Coreference Resolution in a Multilingual Information Extraction System

Saliha Azzam, Kevin Humphreys and Robert Gaizauskas

{s.azzam,k.humphreys,r.gaizauskas}@dcs.shef.ac.uk

Department of Computer Science
University of Sheffield
Regent Court, 211 Portobello Street
Sheffield S1 4DP UK

Abstract

We present in this paper the coreference mechanism implemented in the M-LaSIE system, a prototype multilingual Information Extraction (IE) system. We describe an experiment in which texts from a parallel French/English corpus were marked up manually and processed by the system following the MUC coreference annotation scheme. This experiment allows us to assess the applicability of the MUC annotation scheme to a non-English language, to make several observations about differences in coreference behaviour in English and French, and to assess in a tentative way the cross-language portability of the M-LaSIE approach to coreference resolution.

1. Introduction

The M-LaSIE system (?) is a prototype multilingual Information Extraction (IE) system with a coreference mechanism which can conform to the MUC coreference task specification (?: ?). Unlike many IE systems that skim texts and use large collections of shallow, domain-specific patterns and heuristics to fill in templates, M-LaSIE attempts a fuller text analysis, first translating individual sentences into a quasi-logical form (QLF), and then constructing a weak discourse model of the entire text. Underpinning the system is a language independent ‘domain model’, represented as a semantic net, which is extended during the processing of a text by adding the classes and instances described in that text. The coreference mechanism is of central importance in M-LaSIE, both for integrating the QLF representations of successive sentences into the discourse model and for allowing domain and world knowledge to be brought to bear in ‘gluing’ together the multiple fragments of QLF produced for single sentences by the system’s robust but partial parser.

So far M-LaSIE can process texts in English and French only, though work is underway to develop Spanish and German versions of the system, as part of the EU AVENTINUS project (?:). A small corpus of parallel French/English newspaper articles in the (MUC-6) domain of management succession events has been used in the development of M-LaSIE. In this paper we discuss recent investigations concerning the language (in)dependency of the coreference mechanism as revealed by experimentation with this corpus. Following an initial overview of M-LaSIE and its approach to coreference resolution, we describe those aspects of the approach that have needed modification in moving from English to French. We then describe an experiment in which texts from the parallel corpus were marked up following the MUC coreference annotation scheme. This experiment allows us to assess the applicability of the MUC annotation scheme to a non-English language, to make some observations about differences in coreference behaviour in English and French, and to assess in a tentative way the cross-language portability of our approach to coreference resolution.

2. M-LaSIE Overview

The prototype multilingual IE system M-LaSIE has been derived from the English-only LaSIE system (?: ?). LaSIE was designed as a general purpose IE research system, geared towards, but not solely restricted to, carrying out the English language tasks specified in MUC-6 and MUC-7: named entity recognition, coreference resolution, template element filling, template relation filling and scenario template filling (see ?: ?) for details of the tasks). In addition, the system can generate a brief natural language (NL) summary of any scenario templates it has filled from the text. Both LaSIE and M-LaSIE have been implemented within GATE, the General Architecture for Text Engineering (?:) which facilitates modular development, integration and reuse of language processing components.

The LaSIE system is a pipelined architecture which processes a text sentence by sentence. It consists of three principal processing stages: lexical preprocessing, parsing plus semantic interpretation, and discourse interpretation. The overall contributions of these stages may be briefly described as follows:

- **Lexical preprocessing** reads and tokenises the raw input text, tags the tokens with parts-of-speech, performs morphological analysis, and performs multi-word matching against lists of known proper names;
- **Parsing** does two pass chart parsing, pass one with a special named entity grammar, and pass two with a general phrasal grammar. A ‘best parse’ is then selected, which may be only a partial parse, and a predicate-argument representation, or quasi-logical form (QLF), of each sentence is constructed compositionally;
- **Discourse interpretation** adds the QLF representation to a semantic net, which encodes the system’s do-
main model as a hierarchy of concepts. Additional
information presupposed by the input is also added to
the model, then coreference resolution is performed
between new and old instances. Information consequent
upon the input is then added, resulting in an updated discourse model.

When an entire text has been processed, the result is a single,
inTEGRATED discourse model. Templates for specific IE tasks
and the NL summary are generated directly from this model.

M-LaSIE (pictured in Figure 1) is a relatively straight-
forward elaboration of LaSIE. The lexical preprocessing
and parsing stages are necessarily language-specific, since
separate languages are morphologically and syntactically
distinct, though the same algorithms may be used for sep-
ARATE languages (e.g., trainable part-of-speech taggers, chart
parsers). The target representation in the discourse model
is, however, intended to be language independent. While
this was meant in principle to be true of LaSIE, the devel-
opment of M-LaSIE has lead us to see more clearly where
language dependencies were in fact built into the repres-
entation and has helped us to correct these. Further it has
-enabled us to see to what extent algorithms that work on
this language independent representation of the discourse,
such as the coreference mechanism, carry across languages.

The QLF output by each language-specific parser marks
the point where the language independent representation begins to emerge, so we proceed by describing it in more
detail.

2.1. QLF

Semantic interpretations are assigned to each sentence
in a text during parsing using what is essentially a clas-
cial compositional approach – each phrase structure rule
has a corresponding semantic rule which specifies how a
semantic representation is to be built up. The result is a
quasi-logical form or QLF, much cruder than that used by
?), but sharing the characteristics of retaining various prox-
imities to the surface form and of postponing some disam-
biguation, e.g., prepositional phrase and relative clause at-
tachments, full analysis of quantifier scope and word sense
disambiguation.

Syntactically, QLF expressions are simply conjunctions
of first order logical terms. The predicates in the QLF rep-
 resentation are either derived from the appropriate lexical
morphological roots of head words, or come from a closed
class of relational predicates that express modification or
semantic role relations. To be more specific:

1. NPs lead to the introduction of a unary predicate whose
functor is the morphological root of the head of the NP and whose argument is a unique index which serves
as an identifier for the entity referred to – e.g. company
will map to something like company(e22).

(a) Determiners such as the, some and many lead
to the introduction of a det relation whose first argument is the index introduced by the head
noun and whose second argument is the actual
determiner. E.g. the company becomes
company(e22), det(e22, the).

(b) Cardinal quantifiers such as three, 10 million
lead to the introduction of a count relation. E.g.
three companies becomes
company(e22), count(e22, 3).

(c) Adjectives such as big and old are treated in the
same way as determiners, by introducing an adj
relation with the adjective itself as an argument.
E.g. big company becomes
company(e22), adj(e22, big).

(d) Noun modifiers introduce new indices which
are treated as the second argument to a
qual relation, so that, e.g. computer company becomes
computer(e21), company(e22), qual(e22, e21).

2. VPs lead to the introduction of a unary predicate whose
functor is the morphological root of the head of the VP and whose argument is a unique index which serves
as an identifier for the event referred to – e.g. hired
will map to something like hire(e34), time(e34, past) 1.

3. Where complement structure has been recognised in
the parser this is recorded in the QLF representa-
tion using binary relations of the form lsubj(e34, e22)
(for logical subject), lobj(e34, e25) (for logical object)
and, in the case of prepositional phrase complements, prep(e34, e29) (where prep is the actual preposition,
e.g. beside(e34, e29)).

1This treatment of VPs is in the tradition of (?).
The non-lexically derived predicates, i.e. the grammatical relation predicates such as lsubj, lobj, adj, qual, det, etc., are language independent, though whether all of them are likely to be utilised in each language and what the full set is is not known. The lexically derived predicates are clearly language dependent, and are mapped onto language-independent ‘concept’ nodes in the discourse model as the first stage in discourse interpretation.

2.2. The Discourse Model

The discourse model is constructed by integrating the QLF of successive sentences into a pre-existing domain-specific semantic net. This net, which we refer to as an ontology, is represented as a hierarchically organised directed graph of ‘concept’ nodes connected by isa links or instance links, depending on whether the subordinate node is a subclass or an instance of a dominating node. Each node may have associated with it an attribute-value structure which can be inherited down the graph.

At the highest level, the hierarchy divides into object, event, and property nodes. Instances of unary predicates in the incoming QLF are generally added beneath the object node if they are nominal and beneath the event node if verbal, as indicated by the presence of time or aspect information. Event nominalizations, if recognised as such, are added beneath the event node. Relational (always binary) predicates in the QLF are added to the attribute-value structures of any instances referenced in them.

The semantic net that exists prior to the processing of any text reflects prior encoding of conceptual and world knowledge and may be as rich or impoverished as the IE application designer chooses. If an incoming predicate (e.g. company(e9)) is already represented by a node in the semantic net, then the new instance is recorded beneath that node; if not, a new class node is added directly beneath the object or event node and the instance placed there.

One special object is the text object which records information about the text. In particular it records the division of the text into sections and sentences and records in which sentence and in what order within the sentence each instance index was introduced. This information is later used by the coreference mechanism to implement recency constraints on coreference between surface referring expressions and to direct hypothesis-driven resolution of prepositional phrase, relative clause, and complement attachment ambiguities.

This representation for discourse modelling is intended to be language independent. The nodes in the semantic net are not language specific (though they may correspond to concepts which are lexicalised only in a particular language) and neither is the text representation. However, the processes which map into and out of the discourse representation and which manipulate it need to make use of language specific information. A lexeme-to-concept mapping at the initial stage of adding the QLF to the semantic net means source language lexical dependencies are left behind for those words/concepts which are recorded in the mapping table, but means that such a mapping table needs to be constructed for each language. This mechanism is crude and in particular does not address the well-known problems of word sense ambiguity (though such ambiguities are rare in limited domain IE applications) and lexical gaps. However, these problems do not invalidate the basic model and more sophisticated solutions can be incorporated into our framework as they emerge. The converse problems arise on mapping out of the discourse representation into NL; again, these are well-known problems in multilingual NL generation and general solutions can be applied in this context.

Of more interest is the question of whether any processing which is carried out solely on the discourse representation itself is language dependent, and if so whether the processing apparatus can be parameterised so as to make portability across languages possible. The key process of concern here is coreference resolution.

3. Coreference Resolution

3.1. The Base Algorithm

After the QLF representation of a sentence has been added to the discourse model, all new indices (those introduced by that sentence) are compared with other indices in the model to determine whether any pair can be merged, representing a coreference in the text. The comparison of indices is carried out in several stages:

1. new indices with proper name attributes are compared with all existing indices with proper name attributes;
2. all new indices are compared with each other (intrasentential coreference resolution);
3. new indices introduced by pronouns are compared with existing indices from the current paragraph, and then each previous paragraph in turn until an antecedent is found;
4. other new indices are compared with all existing indices in the model.

Each comparison involves first determining if the indices’ classes lie on the same branch in the ontology (type-compatibility). If not, then the indices are not considered further for coreference. If they are on the same branch then the attributes of the indices are compared to ensure there are no conflicts (attribute-compatibility). Certain attributes, such as animate, are defined in the ontology as taking single, fixed values for a particular index and so indices with conflicting values for these attributes cannot be the same. If such conflicts are discovered then the comparison is abandoned.

If no attribute conflicts are found between two indices, a similarity score is calculated based on the number of common attributes and on a semantic distance measure, determined simply in terms of the number of nodes on the path in the semantic graph between them. After a newly input index has been compared with all others in a particular comparison set, it, together with its attributes, is merged in the discourse model with the index with the highest similarity score (if any score).
There is nothing language specific in this base algorithm since it operates solely on the language independent discourse representation. For example, consider the example of definite noun phrases, i.e, NPs with a definite determiner. In the following French text:

Lafarge Corporation est l’un des principaux fournisseurs de ciment, de béton, de granulats et d’autres matériaux de construction pour le secteur résidentiel, commercial, et des travaux publics en Amérique du Nord. La Société exploite actuellement 14 cimenteries et environ 400 opérations de matériaux de construction au Canada et aux États-Unis.

and its English translation:

Lafarge Corporation is one of North America’s largest producer of cement, concrete, aggregates and other construction products for residential, commercial, institutional and public works construction. The company operates 14 cement plants and approximately 400 construction materials operations in the U.S. and Canada.

the initial definite noun phrases of the second sentence – La Société and The company – both give rise to an instance of the same concept in the domain model, company, with the property ‘definite’, resulting from the determiners la and the respectively. Therefore, the same coreference rules apply to both instances, and give Lafarge Corporation of the previous paragraph as the antecedent.

3.2. A Focus-based Extension

In addition to the base coreference algorithm, we have also experimented with an approach based on Azzam’s proposed extensions (?) to Sidner’s focusing approach (?). This approach is based on the claim that anaphora generally refer to the current discourse focus, or ‘center’, and so modelling changes in focus through a discourse will allow the identification of antecedents for anaphors. So far, we have only applied the approach to pronominal coreference.

The algorithm makes use of several focus registers to represent the current state of a discourse, mainly CF, the current focus register and AF, the actor focus register. At first, the CF is initialised to the theme of the first sentence, the ‘theme’ being either the object of a transitive verb, or the subject of an intransitive or the copula (following ?), and the AF is initialised to the agent of the first sentence. A set of interpretation rules (IRs) applies whenever an anaphor is encountered, proposing potential antecedents from the registers from which one is chosen using other criteria: syntactic, semantic, inferential, etc. The focusing algorithm updates these registers after each simple clause is processed (the clause, as opposed to the sentence, being the processing unit in our system – see (?)), confirming or rejecting the current focus. The main stages in pronominal coreference are the following.

- The class of the pronoun is determined by:

 - its animacy (animate, inanimate, unknown), in turn determined by its surface form and possibly by semantic role information if available (e.g. if the pronoun is the logical subject of a verb which requires an animate subject, such as say);
 - its syntactic type (personal, reflexive, possessive, demonstrative) provided by its lexical entry in the monolingual lexicon.

Note that a pronoun and its literal translation in a different language may not be of the same class. For example, the translation of he in French, il, belongs to the class animate: unknown, syntype: personal (since il can be either inanimate or animate), whilst he in English belongs to the more specific class, animate: yes, syntype: personal. Thus, language specific knowledge is required to assign a pronoun to the correct class.

- The interpretation rules (IRs) propose an antecedent taking into account the class of the pronoun and the state of the focus registers. For example, one IR states: if the pronoun is animate and personal it corefers with the current AF. The IRs are language independent as they do not make use of language specific knowledge. They are expressed in terms of pronoun classes and focus register states only.

- Antecedents proposed by the IRs are accepted or rejected based on their semantic type and feature compatibility, using M-LaSIE’s base coreference mechanism which relies on semantic and attribute value similarity scores.

- Finally, the focusing rules take into account the results of the resolution to decide whether the focus remains the same or changes. These rules apply only to the registers and are therefore completely language independent. An example is: if a pronoun in a theme position corefers with the current focus, keep the current focus.

4. Corpus Annotation for Coreference

We use the MUC annotation scheme for coreference relations, as defined in the MUC-6 Coreference Task Definition v2.3 (?) and slightly revised for MUC-7. It is important to note that this definition in no way purports to exhaustively describe the coreference phenomena in natural language, that it is concerned primarily with a certain sort of text – newswire articles, and that some arbitrary decisions were taken to allow for automatic scoring in MUC. The following is a synopsis of the core parts of the MUC definition, borrowing heavily from (?).

4.1. The Annotation Scheme

Coreferential expressions are annotated by adding SGML tags into the text. Given an antecedent A and an anaphor B,
where both A and B are strings in the text, the basic coreference annotation has the form

```
<COREF ID="100"> A </COREF> ...
<COREF ID="101" TYPE="IDENT" REF="100"> B </COREF>
```

The ID attribute is a unique identifier for each string in a coreference relation, and the REF attribute indicates which string is coreferential with the one which it tags. The TYPE attribute serves to indicate the relationship between anaphor and antecedent, with the value IDENT indicating identity, which, for the MUC task, is the only relationship to be marked.

An optional MIN attribute is also used to identify the minimum string that would be accepted by the scoring algorithm – either the head of the phrase or a named entity. Full credit is given for any string including at least the MIN string and at most the full string. This attempts to decouple the coreference task from the task of accurately parsing noun phrases.

4.2. Definition of the Task

Coreference relations are only marked between strings of certain classes of nouns, noun phrases, and pronouns, known as markables, and only if the string with which they corefer is also markable (so, e.g., a pronoun referring to a clause would not be markable).

Markables include:

- names and named entities (as defined in the MUC named entity task) – e.g. "Galactic Enterprises Inc.",
- definite noun phrases – e.g. "the company",
- conjoined noun phrases – e.g. in *The boys and girls* enjoyed *their* breakfast, the starred strings should be marked as coreferential.
- present participles modified by nouns or adjectives – e.g. "deficit financing";
- pronouns (personal, demonstrative, possessive and reflexive forms) – e.g. *He* shot *himself* with *his* revolver.
- ‘bare’ nouns occurring as pronomial modifiers – e.g. Sheffield’s production of *steel* has dropped due to foreign competition in the *steel* industry.

Examples of non-markables are:

- names embedded in other names – e.g. “Kent” in The Duchess of Kent
- gerunds – e.g. Leaping over tall buildings
- implicit pronouns – e.g. in John posted the letter and walked home.
 the implicit subject of “walked” should not be linked to “John” by marking an empty string.

Given the definition of markable, the task definition identifies a set of coreference relationships to annotate. These are:

1. **basic coreference** Two markables that refer to the same object, set or activity.
2. **bound anaphors** Noun phrases and anaphors bound by them even if they are not coreferential in the usual sense, e.g.
 "Every student* discovered *their* grades.
3. **apposition** Appositional phrases in which both noun phrases are definite and which are explicitly marked via overt punctuation, e.g.
 Tony Blair, *the Prime Minister*, ...
 but not
 Bloggs, *an old friend of mine*, ...
 Treasury spokesman *Jones* ...
4. **predicate nominals and time-dependent identity** Predicative nominals, regardless of time, provided they are definite, e.g.
 Blair is *Prime Minister of Great Britain*.
 Major was *Prime Minister of Great Britain*.
 are both marked, but not
 Hague might be Prime Minister of Great Britain. Politics is a profession for rogues.
5. **types and tokens** Markables referring to identical sets or types, though the distinction between sets and types is not always easy to define and in cases where there is residual doubt the links are marked as optional. For instance, in
 Producers don’t like to see a hit wine increase in price... *Producers* have seen this market opening up and *they’re* now creating wines that appeal to these people.
 the three starred markables, if taken as referring to the same sets, would not be marked as coreferential since the set of producers who have seen the market opening up is presumably not the same as the set of those who have created new wines in response to this. However, these markables are taken as referring to the same type and hence are marked as coreferential.
6. **functions and values** An expression may refer to the value of a function at certain arguments by mentioning the function and arguments explicitly, by assuming the arguments implicitly from context, or by simply stating the value. In
 GM announced *its third quarter profit*. *It* was *$0.02*.
 all three starred expressions are marked as coreferential. In
 The temperature is *90* ...
 The temperature is rising.
 the first occurrence of “The temperature” refers to the value of the function at arguments whose value is supplied by context and that value is 90. Hence the first two starred expressions are marked as coreferential. The second occurrence of “The temperature” refers to the function (indirectly by reference to its first derivative) and not to its value and hence is not marked as coreferential with either of the earlier two expressions.
7. **metonymy** Metonymy is viewed as type coercion. For example, in
5. Initial Experiments in Multilingual Coreference

As a preliminary experiment in investigating multilingual coreference, we annotated and developed the M-LaSIE system using a small parallel corpus of 20 French and English texts available on the web from Canada NewsWire Ltd. (www.newswire.ca).

The MUC coreference annotation scheme has proved suitable for the French examples processed so far, as illustrated in the following text for the different types of coreference, e.g. apposition, pronouns, proper names, etc.

CHARLOTTE, Caroline du Nord, 13 septembre /CNW/ - <COREF ID="1">United Dominion Industries Ltd.</COREF> (<COREF ID="1">UDI</COREF> aux bourses de Toronto et de New York), <COREF ID="2">John G. Mackay</COREF>, qui est âgé de 56 ans, au poste nouvellement créé de vice-président directeur pour l'<COREF ID="8">Europe</COREF>.

En outre, <COREF ID="4">M. MacKay</COREF> participera à la coordination des entités d'exploitation de <COREF ID="1">UDI</COREF> aux bourses de Toronto et de New York), <COREF ID="2">John G. Mackay</COREF>, qui est âgé de 56 ans, au poste nouvellement créé de vice-président directeur pour l'<COREF ID="8">Europe</COREF>.

The MUC scoring software will therefore be applicable to French as well as English.

5.1. Evaluation of Pronominal Coreference

We now report some initial figures on the performance of the M-LaSIE coreference algorithm on French and English pronouns. For a total of 30 pronouns in 10 French texts the results are as follows, using the standard Information Retrieval metrics of ‘recall’ and ‘precision’.2 The scoring of pronoun coreference was done manually, since the MUC scoring software cannot currently be restricted to a particular class of anaphor. In the following, a pronoun coreference counts as correct if and only if the entities in the coreference chain to which it belongs in the system’s response are a subset of the set of entities in a coreference chain in the key.

For the base M-LaSIE system, extended with the focus-based algorithm for pronouns, pronoun resolution gave:

Recall = 14/30 (47%)
Precision = 14/18 (78%)

The same system on the parallel 10 English texts, with a total of 19 pronouns, gave the following results:

Recall = 12/19 (63%)
Precision = 12/14 (86%)

One of the most apparent distinctions between French and English pronouns is that different information is conveyed by third person singular pronouns in French, i.e. the animacy of the antecedent is not determinable from the pronoun (though the gender is, even for inanimate objects). This can generate ambiguous cases not found in English, as shown in the French and English text below: Elle can corefer to any singular feminine entity in focus, in this case promotion, while for She, promotion will be rejected, as she can only refer to a person, Jane.

"La promotion de Mme Baird est un autre exemple de la façon dont Cognos récompense le travail acharné et le dévouement. Elle a clairement démontré sa capacité de relever les défis, ainsi que de diriger et de motiver une équipe des plus talentueuses", a ajouté M. Zambonini.

"Jane’s promotion is yet another example of how Cognos rewards hard work and dedication," Zambonini continued. "She has clearly demonstrated her ability to rise to challenges, as well as lead and inspire a very talented team."

One solution to this problem is a more general model of verb subcategorisation than that currently used in the LaSIE approach, so that the semantic types of verb roles can be specified. Pronouns in role positions can then be classified more accurately. At present subcategorisation patterns are only included as part of the domain model for specific IE tasks, with no general purpose classification of event types and their roles.

After adding subcategorisation patterns to the M-LaSIE domain model for the particular verbs occurring in the corpus, thus allowing some disambiguation of third person pronouns, three previously incorrect pronouns could now be correctly resolved:

Recall = 17/30 (57%)
Precision = 17/18 (94%)

The addition of subcategorisation patterns has no disambiguating effect on pronoun resolution in the English corpus, though potentially it will allow the use of animate

2Recall is a measure of how many correct (i.e. manually annotated) coreferences a system found, and precision is a measure of how many coreferences that the system proposed were actually correct. For example, suppose there are 100 manually annotated coreference relations in a corpus and a system proposes 75, of which 50 are correct. The system’s recall is then 50/100 or 50% and its precision is 50/75 or 66.7%.
pronouns referring to organisations to be distinguished, i.e. to allow type coercion.

However, type coercion, or metonymy, is a general problem for both French and English, and accounts for some of the overall missing recall. For example in:

“We believe the company will benefit from their extraordinary talents in each of their respective new assignments,” said Bertrand P. Collomb, Chairman of Lafarge Corp.

declaring the first person animate pronoun we should corefer with Lafarge Corp. but is ruled out in the current coreference mechanism due to conflicts in both type and number.

This example also illustrates the problem of cataphora, i.e. pronouns occurring in the text before their antecedents, which is only partially handled in the current mechanism. The focus-based algorithm looks for antecedents in the current simple clause, but this is disrupted with complex clauses. For example in:

At its recent quarterly meeting, held in Virginia, the Board of Directors of Lafarge Corporation, appointed a new president and CEO, John M. Piccuch.

the algorithm will miss the resolution of its, whose antecedent, Board of Directors of Lafarge Corporation, occurs only in the subsequent clause. The cataphora its would be resolved correctly without the held clause.

This problem occurred more frequently in French texts for the pronoun se, for example in:

Avant de se joindre à Northern Telecom, M. Safarikas a travaillé quelques années chez Ogivar Inc.

where the antecedent M. Safarikas occurs in the subsequent travaillé clause.

Recall in the French texts could also be noticeably improved with a more accurate French grammar, since the current one has only been developed for simple sentences, and handles relative and conjoined clauses poorly.

5.2. Non-pronominal coreference

In the current corpus, there are no noticable differences in M-LaSIE’s resolution of non-pronominal anaphora between French and English. However, one potentially significant distinction occurs for definite determiners. While for both languages definite determiners do not always introduce anaphoric NPs (see, e.g. ?), the class of non-anaphoric NPs introduced by definite determiners differs for the two languages. This is illustrated in the example below with the determiner la in de la recherche, while in the English version this phenomenon does not occur, as mass nouns such as research do not need determiners.

She also served as director of marketing research for Ford’s North American Automotive Operations until 1992.

This suggests a more restrictive definition for anaphoric definite noun phrases is required in French to avoid spurious coreference.

6. Conclusion

The experiment carried out for French and English coreference in M-LaSIE illustrated several interesting linguistic phenomenon, mainly those related to the different feature sets of pronouns in each language. The lower precision obtained on the French texts was due to the more ambiguous classifications of French pronouns, forcing less precise resolution rules. We then showed that additional disambiguating information, particularly verb subcategorisation frames, could be incorporated easily to improve the results, without changing the basic coreference approach.

Much of the lost recall in the results is due to the main drawback of the focus-based approach, that is the reliance on a robust input from the parser. Since often only partial parses are available, much information about verb roles, on which the focus-based approach relies, is lost. However, some of this can be recovered through the system’s partial parse extension mechanism, which relies on (the currently limited) domain specific subcategorisation patterns.

Another significant problem is that of unknown words, where, for example, a resolution rule which requires an animate antecedent will fail if entities in the text are not recognised as such. A larger ontology, or methods for extending the ontology automatically, will reduce this problem.

Future work on both incorporating further subcategorisation information and extending the ontology is planned.