
A Large-Scale Resource for Storing and Recognizing Technical Terminology

Henk Harkema, Robert Gaizauskas, Mark Hepple, Neil Davis
Yikun Guo, Angus Roberts, Ian Roberts

Department of Computer Science, University of Sheffield,
Regent Court 211, Portobello Street, Sheffield S1 4DP, UK

biomed@dcs.shef.ac.uk

Abstract
This paper discusses the design and implementation of Termino, a large-scale terminological resource for text processing. Dealing with
terminology is a difficult but unavoidable task for natural language processing applications, such as information extraction in technical
domains. Complex, heterogeneous information must be stored about large numbers of terms. At the same time term recognition must
be performed in realistic times. Termino attempts to reconcile this tension by maintaining a flexible, extensible relational database for
storing terminological information and compiling finite state machines from this database to do term recognition.

1. Introduction
Identification and semantic classification of technical

terms – single or multiword expressions having some spe-
cialized use or meaning in a specific domain – in text is an
important step in many natural language processing appli-
cations. In the context of information extraction, for exam-
ple, these terms often point to entities about which infor-
mation should be extracted. Proper semantic classification
of terms also helps in resolving anaphora and extracting
relations whose arguments are restricted semantically. In
other information-oriented applications, e.g., information
retrieval, knowledge of the entities that appear in a text can
be used to link a given document to other, related docu-
ments, or to make connections to outside knowledge bases
containing additional information about the entities men-
tioned in the document.

In this paper we describe the design and implementation
of Termino, a resource to support terminology processing
for information extraction, retrieval, and navigation. While
Termino has been developed for biomedical applications,
its general design allows it to be used for term processing
in any domain.

2. Termino
Termino is a large-scale terminological resource for text

processing applications. It includes a flexible, extensible
relational database which is designed to store large num-
bers of terms together with complex, heterogeneous infor-
mation about these terms. Recognition of terms in text is
done via finite state machines that are compiled from this
terminological database.

The contents of Termino are imported from existing,
outside knowledge sources, such as the HUGO Nomencla-
ture database and the UMLS Metathesaurus (Humphreys
et al., 1998). Contents can also be induced from text cor-
pora, e.g., MEDLINE citations. Termino thus provides
uniform access to terminological information aggregated
across many sources, without the need for multiple, source-
specific terminological components within a text process-
ing system.

The advantage of “dictionary-based” term recognition
with Termino over “inductive” term recognition methods

such as, for example, Kim and Tsujii (2002) and Fukuda et
al. (1998), is that Termino provides immediate entry points
into a variety of outside ontologies and other knowledge
sources, making the information in these sources available
to processing steps subsequent to term recognition.1 This
is a very attractive feature. For example, using a recognizer
compiled to include terms from the HUGO Nomenclature
database and the OMIM database (Online Mendelian In-
heritance in Man, OMIM (TM), 2000), Termino will return
the HUGO and OMIM identifiers for the gene and protein
names it recognizes in a text. These identifiers give access
to the information stored in these databases about the gene
or protein, including alternative names, gene map locus, re-
lated disorders, and references to relevant papers.

A general disadvantage of bare dictionary-based ap-
proaches to term recognition is their inability to deal with
terms that are not in the dictionary. The occurrence in
the dictionary of technical terms that happen to be iden-
tical to commonly used English words is also problematic.
Aware of these limitations, we intend Termino to be the
first component, the lexical look-up component, in a multi-
component term processing system. Thus, term look-up
as performed by Termino is not the end point of term pro-
cessing. Look-up might return multiple matching terms
for a given string, or for overlapping strings, and subse-
quent processes may apply to filter these alternatives down
to the single option that seems most likely to be correct
in the given context. Furthermore, more flexible processes
of term recognition might apply over the results of look-
up. For example, a term grammar can be provided for
a given domain, allowing longer terms to be built from
shorter terms that have been identified by term look-up. In
this paper, however, we will focus on the design and imple-
mentation of Termino.

3. Related Work
The UMLS Metathesaurus provides a semantic classi-

fication of terms drawn from a wide range of vocabular-
ies in the clinical and biomedical domain. It does so by
grouping strings from these vocabularies that are judged to

1Obviously, this advantage does not extend to terms that are
added to Termino through term induction.

have the same meaning into concepts, and mapping these
concepts onto nodes or semantic types in a semantic net-
work. Although it is used in a number of biomedical nat-
ural language processing applications, e.g., Rindflesch et
al. (2000), Pustejovsky et al. (2002), we have decided not to
adopt the UMLS Metathesaurus as the primary terminology
resource in our text processing system for a variety of rea-
sons. The first reason is that the Metathesaurus is a closed
system: strings are classified in terms of the concepts and
the semantic types that are present in the Metathesaurus and
the semantic network, whereas we would like to be able to
link our terms into multiple ontologies, including in-house
ontologies that do not figure in any of the Metathesaurus’
source vocabularies and hence are not available through the
Metathesaurus. Moreover, we would also like to be able
to have access to additional terminological information that
is not present in the Metathesaurus, such as, for example,
the annotations in the Gene Ontology (The Gene Ontology
Consortium, 2001) assigned to a given protein term.2 Fur-
thermore, as new terms appear constantly in the biomedical
field we would like to be able to add these to our termino-
logical resource immediately and not have to wait until they
have been included in the UMLS Metathesaurus.

Besides text processing systems that use an existing ter-
minological resource, such as the UMLS Metathesaurus,
there are systems that rely on resources that have been
specifically built for the application, e.g., Humphreys et
al. (2000) and Thomas et al. (2000). With regard to the
latter kind of system we note that their terminological re-
sources tend to be limited in the following two respects.
First, the structure of these resources is often fixed and in
some cases amounts to simple gazetteer lists. Secondly, be-
cause of their fixed structure, these resources are usually
populated with content from just a few sources, leaving out
many other potentially interesting sources of terminological
information. Instead, we designed Termino to be an exten-
sible resource that can hold diverse kinds of terminological
information from a variety of sources.

4. Architecture
Termino consists of two components: a database hold-

ing terminological information and a compiler for generat-
ing term recognizers from the database. These two compo-
nents are discussed in the following two subsections.

4.1. Terminological Database

The terminological database has been designed to meet
three requirements. First of all, it is capable of storing large
quantities of terms. Any technical domain generates very
large numbers of terms. The UMLS Metathesaurus, for
example, which includes terms from a wide range of vo-
cabularies in the clinical and biomedical domain, currently
contains over 2 million distinct terms. However, as UMLS
is just one of many resources whose terms may need to be
stored, many millions of terms may need to be stored in to-
tal. Secondly, Termino’s database is designed to be flexible

2While the terms making up the the tripartite Gene Ontology
are present in the UMLS Metathesaurus, assignments of these
terms to gene products are not recorded in the Metathesaurus.

enough to hold a variety of information about terms, includ-
ing morpho-syntactic information, such as part of speech
and morphological class; semantic information, such as
quasi-logical form and links to concepts in ontologies; and
provenance information, such as the sources of the infor-
mation in the database. The design of the database also
allows for links connecting synonyms and morphological
and orthographic variants to one another, and for connect-
ing abbreviations and acronyms to their full forms. Thirdly,
the database is organized in such a way that it allows for
fast and efficient recognition of terms in text.

Since the sources feeding into Termino are heteroge-
neous in both information content and format, Termino’s
database is “extensional”: it stores strings in connection
with information about strings.3 The database is organized
as a set of relational tables, each storing a specific type of
terminological information. New tables can be added as re-
quired. In this way we avoid the strictures of any one fixed
representational scheme, thus making the database flexible
enough to hold information from disparate sources.

Terminological information about any given string is
usually gathered from multiple sources. As information
about a string accumulates in the database, we must make
sure that co-dependencies between various pieces of in-
formation about the string are preserved. This considera-
tion leads to the fundamental element of the terminologi-
cal database, a termoid. A termoid consists of a string to-
gether with associated information of various kinds about
the string. Information in one termoid holds conjunctively
for the termoid’s string, while multiple termoids for the
same string express disjunctive alternatives.

For instance, taking an example from the UMLS
Metathesaurus, we may learn from one source that the
string cold as an adjective refers to a temperature, whereas
another source may tell us that cold as a noun refers to a dis-
ease. This information is stored in the database as two ter-
moids: abstractly, ‘cold, adjective, temperature’ and ‘cold,
noun, disease’. A single termoid ‘cold, adjective, noun,
temperature, disease’ would not capture the co-dependency
between the part of speech and the “meaning” of cold.4

This example also illustrates that a string can have more
than one termoid. Each termoid, however, pertains to one
and only one string.

Figure 1 provides a detailed example of part of the struc-
ture of the terminological database. In the table STRINGS

every unique string is assigned a string identifier (str id). In
the table TERMOID STRINGS each string identifier is asso-
ciated with one or more termoid identifiers (trm id). These
termoid identifiers serve as keys into the tables holding ter-
minological information. Thus, in this particular example,
the database includes the information that in the Gene On-

3There is no explicit attempt to assemble strings and informa-
tion into terms, as we have no clear definition of the notion “term”.
However, the various interconnections between strings and infor-
mation about strings stored in the database bring about a level of
organization which goes beyond simple pairings of strings and in-
formation.

4Note that the UMLS Metathesaurus has no mechanism for
retaining this co-dependency between grammatical and semantic
information.

STRINGS

string str id
.
neurofibromin str728
abdomen str056
mammectomy str176
.

TERMOID STRINGS

trm id str id
.
trm023 str056
trm656 str056
trm924 str728
trm369 str728
trm278 str176
.

PART OF SPEECH

trm id pos
.
trm023 N
.

GO ANNOTATIONS

trm id annotation version
.
trm924 GO:0004857 9/2003
trm369 GO:0008285 9/2003
.

UMLS
trm id cui lui sui version
.
trm278 C0024881 L0024669 S0059711 2003AC
trm656 C0000726 L0000726 S0414154 2003AC
.

Figure 1: Structure of the terminological database

tology the string neurofibromin has been assigned the terms
with identifiers GO:0004857 and GO:0008285. Further-
more, in the UMLS Metathesaurus version 2003AC, the
string mammectomy has been assigned the concept-unique
identifier C0024881 (CUI), the lemma-unique identifier
L0024669 (LUI), and the string-unique identifier S0059711
(SUI). Connections between termoids such as those aris-
ing from synonymy and orthographic variation are recorded
in another set of tables. There are also tables containing
provenance information for strings and termoids. These ta-
bles are not shown in the example.

4.2. Term Recognition

To ensure fast term recognition with Termino’s poten-
tially vast terminological database, the system comes with
a compiler for generating finite state machines from the
strings in the database. Direct look-up of strings in the
database is not an option, because it is unknown in advance
at which positions in a text terms will start and end. In order
to be complete, one would have to look up all sequences of
words or tokens in the text, which is very inefficient.

Compilation of a finite state recognizer proceeds in the
following way. Each string in the database is first broken
into tokens, where a token is either a contiguous sequence
of alphabetic characters, a contiguous sequence of numeric
characters, or a punctuation symbol. Next, starting from
a single initial state, a path through the machine is con-
structed, using the tokens of the string to label transitions.
For example, for the string 5-HT3 receptor the machine will
include a path with transitions on 5, -, HT, 3, and recep-
tor. New states are only created when necessary. The state
reached on the final token of a string will be labeled final
and is associated with the identifiers of the termoids for that
string. To recognize terms in text, the text is tokenized and
the finite state machine is run over the text, starting from the
initial state at each token in the text. For each sequence of
tokens leading to a final state, the termoid identifiers asso-
ciated with that state are returned. These identifiers are then
used to access the terminological database and retrieve the
information contained in the termoids. Where appropriate
the machine will produce multiple termoid identifiers for

strings. It will also recognize overlapping and embedded
strings. The compiler can be parameterized to produce fi-
nite state machines that match exact strings only, or abstract
away from morphological and orthographical variation.

Figure 2 shows a small terminological database and a
finite state recognizer derived from it. Running this rec-
ognizer over the phrase . . . thyroid dysfunction, such as
Graves’ disease . . . produces four annotations: thyroid is
assigned the termoid identifiers trm1 and trm2; thyroid
dysfunction, trm3; and Graves’ disease, trm4.

The set-up in which term recognizers are compiled from
the contents of the terminological database turns Termino
into a general terminological resource which is not re-
stricted to any single domain or application. The database
can be loaded with terms from multiple domains. Compila-
tion can then be restricted to particular subsets of strings by
selecting termoids from the database, for example, based
on their source or other characteristics. In this way, one can
produce term recognizers that are tailored towards specific
domains or specific applications within domains.

5. Implementation
At this moment a first version of Termino has been

implemented. It uses a database implemented in MySQL
and currently contains almost 300,000 termoids for around
230,000 strings. Content has been imported from vari-
ous sources. We have loaded into Termino a list of hu-
man proteins and their assignments to the Gene Ontol-
ogy as produced by the European Bioinformatics Institute
(http://www.ebi.ac.uk/GOA/), as well as gene names and
symbols from the HUGO Nomenclature database, and a
set of gene terms from the UMLS Metathesaurus. Further-
more, we have included several gazetteer lists containing
terms in the fields of molecular biology and pharmacol-
ogy that were assembled for previous information extrac-
tion projects in our NLP group.

A web services (SOAP) API to the database is un-
der development. We plan to make the resource avail-
able to researchers as a web service or in downloadable
form.5 The compiler to construct finite state recognizers

5Users may have to sign license agreements with third parties

STRINGS

string str id
thyroid str12
thyroid disfunction str15
Graves’ disease str25

TERMOID STRINGS

trm id str id
trm1 str12
trm2 str12
trm3 str15
trm4 str25

’ trm4disease

thyroid

Graves

trm3
trm2
trm1

disfunction

Figure 2: Sample terminological database and finite state term recognizer

from the database is fully implemented, tested and inte-
grated into AMBIT, our natural language processing plat-
form for biomedical text (Gaizauskas et al., 2003).

6. Conclusions & Future Work
Dealing with terminology is an essential step in natural

language processing in technical domains. In this paper we
have described the design of Termino, a large scale termi-
nology resource for biomedical language processing.

Termino includes a relational database which is de-
signed to store a large number of terms together with com-
plex, heterogeneous information about these terms, such as
morpho-syntactic information, links to concepts in ontolo-
gies, and other kinds of annotations. The database is also
designed to be extensible: it is easy to include terms and
links to outside biological databases and ontologies. Term
look-up in text is done via finite state machines that are
compiled from the contents of the database. This approach
allows the database to be very rich without sacrificing speed
at look-up time. These three features make Termino a flex-
ible tool for inclusion in a biomedical text processing sys-
tem.

As mentioned in section 2, Termino is intended to func-
tion within a more comprehensive term processing system.
In order to establish what further term processing compo-
nents would work most productively with Termino in a full
term processing system, we have started exploring the per-
formance of our current system by applying it to the task
of gene and protein name identification in MEDLINE ab-
stracts. As was to be expected, lexical look-up in Termino
without further term processing generates a considerable
number of false positives and false negatives. False posi-
tives mainly arise from terms in Termino that match sub-
terms of compound gene and protein terms occurring in
abstracts without the full terms being present in Termino,
and from gene and protein terms in Termino which are also
common English words. False negatives occur because of
terms in text that do not appear in any of the terminological
resources loaded into Termino, or result from terms in text
that are present in Termino but in a variant form.

These findings can be addressed in various ways. For
example, coverage of multi-token terms can be extended
by using term grammars, whose rules describe how larger
terms can be built from smaller terms. We found that the
use of a limited, manually created term grammar for protein
names had a significant positive effect on performance for
the task described above. We will explore this approach fur-
ther by considering methods for inducing term grammars

in order to be able to use restricted resources that have been inte-
grated into Termino.

from compound terms in term sources such as the UMLS
Metathesaurus. The number of false positives can be re-
duced by adding a component for filtering out incorrectly
recognized terms based on their orthographic features –
technical terms are often be distinguished from common
words by deviant capitalization – or contextual information.

7. References
Fukuda, K., A. Tamura, T. Tsunoda, and T. Takagi,

1998. Toward information extraction: Identifying pro-
tein names from biological papers. In Proc. Pacific Sym-
posium on Biocomputing.

Gaizauskas, R., M. Hepple, N. Davis, Y. Guo, H. Harkema,
A. Roberts, and I. Roberts, 2003. AMBIT: Acquiring
medical and biological information from text. In S. Cox
(ed.), Proc. UK e-Science All Hands Meeting 2003, Not-
tingham, UK.

Humphreys, K., G. Demetriou, and R. Gaizauskas, 2000.
Two applications of information extraction to biological
science journal articles: Enzyme interactions and protein
structures. In Proc. Pacific Symposium on Biocomputing.

Humphreys, L., D.A.B. Lindberg, H.M. Schoolman, and
G.O. Barnett, 1998. The Unified Medical Language Sys-
tem: An informatics research collaboration. Journal of
the American Medical Informatics Association, 1(5).

Kim, J. D. and J. Tsujii, 2002. Corpus-based approach to
biological entity recognition. In Proc. 2nd Meeting Spe-
cial Interest Group on Text Data Mining, ISMB 2002.

Online Mendelian Inheritance in Man, OMIM (TM), 2000.
McKusick-Nathans Institute for Genetic Medicine,
Johns Hopkins University (Baltimore, MD) and Na-
tional Center for Biotechnology Information, Na-
tional Library of Medicine (Bethesda, MD). http:
//www.ncbi.nlm.nih.gov/omim/.

Pustejovsky, J., J. Castaño, R. Saurı́, A. Rumshisky,
J. Zhang, and W. Luo, 2002. Medstract: Creating large-
scale information servers for biomedical libraries. In
Proc. Workshop on NLP in the Biomedical Domain, As-
sociation for Computational Linguistics.

Rindflesch, C.T., J.V. Rajan, and L. Hunter, 2000. Ex-
tracting molecular binding relationships from biomedical
text. In Proc. 6th Applied Natural Language Processing
Conference, North American chapter of the Association
for Computational Linguistics.

The Gene Ontology Consortium, 2001. Creating the
gene ontology resource: Design and implementation.
Genome Research, 11(8).

Thomas, J., D. Milward, C. Ouzounis, and S. Pulman,
2000. Automatic extraction of protein interactions from
scientific abstracts. In Proc. Pacific Symposium on Bio-
computing.

