
Evaluating Passage Retrieval Approaches for

Question Answering

Ian Roberts and Robert Gaizauskas

Department of Computer Science, University of Sheffield,
Regent Court, 211 Portobello Street, Sheffield, UK
email: {i.roberts,r.gaizauskas}@dcs.shef.ac.uk

Abstract. Automatic open domain question answering (QA) has been
the focus of much recent research, stimulated by the introduction of a
QA track in TREC in 1999. Many QA systems have been developed and
most follow the same broad pattern of operation: first an information
retrieval (IR) system, often passage-based, is used to find passages from
a large document collection which are likely to contain answers, and
then these passages are analysed in detail to extract answers from them.
Most research to date has focused on this second stage, with relatively
little detailed investigation into aspects of IR component performance
which impact on overall QA system performance. In this paper, we (a)
introduce two new measures, coverage and answer redundancy, which
we believe capture aspects of IR performance specifically relevant to QA
more appropriately than do the traditional recall and precision measures,
and (b) demonstrate their use in evaluating a variety of passage retrieval
approaches using questions from TREC-9 and TREC 2001.

1 Introduction

The question answering (QA) evaluations in the Text REtrieval Conferences of
1999–2003, have encouraged wide interest in the QA problem. A review of the
proceedings papers for TREC 2001 (in particular [1]) shows that the majority of
systems entered in this evaluation operate using a broadly similar architecture.
First, an information retrieval (IR) system is used to retrieve those documents
or passages from the full collection which are believed to contain an answer to
the question. In many cases, the question words are simply used as-is to form the
retrieval system query, though a few systems make use of more advanced query
processing techniques. Then, these retrieved passages are subjected to more de-
tailed analysis, which may involve pattern matching or linguistic processing, in
order to extract an answer to the question. The main differences between the
competing systems lie in the details of this second stage.

There are several reasons for this two-stage architecture. Foremost is the
relative efficiency of IR systems in comparison with the more complex and un-
optimized natural language processing (NLP) techniques used in answer extrac-
tion. Most answer extraction components of QA systems simply could not be
run in any reasonable time over document collections of the size of the TREC

collection. This is due in part to more extensive processing, which may include
part-of-speech tagging, semantic tagging or shallow parsing, but also because few
NLP researchers have spent time separating “index-time” from “search-time”
functionality and devising data structures to optimize the latter (though see [2,
3] for exceptions). Another reason for separating retrieval and answer extrac-
tion is that IR researchers have spent decades designing systems to achieve the
best possible performance, in terms of precision and recall, in returning relevant
documents from large text collections. To most NLP researchers it has seemed
self-evident that one should take advantage of this work.

Given this two-stage architecture, most of the attention of the QA community
has focused on the answer extraction component of QA systems. The first stage
IR component is simply treated as a black-box and relatively little work has
been done to investigate in detail the effect that the quality of the IR stage
has on systems’ performance. Clearly, however, the second stage process can
only determine an answer to a question if the passages retrieved by the first
stage contain the necessary information. Furthermore, since, as Light et. al. [4]
have shown, question answering systems tend to perform better for questions
for which there are multiple answer occurrences in the document collection, an
IR component that returns many occurrences of the answer in its top ranked
documents is likely to be of more use in a QA system than one which returns
few. QA systems such as the one developed by Microsoft Research [5] exploit this
effect by searching for answers on the Web since, due to its huge size, it is likely
that many more instances of the answer will be found than in the (relatively)
small TREC collection.

In this paper, we concentrate on analyzing the performance of several differ-
ent approaches to the information retrieval stage of QA, using measures which
aim to capture aspects of performance relevant to question answering. More
specifically, we concentrate on investigating several different approaches to pas-
sage retrieval (PR). For a typical TREC question, such as Where is the Taj

Mahal?, only a small section of a document will be required to determine the
answer. Indeed, supplying a QA system with the full text of the document may
in fact be counter-productive, as there will be many more opportunities for the
system to become distracted from the correct answer by surrounding “noise”.
Therefore using an IR stage which supplies the QA system with limited-length
“best” passages is an approach which many QA researchers have adopted, and
is the approach we investigate here. Given significant variation in document
length across the TREC collection, passage retrieval approaches have the addi-
tional benefit of permitting processing-bound answer extraction components to
examine passages further down the passage ranking than would be possible were
full documents to be used.

Deciding to adopt a passage retrieval approach, as opposed to a document
retrieval approach, is still indeterminate in several regards. Different approaches
to passage retrieval assume different notions of passage. Well-known distinctions
[6] are between semantic, discourse and window-based notions of passage, in
which passage boundaries are seen as marked by topic shifts, discourse markers,

such as paragraph indicators, or fixed byte spans, respectively. Furthermore,
regardless of which notion of passage one adopts, a number of additional choices
must be made in deciding how best to implement passage retrieval for QA. For
instance, do we divide documents into passages prior to indexing, and make the
passage the unit of retrieval, or dynamically at search time after ranking the
document collection overall? These two approaches might lead to significantly
different rankings of the same passages, and this difference could have important
implications for QA.

In the following paper we investigate a number of different approaches to
passage retrieval for QA using two new measures which we believe are more
helpful in capturing aspects of IR system performance of relevance in the QA
setting than the conventional measures of recall and precision. This work is by
no means exhaustive in terms of the PR approaches considered, and does not
aim to be. Its central contribution is to introduce measures by which one can
assess passage retrieval for question answering and to initiate debate about which
approaches to PR may be best for QA.

2 Measures for evaluating IR performance for QA

In the context of the QA task, the traditional IR performance measures of re-
call and precision demonstrate shortcomings that prompt us to define two new
measures.

Let Q be the question set, D the document (or passage) collection, AD,q

the subset of D which contains correct answers for q ∈ Q, and RS
D,q,n be the n

top-ranked documents (or passages) in D retrieved by a retrieval system S given
question q.

The coverage of a retrieval system S for a question set Q and document
collection D at rank n is defined as

coverageS(Q, D, n) ≡
|{q ∈ Q|RS

D,q,n ∩ AD,q 6= ∅}|

|Q|
. (1)

The answer redundancy (or simply redundancy) of a retrieval system S for a
question set Q and document collection D at rank n is defined as

redundancyS(Q, D, n) ≡

∑
q∈Q |RS

D,q,n ∩ AD,q |

|Q|
. (2)

The coverage gives the proportion of the question set for which a correct answer
can be found within the top n passages retrieved for each question. The answer
redundancy gives the average number, per question, of passages within the top
n ranks retrieved which contain a correct answer.

In this framework, precision is defined as

precisionS(Q, D, n) ≡

∑
q∈Q

|RS
D,q,n∩AD,q |

|RS
D,q,n

|

|Q|
, (3)

and recall as

recallS(Q, D, n) ≡

∑
q∈Q

|RS
D,q,n∩AD,q |

|AD,q |

|Q|
, (4)

with recallS(Q, D, n) = 0 if AD,q is empty. The precision of a system for a given
question set and document collection at rank n is the average proportion of the
n returned documents or passages that contain a correct answer. Recall is the
average proportion of answer bearing documents that are present in the top
n returned documents or passages. In a QA context these global measures are
not as helpful as coverage and redundancy. For example, suppose n = 100 and
|Q| = 100. An IR system S1 returning passages containing 100 correct answers in
the top 100 ranks for a single question in |Q| but 0 correct answers for all other
questions receives the same precision score as a system S2 returning exactly one
correct answer bearing passage for each of the 100 questions in |Q|. However, S1

when coupled to an answer extraction component of a QA system could answer at
most one question correctly, while the S2-based system could potentially answer
all 100 questions correctly. Precision cannot capture this distinction, which is
crucial for QA; coverage, on the other hand, captures exactly this distinction, in
this case giving S1 a score of 0.01 and S2 a score of 1.

Recall is not as unhelpful as precision, and indeed one could argue that is
more useful than redundancy as a measure, because it reveals to what extent
the returned document set approaches the maximum redundancy obtainable, i.e.
the extent to which all possible answering bearing passages are being returned.
Redundancy, on the other hand, tells one only how many answering bearing pas-
sages per question are being returned on average. However, redundancy gives a
neat measure of how many chances per question on average an answer extraction
component has to find an answer, which is intuitively of interest in QA system
development. More importantly, redundancy, being an absolute measure, can be
compared across question and documents sets to give a measure of how difficult
a specific QA task is. Furthermore, what answer redundancy misses, as com-
pared to recall, can easily be captured by defining a notion of actual redundancy

as
∑

q∈Q |AD,q|/|Q|. This is the maximum answer redundancy any system could
achieve. Comparing answer redundancy with actual redundancy captures the in-
formation that recall supplies, while giving overall information about the nature
of the challenge presented by a specific question and document set which recall
does not capture.

To obtain values for any of these measures, we must first decide what it
means for an answer to be correct. In TREC, an answer is correct if it is a
valid response to the question and if the document from which the answer is
drawn provides evidence for the answer. This reflects the fact that an average
user of a QA system does not trust the system absolutely, so an answer would
only be accepted by the user if they could, in principle, verify it by reference
to the original document. A candidate answer which is a valid response to the
question, but which could not have been determined from the source document,
is considered unsupported. Any other candidate answer is considered incorrect.

The judgment of an answer’s correctness or otherwise is determined by a human
assessor.

While this kind of manual evaluation is feasible for a one-off evaluation such
as TREC, a similar process is not reasonable for repeated experiments on the
retrieval system. An assessor would have to examine every passage retrieved to
determine whether it (a) contained an answer to the question and (b) supported
that answer. With potentially hundreds of passages to examine per question and
hundreds of questions in the test set, this adds up to several hundred thousand
passages per run. Also, since human judgments are inherently subjective, the
same set of answers to the same questions, based on the same documents, will
be scored differently by different assessors, so the results will not be repeatable.
Clearly, an automatic method of assessment is needed.

Voorhees and Tice [7] describe a partial solution to this problem. For the
TREC collection, NIST have created regular expression patterns, intended to
match strings which answer each question, and a set of relevance judgments,
assembled from the combined results of all participating systems, that indicate
which documents provide supporting evidence for answers to each question. For
our purposes, a passage is considered to contain a correct answer to a question
if some substring of the passage matches one of the regular expressions for the
question, and the document from which the passage was drawn is judged to
be relevant.1 The NIST automated approach to scoring QA systems is known
to have limitations, as discussed by Voorhees and Tice; however, it is the only
feasible approach for the sort of study we carry out here.

3 Alternative Approaches to Passage Retrieval

For the TREC-9 QA track our QA system [8], which adopts the two stage model
for QA introduced in section 1, employed Okapi [9] as the IR component. For the
reasons outlined in section 1 we wanted to use a passage-based approach and so
relied upon Okapi’s native support for paragraph-based passage retrieval. While
using the native passage retrieval support of an IR engine such as Okapi was
convenient, we became aware that the technique used by the engine might not be
the most suitable for the question answering application. For example, Okapi will
never retrieve more than one passage from the same source document, though
it is quite possible that several such passages may be relevant to the question.
There are essentially two ways to address this issue:

1. Pre-process the document collection, breaking documents into their compo-
nent passages before indexing. The retrieval system then treats each passage
as a document in its own right.

1 If a question has multiple possible answers, it is possible that the passage contains
one of these answers, but the document from which the passage was drawn supports
a different answer, but we believe such situations to be sufficiently rare that they
will not be considered further.

2. Retrieve full documents from the retrieval system, then break each document
into its component passages and perform a second retrieval run to find the
best passages across the retrieved document set.

With this context in mind, and keeping open the possibility that full docu-
ment-based ranking may be superior to passage-based ranking, we investigated
five approaches to passage retrieval:

Okapi According to [9], Okapi’s native approach to passage retrieval works as
follows. All passaging is done at search-time, not at index time. Passages
are based on paragraph boundaries, and the experiments in this paper all
use passages which are one paragraph in length. Given a query the retrieval
engine first treats each document as a single passage and considers all docu-
ments whose weight exceeds a threshold set empirically at the weight of the
10,000th document. The documents above threshold are then broken into
passages and each passage is scored. The initially retrieved documents are
then re-ranked according to the score of their best passage, and the single
best passage from each document is returned.

Approach 1 In this approach, all documents are pre-processed to produce a
new document collection consisting of all passages drawn from the original
document set which are then indexed. For consistency with Okapi, we again
use paragraphs as passages. At search time the best passages are returned,
possibly several from each document, in the order determined by the docu-
ment ranking algorithm.

Approach 2 In this approach the top n retrieved full documents are post-
processed into passages. For the ith retrieved document (i = 1, 2 . . . n), a
document collection is built from its passages, and a second stage retrieval
is run against this collection, using the same retrieval engine as in the first
stage, to determine the best passage from that document. The text of this
passage is then returned as the ith passage in the final ranking. Thus, full
document retrieval is assumed to get the overall ranking right, but only the
best passage from each document is selected for further processing.

Approach 3 In this approach, the top n retrieved full documents are again
post-processed into passages, but this time, a single second-stage index is
built from the passages from all n documents. The best n passages are then
selected from this index, using the same retrieval engine as in the first stage,
allowing multiple passages per document to be returned.

Approach 4 This approach is like approach 3, except that the second retrieval
stage is limited to retrieve at most one passage from each original document.
Thus, only one passage per document is returned, as in approach 2, but the
ranking is determined by the passage score rather than the full document
score. This approximates the Okapi approach, and is included primarily as
a control, as non-Okapi-based tools were used to implement approaches 1–4
(see next section)2.

2 This approach is only an approximation, since, as noted above, the initial document
retrieval stage in the Okapi model considers the top 10,000 documents, as opposed
to 200 documents in approach 4.

Thus, to summarize, only approach 1 does index-time passaging, the other
four approaches do search-time passaging. The differences between them are to
do with whether the original ranking resulting from the initial query should
guide the subsequent passage ranking (approach 2) or not (approaches 3 and 4
and Okapi) and whether one passage per document (Okapi, approaches 2 and
4) or multiple passages per document (approaches 1 and 3) should be returned.

Clearly these variations do not exhaust the space of possible approaches
to passage retrieval. However, they provide an initial set to explore to see if
significant differences in results begin to emerge.

4 Implementation

To run Okapi we simply downloaded the publicly available version 3 and used it
as is.

To investigate the other approaches we used Lemur4 as the underlying re-
trieval engine. Lemur has native support for the TREC document format, and
supports vector-space, probabilistic and language modelling retrieval approaches
against a single index. To keep experiments with Lemur as comparable as possi-
ble to those with Okapi we report here only the results of using the probabilistic
approach (BM25 term weighting) within Lemur, as this is the model used in
Okapi. We did investigate the other approaches supported by Lemur, but these
had little significant effect.

To carry out passaging, a Perl program was written to read the source doc-
uments and split them into passages one paragraph in length. The line offsets
of the passages within the original source files are stored in a flat index file to
enable the passages to be reconstructed from the original data. The passages
are output as TREC-formatted documents, which are then passed to Lemur for
indexing. The index is built using the same list of stopwords as for Okapi.

There are some important practical issues of scalability that distinguish the
pre-processing passaging approach (approach 1) from those that do passaging
after initial retrieval. By treating every passage as an individual document, the
pre-processing approach vastly increases both the space and time requirements of
the indexing and retrieval programs. The subset of the TREC collection we used
for testing (see next section) consists of 242,918 separate documents, and the
full-document index built for the post-processing approaches required 1,122MB
of disk space. The retrieval program took about 40 seconds to load the index,
and at its peak, it consumed about 50MB of memory.5

In comparison, the preprocessor generated over 3.7 million separate passages
(each a separate document to the IR system), a 15 fold increase. Though the
index required only 1.4GB to store, the larger number of smaller documents
meant that the retrieval program consumed 300MB of memory and took several

3 http://www.soi.city.ac.uk/∼andym/OKAPI-PACK
4 http://www-2.cs.cmu.edu/∼lemur/
5 These results were obtained on a dual processor UltraSPARC, running Solaris 8,

with 2GB of main memory.

minutes of intensive processing to load the index. In addition, the passage loca-
tion index, used to map passage IDs back into the source text, required 130MB
of space.

5 Experiments and Results

The test set used for these experiments was derived from the combined set of 1193
questions from TREC-9 (2000) and TREC 2001. These two evaluations operated
over the same document set, and relevance judgments and answer patterns are
available for both evaluations from NIST. The documents in the TREC collection
are sourced from a variety of newswires by NIST, including the Associated Press
(AP) newswire, the Wall Street Journal, the Los Angeles Times and the San
José Mercury News. The documents are marked up in SGML, and the format
of the markup varies from source to source. In particular, an algorithm to split
documents into paragraphs for one source will not work for any of the other
documents. In view of this, the experiments detailed below are based only on
documents from one source. We chose the AP newswire, as 72% (863) of the
1193 test questions have at least one relevant document from this collection (i.e.
a correct judgment with an AP document as the justification). The “next best”
collection, in this sense, is the Los Angeles Times, for which only 53% of the
questions have a relevant document. 6

Each of the five approaches was evaluated by using each question in the
question set as a query and returning the top 200 passages. For approaches
which involved a two step process using Lemur (approaches 2, 3 and 4), 200
documents were retrieved in step one, then passaging was carried out and 200
passages were returned in step two in the manner of the specific approach. 7

To inform our analysis of the results, we also calculated the actual redun-
dancy, as defined in section 2, as follows. For each question we used the human
assessors’ judgments to pull out from the AP collection the documents identified
as relevant to that question. For each of these documents we then split it into
paragraphs, tested each of the NIST-supplied Perl patterns against each para-
graph, and counted how many paragraphs matched at least one pattern. Actual
redundancy for each question is then the total of these counts over all documents
identified as answer bearing. Overall actual redundancy is the average of these
redundancies per question. Note that this is still only an estimate of true redun-
dancy because the assessors only confirm those documents as containing answers
if they have been proposed by some system. Using this approach we determined
that the actual redundancy is 14.3. This is the highest answer redundancy score

6 There is some evidence that the AP newswire documents may not be representative
of the whole collection – see [10].

7 We restricted the maximum number of passages returned to 200 due to system
limitations. Our QA system requires each retrieved passage to be stored as a separate
file in the file system and the effect of moving beyond rank 200 (for 863 questions and
five runs) was to run out of i-nodes on our Unix server. A more efficient representation
is required to extend these experiments to lower ranks.

% coverage at rank
Run type 5 10 20 30 50 100 200

Okapi 48.78 60.02 66.63 69.76 74.51 78.79 82.04
Approach 1 43.80 54.58 63.50 67.67 71.38 78.22 83.43
Approach 2 45.89 55.39 63.73 67.21 72.31 76.25 79.72
Approach 3 41.48 54.11 63.85 68.48 73.70 80.07 85.52
Approach 4 40.79 52.26 60.37 65.47 69.06 74.39 77.87

Table 1. Results of passage retrieval experiments – coverage

Answer redundancy at rank
Run type 5 10 20 30 50 100 200

Okapi 0.877 1.414 1.919 2.226 2.644 3.118 3.426
Approach 1 0.761 1.255 1.833 2.196 2.679 3.488 4.216
Approach 2 0.771 1.171 1.657 1.933 2.312 2.773 3.126
Approach 3 0.729 1.200 1.831 2.251 2.862 3.808 4.757
Approach 4 0.706 1.127 1.607 1.906 2.312 2.752 3.017

Table 2. Results of passage retrieval experiments – answer redundancy

a system could achieve under our scoring system, if it retrieved every pattern-
matching paragraph from every relevant document in the AP collection.

Tables 1 and 2, and the corresponding figure 1, show the results of the ex-
periments. We see that the best coverage is consistently obtained by the native
Okapi passage retrieval mechanism at the highest ranks, but that it is gradually
overtaken by approaches 1 and 3 at lower ranks, though only marginally. How-
ever, Okapi has considerably lower answer redundancy scores than approaches
1 and 3 at these lower ranks. The most likely cause of this is that Okapi is lim-
ited to retrieving no more than one passage per document, and it seems highly
likely, though we have not assembled the data to prove it, that in many cases the
multiple answer instances contributing to the 14.3 actual redundancy figure fall
within different passages in the same document. This conjecture is supported
by the poor redundancy scores of approaches 2 and 4, which are also limited to
returning only one passage per document. By contrast, those approaches which
are able to retrieve multiple passages from the same document (approaches 1
and 3) demonstrate higher answer redundancy at all but the highest ranks. For
the two approaches which can retrieve multiple passages per document, an ex-
amination of the average number of passages per source document retrieved per
question reveals that approach 1 retrieves on average 1.2 passages per document,
whereas approach 3 retrieves 1.6 – 33% more passages per document on average
than approach 1.

Overall combined best performance in terms of coverage and answer redun-
dancy, including passages down to rank 200, is obtained by approach 3. This is
agreeable since approach 3 does not suffer from the space and time efficiency
problems affecting approach 1. Of course while the approaches seem to be di-

0 50 100 150 200

Rank

40

60

80

100

%
 c

ov
er

ag
e

Okapi
Approach 1
Approach 2
Approach 3
Approach 4

0 50 100 150 200

Rank

0

1

2

3

4

5

A
ns

w
er

 r
ed

un
da

nc
y

Okapi
Approach 1
Approach 2
Approach 3
Approach 4

Fig. 1. Results of passage retrieval experiments

verging at rank 200, we cannot rule out the possibility of their relative positions
changing at even lower ranks.

Finally, we should make two caveats. First, since the above observations
are not informed by any statistical analysis of the differences between the ap-
proaches, they should be treated with caution. Second, the apparently positive
effect on answer redundancy of being able to return multiple passages per docu-
ment may be specific to the style or genre of the test collection. Further exper-
imentation on broader classes of source material is required to see if this result
generalises.

6 Related Work

To date, little work has been done on evaluating the effectiveness of passage
retrieval approaches for question answering. LLopis, et. al [11] evaluated their
passage retrieval system, using a measure similar to coverage as defined in this
paper, though they did not formally define the measure. Tellex, et. al [12] carried
out a detailed investigation of several different passage selection approaches to
assess their effectiveness for QA. They also used a measure similar to coverage,
though again it is not formally defined, and their systems were configured to
return only 20 passages for each question – the effect of including either more
or fewer passages was not explored. Neither work considered measures of answer
redundancy.

The passage selection approaches considered by LLopis, et. al and Tellex, et.
al are all variants of our approach 4, i.e. they first retrieve full documents, then
retrieve the single best passage from each and order the results by similarity of
the passage to the question. The work presented here is considerably wider in
scope.

Monz [13] examined a variety of approaches to improving the performance
of IR systems for QA, including the use of passage retrieval. However, the eval-
uation of these approaches is based simply on whether the full document from
which the passage was drawn was judged relevant by a NIST assessor, and not
on whether the passage itself contains an answer, and so the results are not
directly comparable to those presented here.

7 Conclusions

We have investigated five approaches to paragraph-based passage retrieval for
question answering, varying principally as to whether:

– they divide documents into passages prior to indexing, effectively treating
each passage as an independent document, or after an initial retrieval stage;

– they permit only one or more than one passage per document to be returned;
– for search-time passaging approaches, the final passage ranking should be

guided by the ranking of full documents resulting from the initial query or
by the ranking obtained in the secondary passage retrieval stage.

To evaluate the utility of these approaches for question answering we have
introduced two new measures, coverage and answer redundancy which capture
what proportion of the question set has at least one answer returned in the top
n passages and the average number of repetitions of the answer in the top n
passages, respectively. These measures, we believe, are intuitive measures of the
suitability of a passage retrieval approach for QA.

Applying these measures to assess five approaches to passage retrieval in
one specific experiment using TREC QA data, we determined that the best-
performing passage retrieval approach was one that first does full document re-
trieval, then splits the top retrieved documents into passages and performs a sec-
ond passage retrieval operation against this passage set, returning the passages
in the rank order determined by the second retrieval operation. This approach
obtains both better coverage and answer redundancy scores beyond about rank
100.

A number of further questions immediately suggest themselves. Our exper-
iment was restricted to the top 200 ranks. While the scores for the approaches
appear to be diverging at this point, further experimentation at lower ranks
should be carried out to confirm this. Of particular interest are the points at
which coverage reaches 100% and answer redundancy approaches actual redun-
dancy.

One would like to see higher coverage and redundancy at higher ranks. Can
this be achieved using other passage retrieval approaches not explored here? Or,
are current performance levels unsurpassable, given an approach which uses the
raw question words as the query to the retrieval system? Various approaches to
query “enhancement” need to be considered.

While higher coverage and answer redundancy would appear to be inherently
good for QA systems, there may a critical tradeoff between specific values for
coverage and redundancy and the rank at which are these are obtained. For
example, a QA system may do better with the top 50 passages than with the
top 100, even though the top 100 have higher coverage and redundancy, simply
because of the “noise” introduced by a further 50 passages. The interaction
between coverage and redundancy at certain ranks and the answer extraction
capabilities of QA systems needs to be investigated.

Acknowledgements The authors would like to thank the anonymous reviewers of
this paper for their comments.

References

1. Voorhees, E.M.: Overview of the TREC-2001 question answering track. In: NIST
Special Publication 500-250: The Tenth Text REtrieval Conference (TREC 2001).
(2001)

2. Milward, D., Thomas, J.: From information retrieval to information ex-
traction. In: Proceedings of the ACL Workshop on Recent Advances in
Natural Language Processing and Information Retrieval. (2000) Available at:
http://www.cam.sri.com/html/highlight.html.

3. Molla Aliod, D., Berri, J., Hess, M.: A real world implementation of answer ex-
traction. In: Proceedings of the 9th International Conference on Database and
Expert Systems Applications Workshop “Natural Language and Information Sys-
tems” (NLIS’98). (1998) 143–148

4. Light, M., Mann, G.S., Riloff, E., Breck, E.: Analyses for elucidating current
question answering technology. Natural Language Engineering 7 (2001) 325–342

5. Brill, E., Lin, J., Banko, M., Dumais, S., Ng, A.: Data-intensive question answer-
ing. In: NIST Special Publication 500-250: The Tenth Text REtrieval Conference
(TREC 2001). (2001) 393–400

6. Callan, J.P.: Passage-level evidence in document retrieval. In: Proceedings of the
17th annual international ACM SIGIR conference on Research and Development
in Information Retrieval. (1994) 302–310

7. Voorhees, E.M., Tice, D.M.: Building a question answering test collection. In:
Proceedings of the 23rd annual international ACM SIGIR conference on Research
and Development in Information Retrieval. (2000) 200–207

8. Scott, S., Gaizauskas, R.: University of Sheffield TREC-9 Q & A System. In:
Proceedings of The Ninth Text REtrieval Conference (TREC 9), NIST Special
Publication 500-249 (2000) 635–644

9. Robertson, S.E., Walker, S., Jones, S., Hancock-Beaulieu, M.M., Gatford, M.:
Okapi at TREC-3. In: NIST Special Publication 500-225: The Third Text RE-
trieval Conference (TREC-3). (1994) 109–126

10. Cavnar, W.B.: N-gram based text filtering for TREC-2. In: NIST Special Publi-
cation 500-215: The Second Text REtrieval Conference (TREC-2). (1993) 171–179

11. LLopis, F., Vicedo, J.L., Ferrández, A.: Passage selection to improve question
answering. In: Proceedings of the COLING 2002 Workshop on Multilingual Sum-
marization and Question Answering. (2002)

12. Tellex, S., Katz, B., Lin, J., Fernandes, A., Marton, G.: Quantitative evaluation
of passage retrieval approaches for question answering. In: Proceedings of the
26th annual international ACM SIGIR conference on Research and Development
in Information Retrieval. (2003) 41–47

13. Monz, C.: Document retrieval in the context of question answering. In: Proceedings
of the 25th European Conference on Information Retrieval Research (ECIR-03).
(2003) 571–579

