CS-95-25

Investigations into the Grammar
Underlying the Penn Treebank II

R. Gaizauskas

Investigations into the Grammar Underlying the Penn
Treebank II

Robert Gaizauskas

1 Introduction

Given a bracketed corpus like the Penn Treebank IT (Marcus et al., 1995) an obvious thing to want
to do is to extract the grammar underlying the bracketing and investigate some of its properties.
How many rules are there? What is their distribution by category? What are their individual
frequency distributions? How long are the righthand sides of the rules? In addition to properties
of the grammar, it is also of interest to examine properties of the corpus, as revealed by the
grammar. How deep are the trees? What are the bounds on tree depth by sentence length?

This note provides answers to these and other questions, reporting the results of some straight-
forward investigations using the Penn Treebank II corpus, available from the Linguistic Data Con-
sortium®. The author’s original motivation in undertaking these investigations was to determine
the feasibility of using the extracted grammar for parsing texts similar to those in the corpus. This
interest has coloured the sorts of questions asked and prompted simplifying assumptions made in
order to derive ‘useful’ results. Thus, this investigation is partial at the very best and leaves many
questions about this valuable resource unanswered.

The programs used to derive the results are freely available: short descriptions of them and
instructions for retrieving them by anonymous ftp are included in an appendix.

2 The Corpus and Tagging Scheme

These investigations consider only the Wall Street Journal portion of the Penn Tree Bank II (PTB
IT). This comprises 2,337 files containing 49,208 sentences consisting of 1,253,013 tokens. Each text
(file) has been separately part-of-speech tagged and parsed by the University of Pennsylvania team
resulting in two files for each text, one containing tagged versions of the text and one containing
the parsed (bracketed) version of the text. Using PTB I anyone who wanted to derive the full
grammar needed to write a program to merge the tagged and parsed files (a program to do this
is described in (Krotov, Gaizauskas, and Wilks, 1994)). With PTB II, however, merged files have
been supplied (as well as separate tagged and parsed files). The remainder of this note considers
these merged files only.

In PTB I there were 48 part-of-speech or word class tags, 14 syntactic or constituent tags, and
4 null element tags, according to Marcus, Santorini, and Marcinkiewicz (1993) (this was in theory;
in the actual data extra tags crept in, apparently due to annotator inconsistency). In PTB II the
tagging scheme has been made more sophisticated with a view to annotating predicate-argument
structure. In this scheme there is a base set of tags consisting of 45 part-of-speech tags, 26 syntactic
tags, and according to Marcus et al. (1995), 6 null element tags (though there are 10 to be found
in the data). Additionally, however, constituent and null elements tags from the base set may
now have multiple extra tags attached to them by either a hyphen or an equal sign. These tag
extensions fall into several classes:

e hyphen-attached functional tags indicating such things as

lhttp://www.ldc.upenn.edu/

— text category (e.g. headline (-HLN), list marker (-LST)),
— grammatical function (e.g. subject (-SBJ), topicalised constituent(-TPC)),
— semantic role (e.g. location (-LOC), manner(-MNR));

e hyphen-attached numeric co-indices indicating the connection between tagged null elements
and the lexical material for which they stand (transposing the lexical material to the position
of the null element is intended to allow for straightforward predicate-argument interpreta-
tion);

e equals-attached co-indices indicating how elements in gapped clauses should be mapped onto
constituents in the parallel ungapped clause.

Here is an example of a PTB II-style annotation (sentence 2 in wsj_0601.mrg):

((s
(NP-SBJ-1 (DT A) (NN judge))
(VP (MD must)
(vp
(VP (VB jump)
(PP-DIR-2 (IN from)
(NP (NN murder)))
(PP-DIR-3 (TO to)
(NP (JJ antitrust) (NNS cases))))
G oy)
(vp
(PP-DIR=2 (IN from)
(NP (NN arson)))
(PP-DIR=3 (TD to)
(NP (NNS securities) (NN fraud))))
G o)
(PP (IN without)
(S-NOM
(NP-SBJ (-NONE- *-1))
(VP (VBG missing)
(NP (DT a) (NN beat)))))))
(G ED))

Grammatical functions are indicated by the -SBJ and -NOM tags and semantic roles by the -DIR
(‘direction’) tag. The null element *-1 is co-indexed with the NP-SBJ-1 ‘A judge’ indicating that
this material needs to be interpolated in the position of the null element for predicate-argument
interpretation. The PP-DIR=2 annotation indicates that the structure of the gapped clause is to
be recovered from the parallel one in which the PP-DIR-2 tag occurs.

3 What Do We Count?

If one is interested solely in the ‘surface’ context-free grammar revealed in the bracketing with a
view to using it for parsing, then the extra annotation appearing in PTB II may not be of in-
terest. Certainly the numeric coindexing tags must be removed as they flag nonlocal dependencies
that cannot be captured in phrase structure rules employing only the simple (atomic) syntactic
categories used in the bracketing. Further, the choice of actual numbers used for coindexing in
a given sentence does not carry any significance. Failure to remove them leads to a repetition
of structurally identical rules distinguished only by variances in the choice of numeric co-indices.
However, one may want to remove or alter other aspects of the tagging as well, depending on one’s
interests.

3.1 Tag Extensions

The text category, grammatical function, and semantic role tag extensions may or may not prove
to be of use to a parser. Whether they are may depend on other information being available
to it, say from lexical representations. For example, compare John wore trousers in Leeds with
John wore trousers in September. These give rise to the two PP annotations (PP-LOC (IN in)
(NP (NNP Leeds))) and (PP-TMP (IN in) (NP (NNP September))). If our grammar contains
separate PP rules for each of these tag extensions —i.e. PP-L.OC — IN NP and PP-TMP — IN NP
then unless lexical NNPs come marked with LOC and TMP information, we will generate two analyses
for each of these sentences with no information to decide between them. On the other hand, if we
do have semantic feature information stored with our lexical items, then we can propagate this
information upwards to the mother node, if we so choose, and there would appear to be no need
to have separate rules. However, this ignores the possibility that some PP rules only occur with
LOC or only with TMP roles — in this case having lexical semantic role information would mean
that by separating PP-LOC and PP-TMP rules where they are different we would generate fewer
inappropriate analyses. Further, since PP-LOC and PP-TMP constituents may occur in different
contexts, i.e. in the righthand sides of different higher level rules, distinguishing PP-LOC and
PP-TMP rules could again result in fewer inappropriate analyses.

All of this leaves us with problems when setting out to extract a grammar from PTB II or
to count the rules occurring therein. Do we count PP-LOC — IN NP, PP-TMP — IN NP, and PP
— IN NP as three rules or as one (all three occur in PTB II)? Do we count NP — NP PP-LOC,
NP — NP PP-TMP, NP — NP PP as three rules or one (again, all three occur in PTB II)? Should
we merge PP tags and their hyphenated extensions when they occur in rules which are otherwise
indistinguishable and retain them when they do not all occur in parallel rules? 2

3.2 Null Elements

A further problem arises with regard to the treatment of null elements. One of the motivations for
including null elements in the PTB II analyses was to provide traces which may be coindexed with
the relevant source lexical material so as to facilitate predicate-argument interpretation. Once
the coindices are removed, as we have argued above they must be in any attempt to arrive at
the context-free grammar underlying the PTB II, then this motivation for retaining null elements
in the grammar disappears. Since parsing using a grammar with substantial occurrences of null
elements can be problematic (null elements may be hypothesized anywhere, leading to an explosion
of inappropriately proposed constituents) there are strong practical motivations for removing them,
if one is setting out to acquire a grammar to be used by a parser.

For example, consider this PP from our previous sample bracketed sentence (from which we
have removed the coindex as we are now supposing):

(PP (IN without)
(S-NOM
(NP-SBJ (-NONE- *))
(VP (VBG missing)
(NP (DT a) (NN beat)))))

If we allow a (bottom-up) parser to hypothesize an NP null element before every VP then we will

hypothesize an S constituent whenever a VP is found — clearly an expensive business. The matter

gets worse when one sees in how many other contexts in the corpus null elements may also occur®.

2Where a nonterminal may or may not take an additional hyphenated tag, it is not clear how occurrences without
the tag are to be interpreted. Suppose, for example, a PP tag occurs in a rule without a semantic role tag. Does
this mean that the role player in the PP must not be either of type LOC or TMP since otherwise we would expect to
see this marked? This is not made clear in Marcus et al. (1995).

31t may be possible to mitigate the effects of empty category rules in a bottom-up parser through careful
algorithm design — see Moore and Dowding (1991), for example. However, their approach crucially relies upon
employing richer representations of categories (unification grammars) to permit non-local information about gap
contexts to control when null elements get hypothesised. For an atomic categoried context-free grammar of the
sort we propose to extract from the PTB II such an approach is not an option.

Are there, however, reasons for keeping null elements? Again it depends on what one wishes
to do with the extracted grammar. If it is to be used in investigating the distribution of various
phenomena as identified in the linguistic theory of movement adopted by the coders then clearly
the null elements are invaluable. Further, regardless of whether the actual displaced material can
be recovered (which becomes impossible once co-indices are removed), the null elements do provide
a particular theory’s view of where ‘real’ argument positions occur. Thus, for example Marcus et
al. (1995)’s example:

(SBARQ (WHNP-1 What)

(sQ is
(NP-SBJ Tim)
(VP eating
(NP *T*-1)))
7)

shows, amongst other things, that a transitive verb is required in this context. Finally, even
without the coindices the null elements serve the purpose of indicating the syntactic type of
material to be located elsewhere in the sentence in order for semantic interpretation to proceed.
However, that this is useful may in turn be debated. The bulk of null elements are NP’s marking,
e.g., subject position in infinitival or gerundive phrases or object position in passive constructions.
In these cases semantic interpretation of the VP implicitly requires the sort of syntactic object the
trace marks explicitly. This requirement must be encoded in the rules for semantic interpretation
anyway and hence the need for explicit marking via a null element appears to be redundant. So, in
the above example, though the phrase structure does not explicitly supply a subject for missing
we can infer, from its being an active transitive verb with an NP following in object position, that
there must be an NP subject around somewhere. So the explicit trace marker, once its coindex is
removed, tells us nothing further. A similar argument can be made for null elements which are
not NP’s.

It should be noted that there is a wide range of phenomena involving null element markers in
the PTB II and of course one need not adopt an all-or-nothing approach to including or excluding
null elements from an extracted grammar. That is, in extracting a grammar one could choose
to exclude certain null elements and to retain others, depending on one’s theoretical sympathies
with the approach taken towards marking certain phenomena. For example, one might choose to
retain the wh- and topicalisation traces, while removing the more transformational grammar style
traces, such as passive and raising or equi subject traces.

If null elements are removed then in many cases the phrase structure rules in which they appear
reduce to unary rules. In our running example, for instance, if we remove the null element we are
left with:

(PP (IN without)
(S (VP (VBG missing)
(NP (DT a) (NN beat)))))

Extracting the structural rules from this annotated phrase leaves us with, amongst others, the
rule S — VP. One of the reasons we argued for the removal of the NP null element was to avoid
hypothesizing an S constituent every time we discovered a VP; but now by admitting an S — VP
rule we appear driven to exactly to same result. This suggests that when the removal of a null
element leads to the creation of a unary structure we should merge that structure into the next
highest level. So, in our example, we could remove the S constituent altogether to arrive at:

(PP (IN without)
(VP (VBG missing)
(NP (DT a) (NN beat))))

As with the tag extensions, therefore, we see that there are several ways one might decide
to extract grammar rules from the PTB II corpus depending on how one chooses to treat null

elements. One could leave them in place and extract the phrase structure grammar complete
with null element rules exactly as they stand. Or one could remove the null element constituents
(or a subset of them), and leave the embedding structures in which they occur, even when these
reduce to unary rule structures. Or one could remove null elements and in addition merge unary
structures into the higher level structures in which they appear, so eliminating many unary rules.
Our motivation for extracting a grammar from the PTB II annotations will determine which option
we feel is most appropriate.

3.3 The Approach Adopted

Of course these options need not be exclusive: once the options have been distinguished one may
extract grammars with or without tag extensions and with or without some or all null elements.
They may be compared directly, or in various applications. In this report, however, I have chosen
to report on just one choice of options for the sake of brevity. The programs that have been
developed to extract the grammar are flexible enough to allow any of the other options discussed
above to be selected equally easily and the author hopes interested readers will chose to do so.
The general flavour of the results presented below will almost certainly carry over to other options.

Given the motivation of wanting to extract a relatively simple grammar for use in an automatic
parser, the results presented in the rest of this paper are based on a corpus derived from the PTB
IT corpus through the following steps:

1. eliminate all hyphen- or equals-attached suffix tags;

2. eliminate any constituents whose label is ~NONE- (all null element tags in PTB II are uni-
formly treated as lexical tags occurring in a unary constituent whose label is -NONE -);

3. if as a result of 2. any constituent now has an empty set of children then remove this
constituent (this may percolate recursively up the tree);

4. if as a result of 3. any constituent now has a single child which is labelled with a nonlexical
tag then remove the constituent and then merge the child into parent’s position in the next
higher level constituent (this has the effect of removing unary rules whose righthand sides
are not word class tags).

This process may be illustrated by reference to the last PP in the preceding example. After
step 1 we have:

(PP (IN without)
(s
(NP (-NONE- *))
(VP (VBG missing)
(NP (DT a) (NN beat)))))
after step 2:

(PP (IN without)
(s
(NP)
(VP (VBG missing)
(NP (DT a) (NN beat)))))
after step 3:

(PP (IN without)
(S (VP (VBG missing)
(NP (DT a) (NN beat)))))
after step 4:
(PP (IN without)

(VP (VBG missing)
(NP (DT a) (NN beat))))

4 The Programs

The results reported in the next sections were obtained by using a suite of Perl programs written
by the author. Further details of the programs may be found in the Appendix and the programs
are freely available to anyone who should want them. Here we give a brief overview of the key
programs and their capabilities.

exgrule This is the principle program for extracting grammar rules. It reads one or more PTB
IT merged files, extracts the grammar rules, and keeps counts of how many times each
rule occurs, and in how many sentences. Options allow hyphen and equals attached tags
to be filtered/not filtered, null elements to included/removed, and unary rules with non-
preterminal righthand sides to be retained/ absorbed. Further options allow information
about tree statistics to be gathered — tree depth and depth bound by sentence length.
Finally, an index maybe created that records for each extracted rule pointers to all sentences
in which it occurs. This index is used by the findgrule program.

findgrule Assuming an index has been created while running exgrule, the findgrule program
prints all sentences in the indexed PTB II files in which a supplied grammar rule occurs. This
is of use when manually investigating the grammar, in order to recover specific examples of
particular constructions.

ptbcounts/ptbruledist These programs process the extracted grammar rule file produced by
exgrule and yield the summary information reported in the following sections. Options allow
for the computation of rule and rule occurrence totals by syntactic category, distribution of
rule occurrences by rank, rate-of-growth of rule set figures, and distribution of righthand
side lengths.

5 Results: Grammar Characteristics

5.1 How Many Rules Are There?

Using exgrule, each grammar rule in the PTB II was extracted together with the number of times
it occurred and the number of sentences in which it occurred (the latter may be a smaller number,
since some rules occur multiple times in the same sentence — knowing this number is of use if you
want to answer the question “How many sentences in the corpus would I fail to parse correctly if
I didn’t have this rule?”). As indicated above, all hyphen- and equals-attached tags were removed
from the initial syntactic tags and all null constituents were discarded and resulting unary rules
collapsed.

The totals for number of rules falling into each of the PTB II’s 26 syntactic categories are
summarised in Table 1 together with the number of occurrences of rules in each category and the
number of sentences in which rules of each category occur. Totals are displayed at the bottom, and
indicate the total number of rules, total number of rule occurrences, and, in the sentence occurrence
column, not the total number of sentence occurrences, but the total number of sentences (hence
the figure at the bottom of this column is not the sum of the figures above it, since many rules
will occur in each sentence). The percentage columns indicate, for each category, the percentage
of total rules in that category, the percentage of total rule occurrences in that category, and the
percentage of total number of sentences in which rules of that category appear (so no total for
the final column is meaningful). Rounding to the nearest integer value means some percentages
round to zero. These figures were obtained using the ptbcounts program with the -s option.

5.2 Are These All the Rules?

How likely is it that these are ‘all’ the rules needed to analyse Wall Street Journal English? Given
as many rules as the preceding section has revealed, it seems unlikely that every last rule has been
discovered, but we might hope that most of them have been. One way to get a feeling for how

SYNCAT RULES | % RULE-OCCS | % SENT-OCCS | %
ADJP 691 4 16908 2 13144 27
ADVP 340 2 24503 3 18769 38
ADVP|PRT | 1 0 1 0 1 0
CONJP 10 0 367 0 343 1
FRAG 271 2 495 0 424 1
INTJ 27 0 159 0 151 0
LST 10 0 70 0 56 0
NAC 57 0 543 0 523 1
NP 7237 41 378662 44 49110 100
NX 163 1 1680 0 558 1
PP 401 2 116713 13 42152 86
PRN 296 2 2972 0 2779 6
PRT 10 0 3238 0 3102 6
PRT|ADVP | 1 0 1 0 1 0
QP 375 2 11452 1 8167 17
RRC 17 0 52 0 51 0
S 2059 12 87714 10 46860 95
SBAR 223 1 24744 3 18662 38
SBARQ 81 0 263 0 253 1
SINV 263 1 2563 0 2534 5
SQ 145 1 374 0 353 1
UCP 212 1 592 0 583 1
VP 4416 25 180116 21 47669 97
WHADJP 11 0 66 0 65 0
WHADVP 22 0 2539 0 2422 5
WHNP 127 1 9058 1 8095 16
WHPP 5 0 477 0 473 1
X 63 0 187 0 133 0
TOTALS 17534 100 | 866511 100 | 49208 -

Table 1: Rules per Category in PTB II

close the PTB II grammar might be to being complete is to see at what rate new grammar rules
are being discovered as new texts are processed (the ‘accession rate’). One would expect that the
more texts are processed the smaller the number of new rules being added per text, i.e. that we
were asymptotically approaching a complete grammar for this text type.

PTB II comes divided into 25 sets of files, each set containing up to 100 texts. These provide
a natural subdivision of the corpus to use in analysing the incremental increase in grammar rules.
For each of these 25 sets, which it should be noted are not precisely identical in size, the grammar
rules occurring in the set were extracted and incremental sums of rules in each category, as well
as of total rules were computed. The results of this exercise are displayed displayed graphically
in Figure 1 plotted as number of rules against number of sentences. Separate plots are shown for
rules of all categories and for rules of the five categories with the greatest number of rules — S, NP
and VP, ADJP and PP.

5.3 Which Rules Occur Most Frequently?

From Table 1 it is obvious there is a large number of rules. We may wonder how much of the work
is being done by how many rules. L.e. what is the frequency distribution of rule occurrences by rule
within a syntactic category? The exgrule program counts rule occurrences and the sortgrule
program sorts the resultant rule file by syntactic category and within that by number of rule
occurrences. While there is far too much information to display here, the top 10 rules from the
most frequently occurring categories — S, NP, VP and are displayed in Table 2.

Perhaps more interesting than seeing which rules occur most frequently is getting a feeling for
how many rules in each category account for how many rule occurrences in that category. This
information has been collected in two ways. First, by simply sorting all the rules by frequency
of occurrence within category, as described above one can produce a frequency distribution by
rank. The frequency distribution of the top ten rules in all categories is shown in Table 3 with

Rulesx 103

18.00 ‘All Cats
Eg ---------------
16.00 TR
14.00 VP
ADJP
12.00 Bp~ —
10.00
8.00
6.00
4.00
2.00
0.00 - Eggre e e w8 & —e B 8= R8T B TS & T8
| | | | | éen ences X 103

0.00 10.00 20.00 30.00 40.00 50.00

Figure 1: Rate of Growth of Rule Set Size

S -> NP VP NP -> NP PP VP -> TO VP PP -> IN NP ADJP -> JJ

S -> NP VP . NP -> DT NN VP -> VB NP PP -> TO NP ADJP -> RB JJ

S ->PP , NP VP . NP -> PRP VP -> MD VP PP -> IN VP ADJP -> JJ PP

S -> NP ADVP VP . NP -> NN VP -> VBZ VP PP -> IN QP ADJP -> CD NN

S -> CC NP VP . NP -> NNS VP -> VBN PP PP -> TO QP ADJP -> JJ VP

S -> ADVP , NP VP . NP -> NNP VP -> VBD VP PP -> VBG NP ADJP -> RB VBN
S->8,CCS . NP -> NNP NNP VP -> VBD NP PP -> IN PP ADJP -> JJ CC JJ
S -> NP ADVP VP NP -> DT JJ NN VP -> VBZ NP PP -> ADVP IN NP ADJP -> ADJP PP
S->85 , NP VP . NP -> JJ NNS VP -> VBG NP PP -> VBG PP ADJP -> RBR JJ

S -> SBAR , NP VP . NP -> DT NNS VP -> VBP VP PP -> IN SBAR ADJP -> JJR

Table 2: Ten Most Frequent Rules for S, NP, VP, PP, ADJP in PTB II

the figures normalised as a percentage of the total number of rule occurrences in that category in
each case. The final totals column indicates what percentage of rules occurrences in each category
is accounted for by the top ten rules.

Figure 2 shows another view of rule occurrence distribution. Here rule occurrences are shown
by rank for all ranks with greater than one rule occurrence for the five categories with the most
rules (S, NP, VP, ADJP, and PP). These are shown on a doubly logarithmic scale.

Finally, one may divide the rules for each category into 10 ranks (the first rank containing the
10% of the rules occurring most frequently, the next rank containing the 10% of the rules occurring
next most frequently, and so on). Results of this analysis are shown in Table 4.

5.4 How Long are the Right Hand Sides?

The distribution of rule occurrences by righthand side length is shown in Figure 3. Two outliers,
of length 32 and of length 51 have been discarded — each occurred exactly once. Ignoring these,
the righthand sides ranged in length from 1 to 21 with 4 the median value.

SYNCAT RANK Total %
1 2 3 4 5|6 |7|8] 9] 10 | Coverage

ADJP 22 1119 515 (3|13 (2(2]2 64
ADVP 72 4 3 212|111]1]1 88
ADVP|PRT | 100 | - - - - - - - - - 100
CONJP 42 29 | 156 (3|22 |1]|]0]0 100
FRAG 7 4 3 3122|2111 26
INTJ 52 16 | 9 41212 |2|1]1]1 90
LST 37 21 (1964|333]|3]1 100
NAC 37 20112 |5 (3 (2|2 |2|1]|1 85
NP 11 10 | 6 414|414 |3|3]|2 51
NX 21 11 | 9 66 |5|5|4|3]|3 73
PP 80 8 3 111111010 96
PRN 19 18 | 7 4141313 ([2]|2]2 64
PRT 94 3 3 ojo|jo0jojOof|O]|O 100
PRT|ADVP | 100 | - - S R R R S B 100
QP 44 16 | 6 312|122 |2|1]|1 79
RRC 27 23 |10 (8|6 |4|4|2]|2]2 88
S 40 25 | 4 212|111]1]1 78
SBAR 46 27 19 71221 |1]1]1 97
SBARQ 19 14 (11 |5 |53 (3[2]|2]|1 65
SINV 43 8 8 515132211 78
SQ 14 8 6 5131313222 48
UCP 12 5 4 4141313 |2|2]2 41
VP 9 6 5 4141313333 43
WHADJP 77 8 3 212122222 100
WHADVP 93 2 2 1]11]0(0]0]0]O 99
WHNP 57 31 |5 1|11(1(0]|0]0]O 96
WHPP 95 4 0 O[O0 |- |-1|-1-1- 99
X 24 12 | 7 6 | 4 312 |2|2 65

Table 3: Frequency Distribution of 10 Most Frequent Rules

Rule Occurrences

\ —|’ADP
1e+05 | & = gl
: NP
3 -
let04 | —S
VP
3 - |
1e+03 _
3 - |
1e+02 —
3 - |
1e+01 — —
3 - |
\ \ \ \ \ \ \ Rank

\
1let+00 3 le+01 3 let+02 3 le+03 3

Figure 2: Distribution of Rule Occurrences by Rank

SYNCAT RULES/DECILE | 1 2 3 415 |6 | 7|[8]9]10
ADJP 70 91 4 2 1(110j0j0O|O0]|O
ADVP 34 96 2 1 ojo0ojo0(0O|0O]O0O]O
ADVP|PRT | 1 100 | - - -l - - -
CONJP 1 42 29 (156322100
FRAG 28 41 13 | 8 5/5|5|5|5]|5]|5
INTJ 3 76 8 4 31222 |1]1]1
LST 1 37 21196 4|33 |3 3|1
NAC 6 80 8 3 212|111]1]1
NP 724 96 2 1 ojo0joO0Of0O|0O]O0O]O
NX 17 83 6 3 11|11]1]1f{1
PP 40 99 1 0 ojojofofl0O0]jO0O]oO
PRN 30 83 6 3 21111]1]1
PRT 1 94 3 3 ojojof0Ofl0O0]O0]O
PRT|/ADVP | 1 100 | - - -l - - -
QP 38 91 4 2 1(1/0]0jO0O|O0O]|O
RRC 2 50 17 |10 | 6 | 4| 4| 42|22
S 206 96 1 1 0j0jO0O(0O|0O]O0O]O
SBAR 22 98 1 0 ojojof0O|0O0]O0O]O
SBARQ 8 63 9 6 3133 (3[3]3]3
SINV 26 86 4 2 2|11 (1|1]1]1
SQ 15 55 12 | 7 414|414 |4])4]4
UCP 21 56 12 | 7 414|144 |4])4]4
VP 442 95 2 1 ojo0ojoO0Of0O|0O]O0O]O
WHADJP 1 85 3 2 212|122 2]2]2
WHADVP 2 97 2 0 ojo0ojof0O|0O]O0O]O
WHNP 13 97 1 0 ojo0joO0Of0O|0O]O0O]O
WHPP 1 95 4 0 010 |-1|-1|-1-1-
X 6 60 10 | 7 313133 [3]3]3

Table 4: Distribution of Rule Occurrences by Decile

Rule Occurrences x 103

450 \ —
4.00 — —
350 — —
3.00 — —

2.50 — —

150 — —

0.50 — _

| | | | RHS Length
5.00 10.00 15.00 20.00

Figure 3: Distribution of Righthand Side Rule Length

10

6 Results: Corpus Characteristics

In addition to determining various characteristics of the grammar of the PTB, as detailed in the
preceding section, various characteristics of the corpus are revealed by the treebanking exercise.
Knowing these facts could be of use in designing parsers, where implementing depth bounds could
significantly improve performance.

6.1 How Deep are the Trees?

The distribution of tree occurrences by depth is shown in Figure 4. Tree depths ranged from 2 to
36 with a median value of 9.

Tree Occurrences x 103

5.00 — —
450 — —
4,00 — —
3.50 — —
3.00 — —
2.50 — —
2.00 — —
150 — —

0.50 — —

0.00 — ‘ —
! ‘ ‘ Tree Depth
0.00 10.00 20.00 30.00

Figure 4: Distribution of Tree Occurrences by Depth

6.2 What are the Bounds on Tree Depth by Sentence Length?

Bounds on tree depth by sentence length — the deepest tree found for a sentence of a given length
— are shown in Figure 6 4. But first it is interesting to see what the distribution of sentence lengths
across the corpus. This is shown in Figure 5. Ten outliers, ranging in length from 106 to 271 have
been discarded — each occurred exactly once, save one (of length 125) which occurred twice. Every
sentence length from 1 to 96 occurred at least once and the median value was 21.

Tree depth bounds ranged from 2 to 36. As sentence length grows beyond about 60 this data
gets chaotic — at this point the number of sentences of this length is dropping rapidly, hence the
figures may be becoming unreliable.

41t should be noted that these tree depths are the depths not of the original trees in the tree bank, but of those
obtained by eliminating null elements and unary rules with nonlexical righthand sides, following the procedure
described in section 3.3.

11

Sentence Occurrences x 103

1.60

1.40

1.20

1.00

0.80

0.60

0.40

0.20

0.00 —

Tree Depth Bound

35.00

30.00

25.00

20.00

15.00

10.00

5.00

0.00

20.00 40.00 60.00 80.00 100.00

Figure 5: Distribution of Sentences by Length

0.00

20.00 40.00 60.00 80.00 100.00

Figure 6: Tree Depth Bound by Sentence Length

Sentence Length

Sentence Length

7 Discussion

The absolute number of rules is surprising. Approximately 17,500 rules are required to analyse
just under 50,000 sentences — or about one distinct rule for every three sentences. Perhaps even
more surprising (Figure 1) is the continued rate of rule growth, which does not show convincing
signs of having levelled off even after 50,000 sentences have been analysed.

It is difficult to know how to interpret this. One possible explanation is that not enough text
has been tree-banked. On this view, given another n sentences, one would reach a levelling off
point after which the grammar would cease to grow. Just what n might be is, of course, impossible
to know a priori. Another possible explanation is that the coders were simply not able to perform
a consistent or detailed enough analysis across the corpus — that there is a smaller grammar than
the one extracted here that accounts for all the sentences, but that the coders kept introducing
new rules when existing rules were in fact appropriate. Some evidence for this view is found in the
large number of low occurrence NP rules with very long righthand sides, where more embedded
structure could easily have been added in the analysis using existing rules. For example, consider
the NP rule

NP -> PRP$ ADJP NNP NNP NNP NNP NN VBN NN NN
which occurs exactly once in the corpus and is derived from the following:

(NP (PRP$ its)
(ADJP (RB newly) (VBN formed))
(NNP Enron) (NNP NGL) (NNP Partners) (NNP L.P.)
(NN master) (VBN limited) (NN partnership) (NN subsidiary))

Alternate analyses would add more structure within this phrase, for example making an embedded
NP of the proper name Enron NGL Partners L.P. (the rule NP -> NNP NNP NNP NNP occurs in
the NP rule set, as does a rule NP -> VBN NN NN). Of course, there is ambiguity concerning the
modification relationships in such complex NPs and it appears that the coders’ response in such
cases was to be noncommittal by adopting very shallow analyses.

A final possible explanation is that there is no finite grammar to be obtained by this sort of
treebanking and extraction procedure because there is some sort of meta-generative process going
on, whereby new sentence structures that cannot be reduced to a phrase structure grammar are
continually being created. Just how one might go about attempting to discover such a set of rules
for generating rules is not at all clear.

However, what is clear (Tables 3, 4 and Figure 2) is that a small number of the rules account
for most of the rule occurrences, and that this is true fairly uniformly across syntactic categories.
The rank-frequency distributions uncovered by this analysis for the high rule-numbered categories
are very reminiscent of the rank-frequency distributions of words that Zipf (1935) discovered held
across many human languages. Indeed, the graphical presentation of these results in Figure 2 is
uncannily similar to Zipf’s graphical results (see, e.g., (Zipf, 1935) pp. 44-45). This could be
interpreted as indirect support for the radical lexicalist view that grammar rules are no more than
properties of lexical items 2.

For most parsers, 17,500 rules is simply too many to contemplate. A number of avenues
suggest themselves for reducing this number. Given that many of the rules occur so infrequently,
one could apply a simple thresholding mechanism to prune rules from the grammar. This could
be applied to remove all rules that occur fewer than n times, or to remove rules that account
for fewer than n% of rule occurrences or sentence occurrences of rules in each category. Simple
experiments to this end reveal that a grammar accounting for 95 % of rule occurrences within
each category consists of 2144 rules, while one accounting for 90 % of rule occurrences contains
only 872 rules. For grammars accounting for 80 % and 70 % of rule occurrences the figures are

5T am indebted to Gerald Gazdar for having suggested this connection between the results presented here and
Zipf’s work, and for the further observation that these parallels are in conformity with the radical lexicalist view.

13

240 and 112 respectively 6. Tt should be noted that a threshold that retains only rules accounting
for n% of rule occurrences does not guarantee that n% of the sentences in the corpus will remain
correctly parsable: since the rules removed may occur in separate sentences, fewer than n% of the
sentences may remain parsable after pruning.

By adopting such a simple thresholding technique, various grammars were extracted for use
within the parser of an information extraction system designed to work on Wall Street Journal
texts. Experiments in trading off between parsing time and grammar size were carried out and
eventually a grammar was adopted that consisted of just over 100 rules but which accounted for
70 % of the rule occurrences in the PTB. This was then manually modified to deal with various
anomalies. See Gaizauskas et al. (1995) for more details.

A less crude technique, and one that throws light on other aspects of the grammar and the
coding procedures, is to attempt to parse the righthand sides of the rules with other rules in
the grammar 7. If the righthand side of a rule R in grammar G is parsable by remainder of
the grammar G — R then any string of terminals which could be derived from G is clearly also
derivable from G — R. Thus, eliminating R from G will not affect the language generated by G.
The derivations available from G — R will be a subset of those available from G and may exclude
the most linguistically plausible (or may exclude some that were linguistically implausible). In
particular carrying this approach to the extreme could result in the elimination of rules which
generate alternative structures for constructions which are genuinely ambiguous (for example
ambiguous PP attachment constructions).

Further work needs to be carried out to see just how much such compaction techniques may
achieve. At the very least they will afford an insight into how ambiguous the grammar is, and
could be used to drive a manual process of reducing the number of long, flat rules in the grammar.

The results shown in Figure 6 concerning bounds on tree depth by sentence length were used
to limit the search of a bottom-up chart parser which employed the pruned grammar described
above. In practice this appeared to have very little effect. While no controlled experiment was
carried out, the simple expedient of recording whenever search was terminated due to encountering
a depth bound revealed that this was happening only extremely rarely.

8 Conclusions

We have investigated various properties of a context-free grammar extracted from the PTB II,
using a set of programs written for this purpose. This grammar is not the only one which could
have been extracted. Any grammar extracted from this bracketed corpus requires the adoption of
a number of assumptions whose alteration would lead to different results. In our case we made
numerous simplifying assumptions, dispensing with null elements, and disregarding semantic tags.
These assumptions may not be shared by others, but sufficient flexibility has been built into the
extraction programs that others should be able to extract grammars under differing assumptions
without much difficulty.

The results show a surprisingly large grammar (approximately 17,500 rules) and one that
appeared to be growing at a nearly constant rate over the addition of further material to the
corpus. However, in nearly all syntactic categories most rule occurrences are accounted for by a
very small number of rules, in a distribution which appears Zipfian. One possible explanation for
the large number of rules is that in contexts where the annotators were unsure of the syntactic
structure they created long rules that avoided issues of the internal structure of constituents.
Further exploration of this hypothesis, and of others, is necessary to more fully understand the
nature of the grammar marked on the PTB II.

6The procedure adopted during thresholding was to accumulate in a set the nonlexical categories appearing on
the righthand sides of rules after the initial pruning, and check whether all possible nonlexical categories were still
represented somewhere in this set. If any nonlexical category had disappeared completely then all rules with it
appearing on the lefthand side were removed from the grammar, as they could never be reached in a derivation.
By the time a grammar accounting for 90 % of the rule occurrences within each category had been reached, for
example, all rules in the categories CONJP, FRAG, LST, RRC, UCP, WHADJP and X had been removed.

7T am endebted to Mark Hepple for suggesting this idea.

14

A usable grammar has been derived from the extracted grammar by using a simple thresholding
mechanism on rule occurrence frequency to eliminate low frequency rules. While no explicit
evaluation has been carried out on this grammar, it has been used reasonably successfully within
an information extraction system. This demonstrates the viability of using a manually bracketed
corpus to acquire a grammar.

Acknowledgements The author would like to thank Gerald Gazdar, Mark Hepple and Mike
Johnson for very helpful comments made on drafts of this report, and Alex Krotov for pointing
out a bug in the code.

References

Gaizauskas, R., T. Wakao, K. Humphreys, H. Cunningham, and Y. Wilks. 1995. University of
Sheffield: Description of the LaSIE system as used for MUC-6. In Proceedings of the Sixth
Message Understanding Conference (MUC-6), pages 207-220. Morgan Kaufmann.

Krotov, A., R. Gaizauskas, and Y. Wilks. 1994. Acquiring a stochastic context-free grammar
from the Penn Treebank. In Proceedings of the Third International Conference of the Cognitive
Science of Natural Language Processing (CSNLP9/), pages 79-86, Dublin, July.

Marcus, M., G. Kim, M.A. Marcinkiewicz, R. MacIntyre, A. Bies, M. Ferguson, K.Katz, and
B. Schasberger. 1995. The Penn Treebank: Annotating predicate argument structure. Dis-
tributed on The Penn Treebank Release 2 CD-ROM by the Linguisitc Data Consortium.

Marcus, M.P., B. Santorini, and M.A. Marcinkiewicz. 1993. Building a large annotated corpus of
english: The Penn Treebank. Computational Linguistics, 19(2):313-330.

Moore, R. and J. Dowding. 1991. Efficient bottom-up parsing. In Proceedings of the DARPA
Speech and Natural Language Workshop, pages 200-203.

Zipf, G. K. 1935. The Psycho-Biology of Language. Houghton Mifflin, Boston. Republished by
MIT Press, Cambridge, MA, in 1965.

Appendix: Details of the Programs

The programs used to produce the results in this paper may be obtained by ftp from the
author’s web page: http://www.dcs.shef.ac.uk/people/r.gaizauskas/
The following is a copy of the README file that accompanies the programs.

This directory contains PERL scripts for processing the Penn Treebank II (PTB II).

exgrule -- extract the grammar rules from the combined (.mrg) files of the
PTB II corpus.

Input: files containing bracketed sentences as per PTB II

optionally [-r rule_file] a file of previously extracted grammar rules
to which those extracted from the current input will be added (no real
need to use this option as the mergegrule utility provides the same
functionality)

optionally [-x index_file] a previously created index file (for use with
the findgrule utility) which will be augmented by the current input

optionally [-t tree_stat_file] a file name into which to write stats
about tree depth and depth bound by sentence length

optionally [-c tag_check_file] a file name into which to write all
syntactic and POS tags found during the analysis (requires [-f] flag)

15

optionally [-f] filtering - and = attached tags from base tags (this
may also be achieved using the filtertags utility, but should be done
here if indexing on tag-free rules is required)

optionally [-n] a flag to indicate grammar rules with null RHS are NOT
to be ignored (default is to ignore them and to remove the LHS of such
rules from higher level rules)

optionally [-u] a flag to indicate unary rules whose RHS is a syn tag
(i.e. not a POS tag) are NOT to be ignored -- default is to ignore
them and replace the LHS of such a rule by its RHS in the next higher
level rule

optionally [-1] a flag to log on STDERR each file being processed

Output: a stream of newline separated records of the form:
LHS -> RHS+::rule_occ_count:rule_occ_sent_count:

where LHS is a PTB constituent tag
RHS is a PTB constituent tag or POS tag
rule_occ_count is a count of how many occurrences of this rule
there have been
rule_occ_sent_count is a count of how many sentences this rule
has occurred in

optionally an index file for use with the findgrule utility

Usage: exgrule [-r rule_file] [-x index_file] [-fnul] bracketed_text_files
exscript -- Shell script to run exgrule over all files in the PTB II.

Runs exgrule over all files in each of the 25 directories in the PTB in

turn, then runs mergegrule, sortgrule, mergeindex, mergets, and mergetags on

the output of exgrule.

Requires user to set shell variable to the root of the PTB II tree on his
system (i.e. to the mount point of the CRDOM)

filtertags -- Get rid of - and = attached tags (but save -> and -NONE- !).
Can be used to postprocess a grule file extracted by exgrule rather than
rerunning exgrule with the -f option. Will produce a grule file with
multiple occurrences of the same rule. Hence output must be processed by
mergegrule to merge these multiple occurrences and preserve count information.
Input: one or more grule files as produced by exgrule
Output: a stream of grules

Usage: filtertags grulefile(s)

findgrule -- find sentences containing a grammar rule in the combined (.mrg)
files of the PTBII corpus using an index built by the exgrule utility.

Input: a CF grammar rule in the form A -> B C D’ and an index file to the
PTB II as build by exgrule -x.

Output: All sentences of PTB II in which the rule occurs.

16

Usage: findgrule ’grammar_rule’ ptb_index_file

mergegrule -- merge one or more grammar rule files extracted from PTB II by
exgrule (i.e. sum counts for multiple occurrences of the same rule).

Input: one or more grule files as created by exgrule
Output: a stream of grule records
Usage: mergegrule grulefile(s)
mergeindex -- merge two or more index files as created by the exgrule program.
Input: index files as created by exgrule -x
Output: a single index file
Usage: mergeindex index_files
mergetags —— merge one or more tag check files extracted from PTB II by exgrule.
Input: one or more tag check files as created by exgrule -c
Output: a merged tag check file
Usage: mergetags tag_check_file
mergets -- merge one or more tree stat files extracted from PTB II by exgrule.
Input: one or more tree stat files as created by exgrule -t
Output: a merged tree stat file
Usage: mergets tree_stat_file
nullel -- extract the null elements from the combined (.mrg) files of PTB II.

Can be used to extract occurrences of lines with -NONE- from the PTB II,
so as to see which null elements are actually used.

Input: one or more PTB II .mrg files
Output: a stream of lines with -NONE- in them
Usage: nullel bracketed_text_file(s)

ptbcounts -- perform various counting functions on the grammar rule file
extracted from the PTB by the exgrule utility.

Input: One or more grule_files extracted from PTB II by exgrule
Optionally [-s] print sums of number of grules and grule ocurrences by
syntactic category (use ALL for all categories)
Optionally [d num_ranks] print distributions of occurrences of grule by
number of ranks within category (use num_ranks = 10 for deciles)

17

Optionally [-i syncat] print incremental figures of number of grules in

a series of grule files (to gauge rate of rule number growth across
subsets of PTB; use ALL for all categories)

Optionally [-r] print the distribution of righthand side of grules lengths
Optionally [-R rhs_len] print rules with righthand sides of length rhs_len
Optionally [-x index_file] for sentence occurrence totals to also occur

in tables

Output: Tables of figures as per input option

Usage: ptbcounts [-d num_ranks] [-R rhs_len] [-i syncat] [-x index_file]
[-rs] grule_files

ptbruledist -- print rule occurrences by rank within category using a sorted grule
file as produced by sortgrule.

Duplicates some of ptbcounts functionality, but works much faster as it
presumes a sorted grule file.

Input: a sorted grule file as produced by sortgrule
Optionally [-n] produce occurrence figures as a normalised percentage of
the whole (default is to produce raw figures)
Optionally [-f threshold] filter all rules which occur threshold or
fewer times
Optionally [-r num_ranks] produce figures only for the top num_ranks ranks
Optionally [-t] produce output as a table with one row per syncat and
one column per rank -- should be used with -r and a reasonable value
for num_ranks.

Output: a file with for each category rule occurrences in ranked order with
one rank and frequency figure per line (suitable for input to xgraph)

Usage: ptbruledist [-nt] [-r num_ranks] [-f filter_threshold] sorted_grule_file

sortgrule -- sort a grule file alphabetically by LHS category and within this
by frequency of rule occurrence.

Input: file containing grammar rules and counts as created by exgrule
Output: file containing sorted grammar rules
Usage: sortgrule grulefile

stripcounts -- remove the rule occurrence and sentence occurrence counts from
grule files created by exgrule.

Can be used to derive a simple CFG from a grule file.
Input: file containing grammar rules and counts as created by exgrule
Output: file containing grammar rules with counts removed

Usage: stripcounts grulefile

18

