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Abstract

Temporal information plays an important role in natural language processing ap-
plications such as Question Answering, Information Extraction, and Topic Detec-
tion and Tracking. The development of these applications can be supported by
high quality temporally annotated corpora. In this paper, we introduce a method
for comparing temporal annotations and supporting the creation of gold standard
annotations, both of which are important for the development of such annotated
corpora. The method we propose is based on comparing different annotations in se-
mantic, rather than syntactic terms. We introduce the notion of a temporal closure
for temporal annotations as well as formula for calculating precision and recall.

1 Introduction

The automatic recognition and annotation of temporal expressions as well
as event expressions has become an active area of research in computational
linguistics, as evidenced by workshops such as the ACL2001 workshop on
Temporal and Spatial Information Processing [4], the LREC 2002 workshop
on Annotation Standards for Temporal Information in Natural Language [8],
and the TERQAS! workshop on Time and Event Recognition for Question
Answering Systems [6]. Temporal information is important to many applica-
tion areas, including Question Answering, Information Extraction (IE), and
Topic Detection and Tracking.

To enable the development and evaluation of systems that recognise and
annotate temporal information, annotated corpora must be created — and
often the goal is to do this automatically. Before this is possible, the annota-
tion scheme must be validated, which is often done by hand-annotating a trial
corpus and analysing the results. To overcome the potential inconsistencies
to which hand-annotated corpora are prone and to ensure the quality of the
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description of the scheme used by the annotators during annotation, it is nec-
essary to be able to compare annotations and to assess their ‘goodness’. This
is frequently done by manually creating a ‘gold-standard’ annotation against
which other manual annotations are compared. These comparisons are used
to calculate inter-annotator agreement figures, which are one way of judging
how well the scheme is defined and with how much agreement.

In this paper we will present a way of comparing temporal annotations
and an approach to support the creation of a gold standard annotation. We
introduce the notion of the temporal closure that can be computed over an
annotation as well as methods for computing precision and recall figures for
different annotations.
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Fig. 1. Comparing annotations

2 An Approach for Comparing Temporal Annotations

Annotation schemes for temporal information usually define the temporal en-
tities, i.e. events and times, that are recognised by the approach and a scheme
for annotating them, as well as a scheme for annotating the temporal relations
that hold between different temporal entities. (We will not discuss these de-
tails here — see [6] and [7] for more information.) The set of temporal relations
used by different approaches varies. Allen [1], for example, uses 13 different
temporal relations. A similar set of relations is used in the annotation scheme
developed during the TERQAS workshop [6]. In this paper, we consider only
a small set of uncontroversial relations, to simplify presentation. However,
the approach for comparing annotations that we present can as well be used
with larger sets of temporal relations. The relations used here are: BEFORE,
INcLUDEs and siMULTANEOUS. 2 For convenience, we also assume that events and
times are assigned unique identifiers.

2.1 The Equivalence of Temporal Annotations

Temporal annotations, like for example co-reference chain annotations (see
section 3), are of a semantic nature and should be compared in semantic

2 In [7], a larger set is used, which includes also the relations AFTER and IS-INCLUDED.
Since these additional relations are the inverses of BEFORE and INCLUDES, their omission
does not reduce expressiveness.




terms. Two annotations are equivalent if they convey the same ‘temporal in-
formation’, even if different ways of annotating this information are chosen.
For example, consider the first diagram in figure 1, which shows two simulta-
neous events A and B, which both precede a third event C. The two further
diagrams in the figure, representing possible partial annotations, differ from
the first but are nonetheless equivalent to it, as the omitted relations are im-
plied by simple inference rules. For Version 1, for example, we can infer the
omitted fact that B is before C from A is simultaneous to B and A is before
C. Any comparison of annotations should take into account this observation
that annotations can be distinct but equivalent.

Ve,y,z€ (EUT) :

(1) (z,y) €S = (y,z)€S
(2) (z,y)€BA(y,z2)€eB = (z,2)€B
(3) (z,9) €IN(y,2) el = (z,2)€el
(4) (z,y) e BA(y,2) €l = (z,2)€B
(5) (z,y) € IN(z,2)€B = (y,2)€B
(6) (z,y) € SA(y,2) €S = (z,2)€S
(7 (z,y) e BA(y,2) €S = (z,2)€B
(8) (x,y) €IN(y,2) €S = (z,2)€el
9) (z,y) € SA(y,2) el = (z,2)el
(10) (z,y) € BA(z,2)eS = (z,y)€B
(11) z,y) € SA(z,2) el = (y,2)€l

Fig. 2. Inference Rules

2.2 Calculating the Temporal Closure

The above discussion suggests an approach in which the temporal relations
made explicit in a particular annotation of a text might be expanded, using
an appropriate set of inference rules, to provide a complete (i.e. maximal)
representation of the temporal consequences of that annotation. Such a rep-
resentation will be termed the temporal closure of the annotation. Two anno-
tations of a text can then be compared in terms of the equivalence or overlap
of their temporal closures. To formalise this idea, let us allow that identifiers
for annotated event and time expressions form two sets, ' and T, respec-
tively. Our temporal relations are all binary relations between event and time
expressions, and so the denotation of each is a subset of (EUT) x (EUT).
A set of inference rules for our temporal relations is given in figure 2, using
S, B and I to denote the extension of the relations simurTaNEOUS, BEFORE and
INCLUDES, respectively. Some of the inference rules concern only one of the
relations, and follow logically from the formal properties of the relation, e.g.
that simurTaNeOUS is an equivalence relation, whilst Berore and iNcLUDES are
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transitive, asymmetric and irreflexive. Other inference rules capture interac-
tions between relations that follow naturally from their intuitive meaning, e.g.
if x and y are simultaneous, and x is before z, then y also is before z.

Let S; denote the simultaneity pairs explicitly specified by a temporally
annotated text ¢, and likewise for B; and I;. These components combine to
give the overall temporal model of the text M; = (S;, By, I;). The inference

rules can be applied to this model to generate its deductive closure M't: . Let

Sl: denote the ssmurTaneoUs relation that results in ML: , and likewise for Bl:

and It':. For this approach, we can say that two alternative annotations ¢ and
t' of a text are equivalent just in case the deductive closure of their models
are equivalent, i.e. ML: = Ml'; . Furthermore, we can say that a model M, is
a munimal model if it has no proper subset which has an equivalent temporal
closure. Minimal models need not be unique, as the example in figure 1 shows.

2.8 Recall and Precision

This approach allows comparison between alternative annotations of a text in
terms of the degree of overlap between their temporal closures. In particular,
a given annotation of a text can be compared to a ‘gold standard’ annotation
of the same text by computing figures of precision and recall between their
temporal closures. Let k£ and r denote key (i.e ‘gold standard’) and response
(i.e. system generated) annotations of the same text. The precision and recall
for the stmurTaNEOUS relation S, as compared to Sy is given by:
R — 1sEnsT] _ Isinsr|
Sk | BN

Parallel definitions can be provided for the other temporal relations. Precision
and recall measures for the overall temporal model M, can be defined as:?

R = SENST|+|BNBE | +|17 NI p_ |SENSE |+ BENBE | +115 01|
S|+ B+ |SE |+ B+ 17|

3 Comparison to Co-reference Scoring Approaches

Temporal annotation is not the only case that should be compared in semantic
terms. As mentioned earlier, a similar situation arises for comparing differ-
ently annotated co-reference chains. We will briefly introduce two co-reference
annotation scoring methods, and then compare them to our approach.

3.1 The MUC co-reference scoring scheme

Co-reference is a form of equivalence relation, and co-reference annotations
generate equivalence classes. Distinct annotations can generate identical equiv-
alence classes, i.e. we see a situation similar to that discussed for temporal

3 This method can be compared to Crowe’s [3] way of evaluating clause-event grids.
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annotation. For example, the co-reference linkages <A-B,B-C> and <A-B,A-
C> both generate the equivalence class {A, B, C}.

The co-reference scoring approach used for MUC6 [5] was developed to
handle this fact of distinct annotations being semantically equivalent. The
approach exploits the fact that co-reference is an equivalence relation, and
provides precision and recall metrics that are computed relative to the min-
imal size of linkage required to generate the given equivalence classes. An
equivalence class with n elements minimally requires n — 1 to generate it.

We will introduce the MUC6 precision and recall metrics using a simple
example (from [5]). Assume that elements {A, B, C,D} are present, of which
B-C-D corefer, giving equivalence classes {{A}, {B, C,D}}, as captured by a
key annotation <B-C, C-D>. The response annotation is <B-C,A-D>, giving
equivalence classes {{A, D}, {B,C}}

Recall: To calculate Recall, we take each equivalence class S of the key, and
compute the minimum number of links that must be added to the response
to place all the elements of S in the same equivalence class. The sum of these
counts gives an overall number m of missing links. For the example, the key
equivalence class {B, C, D} would require one link to be added to the response
to bring together its elements in the response equivalence classes, whilst none
are required for the key equivalence class {A}, so m = 1. Let ¢ be the minimal
number of links needed to generate the key equivalence classes (¢ = 2 for the
example), then the Recall is:

c—m 2—-1

Recall = — (e.g. Recall = 5 = 0.5)

Precision: To calculate Precision, we simply reverse the roles of the key
and the response. The number of links that must be added to the key to put
together elements as required by the equivalence classes of the response gives
a value m'. For the example, the response equivalence class {B, C} requires
no additional links (as it is a subset of one of the key equivalence classes),
whereas the response equivalence class {A, D} requires one additional link to
the key, so m' = 1. If ¢ is the minimal number of links to generate the
response equivalence classes (¢! = 2 for the example), then the formula for
Precision is:

d —m! 2—-1

(e.g. Precision = = 0.5)

Precision =
cl

3.2 The B-CUBED Scoring Algorithm

Bagga and Baldwin [2] make the following three criticisms of the MUC6 co-
reference scoring approach:

(i) Separating out singletons (i.e. entities that occur only in chains of which
they are the only member) from other chains is not given credit by the
MUC scoring algorithm.

(ii) All errors are considered equal, i.e. precision is penalised equally for any
type of error, though some are more damaging than others, e.g. it is
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more damaging to incorrectly link together two long chains than to link
a long chain with a short one, i.e. as more entities are incorrectly made
co-referent. This distinction is not reflected in the MUC6 algorithm.

(iii) The MUCS6 approach gives equal weight to all instances of co-reference.
Bagga and Baldwin argue that this is appropriate for IE (where the
MUC6 metric has been used), but that alternative weighting schemes
are more suitable in other contexts, such as Information Retrieval.

Bagga and Baldwin propose an alternative scoring method for co-reference,
the B-CUBED algorithm, which looks at the absence/presence of entities rel-
ative to each of the other entities in the equivalence classes produced, rather
than concentrating on the links produced. Precision and recall for each entity
are defined as follows:

number of correct elements in the output chain containing entity;

Precision; =
! number of elements in the output chain containing entity;

number of correct elements in the output chain containing entity;

Recall; =
coart number of elements in the key (true) chain containing entity;

Final recall and precision are computed by the following formulae:

N N
FinalRecall = Z w; * Recall; Final Precision = Z w; * Precision;
i=1 i=1

In these formulae, N is the number of entities in the document and w; the
weight assigned to entity ¢ in the document. In a case where all entities
are equally important, the value 1/N could be assigned for all w;, so that
the Final scores are just the mean of the scores for each entity. However,
the possibility of varying these weights allows the third criticism above to be
addressed. The method also addresses the other criticisms, i.e. it gives merit
for correctly identified singletons, and it will more severely punish a linkage
that incorrectly co-refers more elements than one co-referring less.

3.3 Comparing the Co-reference and Temporal Annotation Scoring Methods

The two co-reference scoring methods both avoid the problem of distinct anno-
tations being semantically equivalent by looking beyond the specific linkages
to the equivalence classes they they induce. This is possible of course only
because co-reference is an equivalence relation which induces such classes. For
temporal annotation, such an approach is not possible, because although the
SIMULTANEOUS relation is an equivalence relation, the Berore and iNcLUDES are
not (being asymmetric and irreflexive), and so we cannot put aside the unim-
portant differences between distinct but equivalent annotations by ‘flattening’
them down to a representation based purely on equivalence classes. Instead
our approach overcomes irrelevant differences by expanding each annotation’s
model to its temporal closure, allowing comparisons to be made between an-
notations in terms of their full informational consequences. The question of
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whether a scoring scheme could be developed for temporal annotations which
is based on some more complicated notion of a minimal model is non-trivial
and one that deserves research attention in its own right.

Despite this important difference between our approach and the co-reference
scoring methods, we would observe that our approach exhibits some similar
characteristics to that of Bagga and Baldwin [2] in regard to their point that
some errors are more damaging than others, for which we noted the specific
case that an incorrect linking two long chains should be more damaging to pre-
cision than an incorrect linking of a long and a short chain. We can construct
a similar example for temporal annotation rather than co-reference in terms
of ‘chains’ of entities deemed simultaneous. Imagine a key forming three such
‘simultaneity chains’ such as the following (where ~ denotes simultaneity):

KEY: €1 Y€y ~VEzg ey~ Ey Eg Y ET Y ER N Eg YL €11 Y El2

A response A might incorrectly link the two larger chains, whilst a response
B might incorrectly link a large chain to a small one:

Resp—A: €1 Y€y Y EZNY LYY Eyg Y Eg Y ET Y ER N Eg N € €11 ~~ €12
Resp-B: €1 ™~ €y ~Y E3 Y€y €y YLl Y E1Q €g ~ €7 ~ €g ~ €9 ™~ €10

Our temporal closure-based precision metric does treat the mistake in A as
worse than that in B, assigning a precision score of 0.45 for A and 0.67 for B.
This is because connecting the two long chains results in a greater number of
false inferences linking entities from the two chains during deductive closure.
(The recall for both responses is 1, because all the relations that are in the
key are also in the response.) Using the MUC scoring method, the precision is
0.9 for both responses, as only one additional link is introduced in each case.
For more information about this example refer to [7].

4 Using Temporal Inference to Facilitate Annotation

We now turn to the process of creating gold-standard annotations manually,
and consider how this process might be facilitated using insights from the ap-
proach described above. A gold standard annotation of temporal information
should be such as to determine correctly all the temporal relations holding
between all entities (events and times) within the text, insofar as the text
does support this information. Note that there is a separation between an
annotation that supports this information and one that makes it explicit, i.e.
because an annotation that does not explicitly state all the relations may yet
imply them under deductive closure, and, with our approach to temporal eval-
uation, a lesser annotation that supports the full information is functionally
equivalent to one that makes it all explicit.

The central question here is how the manual annotation process should be
formulated so as to enable annotators to produce gold-standard annotations
that are of high quality, with the least effort. Assume that annotators will
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firstly identify and mark temporal entities, i.e. times and events. Then, for
temporal relations, we might ask annotators simply to mark those relations
that are salient to them from the text. Such an approach, however, runs the
risk that many relation instances that are supported by the text but which
are not immediately salient will be missed, so that incomplete annotations
are produced. An alternative strategy would be to ask annotators to consider
every possible pairing amongst the identified entities, and consider which if
any of the temporal relations might hold between the paired elements. Such
an approach seems much more likely to elicit an annotation capturing the
full temporal content of the text, perhaps even one that makes all relations
explicit. However, even if the annotation software were to provide support
for the enumeration of pairings to be addressed (which could easily be done),
such an approach threatens to impose too high a burden upon the annotator,
e.g. a text containing only 20 events and times (which would be quite a small
text), would give rise to around 200 entity pairs for consideration (assuming
we treat a+b and b+ a as the same pair), whilst a text with 50 entities would
yield over 1000 pairs.

We propose an alternative annotation strategy which combines the above
two approaches and additionally uses temporal inference to facilitate the pro-
cess and reduce the amount of work required of the annotator. In this ap-
proach, the annotator initially marks up some portion of the temporal relations
within a text, presumably the most salient ones, or those signalled explicitly by
temporal prepositions or temporal subordinating conjunctions. In a second,
interactive, stage, the annotator is questioned regarding the temporal relation-
ship between pairs of entities for which this information is unknown. (Note
that a valid response at this point is that the relation is not determined by the
text.) Crucially, throughout this second phase, temporal inference is used to
compute the deductive closure of the annotation done so far. Such inference
will resolve the relational status of many entity pairs which are not explicitly
linked by the annotation, so that the annotator need only be questioned about
those pairs whose relationship is unknown. Each additional annotation that
results from questioning may itself have consequences under inference, further
reducing the number of unresolved pairs. The process terminates when the
relational status of all pairs of entities has been resolved.

The effectiveness of this approach in reducing the work required to produce
complete annotations is supported by the results of the following experiment,
which is discussed in greater detail in [7]. Six texts were used, of average length
312 words and containing on average 31 temporal entities. The texts were
annotated by 2 or 3 subjects each, producing 16 annotations in total. In the
initial phase, 200 temporal relations were marked up across all 16 annotated
texts. In the second phase, annotators were prompted with a total of 865
questions until the phase reached completion, giving an average of 54 prompts
per annotated text. The temporal closure of these annotations contained
in total 5288 relational pairs, of which 3.8% (i.e. the 200) were manually
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annotated in the initial phase, 16.3% were generated under prompting, and
the remaining 79.9% were automatically inferred. While an average of 54
prompts to the annotator is not ideal, it shows a significant improvement over
the alternative without temporal inference, which would have required 318
prompts per document on average during the second phase.

In the above experiment, the selection of the next unresolved entity pair
to question the annotator about was made randomly. This approach could be
improved by using a more intelligent method for selecting these pairs, with a
view to minimising the number of prompts that must be made. To illustrate
this possibility, consider an example where the only relation is Berore (denoted
<), and where the current annotation of a text produces an ordering of entities
of a <b<cand d < e < f. The selection of different pairs from amongst a—f
will determine the relation of more or less unresolved pairs, depending on the
answer given. Prompting for (b, e), for example, will resolve 4 relation pairs
whether the answer is b < e or e < b (we ignore here the possibility of a ‘not
related’ response), whilst prompting for (a,d) will resolve 3 pairs, again with
either answer. This suggests that (b,e) is a better prompt pair than (a,d).
A prompt for (c,d) will resolve 9 relation pairs if the answer is ¢ < d, but
only 1 if the answer is d < ¢, so the preference between (c,d) and (b, e) is less
obvious. If we assume that answers are equally likely, then (c,d) is better,
resolving 5 pairs on average, but we might instead go for the best guarenteed
result, which favours (b,e). A further possibility is that we might find cues
to suggest that one answer is more likely than another for a given pair (e.g.
perhaps from the position of temporal entities within the text), and use this
to determine the likely outcome for each pair as a basis for choosing. This
topic merits further investigation.

Two annotation tools have been developed which incorporate the above ap-
proach (neither using the idea of ‘intelligent’ prompt selection just discussed).
The first, described in [7], prompts the user textually for missing relations,
while at the same time highlighting the entities involved (the text itself being
shown in a separate window). The annotation tool developed as part of the
TERQAS workshop* employs temporal closure within an algorithm known
as text segmented closure, in which a window covering just a few sentences is
slid over the text and the annotator is only prompted to ensure a complete
interrelation of entities within the window. This move is a response to the fact
that for larger documents containing many entities, the number of prompts
required may be unacceptably high, even using temporal closure. This tool
also uses a more sophisticated visual method of aiding the user in asserting
missing temporal relations.

1 www.time2002.org



5 Conclusions and Future Work

Comparing and evaluating temporal annotations is an important part of de-
veloping annotation schemes and annotated corpora. In this paper, we have
described a method to do this, based on computing the temporal closure of
temporal annotations, using inference rules. We have have also described how
this approach can be used to facilitate the process of creating gold standard
annotated corpora, and we have reported some preliminary results that indi-
cate the effectiveness of the method.

In future work, we hope to further investigate how ‘intelligent’ selection of
prompt pairs can improve the effectiveness of the annotation method (as dis-
cussed in the preceding section), and to extend the inference rules to cover an-
notation schemes employing larger sets of temporal relations. Another area of
future work would address semantic relations that are not temporal, but that
may have temporal consequences, such as cause and effect and sub-eventness.
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