CM-Builder: A Natural Language-based CASE Tool

H.M. Harmain (hmharmain@hotmail.com)
Dept. of Computer Science
University of Sebha, Libya

R. Gaizauskas (r.gaizauskas@dcs.shef.ac.uk)

Dept. of Computer Science
University of Sheffield, UK

Abstract. Graphical CASE (Computer Aided Software Engineering) tools can pro-
vide considerable help in documenting the output of the Analysis and Design stages
of Object-Oriented software development and can assist in detecting incompleteness
and inconsistency in an analysis. However, these tools do not contribute to the
initial, difficult stage of the analysis process, that of identifying the object classes,
attributes and relationships used to model the problem domain. This paper describes
an NL-Based CASE tool called CM-Builder which aims at supporting this aspect of
the Analysis stage of software development in an Object-Oriented framework. CM-
Builder uses robust Natural Language Processing techniques to analyse software
requirements texts written in English and construct, either automatically or inter-
actively with an analyst, an initial UML Class Model representing the object classes
mentioned in the text and the relationships among them. The initial model can be
directly input to a graphical CASE tool for further refinement by a human analyst.
CM-Builder has been quantitatively evaluated in blind trials against a collection of
unseen software requirements texts and we present the results of this evaluation,
together with the evaluation methodology. The results are very encouraging and
demonstrate that tools such as CM-Builder have the potential to play an important
role in the software development process.

1. Introduction

Object-Oriented Technology (OOT) has become a popular approach for
building software systems. This technology has recently been extended
from the programming phase of the software development to cover the
earlier phases of Analysis and Design. Many object-oriented methods
have been proposed for the analysis and design phases (e.g. Booch,
OMT, Objectory, OOSE). In these methods, the Object-Oriented Anal-
ysis process is considered one of the most critical and difficult tasks
(Booch, 1994). It is critical because subsequent stages rely on it, and it
is difficult because most of the input to this process is given in natural
languages (such as English) which are inherently ambiguous
Graphical CASE (Computer Aided Software Engineering) tools can
provide considerable help in documenting and analysing the output
of Analysis and Design, and can assist in detecting inconsistency and

';:‘ © 2001 Kluwer Academic Publishers. Printed in the Netherlands.

asej.tex; 16/01/2001; 20:11; p.1

2 Harmain and Gaizauskas

incompleteness in an analysis. However, they do not contribute to the
initial, difficult stage of the analysis process, that of identifying the ob-
ject classes, attributes and relationships which will figure in modelling
the problem domain. To contribute to this part of the analysis process a
CASE tool has to be able to deal with human languages which software
engineers use as media to understand the problems they are addressing.
The Artificial Intelligence (AI) subfield of Natural Language Processing
(NLP) suggests promising approaches that may help software engineers
in the analysis phase of software development.

While other researchers have proposed NLP-based approaches to
analysing software requirements documents (see section 2), in this pa-
per we make two original contributions. First, we describe a robust,
domain independent CASE tool which analyses software requirements
written in English and produces, either in interaction with a human
analyst or fully automatically, first-cut class models represented in
the Unified Modeling Language (UML). These models can be directly
input to graphical CASE tools by which human analysts can further
refine and extend them. Second, we specify an evaluation methodol-
ogy for quantitatively evaluating NL-based CASE tools, and use this
methodology to evaluate the automatic output of our system.

The rest of this paper is structured as follows: section 2 provides
background information and describes related work; section 3 gives a
general overview of our approach; section 4 describes in detail our fully
implemented NL-based CASE tool, both the interactive version and
the automated version; section 5 shows the results of using the auto-
mated system to analyse a case study; section 6 discusses the evaluation
methodology and presents results of evaluating the automated system:;
section 7 presents conclusions and discusses future work.

2. Background and Related Work

The past two decades have seen growing interest in Al-based CASE
technology. Our review of this area shows that there have been two
main approaches to providing automated tools that support the early
stages (mainly analysis and design) of software development.

The first approach is based on applying general Al techniques, such
as schema-based reasoning and search strategies, to create intelligent
tools. This approach claims that analysis and design are very knowl-
edge intensive activities, and should be supported by Al-based tools,
mostly Rule-Based systems. Examples of such systems can be found in
Harmain (2000).

asej.tex; 16/01/2001; 20:11; p.2

CM-Builder: A Natural Language-based CASE Tool 3

The second approach to providing automated tools that support the
early stages of software development is based on the analysis of natural
languages (human languages). This approach realises that most soft-
ware requirements data available to software engineers are expressed
in natural languages. The system described in this paper (see section
3) also follows this approach, but before we describe our system we
provide a brief survey of what other people have already done.

Abbott (1983) proposes a linguistic based method for analysing
software requirements, expressed in English, to derive basic data types
and operations. This approach was further developed by Booch (1986).
Booch describes an Object-Oriented Design method where nouns in
the problem description suggest objects and classes of objects, and
verbs suggest operations. However, both Abbott and Booch recognise
the importance of semantic and real-world knowledge in the analysis
process:

although the steps we follow in formalising the strategy may appear
mechanical, it is not an automatic procedure... it requires a great
deal of real world knowledge and an intuitive understanding of the
problem (Abbott, 1983).

Saeki et al. (1987) describe a process of incrementally construct-
ing software modules from object-oriented specifications obtained from
informal natural language requirements. Their system analyses the
informal requirements sentence at a time. Nouns and verbs are auto-
matically extracted from the informal requirements but the system can
not determine which words are important for the construction of the
formal specification. Hence an important role is played by the human
analyst who reviews and refines the system results manually after each
sentence is processed.

Dunn and Orlowska (1990) describe a natural language interpreter
for the construction of NIAM (Nijssen’s, or Natural-language, Infor-
mation Analysis Method) conceptual schemas. The construction of
conceptual schemas involves allocating surface objects to entity types
(semantic classes) and the identification of elementary fact types. The
system accepts declarative sentences only and uses grammar rules and
a dictionary for type allocation and the identification of elementary
fact types.

Meziane (1994) implemented a system for the identification of VDM
data types and simple operations from natural language software re-
quirements. The system first generates an Entity-Relationship Model
(ERM) from the input text and then generates VDM data types from
the ERM.

asej.tex; 16/01/2001; 20:11; p.3

4 Harmain and Gaizauskas

Mich and Garigliano (1994) and Mich (1996) describe an NL-based
prototype system, NL-OOPS, that is aimed at the generation of object-
oriented analysis models from natural language specifications. This
system demonstrated how a large scale NLP system called LOLITA
can be used to support the OO analysis stage.

Some researchers, also advocating NL-based systems, have tried
to use a controlled subset of a natural language to write software
specifications and build tools that can analyse these specifications to
produce useful results. Controlled natural languages are developed to
limit the vocabulary, syntax and semantics of the input language. At-
tempto (Fuchs et al., 1998), ASPIN, an Automatic Specifications Inter-
preter (Cyre, 1995), and the Requirements Analysis Support System
described in (Belkhouche and Kozma, 1993) are examples of systems
that analyse subset of a natural language (English). Macias and Pul-
man (1995) also discuss some possible applications of NLP techniques,
using the CORE Language Engine, to support the activity of writing
unambiguous formal specifications in English.

This research work has provided valuable insights into how NLP
can be used to support the analysis and design stages of software
development. However, each of these approaches has weaknesses which
mean that as yet NL-based CASE tools have not emerged into common
use for OO analysis and design. Abbott and Booch’s work describes
a methodology, but they have not produced a working system which
implements their ideas. Saeki et al. and Meziane both produced work-
ing systems, but these systems arguably require an unacceptably high
level of user interaction (accepting or rejecting noun phrases to be
represented in the final model on a sentence by sentence basis as the
requirements document is processed). Dunn and Orlowska’s work is not
directly relevant to OO analysis and design, as they focus on another
analysis method. The controlled language approaches have been imple-
mented and appear to work, but they have the drawback that authors
of software requirements documents must learn and use a specialised
language, albeit a subset of natural language. Mich and Garigliano’s
approach, which is closest to our own, is reliant on the coverage of a
very large scale knowledge base and the impact of (inevitable) gaps
in this knowledge base on the ability of the system to generate usable
class models is unclear.

It is also worth noting that none of these systems, so far as we
are aware, has been evaluated on a set of previously unseen software
requirements documents from a range of domains. This surely ought to
become a mandatory methodological component of any research work
in this area, as it has in other areas of language processing technology,
such as the DARPA-sponsored Message Understanding Conferences

asej.tex; 16/01/2001; 20:11; p.4

CM-Builder: A Natural Language-based CASE Tool 5

(Hirschman, 1998) or the NIST-sponsored Text Retrieval Conferences
(Voorhees and Harman, 1999) (for discussion of a broader set of areas
where evaluation methodologies are being developed for speech and
language technology, see Gaizauskas (1997)).

3. The CM-Builder Approach: Overview

Drawing on the work described in the preceding section, our perspective
is this. First, no automated NL-based CASE tool that aims to replace
the analyst is likely to be successful at present, given the current im-
perfect state of language processing technology. What is needed is a
tool that can assist the analyst by making proposals that he or she
can refine in an effective manner. Our proposal is that this should
be done by a tool which proposes an initial model in a commonly
accepted format (UML class diagrams) that a human analyst can then
further refine using existing CASE tools. This tool should be robust
and domain independent, to allow for widespread use, but be capable
of taking advantage of advances in language processing research, so as
to improve its performance. Finally, the tool should be evaluated using
a well-defined methodology against blind test data, so that potential
users can assess the level at which the technology performs, and so that
alternate approaches and proposed enhancements can be objectively
compared.

The Class Model Builder (CM-Builder) is a modular NL-based CASE
tool. The CM-Builder approach consists of four stages as illustrated in
figure 3. These stages can be summarized as follows.

1. Obtain a set of functional requirements or problem description in
natural language.

2. Use an NLP system to syntactically and semantically analyse the
informal requirements text and keep all the intermediate analysis
results for further analysis.

3. Use the results produced by the NLP system to extract object
classes, their attributes, and the relationships among them.

4. Produce a first-cut static structure model of the system from the
extracted objects in a standard format and use a graphical CASE
tool to manually refine the initial model.

Depending on the level of analyst interaction versus automation
which is desired or acceptable and the sophistication and accuracy of

asej.tex; 16/01/2001; 20:11; p.5

6 Harmain and Gaizauskas

I nformal Software
Requi renent s

NLP Engi ne

di scour{se nodel

QO Anal ysi s

—

Candi date Candi date Conceptual Mbdel
d asses Rel ati ons in CDIF

Figure 1. The CM-Builder Approach

analysis of which the core NLP system is capable, a variety NLP-based
CASE tools which conform to this broad approach can be designed.
We distinguish here three possible levels of NL analysis and the sort of
OO CASE tools that could be designed to utilise them, discussing as
well their potential strengths and weaknesses.

3.1. SURFACE ANALYSIS

At the level of least sophisticated, but most reliable, NL processing,
one can envisage a system which uses shallow syntactic knowledge
to produce lists of candidate classes and relationships which are then
filtered by a human analyst to choose the appropriate model elements.

As has been observed by Abbott (1983) and Booch (1986), can-
didate classes can frequently be found in the requirements text by
considering the noun phrases. Likewise, candidate relationships can be
found by considering verb phrases. The simplest way of doing this is
by using shallow parsing techniques to analyze the requirements text
for base noun phrases (noun phrases without post-modifiers such as
prepositional phrases and relative clauses) and core verb groups (main

asej.tex; 16/01/2001; 20:11; p.6

CM-Builder: A Natural Language-based CASE Tool 7

verb plus auxiliaries and possibly following particle). For example, by
analysing the sentence A library issues loan items to customers we can
extract three candidate classes (library, loan items, and customers) and
one candidate relationship (issues).

Shallow or so-called “chunking” parsers can now achieve high levels
of accuracy at such tasks — for example Cardie and Pierce (1998) report
levels of 94% precision and recall in identifying base noun phrases in
unseen test data. As well as identifying such phrases, an automated
system can provide additional support by performing phrase frequency
analysis across a text to identify the most frequently mentioned entities
and ranking them before presenting them to the analyst.

We call this process Surface Analysis because it does not require any
understanding, whatsoever, of the problem domain. This approach has
the advantage of quickly and accurately producing lists of candidate
classes and candidate relationships from which the analysis process
starts. However, it must not be assumed to be unproblematic as there
are different ways of expressing the same statement. For example, the
two sentences The actors planned their performance and The acting
group had a plan about how to perform express the same thing. Fur-
thermore, it requires a high level of analyst interaction. Not only must
spurious candidates be rejected and variants merged, but since this
approach does not specify which classes are related by which relation-
ships, the analyst must perform this association manually. So, in the
example above, while issues is identified as a candidate relationship and
library, loan items, and customers as candidate classes, this approach
could not propose that issues is a relationship holding between these
classes.

3.2. DEEP ANALYSIS

To not merely identify candidate classes, relationships and attributes,
but to identify which classes are related by which relationships, and
which attributes hold of which classes, and to do so completely and
accurately, requires large amounts of syntactic, lexical and world knowl-
edge, as well as significant inference capabilities. In other words, in the
general case, such a goal presupposes full language understanding, and
is therefore an “Al-complete” problem.

Applications that require language understanding capabilities have
made progress where the applications have been limited to specific do-
mains. For example, reasonably successful information extraction sys-
tems have been constructed for specific domains as diverse as corporate
management succession events, product and joint venture announce-
ments, and terrorist attacks (Cowie and Lehnert, 1996; Gaizauskas

asej.tex; 16/01/2001; 20:11; p.7

8 Harmain and Gaizauskas

and Wilks, 1998). Domain specific text analysis needs large amounts of
knowledge from the application domain to be encoded in the system.
So, for example, in the library system domain we might need to know
about people involved in the system (e.g. borrowers and library staff),
what material can be borrowed, and who can borrow what.

Consideration of domain dependent analysis as an approach to sup-
porting OO Analysis reveals a number of major problems:

— Building a domain model is at present a highly labour intensive
manual process.

— Though knowledge reuse is an active research topic (see, e.g. Gomez-
Perez and Benjamins (1999), in practice domain models have to
be created more or less from scratch for each new domain.

— The final discourse model derived by the system from the text
will not substantially differ in its conceptual content and structure
from the domain model encoded in advance in the system. Where
it will differ is in its knowledge of the behaviour or properties of
instances reported in the text. So, an information extraction sys-
tem with a domain model appropriate for management succession
events will not alter its underlying conceptual model after reading
a text; rather it will supplement this model with knowledge about
instances reported in the text — e.g person X has left position P in
company C to join company D. But in processing software require-
ments texts it is precisely a conceptual model for a domain that we
are trying to acquire. Presupposing one leads us into circularity.

Given these problems we have decided to abandon, for the time
being, any further investigation of a deep analysis approach, either
domain dependent or domain independent.

3.3. DOMAIN INDEPENDENT SEMANTIC ANALYSIS

Given the limitations of surface analysis and the intractability of deep
analysis, it is appropriate to ask whether there is any intermediate
level of language analysis that may increase the functionality that can
be offered to OO Analyst, without succumbing the problems mentioned
in the last section. We believe that there is and that an NL system can
deliver a domain independent “semantic” analysis, which is partial,
but still of use in the context of the assistive technology which are
proposing.

In essence this approach relies on two things. First, richer syntactic
analysis than simple base noun phrase and core verb group analysis is

asej.tex; 16/01/2001; 20:11; p.8

CM-Builder: A Natural Language-based CASE Tool 9

possible in some cases and this analysis can with reasonable reliability
suggest semantic relations. So, for example, in many English sentences
logical subjects and objects of verbs can be detected on the basis of
relatively general syntactic knowledge, and can be used to suggest, in
the context of software requirements texts, which classes stand in what
relationships to what other classes. Or, possessive relations can be used
to hypothesise attributes of classes — for example title of the book or
book’s title suggest that title should be regarded as an attribute of
book.

Second, while retaining domain independence we can recognise that
certain words and concepts occur frequently across software require-
ments texts. In other words, there is a genre of software requirements
documents, which is at least partly identifiable by its common vo-
cabulary and concepts. For example, words or phrases pertaining to
aggregation (is made up of, is composed of, contains) or subtyping (is
a kind of, is an X which/that Ys) are frequently found in requirements
texts. These words and concepts can be modelled more extensively, and
do provide a starting point for extracting and proposing class models
from texts.

Thus, our hypothesis is that a useful NL-based OO Analysis tool
can be built which utilises this intermediate level of NL analysis. It
still aspires only to produce an initial conceptual model which must
be refined by a human analyst. But it provides a richer starting point
than the surface analysis approach by proposing which classes stand in
what relationships to what other classes, and which attributes hold of
which classes, and by proposing multiplicities on relationships. Thus,
the analyst starts with a full-fledged conceptual model rather than just
a catalogue of candidate classes and relationships.

4. The CM-Builder: Detailed Description

We have designed and implemented two versions of CM-Builder, each
of which is meant to support a specific level of analysis as discussed
in the previous section. The first version, CM-Builder 1, is intended
to support OOA by performing surface analysis as discussed in section
3.1, whereas the second version, CM-Builder 2, is intended to carry
out domain independent semantic analysis as discussed in section 3.3.
Both systems are implemented in the GATE environment (Gaizauskas
et al., 1996; Cunningham et al., 1996). GATE, the General Architecture
For Language Engineering, is a rapid application development envi-
ronment for Language Engineering (LE) applications which provides
tools for data visualisation, debugging and evaluation of LE modules

asej.tex; 16/01/2001; 20:11; p.9

10 Harmain and Gaizauskas

Sentence Part—of-Speech Morphological
Tokenizer Splitter Tagger Analyzer

Discourse
Parser Interpreter

NP Analyzer VP Analyzer 3 OO0 Analyzer
I
I
I
I
I
I
I

——

|
Requirements: |
1

CDIF Conceptual Model

OOA Workbench

Figure 2. CM-Builder

and systems. The core NLP system used in CM-Builder was originally
built for the LaSIE (Large Scale Information Extraction) system at
Sheffield (Gaizauskas and Humphreys, 1997; Humphreys et al., 1998)
and is embedded in GATE. This system is highly robust, and has been
successfully used to process millions of words of text. While by no
means a perfect analyser, it can be relied upon to produce reasonable
(partial) analyses for a wide range of input texts.

Both versions of CM-Builder take as input plain text file containing
a software requirements specification in English and produce as output
an initial OO Conceptual Model of the problem being analysed, repre-
sented as a CDIF (CASE Date Interchange Format) file (Ernst, 1996).
This output file contains the identified object classes, their attributes,
and the relationships among them. The main advantage of producing
the output in a standard format is that any graphical CASE tool sup-
porting this format can be used to import the CM-Builder results. We
have used the SELECT Enterprise modeler V5.0 to test our system.

Figure 2 shows the overall architecture of the CM-Builder. The
core NLP systems modules are shaded; the modules which comprise
CM-Builder 1 are surrounded by a dashed line; those comprising CM-
Builder 2 are surrounded by a dotted line.

In the rest of this section we discuss first the core NLP system
underlying CM-Builder and then the design of CM-Builder 1 and 2, in
turn.

asej.tex; 16/01/2001; 20:11; p.10

CM-Builder: A Natural Language-based CASE Tool 11
4.1. THE CORE NLP SySTEM

The core NLP system processes text in three main processing stages:
lexical preprocessing, parsing, and discourse interpretation.

4.1.1. Lezical Preprocessing

The Lexical Preprocessor consists of four modules namely, a tokenizer,
sentence splitter, tagger, and a morphological analyser. The input to
the lexical preprocessor is a plain ASCII file containing a description
of the problem at hand (informal requirements). The output is a set of
charts, one per sentence, written as Prolog terms to be used directly by
the parser which is written in Prolog. The processing steps are carried
out in the following order:

1. Tokenization: The tokenizer takes a plain text file as input and
splits it into tokens. This includes, e.g., separating words and punc-
tuation, identifying numbers, and so on.

2. Sentence Splitting: The sentence splitter identifies sentence bound-
aries within the given text.

3. Part-of-Speech (POS) Tagging: The POS tagger assigns to each
token in the input one of 48 POS tags . We have used a slightly
modified version of the Brill tagger (Brill, 1994).

4. The Morphological Analysis: After POS tagging, all nouns and
verbs are passed to the morphological analyser which returns the
root and suffix of each word. For example, a plural noun like “boxes”
will be analysed as “box + s”, and an inflected verb form like “fram-
ing” will be analysed as “frame + ing”. These roots and suffices are
included in the input to the parser.

4.1.2. Parsing

We have used a bottom-up chart parser implemented in Prolog, an
enhanced version of the parser is described in Gazdar and Mellish
(1989). It uses a feature-based phrase structure grammar and relies
on unification of feature structures to enforce grammatical constraints
during parsing and to build semantic representations (as in Pereira
and Shieber (1987)). The parser takes the output of the Lexical Pre-
processor, and, using the grammar rules, builds a syntactic tree and
in parallel generates a semantic representation for every sentence in
the text. The semantic representation is simply a predicate-argument
structure (first order logical terms). The morphological roots of the
simple verbs and nouns are used as predicate names in the semantic

asej.tex; 16/01/2001; 20:11; p.11

12 Harmain and Gaizauskas

representations. Tense and numbers features are translated directly into
this notation where appropriate. All NPs and VPs introduce unique
instance constants in the semantics which serve as identifiers for the
objects or events referred to in the text. For example, A library issues
loan items. will map to something like:

issue(el) ,time(el,present) ,aspect(el,simple),
voice(el,active),lsubj(el,e2),lobj(el,el),

library(e2) ,determiner(e2,a) ,number(e2,sing),

item(e3) ,loan(e4) ,qual(e3,e4) ,number(e3,plural).

The parser is a partial parser, which means it produces correct but
not necessarily complete syntactic structures and hence semantic rep-
resentations. If a full parse of a sentence is not found, the parser uses a
‘best’ parse algorithm to choose the best complete sub-structures (i.e.
phrases of category). In CM-Builder 1, we use only the syntactic output
of the parser; the semantic output is used in CM-Builder 2.

4.1.3. Discourse interpretation

This module reads the meaning representation of every sentence pro-
duced by the parser and adds it to a predefined ‘world’ model to
produce a final model specific to the processed text called the discourse
model.

The meaning representation is translated into a representation of
instances, their ontological classes and their attributes in the XI knowl-
edge representation language, a language which allows straightforward
definition of cross-classification hierarchies and the association of arbi-
trary attributes with classes or instances in the hierarchy (Gaizauskas,
1995).

The definition of a cross-classification hierarchy in XI is called an
ontology. The ontology together with an association of attributes with
nodes in the ontology form a world model. It serves as a declarative
knowledge base that contains the background information the system
has about the world. An example of a simple world model is given in
figure 4.1.3. This model shows four object classes (namely, library, cus-
tomer, student, and professor), one event class, and two attributes. The
customer class is shown to be a superclass of the student and professor
subclasses. Also two attributes, name and address, are attached to this
class.

Knowledge from the input text is added to the world model in order
to extend it into a model specific to the text called a Discourse Model.
The discourse interpreter takes the semantic representation of each
sentence and applies four processing stages as follows:

asej.tex; 16/01/2001; 20:11; p.12

CM-Builder: A Natural Language-based CASE Tool 13

entity(X)

obj ect (X) event (X) attribute(X)

i ssue(X)
l'ibrary(X) _cust omer (X) single-valued(X) multi-val ued(X)

s
s
s

|
| professor (X) student (X) name address
|

L o _____.

I : .
, narme: I jani mate: yes |

| addr ess: o !

Figure 8. A simple world model

1. Adding Instances and Attributes to the World Model: In this stage
the Discourse Interpreter adds simple noun phrase instances and
their attributes under the Object node in the world model, and
verb instances and their attributes under the event node.

2. Presupposition Expansion: Any presupposition rules attached to
nodes to which the new instances or attributes have been added
are evaluated, and as a result additional instances or attributes may
be added to or removed from the discourse model. For example, an
agent-less passive such as ‘A book can be borrowed’ might cause
an anonymous object of type ‘person’ to be added to the discourse
model as the agent of the borrow event, which may prove useful in
interpreting the rest of the text.

3. Coreference Resolution: After adding the semantics of a new sen-
tence to the world model, and expanding any presuppositions, all
newly added instances are compared with previously added ones to
see if any two instances can be merged into a single one, represent-
ing a coreference resolution. This is necessary to link pronominal
references (such as he, it) or definite noun phrases (the user) to
earlier referents in the text. A full description of this algorithm can
be found in Gaizauskas and Humphreys (2000).

4. Consequence Expansion: In this stage the Discourse Interpreter
checks to see if any rules may be applied as a consequence of
merging instances in the previous stage — this may again lead to

asej.tex; 16/01/2001; 20:11; p.13

14 Harmain and Gaizauskas

additional instances or attributes being added to or removed from
the discourse model.

Having finished this stage the Discourse Interpreter goes back to the
first stage and take the meaning representation of the next sentence.
All sentences go through the same stages.

4.2. CM-BUILDER 1

The main goal of CM-Builder 1 is to carry out surface analysis as
discussed in section 3.1, i.e., to generate lists of candidate classes, at-
tributes, and relationships and help the user in filtering these lists. An
interactive graphical interface, built in TCL/TK (Ousterhout, 1994), is
provided to help the system users in filtering the candidate lists, and in
associating candidate attributes, classes and relations with each other
(see figures 4 and 5).

CM-Builder 1 (see figure 2) consists of eight modules in a pipelined
architecture in the following order: a tokeniser, sentence splitter, part-
of-speech tagger, morphological analyser, parser, verb phrase filter,
noun phrase frequency analyser, and an OOA workbench. The first
five modules are part of the core NLP system described in the preced-
ing section. The verb phrase filter is used to produce a list candidate
relations and the noun phrase frequency analyser produces a list of
candidate classes. OOA Workbench is the interactive module through
which the analyst works to build the final class model.

4.2.1. The NP Frequency Analysis Module

This module takes the syntactic trees produced by the parser and
generates a list of candidate classes and attributes from the base noun
phrases found in the text. For each base noun phrase found by the
parser, the head of the noun phrase is assumed to be the rightmost
noun and the root form of this word becomes a candidate class name.
To each candidate class name, this module attaches its frequency in
the requirements document. Synonymous words (e.g. customer, client)
are not dealt with here, so they give rise to different candidate classes.
This problem could be solved by using an external resource such as the
WordNet lexical database (Fellbaum, 1998). Also we have not dealt
with the problem of word sense disambiguation because in the short
texts we have processed we have not encountered this problem, so we
rely on a “one sense per discourse” assumption (Gale et al., 1992).

asej.tex; 16/01/2001; 20:11; p.14

CM-Builder: A Natural Language-based CASE Tool 15

] GATE 1.5.1 (March 1998)

CM-Builder v1.0

Department of Computer Science, University of Sheffield

hile | Select | View |
| Candidate Classes and Attributes |
Frequency: Hame:
(0 [{item} Al
1 loan_item
1 loan_items J
1 §_iteins
2 items
a3 item
{5} {customer}
4 customer
1 customers
31 {loan} Y |
Qass | Attribute | Delete | Exit |

Classes: Attributes: Undo

|
BOOK title | Associate Attributes |
LIBRARY |
|

|

|

L

Show Class

Edit Class

Auld New Class

™
™

Add Hew Attribute

Figure 4. Identifying Classes and Attributes in CM-Builder 1

4.2.2. The VP Filter Module

This module takes the syntactic trees produced by the parser and
extracts all the core verb phrases (i.e. the verb groups). These verb
phrases are used as candidate associations.

4.2.3. The OOA Workbench Module
This module provides an interactive GUI for the system. With this
GUI, users of the system can choose classes, their attributes, and the
relationships between them from the lists of candidate classes and can-
didate relationships. Also, the system allows for new classes, attributes
and relationships to be added and existing ones to be edited or deleted.
The process of building the model starts by selecting the classes and
their attributes from the list of candidate classes and attributes. Figure

asej.tex; 16/01/2001; 20:11; p.15

16 Harmain and Gaizauskas

T GATE 1.5.1 (March 1998)

ChM-Builder v1.0

Department of Computer Science, University of Sheffield

File | Select | View |

Binary Association | Temary Association | ISA | Part-Of | Exit ||

LIBRARY contains BOOK IS

fﬂ BINARY relationship

| (lasses: Relations Classes |

BOOK Y [has "\ [BooK
LIBRARY is_denoted by LIBRARY

is_issued
is_known_as
is_made_up_of

is_read

is_stamped

is_still
is_uniguely_identified_b
issued d

al

LIBR&RY |contains [EOOK

Exit | OK |

Figure 5. Building Relationships in CM-Builder 1

4 shows a screen-shot of the system with a list of candidate classes
displayed. Candidate classes are enclosed in curly brackets to suggest
a high possibility of being a relevant class (e.g. item in figure) and the
list is given in descending order of frequency of references in the text
to the candidate class. Following the proposed class immediately, the
list displays, as evidence, the actual phrases in the text in which this
head noun appeared. These phrases are also given with their individual
frequencies. Any candidate class can be chosen for inclusion in the
conceptual model by highlighting it and clicking the button labeled
Class. This will make the chosen class appear in the class list — bottom
left in figure 4. Similarly, if any candidate is selected as an Attribute —
it is moved to the list of attributes. Attributes then may be associated
with classes by pressing the Associate Attributes button, and may
these associations may subsequently be viewed and edited.

In a similar way choosing relationships is a point and click operation.
The analyst is provided with a list of classes and a list of candidate re-
lations from which he can select any of the four main relationships (i.e.

asej.tex; 16/01/2001; 20:11; p.16

CM-Builder: A Natural Language-based CASE Tool 17

binary/ternary associations, generalisation, or aggregation relations).
Figure 5 shows a screen-shot of the user interface for building rela-
tionships. By clicking any of the four buttons (Binary Association,
Ternary Association, ISA, or Part_Of) in the main window a small
window pops up with lists of classes and candidate relationships. The
small window in figure 5 is for specifying binary associations. It shows
two lists of classes separated by a list of candidate relations. When any
item in these lists is selected with the mouse it appears immediately
as a text entry below the list. The relationship name can be changed
as required to improve readability. When the OK button is clicked the
relationship is displayed in the main window and a second relationship
can be chosen in the same way.

At any time during analysis new classes, attributes, and relation-
ships can be added. After the analyst is satisfied with the model he can
generate a CDIF file and then save the model.

Note that in CM-Builder 1 all associations between attributes and
classes and between classes and other classes via relationships are spec-
ified manually by the user. The tool is helping simply by drawing
attention to the most likely classes and the words most suggestive of
relationships between classes.

4.3. CM-BUILDER 2

This version of the system performs domain independent OO analysis
as described in section 3.3. It takes a single software requirements
document as an input and linguistically analyses this document to
build an integrated discourse model. This discourse model is passed
to an OO analysis module which extracts the main object classes and
the static relationships among objects of these classes. The system
produces three kinds of output: a list of candidate classes; a list of
candidate relationships; and a conceptual model represented in the
standard CDIF format mentioned above. The general architecture of
this system is shown above in Figure 2. It should be noted that in
contrast to CM-Builder 1 there is no user interaction with CM-Builder
2: a first-cut conceptual model is produced entirely automatically from
a NL software requirements text. Of course it is likely that this model
will contain errors or omissions, so the intent is that the CDIF output
file will be input to a CASE tool which will be used to further refine
and extend the model.

asej.tex; 16/01/2001; 20:11; p.17

18

Harmain and Gaizauskas

4.3.1. The OOA Module
The processing steps of this module can be summarised as follows.

1.

10.

All object classes newly added to the semantic net (i.e. all nouns
in the text) are taken as candidate classes.

. All event classes newly added to semantic net (i.e all non-copular

verbs in the text) are taken as candidate relationships.

. For every candidate class find its frequency in the text (i.e. how

many times it has been mentioned). The most frequent candidates
highly suggest classes.

. Attributes can be found using some simple heuristics like the pos-

sessive relationships and use of the verbs to have, denote, and
identify.

. Attributive adjectives denote attribute values of the nouns they

modify. These are interesting language elements that give more
information about the entities denoted by nouns. For example, in
a sentence like “a large library has many sections”, the adjective
large indicates the existence of the attribute size associated with
the entity library. WordNet, an external lexical database (Fellbaum,
1998), is used to find the appropriate attribute names from these
adjectives.

. For every candidate relationship find its complements (i.e. logical

subject, logical object, and any attached prepositional phrases).

. Any candidate relationship that has no complements is deleted

from the list, since these arise from intransitive verbs (or errors
in parsing). Intransitive verbs do not usefully signal relations.

. Any candidate class that has a low frequency and does not partici-

pate in any relationship is discarded from the list. We have used a
threshold of 2, which has proved useful for texts ranging between
100 and 300 words in size, but this threshold is a parameter which
can be controlled by the user.

. Some sentence patterns (e.g. ‘something is made up of something’,

‘something is part of something’ and ‘something contains some-
thing’) denote aggregation relations.

Determiners are used to identify the multiplicity of roles in associ-
ations. Although this not a major goal of the research reported in
this paper, our approach identifies three types of UML multiplicities
(Booch et al., 1999):

asej.tex; 16/01/2001; 20:11; p.18

CM-Builder: A Natural Language-based CASE Tool 19

— 1 for exactly omne: identified by the presence of indefinite
articles, the definite article with a singular noun, and the
determiner one.

— * for many: identified by the presence of any of the deter-
miners each, all, every, many, and some.

— N for specific numbers: identified by the presence of num-
bers, such as one, two, seven, etc.

5. A Case Study

In this section we illustrate CM-Builder 2 using a case study from the
domain of library information systems. This case study was originally
presented in Callan (1994), pages 169-174. The problem statement for
this case study is as follows:

A library issues loan items to customers. Each customer is known as a
member and is issued o membership card that shows a unique member
number. Along with the membership number, other details on a customer
must be kept such as a name, address, and date of birth. The library is
made up of a number of subject sections. Each section is denoted by a
classification mark. A loan item is uniquely identified by a bar code. There
are two types of loan items, language tapes, and books. A language tape has
a title language (e.g. French), and level (e.g. beginner). A book has a title,
and author(s). A customer may borrow up to a mazximum of 8 items. An
item can be borrowed, reserved or renewed to extend a current loan. When
an item is issued the customer’s membership number is scanned via a bar
code reader or entered manually. If the membership is still valid and the
number of items on loan less than 8, the book bar code is read, either via
the bar code reader or entered manually. If the item can be issued (e.g. not
reserved) the item is stamped and then issued. The library must support
the facility for an item to be searched and for a daily update of records.

Section 5.1 presents Callan’s analysis results, and section 5.2 presents
the results produced automatically by the CM-Builder and their com-
parison with Callan’s analysis.

5.1. CALLAN’S CLASS MODEL

Figure 6 below shows a class diagram of the library system presented
in Callan (1994). This model shows 8 classes drawn as solid rectangles.
These classes are linked to each other with associations represented
by lines between the class boxes. Library has been modeled as an
aggregate of a number of Sections and this is represented by the dia-
mond at the Library end of the association. Each section is uniquely

asej.tex; 16/01/2001; 20:11; p.19

20 Harmain and Gaizauskas

Li brary
Section
search class mark |< >
updat e
| Hol ds
menber code Loan Item
| ssues bar - code
title
check_in
Menber shi p_Car d check_out
Has
Qust omer Borrows o-8 Book Language Tape
nane \ J subj ect | anguage
addr ess | evel
date-of -birth Loan Transaction
bor r ow
renew
reserve

Figure 6. A Class Model of the Library System from Callan (1994), p.171

identified by a class mark, this is represented by a small box showing
the class mark attribute at the Library end of the association. Also
each section is associated with Loan Items. Two operations are shown
in the library class: search and update, these are shown in the third
compartment of the Library class icon. There is an issues association
between the Library and Member Card classes. This association is
qualified with a member code attribute, which means every Member
Card has a unique member code. The class Customer is associated
with the class Member Card to show that each customer has a
card. Customer is also associated with the class Loan Item via a
Borrows association which is represented as an association class. Each
Customer can borrow up to 8 items. This is shown by the multiplicity
0-8 at the Loan Item end. The class Loan Item has two subclasses
Language Tape and Book.

5.2. CM-BUILDER ANALYSIS OF THE LIBRARY SYSTEM

From the above problem statement in section 5 CM-Builder produces
72 candidate classes and attributes, and 18 candidate relationships. The
phrase frequency analysis process reduces the number of candidates to
34 candidates. The compound noun and attribute analysis process, as
discussed above, further reduces the total number of candidate classes
to 28. The candidate relationships are also filtered by discarding any

asej.tex; 16/01/2001; 20:11; p.20

CM-Builder: A Natural Language-based CASE Tool 21

Loan_item
Subject_section | | “‘"a"V book_bar_code
maximum
e

Cuswmev

_ astamp
IAbu”ow m
e
Language_tape ‘ ‘ Bar_code_reader Me’”"e’sm" "“’“be’
I
i

title |

Member

Book | Loan | Section |
title | [currentness | classification_mark
i]

CM-Builder, CLD - CLDO0O0O1.DAT
Libraryl HARMAINL 7-Dec-99 17:23:49
Page 1 of 1

Figure 7. A Class Model of the Library System produced by CM-Builder

candidate that does not associate at least two classes. This process
reduces the total number of candidate relationships to 8. Given this
list of candidate relations, the list of candidate classes is further re-
fined based on their frequency and their participation in relationships.
Isolated candidate classes (i.e. do not participate in relations) with low
frequency (less than 2) are deleted.

The final model produced by the CM-Builder consists of 11 classes
and 8 associations as shown in figure 7. Six out of the 13 classes in figure
7 were exactly as shown in Callan’s model. These classes are: Book,
Library, Customer, Loan_item, Section, and Language tape.
One class, Membership_number, is incorrect because it represents
an attribute. One class, Member _card, was discarded because it has
low frequency. Six classes: Bar_code_reader, Item, Member, Loan,
Subject_section and Someone are not shown in Callan’s model.
Three of these classes are synonymous with other classes but our sys-
tem could not resolve them. These classes and their synonymous dou-
bles are: (Item, Loan Item), (Member, Customer), and (Sec-
tion, Subject_section). The class named Someone is included by
CM-Builder to indicate a missing agent. The other two classes were
considered to be irrelevant by Callan.

Compared to the model produced by Callan the model our sys-
tem produces is over-specified. Over-specification at the early analysis
stages is considered to be an advantage because the more classes you

asej.tex; 16/01/2001; 20:11; p.21

22 Harmain and Gaizauskas

can identify the more chance you have to select the right ones (Larman,
1998; Yourdon and Argila, 1996).

6. Evaluation

Following Hirschman and Thompson (1996) we can distinguish three
broadly different sorts of software evaluation. Adequacy evaluation is
the determination of system fitness for some particular task in context.
Diagnostic evaluation is used by system developers to test their system
during its development. Performance evaluation is a measurement of
system performance in some area of interest.

Here we focus on performance evaluation since we are interested
in evaluating a generic technology, not its fitness for a specific task
in a real setting or the correctness of its implementation. Specifying
a methodology for performance evaluation requires specifying three
things (Hirschman and Thompson, 1996):

— Criterion: what we are interested in evaluating (e.g. precision,
speed, error rate)

— Measure: what property of system performance we report to get
at the chosen criterion (e.g. ratio of hits to hits and misses, seconds
to process, percent incorrect)

— Method: how we determine the appropriate value for a given
measure and a given system.

In the next section we define our evaluation methodology and then in
the following section show how this methodology has been used to carry
out a preliminary evaluation of CM-Builder 2. We address only the
evaluation of CM-Builder 2 for various reasons. First, regardless of how
conceptual models are produced — fully manually, semi-automatically,
or fully automatically — quantitative evaluation of the resultant model
presupposes a methodology for quantitatively assessing models, and it
is this difficult, key conceptual issue that we begin to address below.
In addressing it, it matters little how the models to be evaluated have
been generated. Second, since CM-Builder 1 is an interactive system,
it can only properly be evaluated together with a human in the loop,
and this makes for difficult experimental conditions which we have not
had the resources to set up. One would like to know, for example,
whether an analyst working with CM-Builder 1 could produce concep-
tual models more accurately or faster than one working only with the
requirements document. Of course, one could, and should, evaluate the

asej.tex; 16/01/2001; 20:11; p.22

CM-Builder: A Natural Language-based CASE Tool 23

purely automatic components of CM-Builder 1, i.e., the noun phrase
and verb group identification; but this is now a relatively standard
language engineering task, known to be achievable to certain levels, and
not worth pursuing here. Of more interest is evaluating, for example,
how many of CM-Builder 1’s proposed candidate classes are actually
appropriate classes for inclusion in the conceptual model. However,
this capability is effectively evaluated out in evaluating CM-Builder 2.
Finally, unlike CM-Builder 1, CM-Builder 2 does produce conceptual
models automatically, and it cries out for some form of evaluation in
order to assess whether the approach is worth pursing.

We view the methodology proposed below as one of the significant
contributions of our work, as to the best of our knowledge no such
methodology for evaluating NL-based CASE tools has been advanced to
date, nor have existing systems (cf. section 2) been formally evaluated.

6.1. EVALUATION METHODOLOGY

6.1.1. Criterion

The criterion applied to evaluate CM-Builder is how close are the
models produced by the system (called system responses) to those
produced by human analysts (called answer keys). However, a single
gold standard model for any given software requirement does not ex-
ist, as different human analysts will usually produce different models.
These models cannot be categorised as strictly correct or incorrect,
but nonetheless they are usually categorised as good or bad, depending
on the objects and the relationships represented in them. We have
assumed that the models available in Object-Oriented text books are
good models and have used them as answer keys.

6.1.2. Measure

We have used three metrics for evaluating our system. Two of these,
known as recall and precision, were originally developed for evaluat-
ing Information Retrieval systems (van Rijsbergen, 1979) and now
are being widely used in evaluating Information Extraction systems
(Grishman and Sundheim, 1996). The third is a new metric we have
defined.

— Recall: Recall reflects the completeness of the results produced
by the system. The correct and relevant information returned by
the system is compared with that found by human analysts. The
following formula is used to calculate recall:

Recall = M
Nkey

asej.tex; 16/01/2001; 20:11; p.23

24 Harmain and Gaizauskas

where Nyt refers to the number of correct responses made by
the system, and N, is the number of information elements in the
answer key.

— Precision: Precision reflects the accuracy of the system (i.e. how
much of the information produced by the system was correct). The
following formula is used to calculate precision:

N, correct

Precision =
Ncorrect + Nz’ncorrect
where Neoprees and Niey are as above, and Nipcorreer Tefers to the
incorrect responses made by the system.

— Opver-specification: Over-specification measures how much ex-
tra correct information in the system response is not found in
the answer key (i.e. attempts to separate the system’s language
processing capability from its abstraction capability). It is given
by the formula:

N, extra

Over-specification =
Nkey

where Ny is the number of responses judged correct but not
found in the key and N, is as above.

6.1.3. Method
Each class model element (class, attribute, association, generalization,
aggregation) in the response is compared with each element in the key
and classified as follows: correct if it matches an element in the answer
key; incorrect if it does not match an element in the key; extra if it
is valid information from the text but is not in the key. An element
occurring in the key but not in the response is classified as missing.
Determining a match is done in two stages. First the names of the
matching elements must be plausibly close (e.g. Item can match Loan
Item but not Library). Second, an element-specific process is carried
out to see if the ‘context’ of the element gives evidence that it really
is what its name suggests. So, a class with a name matching one in
the key, but each of whose attributes or associations differs from those
in the key, cannot be said to match the key class. Similarly attributes
and associations are matched both by approximate name matching and
by context — the (at least partial) correctness of the classes and other
attributes with which they are associated. This means that in general
the evaluation of one element type is not independent of that of other
element types.

asej.tex; 16/01/2001; 20:11; p.24

CM-Builder: A Natural Language-based CASE Tool 25

To proceduralise this matching we follow an approach similar to
that used for template matching in the MUC evaluations (Chinchor,
1995) in which starts by uniquely aligning the classes proposed in the
response with those in the key so as to optimise the overall class model
score for the system. This is a complex, non-deterministic process whose
outcome will differ depending on, e.g., whether one wants to maximise
the absolute number of class model elements matched between response
and key or whether one weights certain elements above others (e.g.
associations above attributes) and on the level required for element
contexts to match.

Because the complexity of this class model matching process de-
mands automated support which is not yet available, we have so far
limited ourselves to an evaluation in which only classes are evaluated.
This is much simpler than an evaluation of all model elements because
in cases where either of two response classes could be matched to one
key class, or vice versa, the score will not be affected, regardless of
choice. To determine attribute and association scores, however, this is
no longer the case (consider e.g. Loan Item and Item in Figure 7).
Despite the simplification, class matching between key and response
is a very important initial evaluation of class models, since classes are
the fundamental class model element. In carrying out class matching
we have required that the response and key class names approximately
match and that the attributes and associations in the response class
are not on balance more wrong than right.

6.2. EVALUATION RESULTS

A corpus of five case studies, each from a different domain and extracted
from a text book, was used for the final evaluation of CM-Builder. None
of these case studies was examined in detail prior to the final evaluation,
nor was the system run on any of them before the evaluation. These
case studies range between 100 and 300 words in size, with sentence
length ranging between 6 and 31 words. The average sentence length
was 17 words.

Table 6.2 reports the scores of the system on the five case studies.
Scores for each case study are given in one row and the last row shows
the overall scores of the system. The overall performance of the system
was 73% recall and 66% precision, with an over-specification of 62%.

Since formal evaluation of other NL-based CASE tools has not been
carried out, we cannot compare our results with them. However, we
can note that other language processing technologies, such as infor-
mation retrieval systems, information extraction systems, and machine
translation systems, have found commercial applications with precision

asej.tex; 16/01/2001; 20:11; p.25

26 Harmain and Gaizauskas

Table I. Evaluation results

Case Study Neor Nine Nmis Next REC% PRE% OVS %

1 4 3 6 7 40 57 70
2 6 2 2 5 75 75 63
3 5 3 0 3 100 63 60
4 8 5 1 4 89 62 44
5 4 1 1 4 80 80 80
Overall 27 14 10 23 73 66 62

and recall figure well below this level. Thus, the results of this initial
performance evaluation are very encouraging and support both the
approach adopted and in this paper and the potential of this technology
in general.

7. Conclusions and Future Work

In this paper we have described an automated NL-based CASE tool, the
CM-Builder. This tool uses Natural Language Processing techniques to
analyse natural language software requirements documents and pro-
duce initial conceptual models represented in the Unified Modeling
Language (UML). The overall aim is to quickly and cheaply produces
first-cut conceptual models which can reduce the cost and time of
software development.

CM-Builder can be used two ways. It can be used interactively,
in conjunction with a human analyst, to carry out “surface analysis”
of the text to propose candidate classes, attributes, and relationships
which the user then explicitly relates to each other and includes in the
conceptual model (CM-Builder 1). Or, it can work fully automatically,
carrying out “domain independent semantic analysis” to build an inte-
grated discourse model of the requirements text (CM-Builder 2). This
discourse model is then used for the identification of object classes,
their attributes, and the static relationships among them which are
proposed as part of the conceptual model. In both versions of CM-
Builder the final conceptual model is represented in UML and is given
in a standard data interchange format, CDIF. This final model can be
further refined by a human analyst using any graphical CASE tool that
supports CDIF.

We have also defined a quantitative evaluation methodology and
have used this methodology to evaluate the class identification capa-

asej.tex; 16/01/2001; 20:11; p.26

CM-Builder: A Natural Language-based CASE Tool 27

bility of CM-Builder. The results achieved have, we believe, shown the
benefits of our approach for Object-Oriented Analysis, though clearly
more experimentation is needed. More importantly, the methodology
provides a starting point for benchmarking systems that produce OO
conceptual models, enabling them to be compared against human an-
alysts, against each other and against earlier versions of themselves.

There is much scope for extension and improvement of the work
presented in this paper:

— The small corpus of case studies we used has proved very useful
for system development. Building and analysing a larger corpus,
in particular one containing ‘real world’ requirements texts, would
provide a valuable source of knowledge for improving our approach,
and would be a useful resource for the larger community.

— While the coverage of our parser has proved adequate, it can be
improved by encoding more grammar rules for the sentence types
most frequently used in software requirements texts.

— The discourse interpretation module can be improved by encoding
further general knowledge relevant to analysis and design (while
remaining domain independent). However, the identification of this
kind of knowledge is a big research topic in itself.

— Our procedure focuses on the extraction of Class Model elements
(i.e. classes, attributes, and associations) which show the static
aspect of the modeled system. The same thing could be done to
address the dynamic aspect of the system.

— We have shown how NL-based CASE tools can be quantitatively
evaluated. However, our evaluation is partial and further work is
needed for full evaluation, particularly with respect to attributes
and relationships.

Addressing these points will lead to improvement in the NL-based
conceptual model building technology. Finally, however, to make this
technology truly usable it needs to be fully integrated into a powerful
graphical CASE tool with a user interface carefully designed to support
software analysts and informed by studies of real analysts’ design be-
haviour when working with tools like CM-Builder. A user-based study
that observed three analysts working with the same requirements doc-
ument and same graphical CASE tool, one with no additional NL tool,
one with CM-Builder 1, and one with CM-Builder 2 would be highly
revealing in this regard.

asej.tex; 16/01/2001; 20:11; p.27

28 Harmain and Gaizauskas
References

Abbott, R. J.: 1983, ‘Program Design by Informal English Descriptions’. Commu-
nications of the ACM 26(11), 882-894.

Belkhouche, B. and J. Kozma: 1993, ‘Semantic case analysis of information require-
ments’. In: S. Brinkkemper and F. Harmsen (eds.): NGCT’93, 4th Workshop on
the Next Generation of CASE Tools. Memoranda Informatica 93-32. pp. 163-182,
University of Twente.

Booch, G.: 1986, ‘Object-Oriented Development’. Trans. on Software Eng. SE-
12(2), 211-221.

Booch, G.: 1994, Object-Oriented Analysis And Design With Applications. The
Benjamin/Cummings Publishing Company, Inc., second edition.

Booch, G., J. Rumbaugh, and I. Jacobson: 1999, Unified Modeling Language User
Guide. Addison-Wesley.

Brill, E.: 1994, ‘Some Advances in Transformation-Based Part of Speech Tagging’.
In: Proceedings of the Twelfth National Conference on AI (AAAI-94). Seattle,
Washington.

Callan, R. E.: 1994, Building Object-Oriented Systems: An introduction from
concepts to implementation in C++. Computational Mechanics Publications.
Cardie, C. and D. Pierce: 1998, ‘Error-Driven Pruning of Treebank Grammars for

Base Noun Phrase Identification’. In: Proceedings of the COLING-ACL’98 Joint
Conference (the 17th International Conference on Computational Linguistics
and 86th Annual Meeting of the Association for Computational Linguistics).

Montreal, pp. 218-224.

Chinchor, N.: 1995, ‘Four Scorers and Seven Years Ago: The Scoring Method for
MUC-6’. In: Proceedings of the Sizth Message Understanding Conference (MUC-
6). pp- 33-38, Morgan Kaufmann.

Cowie, J. and W. Lehnert: 1996, ‘Information Extraction’. Communications of ACM
39(1).

Cunningham, H.; Y. Wilks, and R. Gaizauskas: 1996, ‘Software Infrastructure for
Language Engineering’. In: Proceedings of the AISB Workshop on Language
Engineering for Document Analysis and Recognition. Brighton, U.K.

Cyre, W.: 1995, ‘A requirements sublangauge for automatic analysis’. International
Journal of Intelligent systems 10(1), 665-689.

Dunn, L. and M. Orlowska: 1990, ‘A natural language interpreter for construction
of conceptual schemas’. In: CAiSE’90, 2nd Nordic Conference on Advanced
Information Systems Engineering, LNCS 436. pp. 371-386, Springer-Verlag.

Ernst, J. (ed.): 1996, CDIF -Integrated Meta-Model- Object-Oriented Analysis and
Design Core Subject Area. Electronic Industries Association.

Fellbaum, C. (ed.): 1998, WORDNET: An Electronic Lexical Database. Cambridge,
Massachusetts, London, England: The MIT Press.

Fuchs, N., U. Schwertel, and R. Schwitter: 1998, ‘Attempto Controlled English -
Not Just Another Logic Specification Language’. In: P. Flener (ed.): Logic-
Based Program Synthesis and Transformation, Workshops in Computing, Eight
International Workshop LOPTSR’98, Lecture Notes in Computer Science 1559.
Springer-Verlag, pp. 1-20.

Gaizauskas, R.: 1995, ‘XI: A Knowledge Representation Language Based on Cross-
Classification and Inheritance’. Technical Report CS-95-24, Department of
Computer Science, University of Sheffield.

Gaizauskas, R.: 1997, ‘Evaluation in Language and Speech Technology’. Computer
Speech and Language 12(4).

asej.tex; 16/01/2001; 20:11; p.28

CM-Builder: A Natural Language-based CASE Tool 29

Gaizauskas, R., H. Cunningham, Y. Wilks, P. Rodgers, and K. Humphreys: 1996,
‘GATE - an Environment to Support Research and Development in Natural
Language Engineering’. In: Proceedings of the 8th IEEE International Conference
on Tools with Artificial Intelligence (ICTAI-96). Toulouse, France.

Gaizauskas, R. and K. Humphreys: 1997, ‘Using a Semantic Network for Information
Extraction’. Natural Language Engineering 3(2/3), 147-169.

Gaizauskas, R. and K. Humphreys: 2000, ‘Quantitative Evaluation of Coreference
Algorithms in an Information Extraction System’. In: S. Botley and T. McEnery
(eds.): Discourse Anaphora and Anaphor Resolution. London: John Benjamins.

Gaizauskas, R. and Y. Wilks: 1998, ‘Information Extraction: Beyond Document
Retrieval’. Journal of Documentation 54(1), 70-105.

Gale, W. A., K. W. Church, and D. Yarowsky: 1992, ‘One Sense Per Discourse’. In:
The Proceedings of the 4th DARPA Speech and Natural Language Workshop.
Gazdar, G. and C. Mellish: 1989, Natural Language Processing in Prolog: An

Introduction to Computational Linguistics. Addison-Wesley.

Gomez-Perez, A. and V. R. Benjamins: 1999, ‘Overview of Knowledge Sharing
and Reuse Components: Ontologies and Problem-Solving Methods’. In: Pro-
ceedings of the IJCAI-99 workshop on Ontologies and Problem-Solving Methods
(KRR5). Stockholm, pp. 1.1-1.15. Available at: http://sunsite.informatik.rwth-
aachen.de/Publications/ CEUR-WS/Vol-18/.

Grishman, R. and B. Sundheim: 1996, ‘Message Understanding Conference-6: A brief
history.’. In: Proceedings of the 16th International Conference on Computational
Linguistics. Copenhagen.

Harmain, H. M.: 2000, ‘Building Object-Oriented Conceptual Models using Natu-
ral Language Processing Techniques’. Ph.D. thesis, Department of Computer
Science, Uni. of Sheffield.

Hirschman, L.: 1998, ‘The Evolution of Evaluation: Lessons from the Message
Understanding Conferences’. Computer Speech and Language 12(4), 281-305.
Hirschman, L. and H. S. Thompson: 1996, ‘Chapter 13 Evaluation: Overview
of evaluation in Speech and Natural Language Processing’. In: R. A.
Cole, J. Mariani, H. Uszkoreit, A. Zaenen, and V. Zue (eds.): Survey of
the State of the Art in Human Language Technology. Center for Spo-
ken Language Understanding, Oregon Graduate Institute. Available at:

http://cslu.cse.ogi.edu/HLTsurvey/HLTsurvey.html.

Humphreys, K., R. Gaizauskas, , S. Azzam, C. Huyck, B. Mitchell, and Y. Wilks:
1998, ‘Description of the LaSIE-II system as used for MUC-7.". In: Proceedings
of the Seventh Message Understanding Conference (MUC-7).

Larman, C. (ed.): 1998, Applying UML and Patterns: An interoduction to Object-
Oriented Analysis and Design. Prentice- Hall PTR.

Macias, B. and S. Pulman: 1995, ‘A Method for Controlling the Production of
Specifications in Natural Language’. The Computer Journal 38(4).

Meziane, F.: 1994, ‘From English to Formal Specifications’. Ph.D. thesis, Depart-
ment of Mathematics and computer Science, University of Salford. UK.

Mich, L.: 1996, ‘NL-OOPS: from natural language to object oriented using the nat-
ural language processing system LOLITA’. Natural language engineering 2(2),
161-187.

Mich, L. and R. Garigliano: 1994, ‘A Linguistic Approach to the Development of
Object-Oriented Systems Using the NL Sytem LOLITA’. In: Object-Oriented
Methodologies and Systems International symposium, (ISOOMS’94), LNCS 858.
pp. 371-386.

Ousterhout, J. K.: 1994, Tcl and the Tk Toolkit. Addison-Wesley.

asej.tex; 16/01/2001; 20:11; p.29

30 Harmain and Gaizauskas

Pereira, F. and S. Shieber: 1987, Prolog and Natural-Language Analysis, No. 10 in
CLSI Lecture Notes. Stanford, CA: Stanford University.

Saeki, M., H. Horai, K. Toyama, N. Uematsu, and H. Enomoto: 1987, ‘Specification
Framework Based on Natural Language’. In: Proceedings of the 4th international
workshop on software specification and design. pp. 87-94, IEEE.

van Rijsbergen, C.: 1979, Information Retrieval. London: Butterworths.

Voorhees, E. and D. Harman: 1999, ‘Overview of the Eighth Text RE-
trieval Conference (TREC-8'. 1In: Proceedings of the FEighth Text Retrieval
Conference (TREC-8). NIST Special Publication 500-246. Available at:
http://trec.nist.gov/pubs/trec8/t8_proceedings.html.

Yourdon, E. and C. Argila: 1996, Case-Studies in Object-Oriented Analysis and
Design. Yourdon press.

asej.tex; 16/01/2001; 20:11; p.30

