
Experiments in Passage Selection and Answer
Identification for Question Answering

Horacio Saggion and Robert Gaizauskas

Department of Computer Science
University of Sheffield
211 Portobello Street
Sheffield - S1 4DP

England - United Kingdom
{saggion,robertg}@dcs.shef.ac.uk

Abstract. Question Answering (QA) aims at providing users with short
text units that answer specific, well-formed natural language questions.
A two stage architecture is widely adopted for this task consisting of a
document retrieval step followed by an answer extraction step. In such an
approach two main problems need to be addressed to reduce the search
space: better selecting answer bearing passages in the document retrieval
step and better pinpointing answers in the answer extraction step. We
investigate the effect of word-based and linguistic-based features for the
identification of answer-bearing sentences and answer candidates in a
QA system and show that both play a significant role.

1 Introduction

Finding textual answers to open domain questions in huge text collections is a
challenging problem [Hirschman and Gaizauskas, 2001]. Unlike Information Re-
trieval (IR) which aims at providing documents satisfying users information
needs expressed in the form of a query, Question Answering (QA) aims at pro-
viding users with, usually short, text units that answer specific, well-formed
natural language questions.

The Text REtrieval Conferences (TREC) [Voorhees, 2002] have clearly de-
fined question types, data, and evaluation methods to assess the performance of
QA systems.

In the work reported here we have focused solely on factoid questions which
require single facts as answers. The evaluation metric defined by TREC for fac-
toid questions is answer-accuracy: the percent of correct answers found by the
system. We have developed a QA system which is composed of an information
retrieval (IR) engine followed by an answer extraction (AE) component. This
approach is widely adopted by TREC participants. However it has the disad-
vantage of bounding the performance of the QA system by that of the IR engine.
Recent studies in QA [Gaizauskas et al., 2004] have shown that one has to de-
scend deep in the ranked list of documents in order to find passages containing



the answer1. For example, using NIST Z-PRISE system one has to descend to
rank 1000 in order to have 87% coverage2 over the TREC 2003 factoid ques-
tions. At the same time, as the AE component is given lower rank documents
to consider more answer hypotheses appear, thus decreasing answer-accuracy.
One way of obtaining answer bearing passages at higher ranks is by applying re-
ranking methods to the IR output to maximise coverage at lower ranks. Another
alternative, which we investigate in this work, is to train classifiers for passage
identification so that passages unlikely to contain the answer can be identified
and discarded as early as possible (or the classifier’s outcome probability used
for re-ranking purposes).

Based on previous reported success with the use of boolean search for QA
[Harabagiu et al., 2000], we have developed an in-house boolean search engine
that performs word indexing at the sentence level (see Section 3) that we used in
the experiments described here. For the AE component (detailed in Section 4),
we have adopted a NLP-based approach where questions and candidate passages
are transformed into semantic representations by a process of robust, partial
parsing. Each entity in a candidate passage is scored according to (i) its semantic
proximity to the expected answer type (EAT), (ii) the number of linguistic-based
relations involving an entity from the question that appear in the candidate
passage, and (iii) the similarity between the question and the passage where
the candidate comes from. The entity with the highest score is proposed as the
answer to the question. For example, question 2219 from TREC/QA “How tall
is Al Pacino?” asks for a measurement EAT. A suitable candidate passage from
AQUAINT to answer this question is document NYT19990811.0068 where the
following sentence is found:

“Other celebs in their stocking feet: Danny DeVito, 5 feet; Spike Lee, 5 feet 5
inches; Al Pacino, 5 feet 6 inches; and Martin Sheen, 5 feet 7 inches.”

Note that there are many candidate answers in this passage. However, be-
cause “Al Pacino” (a question entity) and “5 feet 6 inches” are in a relation of
apposition in the passage, the latter should be considered a more likely answer
than other competing candidates: this is the approach taken by our extraction
component.

In spite of its linguistic appeal, the value of the linguistic-based features
used by our extraction component had yet, prior to the work reported here,
to be quantitatively assessed. In this work we try to remedy this situation by
addressing two related issues: (i) the identification of answer bearing passages
returned by the IR engine as a way of reducing noise; and (ii) the identification
of answers in answer bearing passages to boost answer-accuracy.
1 We use the term “high ranked” documents to refer to documents that are judged

more relevant to a query than documents that are “low ranked”, though the nu-
meric rank associated with a high ranked document (e.g. 1) is lower than the rank
associated with a low ranked document (e.g. 1000).

2 Coverage at rank k is the proportion of questions for which a correct answer can be
found within the top k retrieved documents [Roberts and Gaizauskas, 2004].



We see both tasks as classification problems and adopt a supervised ma-
chine learning (ML) research methodology, making use of the WEKA software
[Witten and Eibe, 2000]. In order to carry out experimentation we have created
a data-set of answer-bearing sentences, non-answer bearing sentences, and an-
swers for a subset of TREC 2003 factoid questions. In the experiments reported
below, we study the effect of word-based and linguistic-based features derived
from question/passage analysis on the process of identifying answer bearing pas-
sages and answers.

More generally, and from an AI perspective, our work tries to assess the
question of to what extent linguistic analysis helps in the QA enterprise.

In the rest of the paper we introduce in detail our IR and AE components.
Then, we describe the data set, experiments and results on passage and answer
identification. Finally, we close with conclusions and suggestions for further re-
search.

2 Related Work

Question Answering has been part of the artificial intelligence agenda for a long
time [Woods, 1973]. However, fuelled by the Internet, the huge volume of on-line
texts, and the establishment of the TREC/QA track [Voorhees, 2002], Question
Answering is nowadays receiving unprecedented attention from research labo-
ratories and commercial companies. In a traditional document retrieval/answer
extraction architecture two main problems need to be addressed: document filter-
ing and answer pinpointing. In order to obtain good answer bearing passages as
early as possible, a two-pass strategy can be used which will first extract a large
number of candidate passages and then re-rank them by using learned ranking
functions [Usunier et al., 2004]. Such an approach has been shown to increase
coverage with respect to the unranked IR output. One technique that has been
applied to combat the noise produced by the IR system is filtering of answer
candidates by type checking the expected answer type. Because named entity
recognisers of coarse-grained types of named entities (e.g., dates, places, people,
organisations) tend to be quite accurate, checking the type of the candidate an-
swer has a positive impact for certain types of question [Schlobach et al., 2004].
However, and in spite of recent advances in the development of fine-grained ques-
tion type hierarchies [Hovy et al., 2001], open domain question answering may
need additional techniques for answer filtering.

3 Boolean Information Retrieval

In the experiments described in this paper we have made use of an in-house
boolean retrieval system which performs word indexing at the sentence level
(see [Gaizauskas et al., 2003] for a description of the boolean search engine). A
basic boolean query language was implemented which supports queries of ar-
bitrarily deeply nested conjunctions and disjunctions of search terms (words);



negation is not supported at this point as there has not appeared to be a need
for it. For boolean retrieval engines the task of formulating queries to retrieve
documents relevant to answering some question is non-trivial. A query formed as
a conjunction of the words in the question (omitting stoplist words, perhaps) will
commonly be too restrictive, returning few or no documents, whereas a query
that is a disjunction of the same words will commonly retrieve too many. The
best approach for formulating boolean retrieval queries is an open research topic.
However, we have recently carried out extensive experimentation and identified a
strategy for question analysis and sentence retrieval [Saggion et al., 2004]. This
strategy is an iterative process which starts with an initial query and then mod-
ifies it until the required number of sentences have been returned or no further
refinements to the query are possible.

The strategy for document retrieval achieved 62.15% coverage at rank 200
(on TREC/QA 2003 factoid data) which compares unfavourably to the 80.4%
coverage at the same rank for Z-PRISE. However, while at rank 200 our retrieval
system will return on average 137 sentences per question, Z-PRISE will return
around 4600, broadening considerably the search space for the AE component.

4 Answer Extraction

Answer extraction receives as input a set of candidate passages and returns one
answer per question (or the constant NIL if an answer cannot be found). Depend-
ing on the IR retrieval component, passages can be full-documents, paragraphs,
or as with the IR approach previously described, sentences matching the query.

AE is a pipeline of freely available components which include named entity
recognition, POS-tagging, parsing, and discourse interpretation. The system first
carries out partial, robust syntactic and semantic analysis of the passages re-
turned by the search engine and of the question, transducing them both into a
predicate-argument or quasi-logical form (QLF) representation (see Figure 1).
Note the analysis may well be only partially correct - e.g. the EAT in the repre-
sentation shown in Figure 1 is not the logical object of the verb to travel.

In this representation the predicates are, for the most part, either the unary
predicates formed from the morphological roots of nominal (e.g. submarine) or
verbal (e.g. travel) forms in the text or binary predicates from a closed set of
grammatical relations (e.g. lobj for the verb logical object, lsubj for the verb
logical subject) or of prepositions (e.g. in, after) or the special binary predicate
name to identify the name of a named entity. Identifiers (en) are created for each
entity in the representation.

In this step, the EAT is determined (e.g., measure) and depending on the
question, a special attribute (qattr) is created which indicates the attribute-
value to be output from the answer entity. For example in the case of a mea-
surement, the value to extract is an attribute count that should be attached to
the answer.

Given these sentence level “semantic” representations of candidate answer-
bearing passages and of the question, a discourse interpretation step then creates



1937: How fast can a nuclear submarine travel? QLF: travel(e2),
submarine(e1), lsubj(e2,e1), lobj(e2,e3), adj(e1,nuclear), qvar(e3),
qattr(e3,count), measure(e3)

Fig. 1. Parser output for question 1937. qvar represents the sought answer.

a discourse model of each retrieved passage by running a coreference algorithm
against the semantic representation of successive sentences in the passage, in
order to unify them with the discourse model built for the passage so far. This
results in multiple references to the same entity across the passage being merged
into a single unified instance. Next, coreference is computed again between the
QLF of the question and the discourse model of the passage, in order to unify
common references.

In this model, possible answer entities are identified and scored as follows.
First each sentence in each passage is given a score based on counting matches of
entity types (unary predicates) between the sentence QLF and the question QLF.
Next each entity from a passage not so matched with an entity in the question
(and hence remaining a possible answer) gets a preliminary score according to
(1) its semantic proximity to the EAT using WordNet and (2) whether or not
it stands in a relation R to some other entity in the sentence in which it occurs
which is itself matched with an entity in the question which stands in relation R
to the sought entity (e.g. an entity in a candidate answer passage which is the
subject of a verb that matches a verb in the question whose subject is the sought
entity will have its score boosted). An overall score is computed for each entity
as a function of its preliminary score and the score of the sentence in which it
occurs. The final answer to the question is the entity with the highest score.

5 Experiments

One of the main goals of this work is to better understand the contribution
of various features in use in our system for the passage selection and answer
identification tasks.

5.1 Q&A Data

The data used in the experiments reported here is that used in the TREC 2003
QA track. The text collection used is the AQUAINT corpus consisting of ap-
proximately one million documents drawn from three newswire sources for the
period 1998-2000 (about 3.2 gigabytes of text). The TREC 2003 question set
consists of a subset of 150 factoid questions from the collection. In order to sup-
port automated evaluation, NIST produces regular expression patterns for each
question which match strings containing the answer. In addition to the regular
patterns, NIST also provides the document ids where correct answers can be



found. In order to identify answer bearing sentences (ABS) from AQUAINT we
relied on the documents judged as correct by NIST analysts: each sentence in
an answer bearing document is considered an ABS if it matches a question pat-
tern and an additional manual check to verify that the sentence does answer the
question.

For example, consider question 2293 “How many times a day do observant
muslims pray?”. It has as possible correct answers the strings provided by NIST
“five” and “at least five”. The following two sentences were extracted from answer
bearing documents identified by NIST:

(S1) But at work, it takes about five minutes counting the time it takes to get
to a prayer area and wash their hands if necessary.

(S2) As devout Muslims, they consider it their duty to pray at least five times
a day, one of those times while they are at work.

both (S1) and (S2) contain an instance of an answer string. However only (S2)
is an ABS because it allows one to infer an answer to the question.

In order to identify non answer bearing sentences (NABS), we relied on our
boolean search engine. For each question we pulled out from AQUAINT at most
100 sentences following the strategy previously described. Sentences which are
not ABS were considered NABS. This strategy has been designed so that the
instances used for the experiment simulate a natural QA setting where most
of the sentences returned by the IR engine will be NABS. The distribution of
sentences in the data set is rather skewed with only 25% of the cases being ABS.
Each question and sentence was analysed by the AE parser and transformed into
a logical representation. Logical forms and linguistic information such as words,
word lemmas, and POS categories are available for feature computation. The
full process of linguistic analysis is automatic and as a consequence imperfect.

5.2 Features for Passage Identification

In the experiments reported here, we study the effect of word-based and linguistic
features as potential sources of information for ABS identification.

During experimentation we fixed the following word-based features (words
and lemmas are normalised to lowercase and stop words are removed): (W1)
number of common lemmas between question and sentence, and (W2) number
of common words between question and sentence. In addition to these two, four
more features represent the size of the respective sets of question/sentence lem-
mas/words. This set of features which we denote WBF is too simple to differenti-
ate cases which are extremely different. Consider for example question 2384 from
TREC/QA: “What is the population of Canberra?” and two candidate sentences

(S3) “Canberra with a population of 306,400”

and

(S4) “The prospect of an exodus of refugees from a population of 210 million
causes alarm from Canberra to Bangkok”.



Both sentences match all nonstop question words and lemmas, thus they are
identical with respect to W1 and W2. Note, however, that (S3) contains a relation
between “Canberra” and “population” which is not present in sentence (S4). A
relation between “Canberra” and “population” also occurs in the question, thus
making (S3) more likely to contain an answer. It is intuitive to think that the
presence in a sentence of entities together with relations which also appear in
the question should be used to estimate ABS likelihood.

2392: When was the Red Cross founded? QLF: qvar(e1), qattr(e1,name),
date(e1), found(e2) lsubj(e2,e3), name(e3,’Red Cross’), in(e2,e1)
F1: date(X)
F2: date(X)
F3: found(X)
F4: name(X,′ RedCross′)
F5: found(X) ∧ date(Y )
F6: VOID
F7: found(X) ∧ name(Y,′ RedCross′)
F8: VOID

Fig. 2. Sets for feature computation.

Therefore, for each question we compute four linguistic-based sets: (F1) the
expected answer type set of those predicates in the QLF possibly representing
the answer; (F2) the predicates in the QLF derived from nouns (objects); (F3)
the predicates in the QLF derived from verbs (events); and (F4) the instances of
the binary predicate name (the named entities). These sets are used as the basis
for computation of sets of pairs of predicates (linguistically motivated bigrams)
indicating that a relation exists between: (F5) an object and an event; (F6) two
objects; (F7) a name and an event; and finally (F8) a name and an object. These
F1-F8 sets are used to compute eight features for each sentence representing the
number of elements in each set matching the sentence QLF. For sets of bigrams,
it is checked whether or not a relation exists between the two components of
the bigram in the QLF. In Figure 2 we show how sets F1-F8 are computed for
question 2392. An ABS for question 2392 such as:

1863 - International Committee of the Red Cross is founded in Geneva.

having QLF:

date(e1), name(e1,1863), name(e3,’Geneva’), organization(e11),
name(e11,’International Comitee’), of(e11,e12), name(e12,’Red Cross’),

found(e10), in(e10,e13), lobj(e10,e11)



will have features instantiated as follows F1=1, F2=1, F3=1, F4=1, F5=0 (be-
cause date and found are not related in the sentence), F6=VOID, F7=0 (because
e12 is not related to the event found), and F8=VOID. Additionally, the size of
the respective sets is computed for each question and used as a feature. We refer
to this complete feature set as LBF.

We have made use of different classifiers from the WEKA toolkit in or-
der to identify whether the data described with word-based features (WBF)
or linguistic-based features (LBF) helps the learner in this binary classification
task. We use the ZeroR classifier as a baseline against which we compare the
more informed methods. Its strategy is to classify all sentences according to the
most frequent category: NABS in our case.

5.3 Results

We have experimented with several algorithms and obtained statistical improve-
ment over the baseline. Table 1 shows the performance (in terms of %correct)
of J48, a particular WEKA implementation of the C4.5 decision tree algo-
rithm which was one of the most accurate classifiers. It outperforms the base-
line (at a 99% confidence level) using either of the two feature sets3. Interest-
ingly, there is no statistical difference in classification accuracy between J48
using either WBF (J48WBF) or LBF (J48LBF). In order to verify if the two
sets of features could be used together in order to improve classification ac-
curacy we have specified a pos-hoc classifier (Comb) which uses the outcome
and posterior probability of the J48 classifiers. Given a sentence representa-
tion S, Comb computes J48WBF(S) and J48LBF(S) and their respective out-
come probabilities PWBF(S) and PLBF(S). Comb classifies S as J48WBF(S)
if PWBF(S) ≥ PLBF(S) otherwise it classifies S as J48LBF (S). This algorithm
outperforms significantly (confidence level %99) both WBF and LBF (See Ta-
ble 1).

Classifier ABS NABS ALL
Baseline 0 (0%) 3507 (100%) 3507 (74%)
J48WBF 708 (57%) 3477 (99%) 4185 (88%)
J48LBF 824 (66%) 3349 (96%) 4173 (88%)
Comb 861 (69%) 3432 (98%) 4293 (90%)

Table 1. Experimental results for answer bearing sentence identification. Column ABS
indicates the number of ABS instances correctly classified. Column NABS indicates the
number of NABS correctly classified. Column ALL indicates the number of instances
correctly classified.

3 Apart from differences in %correct, statistically significant differences are observed
in precision, recall, and F-measure



6 Features for Answer Identification

For the experiments described here, we need to identify for each entity in an
answer-bearing sentence whether or not it is an answer. We carry out this task
in two steps, firstly identifying the offsets of the answer string provided by NIST,
and then extracting from the QLF the entity id (ek) that is realised within those
offsets.

We use a set of six features derived from the linguistic intuitions used in
the AE component. In order to compute them we first create for each question
the following sets of lambda expressions: (L1) the expected answer types set of
those predicated in the QLF representing the answer; (L2) the set of expected
attributes from the answer (e.g. qattr); (L3) the predicate the sought entity is
the logical subject of; (L4) the predicate the sought entity is the logical object of;
(L5) the set of predicates the sought entity is related to by a relation different
from subject or object; (L6) the set of predicates occurring in the question
(excluding the EAT). Figure 3 shows the required sets for feature computation
for an example question. Given a sentence and an answer candidate, each lambda
expression (L1-L6) is instantiated with the candidate hypothesis and matched
against the sentence logical form. The corresponding feature will be true if the
instantiated expression matches the QLF, otherwise it will be false. Consider
again the following answer bearing sentence for question 2392:

1863 - International Committee of the Red Cross is founded in Geneva.

and its partial QLF:

...found(e10), in(e10,e13), name(e3,’Geneva’),
date(e1), name(e1,1863)...

Figure 4 shows how the features are instantiated for entities e1 (an answer)
and e13 (a non-answer). For example in order to test (L5) with entity e1 the
goal found(Y ) ∧ in(Y, e1) (e.g., e1 is attached to the event found by relation
in) will be matched against the sentence QLF. The class of the entity will be
‘answer’ or ‘non-answer’ according to the procedure described above.

For this task again, the distribution of answer/non-answers is very skewed
with only 6% of positive instances. This again leaves very little space for classi-
fication improvement. We have experimented with different classifiers from the
WEKA toolkit and have compared them with ZeroR classifier which classifies
each entity as a non-answer.

6.1 Results

The best performing algorithms were again decision trees (J48). The classifica-
tion performance of this algorithm is shown in Table 2. Two J48 instances are
presented, one uses the full set of features (J48ALL) while the other uses only
features L1 and L2 (J48L1;L2). Both configurations outperform significantly
the baseline at a 99% confidence level. Algorithm J48ALL has a modest abso-
lute improvement in classification accuracy over J48L1;L2 which is statistically
significant at 99% confidence level.



2392: When was the Red Cross founded? QLF: qvar(e1), qattr(e1,name),
date(e1), found(e2) lsubj(e2,e3), name(e3,’Red Cross’), in(e2,e1)
L1: λX.date(X)
L2: λX.name(X, Y )
L3: VOID
L4: VOID
L5: λX.found(Y ) ∧ in(Y, X)
L6: λX.found(X) ∨ λX.name(X,′ RedCross′)

Fig. 3. Features for answer identification (question 2392).

Features L1 L2 L3 L4 L5 L6
e1 true true VOID VOID false false
e13 false false VOID VOID true true

Fig. 4. Features computed for entities e1 and e13 from an ABS from document
APW19981023.1385

6.2 Discussion

In our experiments with sentence classification both word-based features and
linguistic-based features combine to outperform either of the feature sets indi-
vidually. It should be noted that in further experiments with the learning envi-
ronment, we have come to the conclusion that the EAT is not the only feature
responsible for classification accuracy.

Our experiments on answer classification provide interesting insights into the
role of the linguistic features used in our QA system. Our results seem to indicate
that features from question analysis help in the answer classification task and
that the EAT is not the only factor in answer identification. This result however
should be interpreted with caution: the results of answer classification indicate
that from the 150 questions in the set:

– 2 questions (1%) would be incorrectly answered because no true answer is
identified as such, instead two false positives are output;

– 14 questions (9%) could be correctly and unambiguously answered using the
classifier because only true positives and true negatives are output;

– 16 questions (11%) would need an additional disambiguation step (probably
taking into account answer redundancy) because the classifier outputs both
true positives and false positives; and finally

– 118 questions (79%) would remain unanswered because all instances were
classified as non-answers (true negatives and false negatives)

These results, however considerable, are rather modest. This can be at-
tributed to the following facts. On the one hand, the data used in our experi-



Classifier ANSWER NON-ANSWER ALL
Baseline 0 (0%) 6351 (100%) 6351 (93%)
J48ALL 111 (24.77%) 6296 (99.16%) 6390 (94.26%)
J48L1;L2 91 (20.31%) 6300 (99.22%) 6390 (94.02%)

Table 2. Accuracy results for answer identification.

ments, because automatically produced is far from correct, making sophisticated-
relational features rather sparse. On the other hand, the features studied here
are derived from the ‘superficial’ forms obtained through question analysis, thus
ignoring the mismatch problem between relations in the question and similar re-
lations in the answer-bearing sentence. The latter could be addressed by incorpo-
rating a sophisticated process of paraphrase identification [Lin and Pantel, 2001].

7 Conclusion and Future Work

A number of valuable results have emerged from this work. First, our experi-
ments on answer-bearing sentence classification show that a number of easy-to-
compute word-based features combined with linguistically-motivated ones help
in the classification task. However, the success of the classification should be
tested in a working environment and the contribution of each individual feature
better assessed. Because of the unbalanced characteristic of the data set, it seems
better to use the sentence classifiers for sentence ranking, postponing decisions
until answer extraction takes place.

Second, in experiments on answer identification, linguistic-features used by
our system seem to make a contribution in answer pinpointing. This result should
be carefully examined, however. Our experiments depend strongly on a process
that accurately identifies answer-bearing sentences and so leaves little space for
ambiguity. In order to assess the impact of the parsing process in the accu-
racy of classification, we intend to either assess the accuracy or our parser or
replicate these experiments using an evaluated system. We believe that answer
classification could be used here again to rank entities according to their answer
likelihood.

In future work, the resources produced in this work will be assessed using
TREC/QA evaluation metrics by incorporating the classifiers into our QA sys-
tem and measuring end-to-end performance.

The approaches we have studied here rely on natural intuitions about how
answers to questions should behave in what the linguistic structure of questions
and answer bearing passages is concern. However with the ever increasing avail-
ability of QA data, an inductive approach could help identify new features which
are not directly associated with our linguistic intuitions. This approach is part
of our research agenda.



References

[Gaizauskas et al., 2003] Gaizauskas, R., Greenwood, M., Hepple, M., Roberts, I., Sag-
gion, H., and Sargaison, M. (2003). The University of Sheffield’s TREC 2003 Q&A
Experiments. In Proceedings of the 12th Text REtrieval Conference.

[Gaizauskas et al., 2004] Gaizauskas, R., Hepple, M., and Greenwood, M., editors
(2004). IR4QA: Information Retrieval for Question Answering, SIGIR Workshops.

[Harabagiu et al., 2000] Harabagiu, S., Moldovan, D., Paşca, M., Mihalcea, R., Sur-
deanu, M., Bunescu, R., Gı̂rju, R., Rus, V., and Morǎrescu, P. (2000). FALCON:
Boosting Knowledge for Answer Engines. In Proceedings of the 9th Text REtrieval
Conference.

[Hirschman and Gaizauskas, 2001] Hirschman, L. and Gaizauskas, R. (2001). Natural
Language Question Answering: The View From Here. Natural Language Engineering,
7(4).

[Hovy et al., 2001] Hovy, E., Geber, L., Hermjakob, U., Lin, C.-Y., and Ravichandran,
D. (2001). Question Answering in Webclopedia. In Proceedings of the 9th Text
REtrieval Conference).

[Lin and Pantel, 2001] Lin, D. and Pantel, P. (2001). Discovery of Inference Rules for
Question Answering. Natural Language Engineering, 7(4).

[Roberts and Gaizauskas, 2004] Roberts, I. and Gaizauskas, R. (2004). Evaluating
passage retrieval approaches for question answering. In Advances in Information
Retrieval: Proceedings of the 26th European Conference on Information Retrieval
(ECIR04), number 2997 in LNCS, pages 72–84, Sunderland. Springer.

[Saggion et al., 2004] Saggion, H., Gaizauskas, R., Hepple, M., Roberts, I., and Green-
wood, M. A. (2004). Exploring the Performance of Boolean Retrieval Strategies for
Open Domain Question Answering. In Proceedings of the SIGIR Workshop on In-
formation Retrieval for Question Answering (IR4QA), Sheffield, UK.

[Schlobach et al., 2004] Schlobach, S., Olsthoorn, M., and de Rijke, M. (2004). Type
Checking in Open-Domain Question Answering. In Proceedings of EACI, pages 398–
402.

[Usunier et al., 2004] Usunier, N., Amini, M., and Gallinari, P. (2004). Boosting Weak
Ranking Functions to Enhance Pssage Retrieval for Question Answering. In Proceed-
ings of the SIGIR Workshop on Information Retrieval for Question Answering, pages
53–58.

[Voorhees, 2002] Voorhees, E. M. (2002). Overview of the TREC 2002 Question An-
swering Track. In Proceedings of the 11th Text REtrieval Conference.

[Witten and Eibe, 2000] Witten, I. and Eibe, F. (2000). Data Mining: Practical ma-
chine learning tools with Java implementations. Morgan Kaufmann, San Francisco.

[Woods, 1973] Woods, W. (1973). Progress in Natural Language Understanding - An
Application to Lunar Geology. In AFIPS Conference Proceedings, volume 42, pages
441–450.

This article was processed using the LATEX macro package with LLNCS style


