
SUPPLE: A Practical Parser for Natural Language Engineering
Applications

Robert Gaizauskas, Mark Hepple, Horacio Saggion,
Mark A. Greenwood and Kevin Humphreys∗

Department of Computer Science
University of Sheffield, Sheffield, UK

{robertg|hepple|saggion|m.greenwood|-}@dcs.shef.ac.uk

Abstract

We describe SUPPLE, a freely-available,
open source natural language parsing sys-
tem, implemented in Prolog, and designed
for practical use in language engineering
(LE) applications. SUPPLE can be run as
a stand-alone application, or as a compo-
nent within the GATE General Architec-
ture for Text Engineering. SUPPLE is dis-
tributed with an example grammar that has
been developed over a number of years
across several LE projects. This paper de-
scribes the key characteristics of the parser
and the distributed grammar.

1 Introduction

In this paper we describe SUPPLE1 — the Sheffield
University Prolog Parser for Language Engineering
— a general purpose parser that produces both syn-
tactic and semantic representations for input sen-
tences, which is well-suited for a range of LE ap-
plications. SUPPLE is freely available, and is dis-
tributed with an example grammar for English that
was developed across a number of LE projects. We
will describe key characteristics of the parser and the
grammar in turn.

2 The SUPPLE Parser

SUPPLE is a general purpose bottom-up chart parser
for feature-based context free phrase structure gram-

∗At Microsoft Corporation since 2000 (Speech and Natural
Language Group). Email: kevinhum@microsoft.com.

1In previous published materials and in the current GATE
release the parser is referred to as buChart. This is name is now
deprecated.

mars (CF-PSGs), written in Prolog, that has a num-
ber of characteristics making it well-suited for use
in LE applications. It is available both as a language
processing resource within the GATE General Ar-
chitecture for Text Engineering (Cunningham et al.,
2002) and as a standalone program requiring vari-
ous preprocessing steps to be applied to the input.
We will here list some of its key characteristics.

Firstly, the parser allows multiword units identi-
fied by earlier processing components, e.g. named
entity recognisers (NERs), gazetteers, etc, to be
treated as non-decomposable units for syntactic pro-
cessing. This is important as the identification of
such items is an essential part of analyzing real text
in many domains.

The parser allows a layered parsing process, with
a number of separate grammars being applied in se-
ries, one on top of the other, with a “best parse” se-
lection process between stages so that only a sub-
set of the constituents constructed at each stage is
passed forward to the next. While this may make
the parsing process incomplete with respect to the
total set of analyses licensed by the grammar rules,
it makes the parsing process much more efficient and
allows a modular development of sub-grammars.

Facilities are provided to simplify handling
feature-based grammars. The grammar representa-
tion uses flat, i.e. non-embedded, feature represen-
tations which are combined used Prolog term uni-
fication for efficiency. Features are predefined and
source grammars compiled into a full form repre-
sentation, allowing grammar writers to include only
relevant features in any rule, and to ignore feature or-
dering. The formalism also permits disjunctive and
optional right-hand-side constituents.

The chart parsing algorithm is simple but very

efficient, exploiting the characteristics of Prolog to
avoid the need for active edges or an agenda. In in-
formal testing, this approach was roughly ten times
faster than a related Prolog implementation of stan-
dard bottom-up active chart parsing.

The parser does not fail if full sentential parses
cannot be found, but instead outputs partial anal-
yses as syntactic and semantic fragments for user-
selectable syntactic categories. This makes the
parser robust in applications which deal with large
volumes of real text.

3 The Sample Grammar

The sample grammar distributed with SUPPLE has
been developed over several years, across a number
LE projects. We here list some key characteristics.

The morpho-syntactic and semantic information
required for individual lexical items is minimal —
inflectional root and word class only, where the word
class inventory is basically the PTB tagset.

A conservative philosophy is adopted regarding
identification of verbal arguments and attachment of
nominal and verbal post-modifiers, such as preposi-
tional phrases and relative clauses. Rather than pro-
ducing all possible analyses or using probabilities to
generate the most likely analysis, the preference is to
offer a single analysis that spans the input sentence
only if it can be relied on to be correct, so that in
many cases only partial analyses are produced. The
philosophy is that it is more useful to produce par-
tial analyses that are correct than full analyses which
may well be wrong or highly disjunctive. Output
from the parser can be passed to further processing
components which may bring additional information
to bear in resolving attachments.

An analysis of verb phrases is adopted in which
a core verb cluster consisting of verbal head plus
auxiliaries and adverbials is identified before any at-
tempt to attach any post-verbal arguments. This con-
trasts with analyses where complements are attached
to the verbal head at a lower level than auxiliaries
and adverbials, e.g. as in the Penn TreeBank. This
decision is again motivated by practical concerns: it
is relatively easy to recognise verbal clusters, much
harder to correctly attach complements.

A semantic analysis, or simplified quasi-logical
form (SQLF), is produced for each phrasal con-

stituent, in which tensed verbs are interpreted as re-
ferring to unique events, and noun phrases as refer-
ring to unique objects. Where relations between syn-
tactic constituents are identified in parsing, semantic
relations between associated objects and events are
asserted in the SQLF.

While linguistically richer grammatical theories
could be implemented in the grammar formalism
of SUPPLE, the emphasis in our work has been on
building robust wide-coverage tools — hence the re-
quirement for only minimal lexical morphosyntac-
tic and semantic information. As a consequence the
combination of parser and grammars developed to
date results in a tool that, although capable of return-
ing full sentence analyses, more commonly returns
results that include chunks of analysis with some,
but not all, attachment relations determined.

4 Downloading SUPPLE Resources

SUPPLE resources, including source code and the
sample grammar, and also a longer paper providing
a more detailed account of both the parser and gram-
mar, are available from the supple homepage at:

http://nlp.shef.ac.uk/research/supple

5 Conclusion

The SUPPLE parser has served as a component in
numerous LE research projects, and is currently in
use in a Question Answering system which partic-
ipated in recent TREC/QA evaluations. We hope
its availability as a GATE component will facilitate
its broader use by NLP researchers, and by others
building applications exploiting NL technology.

Acknowledgements

The authors would like to acknowledge the sup-
port of the UK EPSRC under grants R91465 and
K25267, and also the contributions of Chris Huyck
and Sam Scott to the parser code and grammars.

References

H. Cunningham, D. Maynard, K. Bontcheva, and
V. Tablan. GATE: A framework and graphical devel-
opment environment for robust NLP tools and applica-
tions. Proceedings of the 40th Anniversary Meeting of
the Association for Computational Linguistics, 2002.

