of the few
that had a lower mean answer length — less than 10 bytes in fact. While we do
not know yet what the mean byte length would have been for correct answers,
we can report that our system had the highest score of the four systems that
returned answers with an average length under 10 bytes.

At this point we do not have the information to allow us to apportion faults
between Okapi and QA-LaSIE. In training on the TREC-8 questions Okapi was
returning answer-containing passages for about 83% of the questions. On this
basis the best QA-LaSIE mean reciprocal rank scores obtained in development
were around .37 for the 50-byte runs and just over .50 for 250-byte runs, as
presented above in Table 1.

Thus the TREC-9 test results represent a significant drop with respect to
training results. Nevertheless, with respect to our best TREC-8 Mean Recip-
rocal Rank results (.081 for the 50-byte run, .111 for the 250-byte run), these
figures represent a very significant improvement, especially given that the ques-
tion set is significantly larger and the questions are “real”, as opposed to what
were artificially created back-formulations in many cases in TREC-8. And, they
validate the central hypothesis of our TREC-9 work that we should abandon
our previous rigid approach in which candidate answer entities either met con-
straints imposed by the question or did not, in favour of a looser approach which
scored them in terms of various factors which suggested that they might be an
answer. Finally, note that in both training and testing, for 250 as well as 50 byte
answers, QA-LaSIE performed better than the Okapi baseline system, indicating
that the NLP analysis is yielding increased value over a naive IR-only approach.

References

1. E. Brill. A simple rule-based part-of-speech tagger. In Proc. of the Third Conference
on Applied Natural Language Processing, pages 152-155, Trento, Italy, 1992.

2. R. Gaizauskas and K. Humphreys. Quantitative Evaluation of Coreference Algo-
rithms in an Information Extraction System. In S. Botley and T. McEnery, editors,
Discourse Anaphora and Anaphor Resolution. John Benjamins, London, 2000.

3. K. Humphreys, R. Gaizauskas, S. Azzam, C Huyck, B. Mitchell, H. Cunningham,
and Y. Wilks. Description of the LaSIE-II system as used for MUC-7. In Proceedings
of the Seventh Message Understanding Conference (MUC-7), 1998.

4. K. Humphreys, R. Gaizauskas, M. Hepple, and M. Sanderson. University of Sheffield
TREC-8 Q & A System. In NIST Special Publication 500-246: The Eighth Text
REtrieval Conference (TREC 8), 1999.

5. TREC-9 Question Answering Track Guidelines. http://trec.nist.gov/act_part/-
guidelines/QA _guidelines.html, 2000.

6. S. Robertson and S. Walker. Okapi/Keenbow at TREC-8. In NIST Special Publi-
cation 500-246: The Eighth Text REtrieval Conference (TREC 8), 1999.

7. S. Scott and R. Gaizauskas. University of Sheffield TREC-9 Q & A System. In
Proceedings of The Ninth Text REtrieval Conference (TREC 9), 2000. To appear.

