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Chapter 1

Introduction

1.1 LaSIE: Past, Present and Future

The LaSIE (Large Scale Information Extraction) system has been under on-going development
in the Natural Language Processing Group, Department of Computer Science, University of
Sheffield, since 1995. It was developed to illustrate a particular approach to Information Ex-
traction (IE), though it was initially spurred into existence and shaped by the Sixth Message
Understanding Conference (MUC-6), held in 1995 [4, 10]. Subsequent to this, the modules
comprising the original LaSIE system (LaSIE 1.0) were “sawn” apart and re-integrated within
GATE, to form a functionally equivalent, but architecturally very different, version of LaSIE
(LaSIE 1.5). GATE, the General Architecture for Text Engineering, had been undergoing
simultaneous development at Sheffield (see http://gate.ac.uk). GATE supplies document
collection management facilities, a visual execution model, visualisation tools for viewing
module results, and a uniform API to an underlying database, which serves both as a per-
sistent store for module results and a communication medium via which module results are
passed from one module to another.

To serve as an illustration within GATE of how language processing modules could be
combined into application systems, a version of the LaSIE 1.5 system, called (inappropriately,
with hindsight) VIE — Vanilla Information Extraction System — was bundled with GATE, and
has continued to be so until the present. VIE is, to all intents and purposes, LaSIE 1.5.

Following the initial release of GATE and VIE, LaSIE continued to evolve and a refined
version of the system was used for the Seventh Message Understanding Conference (MUC-7),
held in 1998 [5, 15]. Referred to locally as LasIE-II (officially, LaSIE 2.0), this enhanced
version of the system differed from the earlier one only slightly at the architectural level — in
the position of the List Lookup module, and the separation of the Template Writer module
from the Discourse Interpreter. However, many of the individual modules were refined in
numerous ways, the most notable changes being the almost completely rewritten grammar
(the original attempt to acquire a grammar from the Penn Treebank was abandoned) and the
introduction of event coreference and a focus mechanism into the discourse interpreter.

Since MUC-7 (April, 1998) LaSIE has principally been used as a starting point for IE
systems in new application areas (e.g. in bioinformatics where LaSIE has served as the basis
for the EMPathIE and PASTA systems [13]) and for other text processing research into areas
such as question answering (LaSIE has served as the basis of the Sheffield entries into the
TREC-8 and TREC-9 QA track [16, 8]) and summarisation [1]. During this time the core



1.2. DOCUMENTATION 7

LaSIE system has remained largely unchanged. Some revisions have been propagated back
into the base system from these other projects, but in essence the core IE system remains
as it was entered into MUC-7. It is this system — LaSIE 2.1 — that is described in the
current document, along with certain additions that serve to assist in development of new IE
applications and in testing/debugging aspects of the system.

The future of LaSIE is unclear. The name (“large scale”) is hardly appropriate today
given current views on the volume of texts IE systems should be able to process as a matter of
course (and LaSIE has never been the fastest of systems, though speed was never a focus of our
research and little effort has been expended on optimising performance). Further, approaches
to IE have changed and systems that presuppose a level of meaning representation independent
of the text and rely upon manually assembled rule-bases are not in vogue. Nevertheless there
are reasons to believe that LaSIE, or a descendent thereof, should have a future. Many of
the components in LaSIE (section analyser, tokeniser, sentence splitter, gazetteer lookup) are
highly reusable and required by virtually any approach to IE. The “meaning representation”
approach to language processing, while under healthy critique from statistical approaches,
is certainly not dead, and will continue to represent one strand of important research work
in NLP. The manually built rule-bases which direct several of the system’s key components
consist of rules which may well be learnable in either supervised or unsupervised fashion,
either fully automatically or semi-automatically, with a ‘human in the loop’. Also, increased
computing power means that while expectations have been raised about the overall volume
of texts that should be processed, many important text collections can now be processed by
systems like LaSIE in much more respectable times. Finally, there is something to be said
about looking to the future with a stable, well-tested code base.

1.2 Documentation

This document describes LaSIE version 2.1 as embedded within GATE version 1.5.1. It is
a technical specification document, not a user guide. It documents each of the modules in
LaSIE in terms of: a functional overview, its interface to GATE (annotation input from or
output to the GATE document manager), external processes the module may invoke, external
resources on which the module depends, and known limitations.

This document does not describe GATE. A separate GATE User Guide [9] exists, as does
a document describing how to integrate modules into GATE [3]. Full understanding of the
present document will almost certainly require reference to these other documents as well.

1.3 LaSIE System Architecture

A schematic of the LaSIE system, showing the sequence of the main LaSIE modules is shown
in figure 1.1.

1.4 CREOLE Modules in GATE

To take advantage of the facilities GATE has to offer (document management, visual exe-
cution, visualisation tools for module results, a uniform API to an underlying database for
persistent storage of module results and communication of module results between modules)
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Figure 1.1: LaSIE Architecture

an application system such as LaSIE has to be broken up into a number of functional sub-
components each of which becomes a CREOLE (Collection of REusable Objects for Language
Engineering) module within GATE. While this document does not describe how to do this in
detail (for this see the CREOLE Developers Manual [3]), the reader of this document should
be aware of some of the basic concepts behind the CREOLE approach. These are introduced
here.

The motivation for CREOLE is to provide a set of encapsulated language engineering
modules which can be reused in different applications, or for which functional equivalents can
be easily substituted (‘plug and play’). Three things are necessary for each CREOLE module:

configuration file The configuration file tells GATE about the module — what sort of input
annotations and attributes it requires and output annotations and attributes it pro-
duces; what sort of viewers are required for its output; what parameters may be passed
to the module. This information allows GATE to validate the modules position in the
executable graph (see Figure 1.1) and to make appropriate viewer selection menus and
parameter dialogue boxes available for the module. All configuration files are written
in tcl and reside in a file called creole_config.tcl in the module’s root directory.

wrapper The wrapper communicates between GATE and the module and serves to inter-
face between modules, written in arbitrary languages, which were never designed to be
included in GATE. The basic logic is the same for every wrapper. First, it extracts
the input the module requires from the GATE document manager (GDM) — perhaps
the text of the document to be processed and/or annotation information produced by
earlier modules — and transforms this data into the native input form that the mod-
ule requires (perhaps by writing to a temporary file). Next, the wrapper invokes the
module passing it as input the information retrieved and transformed from the GDM.
Finally, the wrapper takes the output the module produces, maps it into the appropriate
annotation-based representation for the GDM and stores the output in the GDM. Since
wrappers must communicate with the GDM via the GDM API, they must be written
in a language that supports the GDM API - tcl and ¢c™* for GATE 1.5 and Java for
GATE 2.x. The wrapper (code and executable, if there is one) lives in the module root
directory and must bear a name which is recorded in the configuration file.
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module core The module core is the code which actually carries out the language processing
task. As noted, it is invoked by the wrapper, which also arranges to pass it its input
and to make use of its output. Module cores may be written in any language supported
on the platform running GATE and may embody arbitrary functionality. Their top
level executable resides in the module root directory, by convention, though they may
organise file space below this point as they see fit.

CREOLE modules may be tight coupled, loose coupled or dynamically coupled
within GATE 1.5. Tight coupled modules are modules whose wrappers and cores are written
entirely in ct+. They are compiled as part of the GATE executable. This offers speed, but
means all of GATE must be recompiled whenever the module changes. Loose coupled modules
are modules whose wrapper is interpreted at runtime (i.e. whose wrappers are in tcl), and
whose core is run as a separate external process, executed by the wrapper (unless the module
core code is also in tcl and resides in the same file as the wrapper). Dynamically coupled
modules are modules whose wrappers are dynamically linked to the GATE executable at run
time (and hence are in ¢t) and whose cores are either compiled into the same linked library
as the wrapper or are executed as separate external processes by the wrapper.

1.5 Acknowledgements

LaSTE has been created by many people. These people had to eat while they were being
creative, and for this they required money. Funding for people who have contributed to
LaSIE over the years has most gratefully been received from:

e The UK Engineering and Physical Sciences Research Council (EPSRC). The core fund-
ing which supported the initial creation of LaSIE and GATE came from EPSRC grant
GR/K25267. A new version of GATE is being developed with further support from the
EPRSC (GR/M31699).

e The European Commission Telematics Programme (Framework IV) — the ECRAN,
AVENTINUS and ELSE projects.

e GlaxoWellcome Research, in support of the EMPathIE project.
e Elsevier Science, in support of the EMPathIE project.

The initial LaSIE system was created by Rob Gaizauskas, Kevin Humphreys, Hamish Cun-
ningham and Takahiro Wakao. Saliha Azzam, Mark Hepple, Chris Huyck, Brian Mitchell,
Sandy Robertson and Pete Rodgers have all contributed significantly to subsequent develop-
ments. Yorick Wilks has provided ideas, benign criticism and ceaseless support. As we hope is
clear from references in the following document we owe a significant debt, both intellectually
and practically, to others in the NLP community who have supplied us with ideas and, in
some cases with code.



Chapter 2

Sectionizer

2.1 Overview

The SECTIONIZER module scans texts for predefined start/end pairs of regular expressions,
and creates a new annotation for each match. It is intended primarily to be used to detect
gross section divisions in texts, and the annotations that result can be used by subsequent
modules to determine what sorts of processing to apply to certain sections. In particular it can
be used to identify sections to be excluded from processing (e.g. tables, figures, bibliographys).
However, it is not limited to this purpose and can be used for finer grained analysis, e.g. to
detect SGML tags (see the example in 2.2.5 below) or to recognise named entities.

It is not currently used in the LaSIE MUC system, which uses the tokeniser for much
the same function, but can be added at any stage for the identification of text regions not
captured by the TOKENIZER module.

2.2 GATE Interface

2.2.1 Input

Raw text, as a byte sequence.

2.2.2 Output

Annotations and attributes as specified in the regexp definitions file.

2.2.3 Resources

The module reads the definitions file at run time, by default called sectionizer.def and
changeable through the module parameters. The definitions file contains entries of the fol-
lowing form, with each line containing all four fields:

annotation_type

{attributel_type:attributel_value ... attributeN_type:attributeN_value}
start_regexp

end_regexp

Within each regexp, the first brackets (opening for start_regxp, closing for end regexp) delimit
the annotation span.
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2.2.4 Parameters

RegExp file The full path of a definitions file to be used at runtime. The file can be edited
and the module reset and rerun from the interface to pick up changes, though only
annotation types specified in the post_conditions entry of the creole_config.tcl
file will be removed from the GDM database when the module is reset.

The viewers entry defined in the creole_config.tcl file, and used to control the con-
tents of the module’s results menu in the interface, is automatically updated each time the
definitions file is read at runtime. An entry is created for each annotation type included
in the file, with the GGI ‘section’ viewer used for annotations with no attributes, and the
‘single_span’ viewer for annotations with attributes.

2.2.5 Processing

Given the following entry in the definitions file:
sgml {type . end} " (</) non (>) "

the module will search for the character sequence </ then record the position of the opening
bracket, at the start of the sequence, as the annotation start. The expression "</ (.)" could
be used instead to record the position of the character following the </ sequence.

The second regexp is then used to search for the first > character following the position
of the closing bracket in the first regexp match. The position of the closing bracket in the
second regexp match is then recorded as the annotation end.

If both regular expressions are matched, a new annotation is created, in this case an sgml
annotation with a type attribute, the value of which is end. The attribute list may be a space
separated list of multiple attributes, or it may be an empty list.

The first regexp pattern is then searched for again, from the position of the closing bracket
in the previous end regexp match, to attempt to create further annotations of the same type,
before moving on to the next line in the definitions file and restarting searches from the
beginning of the text. Multiple lines can be included in the definitions file for the same
annotation types.

Each regexp in the definitions file is interpreted as a string and therefore requires tcl’s
single quoting of all special regexp characters within the string, and double quoting of these
characters to force a non-special interpretation. See the tcl/tk manual pages for details of the
special characters and their interpretation within strings.

One annotation type, called exclusion zone, is treated specially by the module. If an-
notations of this type have already been created, possibly by the module itself from previous
lines in the definitions file, subsequent regexp patterns will not be allowed to match text
within the annotations. exclusion_zone patterns should therefore normally be placed first
in the definitions file.



Chapter 3

Tokenizer

3.1 Overview

The TOKENIZER module identifies word boundaries in a text, returning byte offsets (or char-
acter positions) to be used as indices in the GDM database.

The TOKENIZER also attempts to identify certain known text types — currently New York
Times, Wall Street Journal and Reuters — the formats of which allow the identification of a
document identifier, header/body /trailer boundaries, and section (or paragraph) boundaries.
For New York Times and Wall Street Journal texts, exclusion zones (as specified for MUC-6
and MUC-7) are also recognised, and a flag is set if <s>...</s> SGML sentence markup is
found.

Unrecognised text types are treated as plain text, with no header/body boundary, and
with blank lines assumed to indicate paragraph boundaries.

3.2 GATE Interface

The TOKENIZER is implemented via a set of regular expression patterns which are translated
to C using flex. The file .../creole/tokenizer/tokenize .11 contains the patterns.

3.2.1 Input

Raw text, as a byte sequence.

3.2.2 Output

token annotations.

section annotations.

header annotation (one only).

body annotation (one only).

trailer annotation (one only).

exclusion_zone annotation (one only, with multiple spans).

text_type document attribute (“NYT”, “WSJ”, “REUTERS”, or “plain”).
wsj_id or nyt_id document attribute (identified using the <DOCNO> SGML markup).
sentence markup document attribute (if <s> SGML markup is present).
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3.2.3 Processing

The flex patterns define the following items to be tokens:

1. a contiguous character string in which each character is alpha-numeric or a hyphen (‘-’),
e.g. “Chicago”, “old-fashioned”, “1989”.
Hyphens are not included in character strings which occur within a recognised header
section, and are instead treated as separate punctuation symbols.

2. punctuation symbols: ", “$”, “” etc.

3. special cases involving apostrophes, e.g. “’s”, “’d”, “lI”.

4. compound negations: “mustn’t”, “wasn’t”, “couldn’t”, “aren’t”, etc.

These are treated as single tokens (according to MUC-6 definitions) instead of being
split into two (e.g. must+n’t) or three (e.g. mustn+’+t) separate tokens. An explicit
list of verbs which can combine with “n’t” is used, mostly modal and auxiliary verbs.
Irregular forms, such as “can’t”, “won’t”, “ain’t”, are listed in full.

5. words beginning with “O’ ”, as in “O’Keefe”.

6. Wall Street Journal and New York Times SGML markups: <DOC>, </D0OC>, etc.
An explicit list of known SGML markups is used, rather than the simple recognition of
<> and </> notation alone.

7. SGML symbols, such as &LD;, &ndash;, etc. Unlike the SGML markup, these are not
explicitly listed and are identified solely from the format.

8. Wall Street Journal and New York Times document numbers: a numeric string starting
with ‘8’ or ‘9, followed by a hyphen and a four digit number, e.g. “940427-0051” (the
<DOCNO> SGML markup is not used to identify this string).



Chapter 4

Gazetteer Lookup

4.1 Overview

The GAZETTEER LOOKUP module attempts to identify phrases and keywords related to
named entities, as defined for the MUC tasks. This is done by searching a series of pre-stored
lists of organisations, locations, date forms, currency names, etc., some of which have been
derived from the gazetteer lists provided as part of the MUC training data. While originally
created to support named entity identification strictly for the MUC Named Entity tasks
(MUC-6, MUC-7), this facility has been extended to allow arbitrary lists of terms to be used
and arbitrary tags to be assigned. As such it has proved useful for terminology tagging tasks
in technical domains, e.g., for identifying protein names in molecular biology texts.

4.2 GATE Interface

The various lists are translated into a series of C finite-state recognisers using f1ex. These are
compiled into GATE so that no external search through the original list sources is required.

4.2.1 Input

token annotations, optionally with pos attributes.

4.2.2 Output

lookup annotations, with tag and type attributes.

The tag attribute is used to indicate a major class for a match, such as organisation or
location, and the type attribute specifies further distinctions within the class, if appropriate.
For example, the location tag has several type subclasses such as city, province, country,
region. The attribute values are based simply on which list a match was found in.

4.2.3 Resources

A set of lists of terms and keywords, one entry per line, together with a 1ists.def configura-
tion file defining the tag and type values associated with each list, are processed at compile
time into a single multi-stage recogniser. The set of lists used for the MUC-7 system is as
follows. Most of the lists were compiled manually from various resources available on the web,
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but where specific resources were used, these are indicated below. Aircraft and airport lists
were introduced for the MUC-7 training task (air crash scenario), and spacecraft and satellite
lists were introduced for the MUC-7 test task (rocket launches).

aircraft.lst aircraft manufacturers.

aircraft_names.lst aircraft model names and numeric codes.

airline.lst keywords which typically occur as part of airline company names.

airlines.lst airline company names.

airports.lst airport names, treated as locations for MUC.

cdg.lst company designators, such as “Ltd”, “Corp”, “Co”, etc., based on the list provided
as part of the MUC training data.

city.lst city names, taken from level 1 entries (basically country and state capitals) in the
gazetteer provided as part of the MUC training data.

company.lst company names, originally taken from a list provided by the Consortium for
Lexical Research.

country.lst country names, taken from level 1 entries in the gazetteer provided as part of
the MUC training data.

country_adj.lst adjectives describing nationality, such as “English”, “French”, “American”.
currency_unit.lst international currency names, taken from the MUC reference resources.
date.lst specific date terms such as “today” and “tomorrow”, also including season names.
date_post.lst keywords used to modify dates and time periods.

date_pre.lst prefixes used to modify dates, such as “mid”, “end of”, etc.

datespan.lst keywords used to indicate time periods.

day.lst day names.

department.lst government departments.

festival.lst festival day names.

govern_key.lst keywords which typically occur as part of government organisations.
government.lst government organisations.

loc_key.lst keywords which typically occur as part of location names.

loc_prekey.lst prefixes used to modify location names.

ministry.lst government departments.

months.lst month names.

non_company.lst organisations which should not be marked as either company or govern-
ment, e.g. “UN”, “NATO”, “EU”.

nonspec_date.lst terms indicating time periods, which can used alone, e.g. “week”, “decade”..

org_base.lst terms indicating organisation names, which can be used alone, e.g. “associa-
tion”, “union”, “school”.

org_key.lst keywords which typically occur as part of company names.
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others.lst keywords and complete terms which are not of any category to be marked up, e.g.
“Index”, “World War 1”.

othorg key.lst keywords which typically occur as part of non-company and non-government
organizations.

person_ambig.lst person first names, ambiguous between male and female.
person_female.lst female person first names.

person_full.lst significant complete person names, e.g. “Bill Clinton”.
person_male.lst male person first names.

planet.lst planet and moon names.

province.lst province and US state names taken from level 1 entries in the gazetteer provided
as part of the MUC training data.

region.lst geographical regions.

satellite_comms.lst

satellite_destruct.lst

satellite_intell.lst

satellite_other.lst

satellite_research.lst

satellite_tv.lst

satellite_weather.Ist satellite names, based on lists from NASA and other websites.
spacecraft_rocket.lst

spacecraft_shuttle.lst

spaceprobe.lst

spacestation.lst spacecraft names, based on lists from NASA websites.
times.Ist terms indicating times of day.

timespan.lst units used for time periods.

timex_pre.lst prefixes used to modify time periods.

timezone.lst time zone names and abbreviations,

title.Ist civilian person titles, such as “Mr” and “Dr”, and including management position
titles, such as “President” and “CEQ”.

title_mil.lst military personnel titles.

water.lst names of bodies of water, to be marked as locations.

The format of each line in the configuration file, by default 1ists.def as specified in the
module’s Makefile, is as follows:

list_filename:tag_value:type_value
For example,

city.lst:location:city
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The type_value is optional, and if omitted the filename, less any .1st suffix, will be used for
the type attribute. The configuration file is only used at compile time.

Additional regexp recognisers — year, time_of _day and timex_trailer — are also in-
cluded in the module, mainly for the extended set of MUC-7 time expressions, and are not
controlled by the lists.def configuration file describing the set of lists to use. These are
effectively built-in lists, with fixed tag and type values, and the 1lists.sh lexer generation
script, described below, must be modified to change the values or to remove the lexers.

4.2.4 Processing

The various lists, specified in a 1ists.def file, are translated into sets of regular expressions
by the 1ists.sh script, which are then translated into a series of C finite-state recognisers
using flex. These are compiled into a single 1ist_lookup executable, so that no external
search through the original list sources is required. The module effectively forks a separate
GATE process, generating a temporary single document collection on which the 1ist_lookup
executable is run.

The module passes tokens to the recognisers, each with an associated offset range. The
recognisers can match any single token or sequence of tokens, and the module creates new
annotations using the offset ranges.

If no part-of-speech tag attributes are present on the token annotations, all token strings
are passed to the finite state recognizers. Otherwise only token strings tagged as nouns and
adjectives are passed in. The module can therefore run before or after the part-of-speech
tagger module.

The longest match in each individual list, which may cover multiple tokens, is returned,
but matches in different lists, of either the same string or a substring, will cause the addition
of multiple annotations for the same text span.

For the MUC systems, matching is case sensitive, with one extension: not only will any all
uppercase tokens in a text match their exact equivalents in a list; such forms are also converted
to uppercase-initial before matching and hence will also match list entries in which only the
first character is uppercase. For example, FORD in a text will match either FORD or Ford in a
list, but not ford. This extension was added to deal with matching in headlines of newswire
texts, which are frequently all uppercase. For the EMPathie and PASTA systems matching
was altered further, so that if a list entry is lower case matching against it is case insensitive,
but if it is upper or mixed case, matching is case sensitive (this was done because in these
systems list matching was used for terminology identification, and terms, like common nouns
and unlike proper nouns, can occur either in all lower or uppercase-initial forms depending
on position in a sentence).

4.3 Maintenance: Addition of New Lists

To add lists for an additional class of terms, firstly decide how much structure the terms you
want to identify have. There may be a clear division between ‘head’ words and ‘modifiers’
of those heads, e.g.: alcohol dehydrogenase, alcohol oxidase, glycerol dehydrogenase, and this
is best dealt with by using separate lists, e.g. for proteins and protein modifiers, and then
subsequent grammar rules in the parser (Chapter 8) to combine them.

Create the new lists in the .../creole/lists directory, by convention with a .1st suffix
for each file:
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protein.lst:
dehydrogenase
oxidase

protein_mod.lst:
alcohol
glycerol

Then add a new entry for each list in the appropriate .def configuration file (e.g. empathie.def
specifies the lists to use for the EMPathIE application). Each line in the configuration file
should be of the form 1ist name:class:subclass e.g.:

protein.lst:protein:head
protein_mod.lst:protein:modifier

If a match is found in a list, class will be used as the value of the tag attribute on the
list_lookup annotation in the output, and subclass as the value of the type attribute.
If subclass or both class and subclass are unspecified in the configuration file, then
list_name (without the .1st suffix) will be used as the value.

To compile the list lookup module, including the new lists, do:

% make clean; rm *_a? *_a%?.? *x.a

to clear out all old lists, then

% lists.sh empathie.def

to generate flex input from the lists specified in the .def file, and finally

% make

which will take a while. (If a ‘mk_lexer: not found’ error is reported, ensure that your PATH
includes “.%).

If you only add new entries to existing lists, you can skip the first step to clear the old
lists, and the compilation will be quicker.

You should then be able to rerun the lists module from GATE and use the results viewer
(which displays both class and subclass) to check that list entries have been picked up cor-
rectly.

An important point regarding multi-word entries in the lists is that each token, as defined
by the Tokenizer module, must be space separated. So, for example, myo-inositol (as a protein
modifier) should be given as:
myo - inositol
in the lists file, if the tokeniser module classifies this as three separate tokens.
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Sentence Splitter

5.1 Overview

The SENTENCE SPLITTER module is based on the sentence splitting algorithm used in the
Sussex MUC-5 system, POETIC [7]. It identifies sentence start and end byte offsets, making
use of SGML sentence markup if present.

5.2 External Processes

5.2.1 Software Requirements

The SENTENCE SPLITTER is implemented as a perl script
(file: .../creole/splitter/sent split.perl).

5.2.2 Input

Start and end byte offsets, one pair per line, each followed by the corresponding character
string. Newlines from the raw text are also treated as tokens, written as \n with byte offsets.

5.2.3 Output

Byte offset pairs, one per line, representing sentence start and end positions.

5.2.4 Resources

The sentence splitter uses a list of common English words (file: .../creole/splitter/wordlist).
It also make use of the external morph program (described in Chapter 7) as a stemmer so
that only root forms are searched for in the wordlist file.

The perl script also contains a table listing common abbreviations for company designa-
tors and (English) person titles.

5.2.5 Parameters

An alternative wordlist file can be specified via the GGI. A flag can also be set to force
sentence SGML markup to be used if present.
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5.2.6 Processing

A sentence end is assumed if:

1. a period is preceded by a non-abbreviation and followed by an uppercase token whose
root (obtained via the morph program) is a common word (i.e. is in the wordlist file);

2. a period is preceded by a single character token which is preceded by a lower case token,
unless the period is followed by a token whose root is not a common word (to allow for
cases such as “B. Clinton” or “U.S.”);

3. a period is followed by ” or ’ or a newline;
4. a newline is followed by a </p> (paragraph end) SGML tag;
5. an SGML tag is both preceded and followed by a newline;

6. a newline is followed by a “@” table marker in a Wall Street Journal text.

If the flag to use SGML markup is set, and the markup is present, the input is simply
searched for <s>...</s> pairs, and the corresponding offsets are written out.

5.3 GATE Interface

5.3.1 Input

token annotations.
lookup annotations (optional).
sentence markup document attribute (optional).

5.3.2 OQutput

sentence annotations with a constituents attribute, the value of which is an ordered list
of GDM database identifiers of the token annotations within the sentence span.

5.3.3 Processing

token annotations are written out to a temporary file as a byte offset pair followed by the
string within the span. If a newline occurs between the spans of two adjacent token annota-
tions, this is written out as if it were a token.

At each token position, if any list lookup annotation is found at that position, the string
corresponding to the list entry is written out as a single unit for the external sentence splitter
perl script, within which no sentence boundary can be proposed. If multiple list lookup
annotations are found at the same position, the entry with the longest span is used. This
avoids the proposal of sentence boundaries within list matches.

The external sent_split script is then called, with a -s (SGML) flag if the sentence markup
document attribute is present, and the script’s output is used to create new sentence an-
notations, recording, as an attribute, the token i.d. numbers within the sentence span. This
representation, as opposed to an annotation without attributes, is adopted to avoid repeatedly
calculating the same sets of token annotations within each sentence in subsequent modules.
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5.4 Limitations

The SENTENCE SPLITTER is reasonably domain independent, although the current lists of
common abbreviations may need to be extended for non-financial domains.
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Brill Tagger

6.1 Overview

The Brill tagger [2] is a rule-based part-of-speech tagger that has been extensively trained
on the Penn TreeBank corpus of manually tagged Wall Street Journal texts [18]. It uses,
therefore, the 48 part-of-speech tags which make up the Penn TreeBank tag set.

The original tagger resources have been modified slightly for use in MUC. The modi-
fications include the introduction of new tags for dates, SGML markup, and punctuation
symbols, and the addition of several new lexical and contextual rules to the original rule base.

6.2 External Processes

/* Copyright @ 1993 MIT and the University of Pennsylvania */
Written by Eric Brill, brill@blaze.cs.jhu.edu
6.2.1 Software Requirements

The Brill tagger is public domain software, available from:
ftp://ftp.cs. jhu.edu/pub/brill/Programs
It is written in C with a number of training scripts in perl.

6.2.2 Input

The Brill tagger expects a plain text file as input, formatted with one sentence per line.

6.2.3 Output

The output is a version of the input file with a part-of-speech tag appended to each token,
e.g.

One/CD of/IN the/DT differences/NNS between/IN Robert/NNP L/NNP ./PERIOD James/NNP

6.2.4 Resources

The Brill tagger requires four resource files:
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Lexicon

File: .../creole/brill/MUC6/LEXICON.MUC6
The original lexicon file (produced from training on the Penn TreeBank corpus) was mod-
ified for MUC-6 to include additional tags:

DATE (days of the week, month and season names)
SGML (markup tags occurring in Wall Street Journal articles)
PPS (possessive personal pronouns)

Irregular negated modals (“can’t”, “won’t” and “ain’t”, as identified by the TOKENIZER
module) were also added to the lexicon file as normal modals (MD tag).

Several punctuation symbols whose tags were the same as their surface forms were assigned
the existing SYM tag. Separate tags were used for the COMMA and PERIOD punctuation symbols.

Lexical Rules

File: .../creole/brill/MUC6/LEXICALRULEFILE.MUC6

The original lexical rule file was supplemented with a rule to tag “5” as a cardinal number
(CD tag), the omission of which was presumably just an effect of the original training data
used. With the default lexical rules “5” is tagged as a normal noun (NN tag).

Contextual Rules

File: .../creole/brill/MUC6/CONTEXTUALRULEFILE.MUC6
For the contextual rule file, the following changes were made:

e The default part-of-speech tag for “marks” is changed from a verb (VBZ tag) to a plural
noun (NNS tag) when preceded by a number (CD tag), to allow the recognition of German
currencies (for the MUC-6 Named Entity task).

e Several rules to tag “fall” as a noun (NN tag) were added, to allow its recognition as a
date (for the MUC-6 Named Entity task).

e The default part-of-speech for “operating” is changed from a verbal gerund (VBG tag)
to an adjective (JJ tag) when it precedes a noun. This permits the recognition of,
e.g., “operating officer”, at the GAZETTEER LOOKUP stage (required for the MUC-6
Scenario Template task) as only nouns and adjectives are passed on to this stage.

o Several rules were added to change various tags to proper nouns (NNP tag) when followed
by either a company designator or a period.

e A preposition (IN tag) followed by a coordinator (e.g. “and”) (CC tag) is changed to an

adverb.

Bigrams

File: .../creole/brill/MUC6/BIGRAMS
The default null bigram file was left unchanged.
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6.2.5 Parameters

Alternative resource files can be specified via the GGI. An additional lexicon file can also be
used — see the tagger’s own documentation for details of the file formats.

Also settable from the GGI are parameters to run only the start-state-tagger process, to
dump output after this stage during full processing, and to tag texts a certain number of
lines at a time if memory is insufficient to process a full text — again, see the tagger’s own
documentation for further details.

Enable Tag Correction This parameter activates several heuristics intended to correct

common mistakes made by the Brill tagger.

Firstly, if any lower case tokens are tagged by Brill as either NNP or NNPS (proper
noun), the tag for the token is converted to JJ (adjective).

Secondly, each upper case token in the document header which has been tagged as
a proper noun, is tested to attempt to determine whether it should be retagged as a
common noun. If a List Lookup entry is found beginning at the same position as the
token, the tag is left as proper noun, reflecting the fact that the Lists contain mainly
proper nouns, though this is not true of all list categories. If no List Lookup entry is
found, the token is checked to see whether it is a known common word. This is done
by calling the Morph module’s external executable, called morph, with the token string
to find the root form, and then by matching against the list of common words used in
the Sentence Splitter module. If a match is found, the token’s tag is converted to NN
(common noun).

Filter Gazetteer Entries This parameter acts to remove single token List Lookup entries,

if Brill has tagged the corresponding token as anything other than either NN, JJ, RB
or DATE. This will remove, for instance, the person name match for the token ‘Sue’, if
Brill has tagged the occurrence as a verb.

As a result of this potential modification of the List Lookup module’s results, resetting
the Brill tagger from the GATE interface will also reset the List Lookup module, to
force the regeneration of the original set of list matches.

6.2.6 Processing

The Brill tagger’s own documentation is distributed with GATE in:
.../creole/brill/RULE BASED TAGGER V1.14/Docs

Publications related to the Brill tagger can be found at:
ftp://ftp.cs.jhu.edu/pub/brill/Papers

6.3

6.3.1

GATE Interface

Input

token annotations.
lookup annotations (optional).
sentence annotations.
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6.3.2 Output

pos attributes on the existing token annotations. The attribute values are upper case tag
names, as output by the tagger.

6.3.3 Processing

The text strings within the span of each token annotation are written out to a temporary
file, separated by single whitespaces. A newline is written out after the current token if it is
at or beyond the current sentence end. The Brill tagger is then called with this temporary
file as input.

The list of tags output from the Brill tagger is read in and each one added as the value
of the pos attribute for the next token annotation. The tagger may output alternative tags
for a single token in the input, but in this case only the first is added as the value of the pos
attribute.

6.4 Limitations

The Brill tagger is domain dependent because its default resource files were produced by
training on Wall Street Journal texts. The tagger can also be used in other domains with
the same lexicon and rule sets, but presumably gives a reduced performance. It is possible to
retrain the tagger given a new corpus of hand-tagged texts.

The ability to retrain also means that the Brill tagger can be used in languages other than
English, given a suitable corpus of hand-tagged texts.
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Morph

Both the MORPH and TAGGED MORPH modules in the GGI use the same external process
and GATE interface, with a flag to indicate which version is required.

7.1 Overview

The MORPH module is in fact a lemmatiser rather than a full morphological analyser. How-
ever, in addition to producing a root form for each token it is given, it also produces a
normalised affix (e.g. “ed” for all past participle forms, both regular and known irregulars).

The TAGGED MORPH version only processes noun and verb tokens, as indicated by part-
of-speech tags, using the tags to increase accuracy, and avoiding irrelevant tokens to increase
processing speed.

7.2 External Processes

7.2.1 Software Requirements

The external morph program is implemented as a set of regular expression patterns which
are translated to a C finite state recogniser using flex.

7.2.2 Input

Plain text on standard input with each token optionally prefixed by begin (VERB) or begin (NOUN)
to restrict the set of applicable rules.

7.2.3 Output

A modified version of the input with each token changed to a root+affix format, if possible.

7.2.4 Resources

The set of regular expressions used represents both rules for the analysis of regular morphology
and a list of exceptions. The exception list was originally derived from the exceptions used
in WordNet [19], but this has been significantly revised following the analysis of a number of
English corpora carried out by John Carroll (johnca@cogs.susx.ac.uk).
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7.2.5 Processing

The regular expression rules implement their own tokenisation scheme, to allow the processing
of plain text input. In the absence of prefixes to restrict the set of applicable rules, verb rules
will be preferred in the case of multiple possible analyses. For example, the token “lives” will
by default be analysed as “live+s” rather than “life+s”, unless it is prefixed by begin (NOUN).

7.3 GATE Interface

7.3.1 Input

token annotations, for the MORPH version.
token annotations with pos attributes, for the TAGGED MORPH version.

7.3.2 Output

root and affix attributes on the existing token annotations. Values for the affix attribute
will be either s, ing, ed, en, or an empty string.

7.3.3 Processing

For the MORPH version, each token is written out to a temporary file, one per line to avoid
the application of the external process’s own tokenisation rules. For the TAGGED MORPH
version, each token with a noun or verb pos attribute is written out, again one per line, but
with the appropriate prefix.

The external morph process is then called with the temporary file as input, and the
output parsed to split root+affix strings and assign each part as attribute values for the
corresponding token annotations.

7.4 Limitations

The module is domain independent, the exception list having been developed from a number
of corpora. Both the rules and exception list are obviously language dependent. Certain
distinct English verbs are homomorphic in certain but not all inflectional forms and will
confuse MORPH. For example, ground is both the base form of the verb to ground and the
past and past participial form of to grind. Even TAGGED MORPH when given ground and
told it is a verb (as opposed to the noun ground) will not be able to distinguish these cases,
and will always get one of them wrong (the default is to treat the verbal form ground as
grind+ed).
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buChart Parser

8.1 Overview

The parser is a modification of the Gazdar and Mellish bottom-up chart parser [12]. It uses a
feature-based unification grammar to perform bottom-up phrase structure syntactic analysis
of each sentence in its input and during parsing a semantic representation of each constituent
is constructed compositionally from the semantic representations of the constituent’s compo-
nents.

The parser is complete in the sense that every analysis licensed by the grammar is pro-
duced, though there is a mechanism to control this. On completion a ‘best parse’ algorithm
is run to select a single analysis of the sentence, which may be partial if no tree spanning
the whole sentence can be constructed. The parser produces three sorts of output for each
sentence in its input: a phrase structure analysis of the sentence, a semantic interpretation of
the sentence, and an identification of certain specified categories of multiword names (“named
entities”) or terms in the sentence.

The parser operates in two main stages, first applying a sequence of specialised subgram-
mars to construct named entity or compound term noun phrases of specific semantic classes,
then applying a sequence of general phrasal subgrammars. Each subgrammar can be run
individually in the ‘cascaded’ mode of the parser.

8.2 External Processes

8.2.1 Software Requirements

The parser is written in Prolog and requires SICStus Prolog 3#6 or SWI Prolog 2.9. If
SICStus is not found, the overall GATE build may fail to automatically create the buchart
executable Prolog saved state and the mkparser_sicstus or mkparser_swi script must be
run manually, after specifying the path to the appropriate Prolog executable.

8.2.2 Input

A Prolog readable file containing a single doc_descriptor/1 term, specifying a document
identifier for use in output files, followed by a series of chart/3 terms, one per sentence.
Each chart term is of the form:



8.2. EXTERNAL PROCESSES 29

chart (sentence_n:S,
edges:Edge_List,
next_edge_number:NE) .

where S and NE are positive integers and Edge List is a list of edge/10 terms, each of the
form:

edge (Start_Token,
End_Token,
Category,
Category_List,
Creator_ID,
Child_ID_List,
Level,
Start_0Offset,
End_Offset,
ID)

In the initial input, Category List, Creator_ID and Child_ID_List entries will be empty,
and all edges will have Level 1.

Chart Edge Features

Each Category entry has the form:
Category(Featurel:Valuel,...,FeatureN:ValueN)

where the number and type of features is dependent on the category type. The first four
features are the same for all categories: s_form (surface form), m_root (morphological root),
m_affix (morphological affix) and text (with a value of either header, body (default) or
trailer if annotations of these types are present for the current text).

Nominal and verbal categories will also have person and number features; verbal categories
will also have tense and vform features; and adjectival categories will have a degree feature.
The 1ist np category has the same features as other nominal categories plus ne_tag, ne_type
and gender.

The features expected by the buchart executable are specified by the feature_table/2
predicate at the top of the file compile_grammar.pl. The features produced by the wrapper
for input to the executable are specified in a POS-tag to syntactic-category and feature-value
table in either buchart.tcl or buchart . cc, depending which version of the wrapper is being
used. From this, the POS tag NNS, for example, will be mapped onto the category n with
the features number:plural, person:3). Clearly, both the Prolog feature table and the
wrapper table should be kept in correspondence.

8.2.3 Output

The executable writes out the details of one annotation per line to the standard output,
which are read by the wrapper and used to create new annotations. Each line consists of an
annotation type (name, syntax, or semantics), followed by a byte offset pair, and at least
one value.
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For semantics output the value is a Prolog readable list, containing the semantic repre-
sentation of the sentence — unary and binary predicates produced from the compositional rules
associated with the grammar rules. All NPs and VPs lead to the introduction of a unique
instance constant, or ID number, in the semantics which serves as an identifier for the object
or event referred to in the text — e.g. company will map to something like company (e22) in
the semantics and hired to hire(e34), tense(e34,past). Each of these instance constants
is assigned a realisation property in the semantic representation, indicating, as byte offsets,
the position in the text from which the semantics were derived. Nouns used as possessives or
qualifiers also produce realisation properties. These realisation properties are required
by the discourse interpreter (chapter 10) to enable it to annotate coreference chains in the
text.

For name outputs, which are the results of the Named Entity parse, there are two values:
a type, and the corresponding ID number in the semantics value. The type is taken from
the first unary predicate in the semantics list which includes the name’s ID number. (This
can be modified by restricting the ne_tag/3 definition in buchart_io.pl, e.g. to output only
names of types required for the MUC NE task).

For syntax output the values are a syntactic class plus “constituents X”, where X is an
integer specifying the number of children of the current class to follow in the output stream.
This information is used in the wrapper to construct constituents attributes linking different
syntax annotations into a tree structure. If the number of children is 0 then the annotation
is treated as a leaf node with no constituents attribute. An additional root attribute is
also added for each new syntax annotation which does not represent the child of any other
annotation.

8.2.4 Resources

A top-level 1oad.pl file, in the .../creole/buchart/grammar directory, is used at compile
time to specify which grammars, and in which order, should be compiled and built in to
the buchart executable Prolog saved state. Each grammar file must specify which syntactic
categories can be included in the best parse, e.g.:

%» Best Parse Categories
best_parse_cats([ne_np]).

A special value of best parse cats(all). causes all inactive edges from the final chart to
be passed on, and the best parse selection is not used in this case. The first NE subgrammar,
general ne _rules.pl, currently uses this special value to pass on all candidate sequences of
proper nouns.

A filter _chart. flag can also be set in a grammar file. This has the effect of running the
parser to completion with the subgrammars up to and including the grammar in the file in
which the flag is set, then running the best parse selection mechanism (see 8.3.3 below) and
passing on only a single analysis to the next subgrammar, removing all edges below the best
parse edges. Without the flag, no edges are removed and the next subgrammar runs on the
whole chart. The flag is currently set on the last of the NE grammars, to prevent the sentence
grammar rules from reanalysing any NPs proposed by the NE rules. It is also set on the the
last phrasal grammar (s_rules), but the best parse selection will be run anyway after the final
subgrammar. Use of filter_chart can, and most likely will, make the parser incomplete with
respect to the grammar. However, it allows the grammar writer to encapsulate grammars in
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a fashion that minimises unexpected interaction effects (by blocking reanalysis inside phrase
types found by earlier subgrammars) and leads to significant performance gains.

The format of each grammar rule is basically as follows:
rule(a(features), [b(features), c(features)]).
which should be read as a context free grammar rule of the form:
a(features) --> b(features) c(features).

In addition to the features included in the input edges (described above), edge and sem
features are introduced within the grammar rules. sem uses a lambda style notation (with ~ as
lambda as in [20]) to build up a QLF (quasi-logical form) style semantic representation, and
edge is assigned a value of the form offsets(StartN,EndN) whenever an edge is completed
(to specify the text span covered by the edge).

Named Entity Grammar Rules

The NE grammar for MUC-7 is split into 9 subgrammars: general ne rules, aircraft ne -
rules personne_rules, location ne_rules, space_ne_rules organ ne_rules, money ne_-
rules, time ne rules and timex ne rules. The aircraft and space grammars were added
for the MUC-7 ST training and evaluation tasks, and the timex grammar for the extended
set of temporal terms introduced in the MUC-7 NE task.

An additional NE subgrammar, default ne rules, has also been added for MUC-7, which
runs after the best parse selection flagged by the timex grammar. This applies various rules to
any remaining unclassified proper noun sequences, attempting to use the context of any sur-
rounding NEs which have been classified. This subgrammar also includes the filter chart
flag and so the best parse selection is run again to produce a final set of NEs.

Phrasal Grammar Rules

A sequence of 7 subgrammars make up the phrasal grammar: npcore rules, pp_rules,
np_rules, vpcore rules, vp_rules, rel rules, and s rules. As in the NE grammar, the
order of compilation is specified in the 1oad.pl file, and the order of submodules specified in
the creole_config files. The best parse categories for these subgrammars currently include all
the categories from the preceding subgrammars, with the final s_rules subgrammar specifying
the top level categories of all the preceding ones.

Some rules are duplicated in the subgrammars, such as PP attachment rules in the NP
grammar as well as the PP grammar. In the cascaded mode of the parser, where each
subgrammar is run separately, the duplicated PP rules allow attachment to any newly created
NPs in the NP grammar, which would not be possible otherwise since the rules from the PP
grammar would not be available at this point in the cascaded mode. Duplicate grammar rules
will be removed during compilation of the subgrammars for the multiple grammar mode, and
all rules will be available simultaneously in each complete grammar in this mode.

8.2.5 Parameters

The parser can be run either from the command line, as it is called by the GATE wrapper, or
in interactive Prolog mode useful for tracing and debugging. Both modes take the following
options:

-v write progress messages to standard output.
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-d write debugging information to standard output.

-g filename compile and parse with a single grammar file, ignoring any other built-in gram-
mars.

-f filter the final chart, even if the flag is not included in the grammar file specified by the -g
option.

-ne run only the first of multiple compiled grammars, assumed to be the Named Entity
grammar.

-p filename write a tree representation of the best parses to a file.

-b filename write a bracketed representation of the best parses to a file (suitable for scoring
using the evalb utility).

-c¢ filename write the final state of the chart to a file.

-0 filename redirect standard output to a file.

A final argument given to the parser is assumed to be the input chart file to be parsed. Input
files for particular texts can be obtained by running the parser from the GGI interface, then
interrupting the Prolog process and copying the most recent file with an _in suffix from the
/tmp (or /var/tmp) directory.

The interactive Prolog mode, for SICStus, is started as follows (% indicating the shell
prompt, and ?- indicating the Prolog prompt). The input file is the only compulsory argu-
ment.

% sicstus -1 mkparser_sicstus.pl
?- parse([’-v’,’-0’ ,output_file,input_file]).

8.3 Processing

On reading the input, each chart term is processed independently. The list of edge terms,
representing the chart for a single sentence, is extracted, sorted, and parsed with each required
grammar. After parsing with each grammar, the best parse selection mechanism is run to
extract a new set of edges, which are then either sorted and passed on to the next grammar
for further parsing, or used to write out final results.

8.3.1 Grammar Compilation

All grammars are used in a compiled form, where the compilation involves the expansion
of each category’s feature list to include all possible features for that category, using the
feature table specified in compile_grammar.pl. The compilation also reverses the left-to-
right ordering of categories, for more efficient access during parsing. Each compiled grammar
rule includes an identifier for the compound grammar of which it is a part (e.g. grammar3),
and each compiled rule is also assigned an ID number, assigned incrementally and unique
within its compound grammar, which is included in any edges created by the rule during
parsing and used for determining rule precedence within the best parse mechanism.

The compiled version of all the grammars is written out to the file compiled _grammar.pl
at compile time. This file is currently only used in the creation of runtime binaries for SICStus
PROLOG and can be safely deleted otherwise.
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During compilation of the Prolog saved state, subgrammars listed in the buchart/grammar/
load.pl file are compiled in sequence into a series of compound grammars. A new compound
grammar is started after each filter_chart flag in a subgrammar, currently producing three
separate grammars: NE, default NE, and Phrasal. The best parse categories of the final
subgrammar in each compound grammar are used for the compound grammar itself.

In cascaded mode, all compiled-in rules are removed and a single grammar, specified with
the -g command line option, is loaded and compiled at runtime.

8.3.2 Rule Application

Rules are selected from each successive grammar using the grammar identifier assigned during
compilation. New edges created during parsing are assigned Level 2, and each new edge
records the identifier of the rule used to create it.

Before each newly created edge is added to the chart, a check is made for any equivalent
edges already existing in the chart. If one is found, the new edge is not added. Equivalent
edges are required to have unifiable categories, with the exception of the sem and s_form
features. The s_form values are not restricted at all, but different semantics produced by
an earlier rule in the grammar are treated as equivalent. Rule ordering is determined using
the identifier values assigned during compilation, with the effect being that equal edges with
differing semantics will only be added to the chart in the same order as the rules to create
them occur in the original grammar files. This edge ordering is then used by the best parse
selection mechanism to prefer edges added by later grammar rules (i.e. later in the same
grammar rule source file or later in the sequence of grammar rule source files).

When parsing with one compound grammar completes, the best parse algorithm is applied
to all Level 2 edges, and its selection is then sorted and converted to Level 1. All edges are
then cleared from the chart and parsing restarts with the new set of Level 1 edges and the
next compound graminar.

8.3.3 Best Parse Selection

The best parse selection is made as follows: extract the set of shortest sequences of maximally
spanning, non-overlapping edges of the best parse categories for the current grammar. When
searching for the maximally spanning edge at each position, only the first of any set of equally
spanning edges is used. This corresponds to the most recently created edge, again making
the ordering of rules in the grammar files significant.

The algorithm steps through each position in the chart, searching for the longest edge
from that position, and then continuing from the end of that edge. The best parse from
each position is recorded and then retrieved if another path reaches the same point, to avoid
duplicated searching. The best overall parse is then the one assigned to position 0.

If the filter_chart flag is set for the current grammar, the best parse, in addition to the
current best parse categories, will return leaf edges, from the original input, for any spans
not covered by a best parse category edge. The best parse in this case will have full coverage,
rather than leaving gaps of uncovered input as in the normal case.

An additional test for the NE grammar (assumed to have the identifier grammar1) is also
included to favour any edges with feature source:1ist. This is assigned by certain grammar
rules to indicate that a complete NE was matched directly by a list entry in the gazetteer
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lookup stage, rather than being constructed by a NE grammar rule and assigned some other,
less certain, semantic class.

8.3.4 Semantics Translation

The clean_semantics/2 function acts to translate the internal semantic representation built
by the grammar rules into the output form shown here for the phrase “stepping down as chief
executive officer”:

step_down(e58),

tense (e58,present),
realisation(e58,o0ffsets(225,230)),
as(eb8,e60),

title(e60,’chief executive officer’),
realisation(e60,o0ffsets(228,230)),

The internal representation for the above fragment, as passed to the clean_semantics
function, is:

E1”[[compound([’step’, ’_’, ’down’]), E1],
[tense, E1, present],
[realisation, E1, offsets(225,230)],
E2-[[as, E1, E2],
[title, E2, [’chief’,[’executive officer’]]],

[realisation, E2, offsets(228,230)]1]1]

A new identifier is generated for each ~ variable (lambda abstracted), and then the list is
descended, converting all 2 and 3 element lists into semantic types and attributes, respectively,
with compound and list values for particular attributes treated specially as described below.
Any variables which remain after all identifiers have been generated are instantiated with the
string MISSING’ for debugging purposes.

Compound predicate names must be explicitly specified within the compositional semantic
rules on the grammar rules, using the form:

compound ([’Stringl’,’String2’,...,’StringN’])

in place of the predicate. The strings will be concatenated into the full predicate name for
use in the output semantics. The compound terms may be embedded.

A similar operation is also carried out for certain attributes which take strings as their
values. In the semantic rules, these attributes may have, possibly embedded, lists of strings
as values, to be concatenated into a single string for output. For example, an organization
name grammar rule might specify that an organization name may consist of a proper name
followed by a company designator, and the value of the name attribute in the semantics
feature of the mother category would be simply a list consisting of the surface form features
of the daughters:

%% ORGAN_NP --> NAMES_NP CDG_NP

rule(organ_np(sem:E" [[company,E], [name,E, [F1,’ *,F2]1]),[
names_np(s_form:F1),
cdg_np(s_form:F2)
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So, taking IBM Corp. as an example, the value of the name attribute in the sem feature
of the above rule becomes [’IBM’,’ ’,’Corp’] and the final semantics translation process
converts this to IBM Corp.’.

The set of attributes for which such string concatenation will be performed must be
explicitly declared in the clean_semantics/2 function in the file semantics.pl. The current
set is: name, head, headl, head2, det, adj, pronoun, count, more, less, title.

8.4 GATE Interface

8.4.1 Input

token annotations with root and pos attributes.
sentence annotations, with a constituents attribute.
lookup annotations, with tag and type attributes (optional).

8.4.2 OQutput

name annotations, with type and id attributes.
syntax annotations, with a category, constituents and root attributes.
semantics annotations, with a q1f attribute.

8.4.3 Parameters

A simple tree or bracketed list representation of the final ‘best parse’ can be dumped to a
file, as can the final state of the chart.

‘Verbose’ and ‘Debugging’ flags can also be set to produce additional information in the
‘best parse’ output files.

In the submodules used in the cascaded mode, an additional ‘Grammar File’ parameter
is also used, to specify the file to be compiled and run.

8.4.4 Cascaded Mode

The .../creole/buchart directory contains separate subdirectories for each grammar file,
representing submodules which can be run in sequence in GATE to give a ‘cascaded’ mode.
The submodules must be loaded by GATE at startup by setting GATE_CREOLE_PATH to
include the buchart directory.

The order in which modules appear in GATE is controlled by the preconditions entry
in the creole_config.tcl files. In this mode, the best parse selection is run after each
subgrammar to select the output for the module, even if the filter chart flag is not set,
because the single subgrammar is the final one. However, edges below the best parse are still
passed on to the next module, unless the flag is set.

The modified chart is passed on to each successive submodule through temporary files (in
/tmp) which include the name of the submodule which created them. Each submodule uses
the pre_conditions entry in its creole_config.tcl file to determine the name of the input
file to use, assuming the last document attribute to be the name of the preceding submodule.
The init_buchart module must be run first in the cascaded mode to write the initial chart
from the GDM database.
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The cascaded mode is considerably slower than the standard mode, particularly the write
out of the initial chart done by the loose coupled init_buchart submodule. The mode is
intended for the debugging of individual grammar files on specific short examples rather than
full texts.

8.5 Maintenance: Adding a New Grammar or Grammar Rule

Generally each major terminology and phrasal category has its own grammar file, so, for
example, to add a grammar for a terminology category such as “protein names”, create a file
named protein_ne_rules.pl in creole/ne_buchart/grammar with the following header:

:- multifile best_parse_cats/1, rule/2.
:— dynamic best_parse_cats/1, rule/2.
best_parse_cats([ne_npl).

The ne_np specified here is the name of the top-level category that this grammar produces
and which should be passed on in the output. Now suppose we want to add a simple rule to
say that a protein name = a protein modifier followed by a protein head, i.e.:

protein -> protein_mod protein_head

in standard grammar rule notation (the same as sentence — noun_phrase verb_phrase). Writ-
ing this in the PROLOG notation used in buchart is basically:

rule(protein, [protein_mod, protein_head]).

but we need to expand each of these categories. Each item found in the list lookup stage will
be passed into the parser as:

list_np(ne_tag:class,ne_type:subclass)

i.e., its category will be ‘list_np’ with the features ‘ne_tag’ and 'ne_type’, having the values
‘class’ and ‘subclass’ respectively, so the RHS (right hand side) of this grammar rule (the list
in square brackets) should be:

[list_np(ne_tag:protein,ne_type:modifier),
list_np(ne_tag:protein,ne_type:head)]

The head category, the LHS (left hand side), to be passed on then needs to specify the
type of thing built by this rule. This is done using the sem (semantics) feature, which is passed
on to be processed later. The value of the sem feature uses a special notation (called lambda
abstraction) to introduce a new identifier with a list of information about that identifier. For
terms, the only relevant information is the term class and the range to be highlighted (tagged)
in the results, and so the top level (LHS) for most names will just be:

ne_np(edge:Edge,sem:E"[[type,E], [ne_tag,E,Edgel])

where type is the semantic category of the name class, e.g. protein, edge is a special feature
which specifies the text range covered by this rule (if it matches), and the variable (capitalised)
Edge just passes the value of this feature into the value of the sem feature.

So, the full rule for protein — protein mod protein head is:
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rule(ne_np(edge:Edge,sem:E" [[protein,E], [ne_tag,E,Edgel]),
[list_np(ne_tag:protein,ne_type:modifier),
list_np(ne_tag:protein,ne_type:head)]).

Similarly, a rule which allows a protein head alone to be a complete protein (protein —
protein head) would be:

rule(ne_np(edge:Edge,sem:E" [[protein,E], [ne_tag,E,Edgel]),
[list_np(ne_tag:protein,ne_type:head)]).

The first rule here would always be preferred (if it matches) by the best parse selection
mechanism because it covers more text (i.e. has a longer length) than the second.

To integrate the new grammar into the parser, the file buchart/grammar/load.pl must
be modified to include the new protein_ne_rules.pl grammar. The order here is important
since if rules from two grammars classify the same range of text differently, the rule from the
later grammar in the list will be preferred.

To recompile the parser, including the new grammar, run the mkparser _swi (for SWI
PROLOG) or mkparser_sicstus (for SICStus PROLOG) script in . ../creole/ne buchart.
Look out for reports of syntax errors from the grammar files. Now you can run the parser
from GATE (you don’t need to restart GATE, just reset buchart (right mouse button) and
rerun) and check the output. It is better to develop grammars by running on short texts with
simple lists of terms you want to recognise. The syntax results viewer of the parser module
will then highlight everything that has been assigned a tree structure by a grammar rule, and
clicking on the highlighted text will show the tree.
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Name Matcher

9.1 Overview

The NAMEMATCH module does not recognise new proper names but adds identity relations
between those found by the parser. It may also assign a type to unclassified proper names,
using the type of a matching name.

The matching rules are only invoked if the names being compared are either both of the
same type, i.e. both already tagged as (say) organisations, or one of them is classified as
‘unknown’. This prevents an already classified name from being re-categorised.

9.2 GATE Interface

9.2.1 Input

name annotations, with an id attribute.

9.2.2 Output

matches attributes added to the existing name annotations.

9.2.3 Resources

A table is used in .../creole/namematch/name lookup.h to record non-matching strings
which in fact represent the same entity, e.g. “IBM” and “Big Blue”, “Coca-Cola” and “Coke”.
The table is only read in at compile time, and since the module is tight coupled, the whole
GATE executable must be recompiled to include any changes.

9.2.4 Processing

The wrapper builds an array of the strings, types and IDs of all name annotations, which is
then passed to a string comparison function for pairwise comparisons of all entries.

The following rules are applied to organisations (O), persons (P) or locations (L), or to
more than one and possibly to all (A). They are not necessarily applied in this order.

1. If the two names are listed as equivalent in the lookup table of non-matching strings,
then they are equivalent, e.g. “Coca-Cola” and “Coke” (A);
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10.

11.

12.

9.3

. Does adding a possessive to the last token of one of the names cause a match? E.g.

“Standard and Poor” is equivalent to “Standard and Poor’s”, or to “Standard’s”’;

. Do all of the individual tokens (other than punctuation marks) match? E.g. “Smith,

Jones” will match “Smith Jones”. This is case-independent (O);

Does the first token of one name match the second name? E.g. “Pepsi Cola” equals
“Pepsi”. This is case-independent;

. Is one of the names an acronym of the other? E.g. “ICI” is equivalent to “Imperial

Chemical Industries”. This check is also made disregarding an initial “The” or trailing
company designator, e.g. “plc”, “Co.” or “Ltd.” (O);

. If one of the tokens in either of the names is one of a specified list of separators, e.g.

“&”, then if the token before the separator matches the other name, then they are
equivalent. “Macy” matches “R.H. Macy & Co.” or “Frank Loyd de Paris” matches
“Loyd” (O,P);

Do the names match after stripping off “The” and/or a trailing company designator (if
one of these is present)? E.g. “The Magic Tricks Co” is equivalent to “Magic Tricks”
or “Magic Tricks Co” or “The Magic Tricks” (O);

. Does one of the names match the token in the other which is immediately before a

trailing company designator? E.g. “R.H. Macy Co” is equivalent to “Macy” (O);

. Do the names match, except for case? E.g. “American Foods” is equivalent to “AMER-

ICAN FOODS” (A);

Is one name a reversal of the other, reversing around prepositions or determiners only?
E.g. “Defence Department” equals “U.S. Department of Defence” (O).

Does one name consist of concatenated contractions of the first two tokens in the other
name? E.g. “Communications Satellite” equals “ComSat”, or “Pan American” equals
“Pan Am” (O).

Do the first and last tokens in a multi-word name match the first and last tokens in the
other? (P)

Limitations

The NAMEMATCH module is domain dependent to the extent that some of its rules are spe-
cific to organisation names. The rules are also language dependent, although many will be
applicable across a number of languages.
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Discourse Interpreter

10.1 Overview

The DISCOURSE INTERPRETER module translates the semantic representation produced by
the parser into a representation of instances, their ontological classes and their attributes, in
the XI knowledge representation language (see [6]). XI allows a straightforward definition of
cross-classification hierarchies, the association of arbitrary attributes with classes or instances,
and a simple mechanism to inherit attributes from classes or instances higher in the hierarchy.

10.2 External Processes

10.2.1 Software Requirements

The discourse interpreter is written in Prolog and requires SICStus Prolog 3#6 or SWI Prolog
2.9. If SICStus is not found, the overall GATE build may fail to automatically create the
disint executable Prolog saved state and the mkdisint_sicstus or mkdisint_swi script
must be run manually, after specifying the path to the appropriate Prolog executable.

10.2.2 Input

The file of semantic representations given as input to the discourse interpreter should have
an initial doc_descriptor/1 term which specifies the document number to be used in all
output, followed by a series of semantics/4 terms, one for each sentence in the text, with
the following format:

semantics(sentence_n:N1, section_n:N2, type:Type, Semantics).

Semantics is a Prolog readable list of the semantic representations derived from sentence
N1. The semantic representations are as described in Chapter 8. The Type specifies whether
the sentence N1 is part of the header, body or trailer of a text.

The following is a complete well-formed input:

doc_descriptor(’940224-01337).
semantics(sentence_n:1, section_n:3, type:body, [
person(el),
name (el,’James’),
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title(el,’Mr.?),
be(e2),
tense(e2,present),
title(e3,’president’),
lsubj(e2,el),
lobj(e2,e3) 1).

A name match attribute is added to the semantic representation from the parser to specify
a list of instances with compatible names, as identified by the NAMEMATCH module (see
Chapter 9), e.g. name match(el, [e4,e5,e6]).

10.2.3 Output

The discourse interpreter writes out a Prolog readable version of the final discourse model,
using XI notation for class definitions, and props/2 terms for lists of attributes. Two special
attributes, muc_ne and muc_coref, are added to flag instances which should be included in
MUC NE and CO SGML results.

Coreference output

Coreference flags are added to all instances of the object class with more than one realisation
attribute specifying a byte offset pair. This will occur as a result of merging two instances
from the original input and will therefore represent what the system considers to be a single
instance with multiple realisations in the text.

Named Entity output

All instances of the MUC NE classes organisation, location, person, money, percent,
date and time are assigned a muc_ne and an ne_tag attribute. The ne_tag attribute specifies
a byte offset range in addition to the realisation attribute, both to record named entity
offset ranges after any coreference merging, and also to allow ranges within the realisation
range, such as a person name excluding its title, to be marked up separately, as required for
the MUC NE task.

10.2.4 Resources
The World Model

The definition of a XI cross-classification hierarchy is referred to as an ontology, and this
together with an association of attributes with nodes in the ontology forms a world model
(WM). Processing a text acts to populate this initially bare world model with the various
instances and relations mentioned in the text, converting it into a world model specific to the
particular text, i.e. a discourse model (DM).

The attributes associated with nodes in the ontology are simple attribute:value pairs
where the value may either be fixed, as in the attribute animate:yes which is associated with
the person node, or where the value may be dependent on various conditions, the evaluation
of which makes reference to other information in the model. Certain special attribute types,
presupposition, distinct and consequence, may return values which are used at particular
points during processing to modify the current state of the model, as described in the following
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section. The set of attribute-value structures associated with the whole ontology is referred
to as an attribute knowledge base.

The files comprising the world model are assumed to reside in a .../creole/disint/wm
directory, which may be a link to a directory for a particular domain. A top level wm.pl file
is loaded from this directory, which then loads all files containing declarations for the world
model. This file is read at compile time only, and a single static_wm.pl file is then dumped
out, containing compiled forms of all the world model declarations together.

As a convention, the file ontology.pl contains only XI class definitions, generic_kb.pl
contains general purpose attributes, and scenario kb.pl contains attributes specific to the
current task. Each of these files may be further split, e.g. coref kb.pl in the MUC-7 world
model contains all distinct attributes from generic_kb.pl.

XI compilation

The compiled form of the world model declarations, as dumped out to the file static_wm.pl
at compile time and used internally during runtime processing, is intended to rewrite the
XI notation in a more efficiently accessible form in the Prolog database. It also represents
certain inherited relationships directly, to attempt to avoid repeated expensive processing at
runtime.

Facts added to the discourse model at runtime are not compiled, and so all processing
allows for the use of compiled and uncompiled forms simultaneously (possibly at the expense
of some of the efficiency improvements gained by compiling). Facts obtained from the static
model and from the text can therefore always be distinguished during processing.

The discourse model written out on completion of the module includes only the uncom-
piled facts obtained from the text. The compiled facts are assumed to remain fixed and always
available in the static_wm.pl file if required, as in the Pixi discourse model viewer or the
Template Writer module.

NB: Attributes are only compiled for nodes or instances which have also been compiled. A
props/2 declaration for a class or instance which does not have its type defined elsewhere
will therefore be ignored.

10.2.5 Parameters

The discourse interpreter can be run either from the command line, as it is called by the
GATE wrapper, or in interactive Prolog mode useful for tracing and debugging. Both modes
take the following options:

-v write progress messages to standard output.

-d write debugging information to standard output.

-0 filename redirect standard output to a file.

-s filename input file of semantic representations (compulsory).

Input files for particular texts can be obtained by running the discourse interpreter from the

GGI interface, then interrupting the Prolog process and copying the most recent file with an
_dump suffix from the /tmp directory.
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A final (compulsory) argument is assumed to be a Prolog goal to run one of the discourse
interpreter’s substages: add_semantics, add presuppositions, object_coref, add_conseq-
uences or event_coref, or disint_all which runs all stages together.

The interactive Prolog mode, for SICStus, is started as follows (% indicating the shell
prompt, and ?- indicating the Prolog prompt). The -s flag and input file, together with the
Prolog goal to run are the only compulsory arguments.

% sicstus -1 mkdisint_sicstus.pl
?- disint([’-v’,’-0’ ,output_file,’-s’,input_file,disint_all]).

10.3 Processing

Figure 10.1 shows the main components within the Discourse Interpreter.

Add Instances .
. Presupposition
and Properties .
Expansion
to World Model
Semantics Discourse Model
_— _—
Object Consequence Event

Coreference K Coreference
Resolution Expansion Resolution

/ World \

Ontology Attribute
KB

Figure 10.1: Discourse Interpretation

Each of the five stages of discourse interpretation is repeated for each sentence in the
input. For newswire applications the header is processed last, to reduce spurious coreference
into the header which poses difficulties of analysis because of its telegraphic style and initial
letter, or indeed complete, capitalisation of most words.

10.3.1 Add Semantics

The semantic representation produced by the parser for a single sentence is processed by
adding its instances, together with their attributes, to the discourse model which has been
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constructed so far for the text. Instances which have their semantic class specified in the
input (via unary predicates) are added directly to the discourse model beneath their class
node, if the class node already exists in the ontological hierarchy. The class node is pre-
sumed to be labelled with the instance’s predicate (so, e.g. given company(el) instance, el
is added beneath the class node labelled company in the discourse model) or retrievable via
a language-specific concept_index. A set of concept_index/4 facts can be used to define
a mapping between root forms in the input and nodes in the discourse model. For example
concept_index(firm, en, n, company) would map the unary predicate firm, when derived
from input containing the English word firm in its nominal form, to the node labelled company
in the discourse model. This allows for a simple treatment of synonomy and also allows the
same world model to be used with input texts from different languages. So, if a French
parser can deliver semantic representations in the form we have been discussing, only with
French root forms as predicates in the representation language, then they may be mapped to
nodes in the discourse model which bear labels in another language, natural or artificial. E.g.
concept_index(compagnie, fr, n, company) will map occurrences of compagnie derived
from input containing the French word compagnie in nominal form to the discourse model
node labelled company. This permits the reuse of domain models across source languages.

If the class specified in the input does not exist in the hierarchy and cannot be mapped by
the index (say, penguin(e23)), a new class node (penguin(_)) is created dynamically under
either the event (_) or object (.) nodes, with event instances in the input being distinguished
from object instances by the presence of event-like attributes, i.e. time, 1subj or lobj. This
facility allows a crude, high level categorisation of unknown classes.

Attributes — binary predicates in the input in which the first argument is always an
instance identifier — are added to the attribute-value structures associated with all the instance
identifiers occurring within them. So, e.g., 1obj(el,e2) will be added to the attributes
associated with el and to those associated with e2.

Sentences from the text body are added to the discourse model first, with any header
processed after the rest of the text. This is done mainly to assist the classification of proper
names, which are commonly only used in abbreviated form in headers, but usually in full form
in the text body. The full form allows a more reliable classification, against which terms in the
header can then be matched via the coreference mechanism. Only proper nouns are allowed
to refer from the header to the body, with pronouns and common nouns being restricted to
corefer within the header.

Text Structure

As instances are added to the discourse model, a special ‘text’ subhierarchy is constructed
to record the structure of the text and which instances were introduced where. A hier-
archy of header/body and numbered section and sentence nodes is created dynamically in
the model, below a pre-existing text(_) node. The hierarchy is created using the values
of the sentence_n, section n and text features included in the semantics/4 terms in the
input. Sentences are represented as instances (e.g. sentencel) below section nodes (e.g.
section0(.)), and an attribute of each sentence instance records a list of all instances men-
tioned in that sentence, preserving the order in which they were introduced. Inherited at-
tributes of the text (_) node can then be used to return lists of specific types of instances from
each sentence, section, body, or indeed the entire text, i.e. events, objects, proper_nouns,
pronouns Or COmmon _nouns.
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10.3.2 Add Presuppositions

Following the addition of the semantics for each sentence, the model is checked for any in-
heritable presupposition attributes of the instances or attributes just added. Any values
returned are used to add (or remove) further information in the model. I.e. attributes of
the form presupposition(X,[P1,...,PN]) :- C associated with a node X in the attribute
knowledge base (see 10.2.4) will cause the predicates P1, ..., PN to be added to the dis-
course model, should any associated conditions C be met. Any variables in P1, ..., PN
which have not been bound to instance ids during the inheritance of the the presupposition
attribute will be bound to new instances during the process of adding the predicates to the
discourse model (i.e. new individuals will be hypothesised). Finally, if the functor of Pi is
xi_call, then its argument will be executed rather than Pi being added to the discourse
model. This allows an arbitrary procedure to be called as a side-effect of adding something
to the discourse model. At present this is the only way to cause instances or properties to be
removed from the discourse model, as a consequence of something else being added.
This presupposition mechanism has a variety of uses including;:

1. Inferring Semantic Class Information Missing semantic class information for instances
in the input semantic representation may be derived from type restrictions on attribute
arguments. For instance, a presupposition attribute associated with the node in the
ontology corresponding to the name attribute, records that this attribute holds only of
entities of type object. This is expressed in the generic kb.pl file (see 10.2.4) as
follows:

props (name, [
(presupposition(name (E,Name), [object(E)]) :-
\+(E <- object(_)))
.

Note that the presupposition’s holding here is conditional on E not already being
an instance of type object. Thus, when attempting to add say name(e3,Jones) to
the model, then in the absence of any more specific information about the type of e3,
such as person(e3) in the input, e3 will be added as an object. That is, the default
semantic type of named entities is object, as opposed to, say, event.

2. Entity Hypothesis Expected, or implicit, instances, can be hypothesised to be resolved
by the coreference mechanism. Nominalisations of verbs can be identified by presupposi-
tions and lead to the hypothesis of the corresponding event, for example a hypothesised
launch_event from an instance of a launch object. This facility is particularly use-
ful in the context of scenario-based information extraction tasks (such as the MUC-7
rocket launch scenario) where nominalisations of the relevant scenario events form a
significant proportion of the events to be captured. Similarly, instances of indirectly
related scenario specific objects, such as mission, can also give rise to the hypothesis
of a launch event.

3. Word Sense Disambiguation Instances whose semantic classes have been derived from
word roots with multiple senses can be examined and potentially reclassified if their
semantic and syntactic context is at odds with the primary sense stored in the world
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model. For example, the MUC ontologies contain fall as a subclass of date, but an
instance of fall initially added here may be removed by a presupposition that identifies
a particular instance as, say, referring to a fall in share prices rather than a date.
Scenario-specific senses can also be caught in this way, for example only fire_event
instances related to missiles are retained as potential launch_events in the MUC-7
scenario, and instances pertaining to, say, dismissal events are reclassified.

. Role Classification Role information is frequently conveyed via nominalisations in natu-

ral language (lawyer, mother), but in the underlying representation it may be appropri-
ate to store this via attributes on more basic types. This can be achieved by creating an
ontology with a hierarchy of person roles, for example job roles and family roles, with
cross classification of instances permitted. A general presupposition on the person_role
node can then act to reclassify instances of these nodes from the text as instances of the
person node, with a property indicating the role. This avoids the requirement to specify
all person roles as subclasses of person to force semantic compatibility for coreference,
so that, e.g., one and the same person can be both a lawyer and a mother.

. Partial Parse Extension Extension may be attempted of partial parses, identified by the

absence of compulsory attributes for certain instance types, mainly events. For example,
a presupposition attribute of all event nodes causes the introduction of a new instance
for event classes which require a logical subject (currently all event classes), if there is
no explicit 1subj attribute in the input. The new instance will have a 1subj attribute
linking it to the event instance, and it will be flagged as a ‘hypothesised’ instance
and assigned an identifier of the form al to distinguish it from instances explicitly
mentioned in the input representation of the text. The hypothesised instance may also
be of a semantic type required by a specific event type. So, for example the following
expresses the requirement that should no subject already be known (perhaps because
of parse failure or ellipsis) for a verb belonging to the class of launch event, then an
instance of type organization should be hypothesised in the relation of 1subj to the
launch_event.

props(launch_event (E), [
(presupposition(E, [organization(X),lsubj(E,X)]) :-
\+(nodeprop(E,1lsubj(E,_))))
D.

Following the addition of all presuppositions of instances from the current sentence, the
coreference mechanism is called to attempt to resolve all hypothesised instances with
other instances in that sentence. The coreference mechanism operates as described be-
low, but with a restricted set of potential antecedents, and including a special set of
distinct attributes, specifying coreference restrictions which only apply to hypothe-
sised instances. These include restrictions on the ordering of subject and verb, stating
that the antecedent for a hypothesised subject must occur before the verb expressing the
event in an active construction, or after if passive. The relative positions are established
by checking the realisation attributes, using only the most recent if there are multiple
values, to ensure that the realisation used is from the current sentence and not from the
result of some previous coreference. Any hypothesised instances remaining unresolved
after coreference has been attempted are removed entirely from the discourse model
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Presuppositions can also be used to attempt prepositional attachment, where the parser
has left a prepositional phrase unattached. The parser typically generates semantic
representations of the form, e.g. on(el,e2), where the preposition itself becomes the
predicate, the first argument is the entity to which the phrase attaches, and the second
argument is the complement of the preposition. For an unattached prepositional phrase
the el argument will figure in no other term in the semantic representation. In this
case presuppositions which use information including which preposition is involved,
the semantic type of its complement and the semantic types of other instances in the
sentence can be used to decide with which instance el should be merged.

10.3.3 Object Coreference

Following the addition of the instances mentioned in the current sentence, together with any
presuppositions that they inherit, the coreference algorithm is applied to attempt to resolve,
or in fact merge, each of the newly added instances with instances previously in the discourse
model. Coreference resolution is performed by comparing the following sets of instances in
this order.

1. compare: each instance mentioned in the current sentence using a proper noun
with: every other instance in the discourse model which was mentioned using a proper
noun

2. compare: each instance mentioned in the current sentence
with: every instance before it in the current sentence

3. compare: each instance mentioned in the current sentence using a pronoun
with: every instance mentioned in the current paragraph!

4. compare: each instance mentioned in the current sentence using a ‘normal’ noun (i.e.
not a proper noun or pronoun)
with: every instance mentioned in the current or previous paragraphs

These comparison sets effectively embody distance restrictions on the potential coreferences
of the various noun types: proper nouns have no distance restriction, pronouns can only
refer within the same paragraph (but see footnote), and normal nouns can only refer within
two paragraphs. This last restriction on normal noun coreference was introduced mainly for
reasons of efficiency, limiting the size of the comparison set when processing large texts.
Each comparison set may be viewed as a set of candidate sets, a candidate set being a
set of pairs of instances all of whose first elements are the same (an instance in the current
input) and whose second elements are possible instances, or candidates, occurring earlier in
the text with which the first element might corefer. The algorithm proceeds as follows. For
each pair of instances in each candidate set in each of the comparison sets listed above 2:

1 The previous paragraph in the case of an initial pronoun if the current sentence starts a new paragraph.
NB: This was changed for MUC-7 so that no distance restriction is applied to pronouns not classed as
pleonsatic. Successively earlier sentences are considered until a compatible antecedent is found.

2While the order in which instance pairs within a candidate set are examined cannot affect outcome of the
algorithm, the order in which the candidate sets of a given comparison set are processed may indeed do so.
We have not yet done any testing to determine just how significant this effect may be.
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1. Ensure semantic type consistency

The semantic types of the two instances must be ordered in the ontology. If this is
true a semantic similarity score is calculated using the inverse of the length of the path
(measured in nodes) between the two classes. The attempt to resolve the two instances
is abandoned if the semantic types are not ordered. For example, person and company
are not ordered with respect to each other in the ontology and therefore no pair of
company and person instances would ever be coreferred. An instance of type company
could be coreferred with one of type organisation or with one of type object; other
things being equal, the former pair would be preferred on the grounds of higher semantic
similarity.

2. Ensure non-distinctness

Any additional coreference constraints are checked at this point to ensure that the pair
of instances currently being considered do not possess any characteristics which imply
that they should not be resolved. For instance, one of the constraints specifies that a
new instance which has been introduced by an indefinite noun phrase in the text, should
not be permitted to refer to any existing instance. The constraints are represented via
the distinct attribute of certain nodes in the ontology, and should the current pair of
instances inherit this attribute, the attempt to resolve them is abandoned. The various
constraints currently implemented are discussed in more detail below.

3. Ensure attribute consistency
The values of any fixed single-valued attributes (as classified in the ontology, e.g.
animate) common to both instances, must be identical. The attempted resolution
is abandoned if any conflict is found.

4. Calculate a similarity score

The semantic similarity score is summed with an attribute similarity score to give an
overall score for the current pair of instances. The attribute similarity score is es-
tablished by finding the ratio of the number of shared multi-valued attributes with
compatible values, against the total number of the instances’ attributes. Certain at-
tributes, notable name, are weighted strongly to boost the similarity score if the values
are shared (or, in the case of the name attribute, compatible using the value of the
name match attribute).

After each pair in a candidate set of a comparison set has either been assigned a similarity
score or has been rejected on grounds of inconsistency, the highest scoring pair of instances
in the set (if any score at all) are merged in the discourse model. If several pairs have equal
similarity scores then the pair with the closest realisations in the text (actually, the most
recently compared) is preferred.

The merging of instances involves the removal of the least specific instance (i.e. the highest
in the ontology) and the addition of all its attributes to the other instance. This will result in
a single instance with more than one realisation attribute, which corresponds to a single
entity mentioned more than once in the text, i.e. a coreference as required by the MUC task.

On each merging of instances, the attributes of all instances mentioned in relational at-
tributes of the instance being removed are checked and updated. This assumes that all
relational attributes (i.e. attributes where both arguments of the binary predicate are in-
stance identifiers) occur in the attribute lists of both the instances mentioned. Without this
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restriction, the entire discourse model would need to be searched to ensure all occurences of
a removed instance are updated.

Note that this whole process of establishing coreference followed by merging instance ids
is deterministic: once two instances have been merged no subsequent evidence can cause them
to be unmerged (this constrasts with some treatments of coreference in which coreferences are
represented by equations between instance ids and attributes determined by equational rea-
soning; such an approach allows equations to be retracted in the light of subsequent evidence,
but at the cost of significantly greater computational complexity).

Additional Constraints

The constraints on coreference represented via the distinct attribute act to rule out the
potential coreference of an instance pair which may otherwise be permitted by the base
algorithm. The constraints used in LaSIE for the final MUC evaluation were established
through training on the coreference data provided for the MUC dry-run evaluation.

The basic set of constraints as used in MUC-6 are as follows:

1. Prevent indefinite nouns from referring backwards
A new instance introduced using an indefinite determiner is defined as being distinct
from all other instances in the various comparison sets considered by the base algorithm,
i.e. all instances before it in the text. For example, the phrase “an American company”
would not be permitted to refer to any company previously mentioned in the text,
reflecting an assumption that all indefinite determiners are used to introduce instances
into a text for the first time.

2. Prevent non-pronouns from referring back to pronouns
New instances mentioned using either proper nouns or full nouns are distinct from earlier
instances which have been mentioned only by pronouns, i.e. preceding pronouns which
could not be resolved with anything. An unresolved pronoun is thus prevented from
being used as the root of a coreference chain in a text — roots must always be proper
nouns or full nouns.?

3. Prevent unclassified proper names from referring back to dates
New instances with name attributes but with a semantic class no more specific than
object are defined as distinct from all instances with a semantic class of date. This
reflects the assumption that the recognition of date proper names at the earlier stages of
processing is complete and correct, and so an unclassified name must be of some other
semantic type.*

4. Prevent non-proper nouns used as qualifiers from coreferring
An instance introduced as a qualifier or modifier of another instance is distinct from
all other instances. Thus, no instance is permitted to corefer with the instance of

3Several exceptions to this constraint are allowed: a noun which is the object of the verb to say can refer
back to a first person pronoun, as in “ “*I* agree’, said *the chairman*”. Clearly there will be generalisations
of this case, but these should more properly be covered via a specific treatment of quoted speech, which is
lacking in the current system. Pronouns within copular constructions can also refer ahead, as in “*This* is *a
mystery*.”

“LaSIE’s performance on date expressions in the MUC named entity task has typically been around 95%
combined precision and recall.
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the class video mentioned in the phrase “the video manufacturers”. Unfortunately
this constraint rules out a class of coreferences which are explicitly included in the
final MUC coreference task definition. However, on the dry-run evaluation data, the
constraint produced a useful increase in precision and so was retained for this reason.

5. Prevent pronouns from referring back to dates, numbers or locations
This constraint is probably the most domain specific of those used in LaSIE. An appar-
ent feature of financial texts is that repeated references to particular instances of dates,
numbers or locations are rarely made, especially pronominal references. They are there-
fore disallowed altogether in LaSIE. However, the adverbs there and then, which may
more commonly refer to dates and locations, are not treated specially at present.

The above constraints, applied via the distinct attribute, are all associated with the object
node in the ontology, and are therefore inherited by all instances considered by the base
coreference algorithm. The following two constraints are associated with the date node only:

6. Prevent proper noun dates from referring back to non-proper noun dates
A new instance classified as a date by the previous named entity recognition stages, is
distinct from all preceding dates without proper names. The assumption here is that a
date will not be introduced as a normal noun phrase, such as “the month”, and then
later referred to by its full form, e.g. “January”.

7. Prevent non-proper noun dates without definite determiners from referring backwards
All new instances of dates which were introduced using normal nouns with no definite
determiner, are distinct from all preceding date instances. For example, the instances
of the class year derived from the phrases “years ago” or “23 years old” would not
be permitted to corefer with anything, whereas the constraint would not apply to the
instance derived from the phrase “this financial year”.

The use of the distinct attribute provides a mechanism by which a wide variety of
coreference restrictions can be expressed. Those listed above were all that were used in LaSIE
for the MUC-6 evaluation, but further development occurred for MUC-7 and has continued
since. Since these distinct attributes are declaratively expressed in the coref kb.pl file
which is a part of the world model, the application developer is expected to add further
domain-specific constraints in order to optimise coreference performance in specific domains.

One further general constraint is worth mentioning here — the identification of ‘pleonas-
tic’ or ‘non-referential’ instances of the pronoun it, as proposed by Lappin and Leass [17].
Although the identification makes reference to purely syntactic and lexical information it can
still be expressed via a distinct attribute of the object node in the ontology.

Lappin’s and Leass’ test for pleonastic pronouns involves the recognition of patterns such
as “It is Modaladj that S”, where S is a sentence complement and Modaladj is a member
of a set of lexical items such as possible, useful, important, etc. Such syntactic patterns can be
identified within the discourse model in LaSIE, due to the preservation of much predominantly
syntactic information via instance attributes in the semantic representation. For example, the
above syntactic structure would have a predicate-argument representation of the following
form:

pronoun(el,it),
be(e2), tense(e2,present), lsubj(e2,el), lobj(e2,e3),
adj(e3,important)
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where e3 is the event instance described by the (verbal) head of the complement S. This al-
lows, to a certain degree, the reconstruction of the original syntactic form from the semantics,
providing a mechanism by which syntactic constraints can be expressed in the world model.
The identification of syntactic patterns is, however, very much dependent on the performance
of the parser and the grammar, and, as yet, their limitations have not been fully established.

10.3.4 Add Consequences

Following object coreference resolution, the model is checked for any inheritable consequence
attributes of the instances added from the current sentence (allowing for any changes in the
instance identifiers caused by coreference resolution). The consequence attributes are similar
to presupposition attributes, but with several differences in the way in which they are
applied:

1. Conditions on consequence rules are tested after the coreference mechanism, and can
therefore refer to information obtained from outside the current sentence via the merging
of coreferential instances.

2. The coreference mechanism is applied to a hypothesised instances arising from a conseq-
uence attribute as soon as it is proposed, rather than collecting and attempting to
resolve them all together, as is done for presuppositions.

3. Hypothesised instances from a consequence attribute are not cancelled if they are
not resolved immediately, as are hypotheses from presuppositions attributes. They
remain active during the processing of subsequent sentences and so may be resolved
with instances mentioned much later in the text. Active hypotheses may be explicitly
cancelled though, for example by the introduction of another hypothesis of the same
type arising from another instance later in the text.

consequence attributes are typically used for task specific inferencing, attempting to es-
tablish values for attributes which correspond to template slots in the final template. Objects
and events for each template structure, and attributes for each template slot, are usually
added to the ontology to represent the required information, and then inference rules added
to determine the attribute values whenever an object or event of the required type occurs in
a text.

A consequence attribute may cause the introduction of new hypothesised instances, usu-
ally with certain relational attributes to link it to instances from the text or from other parts
of the template. The coreference mechanism is then called in two stages for each hypothesised
instance, firstly to attempt to resolve the instance within the current sentence, and then, if
permitted by checking the inherited value of an intersentential attribute, to attempt to
resolve the instance across the entire text.

Before hypothesising a new instance, each consequence rule typically checks whether a
value for the slot it is attempting to fill has already been established. Because the hypotheses
of any previous rules will have already been resolved when the rule is called, this effectively
gives a priority ordering of consequence attributes in the knowledge base files, with the more
specific rules at a particular node occurring first, and general default rules at the end.
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10.3.5 Event Coreference

Following the addition of all consequences, a task specific merging of event instances is at-
tempted. Relevant event types are defined for each task with comparison routines specific
to those types. Event coreference in LaSIE is better seen as partial template merging rather
than a general mechanism to resolve anaphoric references to events. In general, templates are
based around descriptions of particular event types, and several descriptions in a text may
contribute to a single template, with each supplying additional information.

Following the addition of an event instance of a relevant type, and the attempted resolution
of all hypotheses arising from it, the instance is compared with all other event instances of
the same type throughout the text. If no conflicting attribute values are found, as defined
by a comparison routine for each event type, and possibly additional distinct attributes,
two event instances will be merged and then used to represent a single template. See [14] for
further details.

10.4 GATE Interface

10.4.1 Input

semantics annotations, with a q1f attribute.

name annotations, with type and matches attributes.
sentence annotations.

section annotations.

header annotation - one only.

10.4.2 Output

name annotations, with a type attribute and an sgml attribute specifying the type in MUC
format (and which is used by the GGI Export SGML function). The annotations completely
replace the previous set of name annotations.

coreference annotations, with multiple spans.

muc_coref annotations, with single spans, representing coreference relations via an sgml
attribute which specifies the relations in MUC format (and which is used by the GGI Export
SGML function).

xi_instance annotations, with class and props attributes.
xinode annotations, with class attributes.

Both the xi_instance and xi node annotations may have multiple spans.

Each xi_instance annotation represents a single instance from the final discourse model,
with its semantic class, in XI notation, and a list of its non-inherited attributes. The annota-
tion will have a span for each of the instance’s realisations in the text. Hypothesised instances
in the final model, which have no realisation, are arbitrarily assigned a span covering the whole
text.

The xi node annotations each represent additional semantic classes added dynamically
to the original ‘static’ world model during processing of the text. The value of the class
attribute specifies the parent class in XI notation. The annotation spans, which may be
multiple, are those of the instances which caused the introduction of the new class.
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10.4.3 Parameters

Verbose writes progress information to the file disint.log in the current working directory.

Debugging writes additional debugging information to the file disint.log.

The log file can be viewed via the module’s results menu, but on large texts the contents
may be larger than can be displayed in the tcl text viewer, and the file must then be viewed
outside the GGI.

10.4.4 Processing

The values of the semantics annotations within each sentence annotation span are concate-
nated and a semantics/4 term constructed, as described above. The section and header
annotations are referred to to determine the position of the current sentence and complete
the term.

The name _match/2 terms are produced directly from the matches attribute of the name
annotations.

10.5 Limitations

Issues of synonomy (multiple surface forms mapping to the same ‘concept’ node) and word
sense disambiguation (the same surface form mapping to distinct concept nodes) are largely
ignored, though both can be addressed in this framework and have been in a limited way for
particular applications. Predicates in the semantic representation are derived directly from
the morphological roots of words, and the default behaviour is to map directly from them
to concept nodes in the discourse model labelled by these word names. Synonomy can be
dealt with in a rudimentary way, as described in 10.3.1 above, by use of a concept_index
mapping table which allows multiple surface forms to be mapped to a single concept node.
Word sense disambiguation (discussed in 10.3.2 above), for example the problem of mapping
surface references to “a river bank” and “a financial bank” to different concept nodes in
the discourse model, can be addressed via presupposition attributes of a generic bank
node which re-attach instances of type bank to the appropriate concept node (river bank or
financial bank) by checking available syntactic/semantic context. Clearly this approach is
cumbersome, as it requires rules to be written for each ambiguous word. Nevertheless, it has
not led to serious problems in information extraction applications (perhaps because of the ‘one
sense per discourse’ phenomenon [11]). A preferable solution might be to introduce a word
sense disambiguation module into the system and use, e.g., word root plus sense number as
predicates in the semantic representation language and as node labels in the world/discourse
model.
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Template Writer

11.1 Overview

The TEMPLATE WRITER module reads the final discourse model produced by the discourse
interpreter, selects those instances which represent template structures with values for all
the required attributes, then formats and writes out the values. Three separate results are
produced, written to separate files, for the MUC Template Element, Template Relation and
Scenario Template tasks.

11.2 External Processes

11.2.1 Software Requirements

The template writer is written in Prolog and requires SICStus Prolog 3#6 or SWI Prolog
2.9. If SICStus is not found, the overall GATE build may fail to automatically create the
template executable Prolog saved state and the mktemplate_sicstus or mktemplate_swi
script must be run manually, after specifying the path to the appropriate Prolog executable.

11.2.2 Input

A Prolog readable file containing a doc descriptor/1 term specifying the WSJ or NYT
document number, or the text’s filename for other text types, a gensymmark/1 term specifying
the last hypothesised instance identifier created by the discourse interpreter, and a series of
XI <--/2 instance type declarations, together with props/2 attribute lists for each instance.
There may also be XI ==>/2 semantic class declarations for classes added dynamically during
discourse interpretation.

The module also reads in, at compile time, the static wm.pl file produced by the dis-
course interpreter at compile time. This file is assumed to exist in the .../creole/template
directory as a link to the appropriate .../creole/disint/wm directory. Several other files
are also assumed to be shared with the discourse interpreter, in particular kb_utils.pl,
though these are not modified by the compilation of the discourse interpreter. Any changes
to the world model will therefore require the recompilation of both the disint and template
executable Prolog saved states, in that order.
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11.2.3 Output

Files specified by the parameters described below, with formats as described by the BNF
definitions in the MUC task specification documents.

11.2.4 Parameters

The template writer can be run either from the command line, as it is called by the GATE
wrapper, or in interactive Prolog mode useful for tracing and debugging. Both modes take
the following options:

-t filename write Template Element results to a file.
-r filename write Template Relation results to a file.

-s filename write Scenario Template results to a file.

A final argument given to the template writer is assumed to be the input discourse model
file. Input files for particular texts can be obtained by running the template writer from the
GGI interface, then interrupting the Prolog process and copying the most recent file with an
_dump suffix from the /tmp directory.

The interactive Prolog mode, for SICStus, is started as follows (% indicating the shell
prompt, and ?- indicating the Prolog prompt). The input file and any one of the parameters
are the only compulsory arguments.

% sicstus -1 mktemplate_sicstus.pl
?- template([’-t’,te_out,’-r’,tr_out,’-s’,st_out,input_filel).

11.2.5 Processing

The input file is compiled into the template executable Prolog saved state at run time,
and, combined with the static_wm.pl read in at compile time, reproduces the final discourse
model from the discourse interpreter. The split between the discourse interpreter and template
writer modules is artificial, because the template writer results could be produced directly
from within the discourse interpreter. The separation is to allow the substitution of alternative
template writers, each producing different results from a single discourse model.

Template Element output

The discourse model is searched for all instances of classes required in the output, i.e.
organisation, person and artifact for MUC. A table of all possible slots is then built
for each instance, and values searched for from the corresponding, possibly inherited, at-
tributes, which may refer to attributes of other related instances. Tables which include values
for at least the name or descriptor slots are then formatted as required by the MUC task
definition, and written to the output file.

A unique identifier is required for each template element, and is made up of the doc_descr-
iptor and the identifier of the corresponding instance in the discourse model. The template
element numbers are therefore not sequential, but can be used to map back to the discourse
model directly.
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Template Relation output

This proceeds as for template elements, but the initial set of instances is found by searching
the discourse model for all instances with particular attributes, for MUC either location_of,
employee of or product_of. A template relation entry is generated for each attribute found,
and simply numbered sequentially. All instances mentioned in template relations are then
also written out as template elements to the same file.

Scenario Template output

For MUC-6, all instances of the top level succession event template class are retrieved from
the discourse model, then for each one an attempt is made to establish values for a related
organisation and post, and, via associated in_and _out instances, at least one person. Output
is only produced for events with values for all these attributes.

Multiple values for the post attribute are permitted for a single event, resulting from
conjoined or apposed posts in the text, and so each event instance may produce multiple
SUCCESSION EVENT entries in the output template. The numbering used in the output is
based directly on the instance numbers in the discourse model, with the exception of output
generated as a result of multiple posts. In this case new template numbers are generated
incrementally using the gensymmark/1 value from the input file, to avoid any duplication.
Template entries for the instances related to each succession_event are then written out as
template elements to the same file.

For MUC-7, the top level template class is launch_event, which requires related payload
and vehicle objects. See the MUC task specification document for full details of the oblig-
atory slot values, each of which is checked before producing any output.

11.3 GATE Interface

11.3.1 Input

xi_instance annotations, with class and props attributes.
xi node annotations, with class attributes.

The template writer wrapper calls the creole disint dump_dm routine defined in the
discourse interpreter wrapper to read off the required annotations and write the Prolog format
input file.

11.3.2 Output

Output files are written to the directory from which GATE was started. The filenames use the
original input text filename with _te_dump, _tr_dump or _st_dump appended as appropriate.
The contents of the output files are then read in and stored as the values of:

template _elements document attribute,

template relations document attribute,

scenario_template document attribute.
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11.4 Limitations

The template writer is highly domain and task dependent. Any change to the template
definition requires the source code to be modified.



Chapter 12

MUC Scorer

12.1 Overview

The MUC scorer was supplied by the MUC organisers, but has been integrated into LaSIE
to allow results to be rapidly computed and viewed during IE application development. The
MUC scorer is a single program which, appropriately parameterised, can compute precision
and recall results for each of the five MUC-7 tasks: Named Entity, Coreference, Template
Element, Template Relation, and Scenario Template. To allow these to be run and viewed
independently the scorer has been integrated as five separate CREOLE modules, one per
task.

The scorer can be used for templates other than those defined for the MUC-7 tasks,
provided the syntax of the output templates or SGML annotations (in the case of the Named
Entity Task) conforms to that expected by the scorer. To do so requires modification of
the configuration files supplied with the scorer. Of course, using the scorer for any task
presupposes the existence of answer key files against which the output of the system is to be
measured.

12.2 External Processes

12.2.1 Software Requirements

The MUC scorer is a C program, Copyright 1998, Science Applications International Corpora-
tion. Source code and binaries were made freely available to MUC participants, but interested
parties should now contact SAIC directly. See www.muc.saic.com for further information and
full documentation.

12.3 GATE Interface

12.3.1 Input

name annotations, with sgml attributes, for the NE results.
muc_coref annotations, with sgml attributes, for the CO results.

template_elements document attribute, for the TE results.
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template relations document attribute, for the TR results.
scenario_template document attribute, for the ST results.

12.3.2 Output

score_report document attribute.
report_summary document attribute.

The files scores and report_summary are also left in the directory from which GATE was
started.

12.3.3 Parameters

Config The filename of the configuration file for the scorer. A modified version of this will be
written to the directory from which GATE was started, as .muc_config, for use when
the scorer is run.

Keys The directory in which key files for the scorer can be found. Key files are assumed
to have the same filename as the text being scored with ne key, co key, _te key,
_tr_key or _st_key as a suffix.
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