DRAFT: January 30, 1996

CS-95-24

XI: A Knowledge Representation Language
Based On Cross-Classification and Inheritance

R. Gaizauskas

XI: A Knowledge Representation Language Based On
Cross-Classification and Inheritance

R. Gaizauskas
Department of Computer Science
University of Sheffield
robertg@dcs.shef.ac.uk

1 Introduction

XTI is a language for representing knowledge about individuals, about classes of individuals, and
about inclusion relations between classes of individuals. It allows for straightforward definition of
cross-classification hierarchies and for the association of arbitrary attribute-value information with
classes or with individuals. This information may be in the form of simple, atom-valued attribute-
value associations or in the form of Horn clause rules which specify how the value of an attribute
is to be derived from other information held in the hierarchy. XI provides a simple inheritance
mechanism which allows attribute values to be inherited by classes or individuals lower in the
hierarchy. The name ‘XTI’ is meant to suggest cross-classfication — X - and inheritance — I — the two
primary features of the language.

The motivation for XI came from work in natural language understanding (see below) where it
was discovered that traditional property-based logic languages such as Prolog were inadequate. In
such a language it is relatively easy to discover what things have a given property (e.g. to find all
green things issue the query ?7- green(X) .) but very difficult, without changing representations, to
discover all the properties which hold of an individual. To do this an object-based logic is required
and it is to this end that XI has been created. Of course another option is to adopt a second, or
higher order, logic. But computational problems with these languages (e.g. second-order unification
is undecidable) together with their excessive formal power suggest, at least initially, the exploration
of simpler approaches.

At one level XI may be viewed simply as a declarative formalism with its own syntax and a
semantics based on FOPC. But an interpreter and compiler for XI exists, together with ancillary
commands that allow XI models to be incorporated into Prolog programs. In this way XI may
be viewed as something akin to Prolog — a language which runs but which has some claim to a
declarative semantics.

Throughout, the design philosophy has been to ‘keep it simple’. Classes are simply unary predic-
ates and bare individuals are numbered constants (el,e2,...). Attributes are binary predicates,
the first argument identifying the class or individual of which the attribute holds and the second
being the value (which may be a variable to be instantiated by the execution of a rule associated
with the attribute). The language has two components, a definitional component and a derivational
component. The definitional component allows a hierarchy to be defined and attributes to be asso-
ciated with nodes in the hierarchy. The derivational component allows one to determine just two
sorts of things: whether one node dominates another in the hierarchy and what value an attribute
has at a given node. Attribute values are determined first at the given node and then are inherited
by working depth-first up the hierarchy from left to right. Multiple values may be obtained by
backtracking and nothing is done to prohibit these values from being contradictory — this is left to
the application. The application programmer is free to implement a default inheritance scheme on
top of XI.

The definition of a cross-classification hierarchy we refer to as an ontology. An ontology together
with a mapping of nodes in the ontology onto sets of attribute-values forms a world model. Here is

an example of the XI expressions that define a fragment of a crude world model to do with vehicles.
First, the ontology (Figure 1 illustrates these hierarchical relationships graphically):

top(X) ==> object(X) v event(X) v property(X).

object(X) ==> vehicle(X) v country(X).
vehicle(X) ==> (car(X) v lorry(X) v motorcycle(X)) &
(commercial (X) v private(X)).

car(X) ==> (rover(X) v toyota(X) v renault(X)) &
(twodoor (X) v fourdoor(X)).

el <-- private(X) & toyota(X) & fourdoor(X).

e2 <-- country(X).

e3 <-- country(X).

property(X) ==> functional_prop(X) v relational_prop(X).
made_in <-- functional_prop(X).
colour_of <-- functional_prop(X).

Terms on the left of the ==> arrow are superordinate classes and terms on the right are sub-
classes. Each conjunct on the right is a dimension of classification and the disjuncts within each
conjunct represent mutually exclusive alternative classifications within the given dimension So, for
example, a vehicle will be at most one of a car, a lorry, or a motorcycle and for whichever of these
is chosen it may also be classified as either commercial or private. Terms on the left of the <--
arrow are instances, denoted with constant terms of the form e1, e2, ..., and terms on the right
of this arrow are the classes of which the terms on the left are instances. So, el is an instance of
something which is private, a Toyota, and four-door.

Here are some XI expressions associating attributes with nodes in the ontology:

props(vehicle(X), [presupposition(X, driver(Y,X))1).

props (rover (X), [made_in(X,e2)]).

props (toyota(X), [(made_in(X,e2) :- X <- twodoor(.)),
(made_in(X,e3) :- X <- fourdoor(_))1).

props(el, [colour_of(el,blue)]).
props (e2, [name (e2,uk)]) .
props(e3, [name(e3, japan)]).

props (made_in, [instance_type(object(_)) ,value_type(country(_))]1).
props(colour_of, [instance_type(object(_)),valuel).

Note that an attribute value may either be directly associated with a class or an instance (as in
props (rover (X) , [madein(X,uk)]) or props(el, [colour(el,blue)]) which tell us, respectively,
that Rovers are made in the UK and that el is blue) or indirectly via a rule which must be evaluated
for the value to be determined (as in the case of the Toyotas which if twodoor are made in the UK
and if fourdoor are made in Japan). Note also that by treating attributes themselves as individuals
we can store information about attributes, such as the types of their arguments, within a XI model.

Given this world model we may now ask questions such as:

top(X)

T

object(X)

\

country(X)

I\

vehicle(X) €2 €3

N

(commercial(X) private(X))

///\\

(rover(X) toyota(X) renault(X)) & (twodoor(X) fourdoor(X))
el

Figure 1. A Sample XI Ontology

(lorry(X) motorcycle(X) car(X))

?- el <- vehicle(X).
yes

?- hasprop(el,colour_of(el,X)).
X = blue.

?7- hasprop(el,made_in(el1,C)).
C = e3.

?- hasprop(e3,name(e3,N)).
N = japan.

?- hasprop(el,presupposition(el,X)).
X = driver(Y,el).

?7- hasprop(el,P).
P = colour_of(el,blue) ;

P = made_in(el,e3) ;
P = presupposition(el,driver(Y,el))
no

&

b

/*

/*

/*

/*

event(X) property(X)

AN

relationa_prop(X) functional_prop(X)

[\

made_in colour_of

Is el a vehicle 7 %/
What colour is el ? %/

Where was el made 7 */

Are there presuppositions for el 7 */

What attributes hold of el ? %/

XTI was motivated by work in natural language understanding (Gaizauskas et al. (1995), Gaiza-
uskas et al. (1993), Cahill et al. (1992)). In particular it was designed to record the sort of world
knowledge that is needed in discourse interpretation. One example of this is coreference resolution.
Suppose you are trying to understand road traffic incident reports and come across the sentence
“Blue Ford overturned in inner lane” and later “Vehicle now removed”. To resolve “Blue Ford” and
“Vehicle” requires the knowledge that Fords are vehicles. Natural language understanding requires
large amounts of this kind of taxonomic knowledge. Notice that this knowledge is not present in
the text but rather must be brought to bear by the language understander.

Natural langugage understanding programs can also make wide use of property inheritance. For
example, you might want to record the fact that a vehicle presupposes a driver — this will help in un-
derstanding further messages in our example such as “Driver uninjured”. Asshown, XI allows you to
associate with the vehicle node in the hierarchy a property such as presupposition(driver(Y,X)).
An application might, when adding an instance of a vehicle to its model of the world, choose to
add instances of all presupposed objects at the same time. Since we have stored the presupposition
about drivers at the vehicle node it will be inherited by lower nodes. Thus, if a Toyota is added
to the model, then as an instance of a subclass of vehicle it will inherit the presupposition about a
driver and an instance of a driver for the Toyota may be created. Later if a new class of vehicles,
say Fords, is created then the fact that they presuppose drivers need not be added again, as it will
be inherited from the vehicle node. This simply illustrates the well known advantages of inheritance
schemes for reducing redundancy in the knowledge base.

Finally, since attributes may themselves be treated as individuals they too may be placed in
classes and have attributes attached to them, and this ‘higher order’ aspect of XI can be useful in
NL applications. If in our traffic example we were to get another message asserting ‘Red Toyota
also involved’ we would want to be sure that the red and blue Toyotas did not get coresolved.
One way to prevent this is to create a class of attributes which are ‘functional’ in the sense that
any such attribute cannot have multiple values (at least simultaneously) for any object of which it
holds. So, a vehicle cannot be more than one colour simultaneously, but it can , say, be beside
several different things at the same time. If classes of ‘functional’ and ‘relational’ attributes are
distinguished, a coreference algorithm can utilise this distinction in coming to a decision as to
whether or not two objects are identical. Note that in deciding that two entities are or are not
the same we may need to compare everything that is known about them. This illustrates the
requirement for a KR language in which it is straightforward to discover all of the attributes that
hold of an individual.

The remainder of this paper is organised as follows. In section 2 the syntax of XI is formally
defined. Section 3 defines derivability in XI and section 4 discusses the semantics of XI. Section 5
discusses various nonlogical features of XI that facilitate its incorporation into Prolog applications.
Section 6 provides a few details about the compiler. Section 7 supplies concluding remarks. Source
code may be found in the appendix.

2 The Definition of Pure XI

Since XI is an extension to Prolog much of its syntax bears a close ressemblance to that of Prolog.
The alphabet of XI, Axr consists of seven classes of symbols:

1. functor symbols: lower case, alpha-initial alphanumerics
2. reserved functor symbols: props, hasprop

3. variables: uppercase-alpha-initial alphanumerics

4

4. connectives: :(—, , ,;,—,=>, <, «—,V, &
5. punctuation: (,)

The further constraint is adopted that these classes be disjoint.

A term is a variable, a 0-ary functor symbol (also called an instance symbol), or an expression of
the form f(t1,...,t,) where f is a functor symbol and #1,...,%, are terms. Terms of this last sort
are called complez. In XI classes are denoted by complex terms with a class functor and exactly
one variable — we call these class terms. Attributes are asserted with attribute terms — complex
terms with attribute functors and exactly two variables. If ¢ is a term we let var(¢) denote the set
of variables occurring in .

We now define three further classes of expressions: O-clauses (for defining an ontology), G-
clauses (for defining goals or queries), and P-clauses (for associating properties with classes).

O-clauses have one of two forms:

1. ¢ = D1&---&D,, where c is a class term and each D; is a disjunction of class terms of
the form dj;; V --- V dj,, and each class term d;; on the right of the O-clause contains the
variable occurring in the class term on the left of the O-clause — i.e. var(d;) = var(c);

2. e «— c1&--- &c;, where each ¢; is a class term containing the same variable, i.e. var(c;) =
.-+ =var(cy,) and e is an instance symbol.

£ = y may be read ‘y is an immediate subclass of z’ and z +— y may be read ‘z is an immediate
instance of 3’. Each conjunct (D;) on the right hand side of an O-clause of type 1 may be thought
of as a classificatory dimension and the disjoined terms within in it are intended to be mutually
exclusive classes (this exclusiveness in enforced below through constraints on the sets of O-clauses
that may form an ontology). The restrictions on the co-ocurrence of variables are intended to
ensure that if the class terms are interpreted as predicates then when the variables in a subclass get
instantiated the corresponding variables in the superclass are also instantiated in such as fashion
as to guarantee that the subclass predication implies the superclass predication. E.g. suppose
financial _event(X) = buy(X) V sell(X). If el «— buy(X) then by unifying el with X we can
determine that el is a financial_event.

If O is a set of O-clauses we define the transitive, reflexive relation <@ to hold between two
terms ¢; and t92 which occur in clauses in O as follows. t; <g t2 if:

1. t1 =t9; 0or

2. 19 occurs on the left hand side of an O-clause of type-1 in O and ¢; occurs on the right hand
side of the same O-clause; or

3. 19 occurs on the right hand side of an O-clause of type-2 in O and t; occurs on the left hand
side of the same O-clause; or

4. there exists a term t3 occurring on the right hand side of an O-clause of type-1 in O in which
t2 occurs on the left and 1 <g 3.

G-clauses have one of the forms:
1. ¢ = co where cl and co are class terms or variables;

2. e < ¢ where e is an instance symbol or a variable and c is a class term or a variable;

3. hasprop(e,p) where e is an instance symbol or a variable and p is an attribute term or a
variable;

4. G1,G9 where G1 and G5 are G-clauses.
5. G1;G9 where G; and G4 are G-clauses.

z = y may be read ‘y is an subclass of £’ and x < y may be read ‘z is an instance of ¥’.
P-clauses have the form props(c, V) where c is either an instance symbol or a class term and
V is a set whose members are of the form

1. p(t1,t2) where p is a functor and ¢ is ¢ if ¢ is an instance term and var(c) otherwise; or
2. p(t1,t2) :— G where p is attribute term as in 1) and G is a G-clause.

A world model W is a pair (O, P) where

1. O is a set of O-clauses such that:

(a) there exists a unique term r such that for all terms ¢ occurring in O t <@ r; and

(b) for any O-clause ¢ = D1 & --- &D,, if t; and t3 both occur in some D;, i.e. if D; has
the form ¢1 V2 V- -- V tn then there is no term ¢ in any O-clause in O such that ¢t <g #1
and t <g ta.

2. P is a set of P-clauses such that for each P-clause props(c,{Vi,...,V,}) in P ¢ occurs in
some O-clause in O.

Some remarks about this definition of world model are in order. The conditions on the O-clauses
in O ensure that

1. the ontology has a greatest element (the universal class);

2. no class can inherit from two classes within the same classificatory dimension; i.e. since the
classes within a classificatory dimension (one of the conjuncts D; on the right of an O-clause
of the form ¢ = D1 & --- &D),,) are meant to be mutually exclusive then clearly no subclass
can be a subclass of two or more of them.

The O-clauses in a world model may be seen as an extensional definition of a partial ordering

relation on a subset of the class terms of Lx;. The conditions on P ensure that all the classes

which have properties associated with them in P-clauses are defined somewhere in the ontology.
The language of XI, Lx1 is the set of strings in A% ; which are O-, G-, or P-clauses.

3 Derivability in Pure XI

Only G-clauses may be derived in XI. There are five types of G-clauses: those asserting dominance
relations between classes, those asserting dominance relations between classes and instances, those
asserting that an attribute holds of an instance (possibly by inheritance), and conjunctions and
disjunctions of these three basic types.

To establish that one class is a subclass of another or that an instance is an instance of some
class requires recursively exploring the set of O-clauses in the world model to see if the terms in
query are appropriately related; i.e. it involves seeing whether for a given set of O-clauses O and
terms ¢; and ¢ the ordering relation <@ holds between them. To establish that a attribute holds

of a given instance requires checking to see if the attribute is recorded in the set of attributes
associated with the instance and this may in turn require determining that other G-clauses hold, if
the attribute is conditional. If the attribute does not hold ‘locally’ then the ontology is recursively
explored upwards to see if the attribute is associated with any dominating node. Note that the
attribute we are seeking to establish may be a partially instantiated term. Thus, seeing that the
attribute is recorded at a class or instance node requires seeing if the goal term may be unified
with (the head of) any term stored in the set of attributes at the class or instance node. Conjoined
goals are established by establishing each conjunct. Disjoined goals are established by establishing
either disjunct.

As with Prolog, XI may be extended to permit the ‘pure’ underlying logic (definite clause logic
in the case of Prolog) to include negated goals. As in Prolog, these are established in XI by failing
to establish the corresponding unnegated goal (‘negation as failure’). Thus there are no inference
rules explicitly for negation and we first define a notion of derivation for pure, negation-free XI,
and later extend this notion to include negated goals.

The inference rules in XI are the following:

1. ¢c= D& --&Dip, (a type-1 O-clause)
c1 = Dy 1&---&Dsyp, (c1 any class term in some Dy ;)

ch—1 = Dy 1& - &Dyp, (ckp—1 any class term in some Dy ;)

c=d (d any class term in some Dy, ;)

2. ¢c=>d
e«— di& - &dp, (a type-2 O-clause with d = d; for some 1 < i < m)
e+ c

3. (a) props(e,[...,p(e,t)...]) (e an instance, p an attribute term, ¢ any term)
hasprop(e, p(e, 1))

(b) props(c(X),[...,p(X,t),...]) (c(X) a class term, p an attribute term, ¢ any term)
e+ ¢(X) (e an instance term)

hasprop(e, p(e, t))

4. (a) props(e,[...,p(e,t):— G,...]) (e an instance term,p an attribute term
t any term, G a G-clause)
Go (0 a substitution for variables in G)

hasprop(e, p(e, t)0)
(b) props(c(X),[...,p(X,t):— G,...]) (c(X) a class term, p an attribute term
t any term, G a G-clause)
Go (6 a substitution for variables in G)
e<c¢ (e an instance term)

hasprop(e, p(e, t)0)

5. Gy

G

G1,G2 (G1 and G2 G-clauses)
6. Gy

G1;Go (G1 and G2 G-clauses)
7. Gy

G1;Go (G1 and G2 G-clauses)

A XI-derivation of a G-clause G from a world model W = (O, P) is a finite sequence of O-,
P-, and G-clauses such that G is the last clause in the sequence and every other clause is either an
O-clause or a P-clause in W or is a G-clause that follows from one or more clauses preceding it in
the sequence according to one of the XI inference rules. The length of the derivation is the number
of clauses in the sequence. If such a derivation exists we say G is XI-derivable from W, written
Wkxr G.

4 Semantics of Pure XI

Rather than specify a formal semantics for XI ‘from the ground up’ we will show how a XI world
model can be translated via a translation function 7 into a first order theory which may then be
given the standard first order semantics. We then show that for a given world model W and a goal
G, if Wkxr G then T(W) Fropc T(G). This establishes the soundness of derivations in XI with
respect to first order logic and gives an indirect semantics to XI world models. We do not appeal
to any particular first order proof theory as the first order derivations we suppose are trivial: any
natural deduction system such as (Smullyan, 1968) suffices.

Define a translation function 7 from O-,G-,P-clauses to sets of definite clause formulas as
follows. In the first order theory we assume :— is the material implication connective.

1. If C is an O-clause of the form ¢ = D& -+ &D,,, where c is a class term and each D; is a
finite disjunction of class terms of the form dj; V ---V d;p,, then T(C) is the set of formulas
containing

(a) c:—dj, for each (j,k), 1 <j<mn,1<k<p;and
(b) adi i NN AN d e AL /_‘dj,pj:_ dj,k for each (j,k), 1<53<n, 1<k <pj
2. If C is an O-clause of the form e <+— c1& - -+ &c,, where each ¢; is a class term and e is an

instance symbol, then 7(C) is the set of formulas ¢;{X/e} where X is the free variable in ¢;,
for each 4, 1 < < n.

3. If C is a G-clause of the form ¢; = ¢ where ¢l and ¢y are class terms then 7(C) is the set
of formulas {c1:— c2};

4. If C is a G-clause of the form e +— ¢ where e is an instance symbol and c is a class term with
free variable X then 7 (C) is the set of formulas {c{X/e}};

5. If C is a G-clause of the form hasprop(e, p) where e is an instance symbol and p is an attribute

term then 7(C) = {p};

. If C is a G-clause of the form G, Gy where G; and G2 are G-clauses then if 7(G1) = {G}}

and T(Gy) = {G,} then T(G) = {G}, G4}

. If C is a G-clause of the form G1; G2 where G; and G2 are G-clauses then if 7(G1) = {G}}

and T(G3) = {G}} then T(G) = {GY; G}

. If C is a P-clause of the form props(c,{V1,...,V,}) where c is a term and V; has either the

form p where p is an attribute term or p:— G where p is attribute term and G is a G-clause
then 7(C) contains exactly one formula for each V; such that

(a) If V; has the form p and ¢ is an instance symbol then the formula p is in 7(C);

(b) If V; has the form p:— G and c is an instance symbol then the formula p:— G’ is in T(C)
where G’ is the formula in 7(G);
(c) If V; has the form p and c is a class term then the formula p:— ¢ is in 7 (C);

(d) If V; has the form p:— G and c is a class term then the formula p:— ¢,G' is in T(C)
where G’ is the formula in T(G);

Suppose W = (0O, P) is a XI world model. Then define 7 (W) to be

U 70)u | T(P).

0e0 PeP

Proposition 4.1 Let W = (O,P) be a world model and G be a G-clause. If W Fx; G then

Proof We show for each of the seven inference rules in XI with premises S and conclusion G that
a FOPC-derivation may be constructed of 7(G) from 7(S). It follows that for any XI-derivation
from W a corresponding FOPC-derivation may be constructed from 7 (W).

1.

3.

G has the form ¢ = d and S consists of a sequence of type 1 O-clauses from O the first of which
has c on the left and the last of which contains d somewhere on the right and each intermediate
O-clause of which contains a class term on the left which occurs somewhere on the right in
the preceding O-clause in the sequence. Consider the sequence c,ci,...cg,d of class terms
leading from ¢ to d. By the definition of the translation function 7 ensures that the clauses
Ci— €1,C1:— €2, ...Cx—1:— Ck,Ck:— d will be in T(S) and these supply a FOPC-derivation of
c:— d directly.

. G has the form e < ¢ and S consists of a G-clause ¢ = d followed by a single type 2 O-clause

from O in which e occurs on the left and in which one class term on the right is d — the
class term on the right of the preceding G-clause. The translation function 7 ensures that
the clause c¢:— d is in T(S). In addition the clause d{X/e} will be in T(S), where X is the
variable in d. From these clauses it is clear there is a FOPC-derivation of ¢{X/e}, i.e. of

T(G).

(a) G has the form hasprop(e,p) where e is an instance symbol and p is an attribute term.
S includes the P-clause props(e, P), where the attribute term p € P. 7(S) includes p
and since T (G) = p clearly there is a FOPC-derivation of 7 (G) from 7 ().

(b) G has the form hasprop(e,p) where e is an instance symbol and p is an attribute term.
S includes the P-clause props(c(X), P), where the attribute term p(X,t) € P, and the
G-clause e < ¢(X). Thus, 7(S) includes p(X,t):— ¢(X) and ¢{X/e}. From T(S) there
is clearly a FOPC-derivation of p(e,t) = T(G).

4. (a) G has the form hasprop(e, p(e,t)f) where e is an instance term, p is an attribute functor,
t is an instance term or a variable, and 6 is a substitution for var(¢). S includes the
P-clause props(e, P), where P is such that p(e,t):— H € P, and the G-clause H6.
T (p(e,t):— G) = p(e,t):— H' where H' = T(H); further T(HO) = H'O (the order of
application of a substitution to a G-clause relative to the application of the translation
function 7 is irrelevant, keeping in mind that we mean the substitution to be applied
to each member of the set of expressions resulting from the translation). Thus there is
a FOPC-derivation of p(e,)0, i.e. of T(G), from T(S).

(b) G has the form hasprop(e, p(e, t)@) where e is an instance term, p is an attribute functor,
t is an instance term or a variable, and € is a substitution for var(¢). S includes the
P-clause props(c(X), P), where P is such that p(X,t):— H € P, the G-clause Hf, and
the G-clause e < ¢(X). Thus, 7(S) includes p(X,t):— ¢(X), H where H' = T(H). It
also includes H'6 and ¢{X/e}. Thus from 7 (S) there is a FOPC-derivation of p(e, t)0 =
T(G).

5. G has the form G1,G5 where G; and G4 are G-clauses. S includes G; and G2 and so T(S)
contains 7 (G1) and T (G2). From them a FOPC-derivation, by conjunction introduction, of
T(G1), T (G2), ie., of T(G1,G2) is immediately constructible.

6. G has the form G1; G2 where G; and G4 are G-clauses and S contains G1. So, T (S) = T(G1)
from which 7(G1); T (Gs), i.e. T(G1;G2), is FOPC-derivable by disjunction introduction.

7. G has the form G1; Gy where G; and G5 are G-clauses and S contains Gs. So, T(S) = T(Gs)
from which 7(G1); T (G2), i.e. T(G1;G2), is FOPC-derivable by disjunction introduction.

5 Impure XI

There are four sorts of extension to XI, as it is implemented as a KR language, which make it much
more powerful but which affect the simple semantics given above. These extensions parallel similar
features in Prolog. The first sort includes just the metalogical not operator; the second includes
mechanisms for limiting search — the xi_cut operator which is analogous to the cut operator in
Prolog and the nodeprop operator which limits property inheritance to the current node; the
third includes mechanisms for altering the hierarchy by adding or removing instances, classes or
properties and for saving or restoring ‘contexts’ of instances; the fourth includes mechanisms for
input and output of world models.

5.1 Negation

As has already been indicated, impure XI permits a form of negation as failure. This done by
introducing the meta-logical not operator which can be applied to G-clauses only (but hence may
occur in the G-clause component of attribute clauses within P-clauses). The semantics of not are
as in Prolog: not G follows from a world model W iff there is no derivation of G from W.

We extend the notion of XI-derivation to that of XINF-derivation as follows. A XINF-derivation
of a G-clause G from a world model W = (O, P) is a finite sequence of O-, P-, and G-clauses such
that G is the last clause in the sequence and every other clause is either an O-clause or a P-clause
in W, or is a G-clause that follows from one or more clauses preceding it in the sequence according
to one of the XI inference rules, or is a G-clause of the form not H such that no XINF-derivation
of H from W exists. In this case we write W Fxinr G.

10

5.2 Controlling Inheritance

When a hasprop G-clause is executed the ontology is searched back to the root node along every
possible path until either some occurrence of the sought after attribute is found or it is determined
that there is no such occurrence. Of course for complex hierarchies this can involve a large amount
of computation. It is desirable, therefore, to give the application programmer some facility for
reducing this search, even at the cost of failing to discover bonafide XI implications.

XTI provides two such mechanisms. One is the predicate nodeprop(Node, Prop) which returns
the value of an attribute Prop at the given Node only — i.e. no inheritance is performed. If, in
a given application, it is known that certain attributes will be found only at instance nodes, then
expensive inheritance need not take place. This mechanism can also be used by applications to
cache attributes at an instance node. That is, inheritance may be done once (or as necessary, if the
world model is dynamic), the inherited attributes added to the local node, and some flag attribute
set at the local node to indicate that inheritance has taken place. Subsequent access to the node can
check the inheritance flag and not perform inheritance unless the flag has become unset (perhaps
as the result of modifications higher up in the hierarchy).

The second mechanism XI provides for restricting search is the xi_cut operator, an analog
of the Prolog cut operator, !. Like Prolog cut, xi_cut always succeeds, but after succeeding it
prevents further search in the hierarchy for other values for the attribute in whose definition is it
included. Suppose p(X,Y):— G is an attribute clause occurring within V in a P-clause props(t, V).
By altering the attribute clause to

p(X,Y):— G,xi_cut

further search for values for the attribute p will cease once xi_cut has been executed.

How is this useful 7 When defining a world model it is frequently the case that an attribute
is defined at one node only, or is defined at several nodes but with the knowledge that it will not
be defined at any higher nodes. The world model writer can take advantage of this knowledge
to insert xi_cut operators into the attribute definitions at this point, ensuring that no search at
higher nodes, or along different branches, will take place.

5.3 Changing the World Model
5.3.1 Asserting and Retracting Instances, Classes and Attributes

Generally, XI applications will want to add instances to and remove instances from a world model.
They will also want to add and remove attributes associated with instances. In some cases ap-
plications will want to dynamically alter higher levels of the ontology and associated attributes.
To allow this XI has a number of built-in predicates corresponding to the assert and retract
predicates of Prolog:

xi_ont_assert (E <-- (') Assert an instance. Adds a type-2 O-clause to the world model, so C
must have the form c¢;& - - - &¢,,. C must be instantiated. If E is instantiated records that E
is an instance of each ¢; in C'; otherwise generates a new instance id, records each instance
fact as before and instantiates £ with the new id.

xi_ont_assert (C ==> D) Assert a class. Adds a type-1 O-clause to the world model, so D must
have the form D& ---&D,,, where each D, is a disjunction of class terms of the form d;; V
=+ Vdjp,. Both C'and D must be instantiated.

11

xi_prop_assert (Node,Attribute) Assert an attribute. Adds Attribute to the P-clause associated
with Node if one exists and creates a new P-clause with Atiribute if not.

xi_ont retract (E <-- (') Retract an instance. Removes a type-2 O-clause of matching F <-- C
from the world model. If, following this retraction, no type-2 O-clauses mentioning ¥ remain,
any P-clauses of the form props(E, V) are also removed.

xi_ont retract (C ==> D) Retract a class. Removes a type-1 O-clause of matching C' ==> D from
the world model. If any class term removed in the course of the operation no longer occurs
elsewhere in the ontology then any P-clauses associated with it are also removed.

xi_prop.retract(Node,Attribute) Retract an attribute. Removes an attribute matching Attribute
from the P-clause associated with Node.

Using these functions it is perfectly possible for an application programmer to mangle a world
model into a data structure that no longer meets the various constraints placed upon XI models,
or to create, ex nihilo a structure that is not in fact a XI model. To attempt to enforce these
constraints (e.g. no node may inherit from two higher nodes that are mutually exclusive options
in the same classificatory dimension) by building them into each of the predicates described above
would have been computationally prohibitive. So, caveat hacker. To make matters slightly better
there is a predicate xi_validate wm(Nodes) which fails with Nodes bound to an list of nodes
implicated in an illegal definition of a world model. This function may be called at any time and
is called by default by the compiler (next section) and hence may be used to ensure that at least
an initial world model is validly formed.

5.3.2 Contexts

One feature which XI lacks with any degree of sophistication is a notion of ‘context’. It would be
useful to be able to restrict access to instances (and perhaps to classes) to subsets of the set of
all instances held in a given world model. Ultimately, mplementing something like the Lisp notion
of packages would useful. This would allow instances to be associated with a named context, and
imported and exported between contexts. As with Lisp packages there would be a current context
which could be switched with any of a number of alternative user-defined contexts.

A primitive version of this has been experimented with in XI: the predicates xi_save_context/1,
xi_restore_context/1, and xi_clear _context/0 allow all current instance assertions together
with their associated, non-inherited attributes to be saved to a named repository, restored from a
named respository, or deleted from the current world model, respectively.

5.4 Input/Output

In addition to the underlying Prolog input/output mechanisms which can be used to display and to
write or load world models to or from disk files XI provides a number of useful predicates explicitly
for these purposes.

The xi _print_context/0 predicate displays all current instances and their associated, non-
inherited attrributes. The show_ontology/0 predicate displays the current ontology (but no at-
tribute information). write_ontology(File) writes the current ontology to File from whence it
may be loaded using a simple Prolog read.

xi_write_uncompiled (File) writes the current uncompiled (see next section for a discussion of
the XTI compiler) world model — all instances, classes and attributes — to Fiile; xi_write_compiled (File)

12

writes the current compiled world model to File; xi write_all(F'ile) writes both the compiled
and uncompiled world models to File. Again any of these may be read back in using Prolog read.

6 The XI Compiler

The syntax for writing XTI models is designed to make models relatively easy to write or to modify for
humans. However, these representations do not lend themselves to particularly efficient processing.
For this reason a ‘compiler’ for XI world models has been written which translates a world model
defined in the notation described above into a set of Prolog clauses that permits much more efficient
execution. A world model may be precompiled and saved to a disk file to be loaded at run-time; or
it may be compiled at any time during execution. A world model may consist partially of compiled
clauses and partially of non-compiled clauses — they may cohabit and XI can perform derivations
using a mixture of the two.
The compiled representation makes its savings in three ways:

1. for each type-1 O-clause of the form ¢ = D& -+ &D,,, where c is a class term and each D;
is a disjunction of class terms of the form d;; V---V d; ., compiled parent(c,d;x) clauses
are added to the Prolog database for each disjunct on the righthandside of the O-clause.
This saves repeatedly picking apart complex righthand side expressions when traversing the
hierarchy at run-time;

2. for each type-2 O-clause of the form e <+— c¢1& - - - &c, where each ¢; is a class term and e
is an instance symbol, compiled_instance(e,c;) clauses are added to the Prolog database
for each conjunct on the righthandside of the O-clause. Again, this saves repeatedly picking
apart complex righthand side expressions when traversing the hierarchy at run-time;

3. for each P-clause of the form props(t,{A4i,...,A,}) where ¢ is a node in the ontology and
A; is an attribute, compiled prop(t,4A;) clauses are added to the Prolog database for each
attribute A; in the P-clause. This saves repeatedly doing member operations to see if attributes
occur in P-clauses at run-time;

The XI compiler may be invoked either by issuing the xi_compile/0 command which com-
piles the current world model and then retracts any O-clauses and P-clauses or by issuing the
xi_compile (F'ile) command which simply calls xi_compile/0 and then calls xi_write_compiled (File)
to write the compiled world model to F'ile.

As mentioned above the compilation process begins by default with an attempt to validate the
form of the world model. The xi_validate wm(Nodes) function includes three checks: that no node
inherits from two mutually exclusive nodes in a common conjunct of a type-1 O-clause; that no
cycles exist in the graph; that all nodes are dominated by the root. The algorithm for this is simple,
if inefficient: for each node a list of all of its descendants (classes and instances) is constructed.
The third check is carried out by ensuring that each node occurs in the list of descendants of the
root. The second is carried out by ensuring that no node occurs in the list of its own descendants.
The first is carried out by checking that for each disjunction occurring on the right of any type-1
O-clause no pair of disjuncts has any common descendants.

7 Concluding Remarks

In concluding there are several topics which should be briefly touched upon. These include the
issue of default inheritance and XI and the issue of acquiring large scale XI models.

13

7.1 Default Inheritance and XI

The issue of default inheritance has been a fraught one in inheritance-based KR languages. One of
the original motivations for inheritance-based approaches was that they seemed to offer a mechanism
for copying with the ‘T'weety’ problem: the problem of recording that an individual bird or subclass
of birds cannot fly, while all recording that in general all birds fly. In inheritance languages the
solution was to record at the bird node that birds have the attribute of flying, then to record at
the Tweety node that Tweety does not have this attribute. The lower level fact was intended
to ‘override’ the default and supply the correct result. While this may be satisfactory for single
inheritance hierarchies it does not suffice for multiple inheritance networks: conflicting defaults
may be inherited from different ancestors (the so-called ‘Nixon diamond’ problem) and there is no
general approach for deciding which to prefer.

XTI remains resolutely agnostic on these issues and exports them all onto the user. Using the
nodeprop predicate the user can determine whether an attribute-value originates at a given node,
or is inherited. Thus, if it is desired to let local values override inherited ones, this policy may be
pursued. In the case of multiple inheritance, the matter is again in the hands of the user and network
designer: notions of semantic distance may be defined and used to arbitrate between conflicting
inherited attributes; checks to detect and eliminate possible conflicting attribute inheritance may
be implemented.

Thus, XI is advanced simply as a tool to be used in KR applications, not as a solution to out-
standing theoretical problems with inheritance-based approaches. The assumption underlying XTI is
that there are advantages to representing knowledge in an inheritance network (chiefly, perspicuity
and nonredundancy) and that a simple, robust tool to be employed in research applications needing
a large amount of world knowledge would be of significant experimental value.

7.2 Acquiring World Models

How should world models be acquired ? To date all applications of XI (Gaizauskas et al. (1995),
Gaizauskas et al. (1993), Cahill et al. (1992)) have involved hand-crafted world models. While it
is certainly possible to construct world models by hand for limited domain applications, it seems
increasingly clear that techniques for automated, or at the very least semi-automated, construction
of world models will be necessary for some applications. In particular NLP applications such as
information extraction from newspaper texts need very large amounts of world knowledge to be
able to perform tasks such as coreference resolution.

To this end several approaches are currently being experimented with. One is to attempt
to populate a XI world model using existing resources such as LDOCE and WordNet both of
which contain large scale ontologies. Another is to build an interactive interface which allows an
ontological engineer to interact with an NLP system which reads texts and then tries to place lexical
items (after morphological analysis) into an existing XI world model. Starting with a skeleton high
level model the user directs the construction of the world model allowing the system to make
hypotheses about where new terms should be placed based, for example, on subcategorisation
information (e.g. if the term gronk is encountered in the sentence The gronk died and die is already
stored in the model as an event with an attribute indicating the class of its logical subject is
animate, then gronk can be placed in the ontology beneath the animate node; later perhaps its
position can be refined).

Much further work is of course needed to see if this approach is feasible. But XI provides the
framework within which such experimentation, and also experimentation with coreference resolution
techniques and algorithms, becomes possible.

14

8 Acknowledgements

Initial work on XI was carried out at the University of Sussex while the author was working on the
POETIC project, a UK DTI-EPSRC sponsored project (Grant Ref:) for extracting information
pertaining to road traffic incidents from police logs. The work was continued at Sussex as part of
the Sussex MUC-5 System development effort, sponsored by the US Advanced Research Projects
Agency, Sussex University, Racal Research and Integral Solutions Limited. During this time Roger
Evans provided useful comments and helped to write the original version of the XI ontology com-
piler. In 1993 the author moved to the University of Sheffield and carried on work on XI there.
Following the commencement in 1995 of a UK EPSRC grant to build a large scale information ex-
traction system (Grant Ref:), the XI code was reimplemented and extended by Kevin Humphreys
whom the author would like to thank in particular. Useful comments have been provided on drafts
of this paper by Matt Fairtlough and Kevin Humphreys.

References

Cahill, L., Gaizauskas, R., & Evans, R. (1992). POETIC: a Fully-Implemented NL System for Un-
derstanding Traffic Reports. In Fully Implemented Natural Language Understanding Systems:
Proceedings of the Trento Workshop, March 30, 1992 (IWBS Report No. 236), pp. 86-99 IBM
Institute for Knowledge Based Systems, Heidelberg.

Gaizauskas, R., Cahill, L., & Evans, R. (1993). Description of the Sussex System Used for MUC-
5. In Proceedings of the Fifth Message Undersanding Conference (MUC-5). ARPA, Morgan
Kaufmann.

Gaizauskas, R., Wakao, T., Humphreys, K., Cunningham, H., & Wilks, Y. (1995). Description of
the LaSIE System as Used for MUC-6. In Proceedings of the Sizth Message Undersanding
Conference (MUC-6). ARPA, Morgan Kaufmann. Forthcoming.

Smullyan, R. (1968). First-Order Logic. Springer-Verlag, Berlin.

15

Appendix XI: The Code

A XTI software package containing the code described here is available via
http://www.dcs.shef.ac.uk/ robertg/

As is, the code requires Quintus Prolog but it is easily ported to SICStus Prolog and others.

> File: xi.pl
> Purpose: defines the fundamentals of the Xi KR language
> Author: K.Humphreys, R.Gaizauskas, R.Evans

:- op(20,xfy,v). % disjunction of categories
:- op(10,xfy,&) .) conjunction of categories

% O0-clauses:
:- op(40,xfx,==>). % X ==> Y: Y is an immediate subclass of X
:- op(30,xfx,<--). % X <--= Y: X is an immediate instance of Y

X ==> Y :- compiled_parent(Y,X).
X ==>Y :- !, clause(X1 ==> Y1, true), indefn(X,X1), indefn(Y,Y1).

X <—Y :
X <—-Y :

compiled_immediate_instance(X,Y).
!, clause(X <-- Y1, true), indefn(Y,Y1).

% G-clauses:
:- op(30,xfx,=>). % X => Y: Y is a subclass of X
:- op(30,xfx,<-). % X <= Y: X is an instance of Y

X =>Y :- nonvar(Y), !, parent(Y,P), (X = P;X => P).

X <~ Y :- compiled_instance(X,Y). % use compiled version if available.
X <- Y :- clause(X <-- Z, true), indefn(Z1,Z), (Y = Z1;Y => Z1).

% find all properties (nodeprops returned first)

hasprop(E,P) :- var(P), !,
findall (PP, ((nodeprop(E,PP);inheritprop(E,PP)), PP \= (_ :- _)), PPs),
no_doubles_unify(PPs,Ps), % delete equivalent props found by
member (P,Ps) . % different paths

% find specific property (nodeprops returned first)

hasprop(E,P) :- (nodeprop(E,P) ; inheritprop(E,P)).

% nodeprop(E,Prop) : Prop is a direct property at E (not inherited)

16

h
nodeprop(E,Prop) :- compiled_prop(E,Prop).
nodeprop(E,Prop) :- props(E,Ps),
(member (Prop,Ps) ; (member((Prop :- Goal),Ps), call(Goal))).

% inheritprop(E,Prop) : Prop is an inhertited property of E
h
inheritprop(E,Prop) :- E <- Node, inheritprop(E,Node,Prop). % E is an instance

inheritprop(E,Prop) :- \+(E <-- _), Node => E, % E is a node
nodeprop (Node ,Prop) .
inheritprop(E,Node,Prop) :- Node =.. [_,E|_], nodeprop(Node,Prop) .

% parent(N,P) : true if N is an immediate subclass of P
yA
parent (N,P) :- compiled_parent(N,P). % use compiled version if available
parent (N,P) :- clause(P ==> N, true).
parent (N,P) :- clause(P ==> X, true), indefn(N,X).
parent (N,P) :- clause(P1 & P2 ==> X, true),
(indefn(P,P1) ;indefn(P,P2)), indefn(N,X).

% child(N,C) : true if C is an immediate subclass of N
yA
child(N,C) :- parent(C,N).

% indefn(Y,Z) : true if Y is a term occurring in a sentence
% made up of terms composed with v’s and &’s.
yA

indefn(_,Z) :- var(Z), !, fail.

indefn(Y,Z & W) :- indefn(Y,Z);indefn(Y,W).

indefn(Y,Z v W) :- indefn(Y,Z);indefn(Y,W).

indefn(Y,Z) :-Z\= _ & _, Z\=_v _, Y=12Z, !'.

% path(X,Y,Z) : Return a path Z (list of nodes) between nodes X and Y,
% if one exists. X may occur above or below Y. Multiple
/) paths are returned on back tracking.

h

path(X,Y,Z) :- pathi(X,Y,Z).

path(X,Y,Z) :- pathi(Y,X,Z1), reverse(Z1,Z).

% pathl returns a path from X to Y IF Y dominates X.
pathl1(X,Y,_) :- (var(X);var(Y)), !, fail.

path1(X,Y,[X]) (- X =Y, !.

pathl1(X,Y, [XIP]) X <-- Z, indefn(Z1,Z), path1(Z1,Y,P).
pathi(X,Y, [XIP]) Z ==> X, indefn(Z1,Z), pathi(Zi,Y,P).
pathi(X,Y, [XI|P]) parent (X,Z), pathl(Z,Y,P).

17

