
Exploring the Performance of Boolean Retrieval Strategies
for Open Domain Question Answering

Horacio Saggion
saggion@dcs.shef.ac.uk

Robert Gaizauskas
r.gaizauskas@dcs.shef,ac,uk

Mark Hepple
m.hepple@dcs.shef.ac.uk

Ian Roberts
i.roberts@dcs.shef.ac.uk

Mark A. Greenwood
m.greenwood@dcs.shef.ac.uk

Department of Computer Science
University of Sheffield

Regent Court, Portobello Road
Sheffield S1 4DP UK

ABSTRACT
This paper is concerned with systematically exploring and
evaluating a range of possible boolean retrieval strategies for
use within a Question Answering (QA) system. We firstly
set out two evaluation metrics — coverage and recall —
which are specifically designed for use in evaluating retrieval
performance in a QA context, and apply these measure in
quantifying the performance of some standard ranked re-
trieval systems for this purpose. We then consider a series
of possible boolean retrieval strategies for use in QA, which
concern the way that boolean queries are generated from
questions to retrieve passages relevant to finding the ques-
tion’s answer, and evaluate their performance. This line of
research should ultimately lead to an increased understand-
ing of how best to formulate retrieval strategies for QA and
of which component methods can usefully contribute to such
strategies.

Categories and Subject Descriptors
H.3.4 [Information Storage and Retrieval]: Systems
and Software—Performance evaluation (efficiency and ef-
fectiveness)

General Terms
Experimentation, Performance, Measurement

Keywords
Question answering, Information retrieval

1. INTRODUCTION
Open domain question answering (QA), as pursued within
the TREC QA track [9], is the task of finding exact answers
to natural language questions in large text collections. A
common approach to building such systems is to couple an
information retrieval (IR) engine with an answer extraction
(AE) system. The IR system is given a question, or a pre-
processed version of it, as a query and returns a relatively
small set of candidate answer bearing documents from the
large text collection. This document subset is then passed
on to the AE component which processes each text in detail
and attempts to identify the precise answer to the question.

This strategy has the advantage of building on the strengths
of IR systems for efficient indexing and search of large col-
lections, while allowing more processing intensive NLP tech-
niques to be applied to the candidate documents believed
most likely to contain answers. However, it has the con-
sequence of bounding the overall performance of the QA
system by the performance of the IR system: if the IR sys-
tem returns documents none of which contain the question’s
answer, then no amount of sophisticated processing on the
part of the AE component can remedy this.

It follows that failure analysis of any QA system built ac-
cording to the two stage IR-AE strategy must pay due at-
tention to analyzing the performance of the IR system for
the task of question answering. One cannot blindly assume
that the best performing IR system, according to some com-
mon IR benchmark, e.g. the TREC ad hoc track, will be
the best system to use in the QA context.

To investigate the issue of how to optimise the IR compo-
nent of a QA system we have been engaged in a programme
of on-going experimentation with various IR engines and
the development of appropriate measures for evaluating IR
systems in the QA context. In [6] we introduced two new
measures for evaluating IR systems in the QA context and
reported the performance, according to these measures, of
various passage retrieval strategies within a probabilistic IR
model. These experiments showed that for the TREC ques-
tion set considered the best performing system configuration
was one for which at least one answer bearing document was
returned within the top 200 ranks for approximately 85% of
questions

While these results are helpful, several further problems
emerged as a result of this work. First, it underlined the
importance of getting more answer bearing documents re-
turned at lower ranks. Although, an answer bearing docu-
ment was found within the top 200 ranks for 85% of ques-
tions, only 65% had answers within the top 20 ranks. Pro-
cessing more documents per question is costly and like to
lead to less accurate question answering, since there are

more distractors for the AE component. For our own AE
component, we found that overall QA scores went down
when we processed 200 top ranking documents per question
as opposed to 20, even though more of the questions had
answers within the top 200 (in fact rank 20 turned out to
be the optimal setting for our combined IR-AE system [2]).
Secondly, working with a probabilistic model is frustrating
during failure analysis, as the behaviour of such models is
relatively opaque. For the quesion When did the shootings at
Columbine happen?, for example, the state-of-the-art prob-
abilistic engine we used did not return an answer bearing
passage within the top 200 passages, despite the fact that
there is a document which contains the string Families of
10 victims of the April 20, 1999, shootings at Columbine
High School Such behaviour is the result of a complex
interaction between a probablilistic term weighting measure
and characteristics of the specific collection being searched,
something which is virtually impossible to disentangle in any
given case, and unlikely to lead to any generalisable insight.

To address these problems, and because of positive results
from using boolean IR for QA reported by [3, 4], we decided
to carry out experiments using boolean retrieval with var-
ious strategies for deriving boolean queries from questions
and for assembling candidate answer bearing passage sets.
In particular we wanted to know (a) How does a boolean
IR system given a conjunction of question words as a query
perform in terms of returning answer bearing documents?
(b) If a conjunction of question words is too restrictive as a
query (i.e. returns too few documents) how best should the
query be weakened? (c) If the correct documents are not be-
ing returned regardless of which question words are dropped
from the query, how should the query best be expanded to
retrieve more answer bearing documents? – e.g. can disjoin-
ing morphological variants or synonyms of question words
help? (d) What is the effect of varying the match window
size – the number of sentences within which the boolean
query must match? (e) What is the value of looking for an-
swers in a passage broader that the match window? These
questions have been investigated to some extent by others,
but to our knowledge no one has explored them in the QA
context (i) using measures specifically designed to assess the
utility of an IR system for QA (ii) assembled as much em-
pirical evidence as we have here.

The paper is structured as follows. In the next section we
introduce the evaluation measures we use throughout the
paper and describe the data set against which all our ex-
periments have been run. Section 3 presents results from
using several ranked retrieval engines “off-the-shelf” – these
provide baseline figures in the sense of figures which need to
be beaten by any effort to customize IR for QA. In section
4 we describe previous work that has used a boolean search
strategy in a QA context. Section 5 describes the actual ex-
periments we have run and their results. We conclude with
an analysis and discussion of these results.

2. EVALUATING RETRIEVAL FOR QA
2.1 Evaluation Measures
As noted above, one cannot assume that the best perform-
ing IR system as measured by a standard benchmark such
as the TREC ad hoc task will be the best performing sys-
tem for the open domain QA task. In [6] we argue for the

use of two measures which we believe are more helpful in
capturing aspects of IR system performance of relevance in
the QA setting than the conventional metrics of recall and
precision. These metrics are coverage – the proportion of
the question set for which a correct answer can be found
within the top n passages retrieved for each question and
answer redundancy – the average number, per question, of
passages within the top n ranks retrieved which contain a
correct answer (alternatively: how many chances per ques-
tion on average an answer extraction component has to find
an answer). We do not reproduce the arguments for the
merits of these measures here – the reader should refer to
the aforementioned paper for further details. Formally these
measures are defined as follows. Let Q be the question set,
D the document (or passage) collection, AD,q the subset of
D which contains correct answers for q ∈ Q, and RSD,q,n be
the n top-ranked documents (or passages) in D retrieved
by a retrieval system S given question q. The coverage of a
retrieval system S for a question set Q and document collec-
tion D at rank n is defined as in (1). The answer redundancy
of a retrieval system S for a question set Q and document
collection D at rank n is defined as in (2). The actual redun-
dancy

∑
q∈Q |AD,q|/|Q| is the upper bound on the answer

redundancy achievable by any QA system. Comparing an-
swer redundancy with actual redundancy captures the same
information that recall traditionally supplies.

coverageS(Q,D, n) ≡
|{q ∈ Q|RSD,q,n ∩AD,q 6= ∅}|

|Q| (1)

redundancyS(Q,D, n) ≡
∑
q∈Q |R

S
D,q,n ∩AD,q|
|Q| (2)

Note that coverage and redundancy are defined in terms
of rank, so it is not immediately obvious how they can be
applied to boolean retrieval approaches, whose output is in-
herently unranked. There are several ways to address this
issue. One might compute an unranked version of the met-
rics, e.g. with coverage being the proportion of questions for
which a correct answer is found among the results returned
under the given boolean strategy (and analogously, redun-
dancy). This is simple, but has the disadvantage that there
is no easy way to compare coverage and redundancy figures
between boolean and ranked approaches at a given rank
(though one possibility would be to compute the average
number of passages returned per question by a boolean ap-
proach and compare performance with the ranked approach
at the rank equal to this average value).

Alternatively, one can order the results of a boolean-based
strategy post-hoc by applying some ranking function to the
returned passages, allowing the coverage and redundancy
measures to be employed as defined above. Since the number
of results returned for boolean retrieval is highly variable,
the results for a given question may number less than the
rank r for which coverage is being assessed. Consequently,
coverage and redundancy will be computed over at most r
results per question for a boolean approach, and the result-
ing scores should be interpreted in this light when compared
to those for a ranked retrieval approach for which exactly r
results will be provided per question.

In the experiments reported later in the paper, we adopt a
post-hoc ranking approach to enable us to generate cover-
age and redundancy figures for boolean strategies. In one
sense this turns a boolean approach into a ranked retrieval
one. However, by separating question manipulation, search-
ing and result ranking we obtain a more fine-grained instru-
ment for examining how retrieval for QA is working or failing
than by rolling all three into one, as happens if a question is
fed directly to a more conventional ranked retrieval system
of the sort described in Section 3 below.

2.2 Evaluation Dataset
The data used in the experiments reported in the rest of
this paper is that used in the TREC2003 QA track – see
[9] for more details. The text collection is the AQUAINT
corpus consisting of approximately one million documents
drawn from three newswire sources for the period 1998-2000
(about 3.2 gigabytes of text). The TREC 2003 question set
consists of 500 questions of which 413 were factoid questions
and the rest were list questions or definition questions. Here
we work only with the factoid questions. For 51 of these fac-
toid questions no answers were judged by human assessors
to be both correct and supported by a document in the col-
lection. In the following we exclude these questions in the
calculations of coverage and redundancy, meaning that our
question set consists of 362 questions. Excluding nil answer
questions has the positive effect that coverage scores range
from 0 to 100 and are comparable across question sets. How
best to assess IR systems for their contribution to identifying
questions with no answer remains to be addressed.

In order to support automated evaluation, NIST produces
regular expression patterns for each question which match
strings containing the answer. Any string drawn from the
test collection which matches an answer pattern for a ques-
tion is said to be correct according to a lenient criterion for
correctness. If in addition a string matching an answer pat-
tern is drawn from a text which has been judged by a human
assessor to support the answer, then the answer is said to
be correct according to a strict criterion for correctness.

We have estimated the actual redundancy of this text collec-
tion plus question set to be 3.68, based on taking the average
number of texts per question judged by human assessors to
support an answer. This figure is an estimate as a) some
supporting documents may contain more than one occur-
rence of the answer, and b) not every document supporting
an answer is likely to have been found by the assessors.

3. RANKED RETRIEVAL BASELINES
Ranked retrieval approaches to IR have become the pre-
ferred approaches within the IR research community, hav-
ing conclusively established their superiority on a variety
benchmark tasks. Furthermore a number of these systems
are available to researchers “off-the-shelf”. It is natural,
therefore, to assess these systems for the QA task given the
simple but widely used approach of using the question un-
modified as the IR query. These results provide a baseline
against which the results of experiments with boolean ap-
proaches can be compared.

3.1 Okapi

Okapi and especially its bm25 weighting scheme have often
been regarded as representing the state-of-the-art in ranked
retrieval [7]. Our experiments using Okapi relied on its na-
tive passage retrieval support which according to [8] works
as follows. All passaging is done at search-time, not at in-
dex time. Passages are based on paragraph boundaries, and
the experiments in this paper all use passages which are one
paragraph in length. Okapi’s notion of paragraph is not en-
tirely clear – it does not correspond to the embedded SGML
paragraph tags in the corpus – but empirical examination
suggests average paragraph length of about four sentences.
Given a query Okapi first treats each document as a single
passage and considers all documents whose weight exceeds a
threshold set empirically as the weight of the 10,000th docu-
ment. The documents above this threshold are then broken
into passages and each passage is scored. The initially re-
trieved documents are then re-ranked according to the score
of their best passage, and the single best passage from each
document is returned. The performance of Okapi on the
evaluation dataset described in Section 2.2 above is shown
in Table 1.

Table 1: Okapi’s performance over the question set
used in the TREC2003 QA evaluation.

Strict Lenient
Rank coverage redundancy coverage redundancy

1 21.5 0.21 30.1 0.30
5 39.5 0.56 50.8 1.04
10 48.1 0.80 60.5 1.75
20 55.0 1.08 69.3 2.93
30 61.6 1.28 74.3 3.89
50 67.7 1.50 80.4 5.64
100 71.8 1.76 84.3 8.89
200 78.2 2.06 89.8 14.32

3.2 Lucene
Lucene, a freely available open-source IR engine, supports
a boolean query language while performing ranked retrieval
using the standard tf.idf weighting scheme with the cosine
similarity measure1. In our experiments with Lucene the
Aquaint collection is split into passages (using the para-
graph markers in the source documents) and the resulting
paragraphs have stopwords removed and are stemmed us-
ing the Porter stemmer [5] before being indexed. Average
paragraph length is about 1.5 sentences.

Passages are retrieved using queries consisting of all the
question words (Lucene subsequently removes stopwords and
stems remaining terms before accessing the index). The
ranking algorithm prefers short passages containing all the
question words over longer passages and those which do not
contain all the question words. The coverage and redun-
dancy figures obtained using Lucene as described can be
seen in Table 2.

3.3 Z-PRISE
The final ranked retrieval engine considered was Z-PRISE,
a vector space retrieval system freely available from the Na-
tional Institute of Standards and Technology (NIST) [1]. For
this engine, a set of results have been provided by the TREC

1http://jakarta.apache.org/lucene/

Table 2: Lucene’s performance over the question set
used in the TREC2003 QA evaluation.

Strict Lenient
Rank coverage redundancy coverage redundancy

1 11.9 0.11 17.1 0.17
5 29.3 0.42 38.1 0.77
10 40.1 0.68 51.7 1.42
20 47.2 0.91 56.9 2.32
30 55.0 1.14 65.2 3.16
50 60.2 1.39 72.1 4.52
100 67.7 1.82 79.6 7.31
200 72.9 2.19 84.3 11.79

QA organisers, providing the top 1000 document identifiers
retrieved for each question, using the question as the search
query.

One significant difference between any results obtained us-
ing Z-PRISE compared to Okapi and Lucene is that we are
now evaluating whole documents rather than single para-
graph passages (documents in AQUAINT average around
24 sentences). This means that at any given rank an answer
extraction system using the results from Z-PRISE would be
processing a much greater amount of text than one using
the passage-based configuration of Okapi or Lucene as de-
scribed above, which is costly and brings a risk of lower
performance due to the presence of more distractors. On
the other hand, this use of whole documents rather than
single paragraph passages also means that Z-PRISE ought
to have an advantage over Okapi and Lucene with respect to
coverage and redundancy measures because the items being
assessed at each rank are much longer and hence more likely
to be answer bearing. The coverage and redundancy figures
obtained using Z-PRISE can be seen in Table 3.

Table 3: Z-PRISE’s performance over the question
set used in the TREC2003 QA evaluation.

Strict Lenient
Rank coverage redundancy coverage redundancy

1 21.3 0.21 37.6 0.37
5 40.9 0.60 63.5 1.51
10 50.0 0.83 71.8 2.53
20 62.2 1.18 78.5 4.39
30 67.4 1.37 81.5 5.81
50 71.8 1.67 84.5 8.40
100 76.5 1.93 88.4 13.45
200 80.4 2.17 90.9 21.40
500 84.3 2.48 94.8 41.11
1000 87.0 2.73 95.9 68.63

4. BOOLEAN RETRIEVAL FOR QA
Using boolean retrieval in a QA system immediately throws
up some problems that do not arise with a ranked retrieval
approach. With ranked retrieval, we can simply take the
words of the question and use them as a query, and the en-
gine will retrieve a plentiful supply of candidate passages
ranked by their similarity to the question. If, in a simi-
lar fashion, we take the words of the question, perhaps ex-
cluding stop-list items, and conjoin them to form a boolean
query, we may well retrieve no passages at all, as it is quite

likely that this precise combination of terms does not appear
together in any passage of the entire collection. In this case,
we might try to ‘weaken’ the query so that some passages are
retrieved, either by deleting some terms or otherwise gener-
alising them, but there are then choices to be made as to
what operations should be applied to which terms. This sug-
gests that boolean retrieval can only be used in combination
with a strategy for forming retrieval queries from questions,
which may need to be a dynamic, i.e. which sequentially
modifies the query until a promising set of passages are re-
turned. Another problem that arises for a boolean approach
is that a retrieval may yield more passages than can reason-
ably be processed in subsequent answer extraction, but since
the retrieved passages are not ranked it is not immediately
obvious which to choose for further analysis.

Boolean retrieval has previously been used for question an-
swering in the MURAX system of [4] and the Falcon sys-
tem of [3]. Kupiec’s MURAX system, which predates the
TREC QA track, answers general knowledge questions us-
ing Grolier’s on-line encyclopedia as a text corpus in which
to seek answers, which are assumed to be noun phrases. The
retrieval engine used in MURAX allows queries to be spec-
ified as a conjunction of terms, which may be restricted to
appear separated by no more than a specified number of
other terms, and may also be required to appear in a stip-
ulated order. MURAX first analyses the question to locate
noun phrases and main verbs, and forms an initial query
that is quite specific and restrictive, e.g. requiring noun
phrase words to appear in strict order and adjacently. De-
pending on the number of passages returned, new queries
are created to either reduce the number of hits (called nar-
rowing) or increase them (broadening). Narrowing may be
done by adding extra terms from the question (e.g. adding
main verbs to a query based on noun phrase terms), whilst
broadening might be done by loosening order/adjacency re-
quirements on terms, or by dropping words within phrases
or entire phrases. This process stops when the number of
passages returned falls with a specified range or no further
queries can be formulated. The returned passages are then
ranked by their overlap with the initial question.

The Falcon QA system [3] uses the SMART retrieval en-
gine to retrieve passages for answer extraction. The initial
query is formulated using keywords from the question. This
query may then be refined, again with the aim of achieving
a number of retrieved documents that falls within a speci-
fied range. The operations to modify the query include dis-
joining a term with various alternates, i.e. so that a query
subterm w1 is replaced by (w1 OR w2 OR w3), including
(i) morphological alternations (e.g. invent and inventor for
invented), (ii) lexical alternations (e.g. assassin for killer)
and (iii) semantic alternations (e.g. prefer for like).

Inspired by this previous work, we decided to try using a
boolean retrieval approach for one of Sheffield’s entries to
the TREC-2003 QA Track, using an in-house boolean search
engine (MadCow) and with the window size for both match-
ing and for passages returned is individual sentences. The
query formulation approach used in this work is one giv-
ing priority to name expressions found in the question. A
name processing component proposes a boolean query con-
dition for each recognised name based on the the name and

any variants of it known to the system, e.g. recognising Bill
Clinton might produce a condition ((Bill & Clinton) |

(President & Clinton)). If retrieval using name condi-
tions fails to return enough documents, or returns too many,
then further conditions based on the non-name words in a
question may be formulated (either to extend an overly weak
name condition, or to be used in place of any name condi-
tions). Such conditions are built by expanding the non-
stoplist words from the question with known variant forms
(i.e. inflectional variants, e.g. decided/decide, and related
nouns/verbs, e.g. decision/decide), and conjoining the re-
sults together. If this condition is too restrictive, it is weak-
ened by deleting the sub-expression for the question word
having the highest document frequency in the corpus (which
is thereby deemed to be the ‘least informative’ term). This
overall process is continued until enough documents have
been collected, or the process is exhausted, with the results
being ordered firstly by the stage in the sequential process
at which they were retrieved and secondly by overlap with
the question.

Sheffield’s TREC 2003 entry using boolean retrieval pro-
duced results that were slightly better than another Sheffield
entry using Okapi, but this may be due to passage size ef-
fects (passages returned by Okapi were typically more than
single sentences, and so may have contained more ‘distrac-
tor’ material on average). We were not able at the time to do
any significant evaluation of whether boolean retrieval was
returning more answers at lower ranks than Okapi or not.
Neither did we evaluate whether specific characteristics of
the boolean approach (e.g. the role of name identification)
produced better results than other possible formulations.
The experiments described hereafter in this paper begin the
task of systematically exploring such issues.

5. EXPERIMENTS AND RESULTS
The experiments we present here aim at reinforcing our un-
derstanding of query formulation techniques for question
answering. They explore different issues that arise in the
context of boolean search including:

• question analysis: is it worth doing linguistic analysis of
the question? if so, what forms of analysis are useful?

• term expansion: which strategy should be pursued? syn-
onymy expansion or morphological variants?

• query broadening: are measures of a term’s discriminative
power of use when broadening the search query? if so, is
it better to prefer terms of high or low discrimination
when selecting terms to discard?

• passage and matching-window size: is there any benefit
in matching boolean queries in windows that are larger
in size than a single sentence, and is there any benefit
in returning additional text around the window in which
matching is constrained to occur?

• ranking: how should one rank sentences returned in a
boolean environment, so that the best possible sentences
are given first to the answer extraction component?

5.1 Minimal Strategy
The simplest approach for formulating retrieval queries from
questions is to use a conjunction of the question terms: we
call this configuration AllTerms. The question is tokenised
and all stop words and words not in the collection removed.

The remaining terms are conjoined together to form the re-
trieval query. For example, the question How far is it from
Earth to Mars? yields the query (Mars & Earth). The re-
trieval results for such queries are then ranked using a simple
measure of idf-weighted overlap with the question, which we
might formalise as: score(P,Q) =

∑
t∈Q∩P idf(t), where Q

and P represent the set of non-stoplist terms appearing in
the question and passage, respectively. We use this same
simple ranking approach in the experiments that follow, ex-
cept where explicitly stated otherwise.

The results for this configuration are presented in Table 6.
With this configuration 178 out of 362 questions return non-
empty result sets. The low coverage numbers do not come
as a surprise since the requirement that the precise words
of the question should appear together in an answer bearing
passage is clearly too stringent, but they give us a lower
bound for the performance of any other strategy we might
try. Table 4 shows the mean and median for the number
of sentences returned per question. The mean number of
sentences returned per question by rank is given in Table 5,
where each entry is the mean number of sentences an answer
extraction system would have to process for rank k. For
AllTerms run this number is low, e.g. ∼21 sentences for
k = 200. This contrasts clearly with systems that always
return k passages, where answer extraction would have to
process avg size∗k sentences per question, where avg size is
the average passage size.

5.2 Simple Term Expansion
If no sentence matches a given question it may be the case
that replacing query terms by related terms would bring
back matching sentences. We explore two options.

The WordNet configuration explores using synonymy expan-
sion to overcome the keyword-barrier. The query obtained
with configuration AllTerms is used first, but if no match-
ing sentence is found, a broadening technique is applied by
which each term of the query is replaced by a disjunction
of its synonyms. The method is brute-force, in that no
word sense disambiguation is attempted. As an example,
the question What Ridley Scott movie is set in 180 a.d.?
found no matching sentences with configuration AllTerms,
but synonym expansion of the term movie gives (movie | film
| picture | ...), which allows retrieval of a sentence containing
the correct answer. Table 6 gives coverage and redundancy
figures for this run. While 202 question out of 362 have at
least one matching sentence in the collection, little improve-
ment is observed over the AllTerms configuration. Paired
t-test experiments show no differences in coverage between
WordNet and AllTerms.

The MorphVar configuration explores the use of morpholog-
ical variants of query terms. We grouped terms appearing
within the corpus into morphological equivalence classes on
the basis of returning the same stem string when the Porter
stemmer is applied to them. If the original unexpanded
query returns no matching passages, then each query term
is expanded with a disjunction of its morphological variants
for a second retrieval step. This expansion, for example, al-
lows a sentence containing the answer to What color is the
top stripe of the U.S. flag? to be found, when AllTerms
failed, by including the plural stripes as a variant of stripe.

Table 4: Mean and median number of sentences returned per question
AllTerms WNT Morph DropBig DropSmall BigIte SmallIte StrIte StrIteMorph StrIteMorph20

mean 224.41 225.06 224.69 252.63 341.62 948.12 1151.25 338.35 623.17 2179.69
median 0 1 1 3 8 4 17 10 11 216

Table 5: Mean number of sentences per question at each rank up to rank 200
Rank AllTerms WNT Morph DropBig DropSmall BigIte SmallIte StrIte StrIteMorph StrIteMorph20
1 0.43 0.51 0.51 0.66 1.00 0.70 1.00 1.00 1.00 1.00
5 1.74 1.95 1.91 2.62 3.97 2.84 4.07 3.99 4.08 5.00
10 2.89 3.15 3.09 4.32 6.65 4.84 7.05 6.77 6.97 10.00
20 4.74 5.06 4.99 7.03 11.01 8.14 12.11 11.22 11.54 20.00
30 6.31 6.66 6.59 9.27 14.71 10.97 16.45 15.02 15.36 29.46
50 8.92 9.31 9.20 12.90 20.86 15.76 24.03 21.26 21.69 46.26
100 13.80 14.31 14.08 19.79 32.73 25.43 39.44 33.43 33.53 81.04
200 20.69 21.35 20.98 29.48 49.72 40.06 62.00 50.90 50.64 136.82

The coverage and redundancy figures given in Table 6 show
a better improvement than with WordNet. For this configu-
ration, 203 questions out of 362 have at least one matching
sentence in the collection. Paired t-tests show significative
improvent (p < 0.01) in coverage at all ranks when compar-
ing MorphVar with AllTerms.

5.3 Document Frequency Broadening
An alternative approach to query relaxation is the deletion
of question terms from the query. Two basic configurations
were tested here, which both begin with the AllTerms con-
junctive query, and modify this only if no matching passage
is returned. The DropBig configuration discards from the
initial query the question term having highest document fre-
quency, i.e. the least discriminative or informative question
term, whilst the DropSmall configuration discards the ques-
tion term that has lowest document frequency and hence
is most informative. For example, the question How fast
can a king cobra kill you? has (fast & king & cobra &
kill) as its conjunctive query which matches no sentence
in the collection. DropBig modifies this query to (king &
cobra & kill) which retrieves a sentence containing the an-
swer. DropBig finds matching sentences for 273 questions.
The initial query (dissolves & gold) for the question What
dissolves gold? matches no sentence. However, the modi-
fied query (gold) produced by DropSmall is overly general
and retrieves a large number of results, although an answer
bearing passage is included amongst them. DropSmall find
matching sentences for 288 questions.

Discarding a term helps, but many questions still do not
find matching sentences. To address this problem, an itera-
tive process can be used that sequentially deletes terms until
either a matching sentence is found or no more terms can
be deleted. The configurations BigIte and SmallIte perform
such iterative deletion, prefering the highest and lowest doc-
ument frequency term for deletion, respectively. Both con-
figurations produce sentences for all questions. Coverage
and redundancy results in Table 6 show that better perfor-
mance is obtained when the least informative term is pref-
ered for deletion.

Paired t-tests show significative improvent (p < 0.01) in cov-
erage at all ranks when comparing both DropBig and DropS-
mall with AllTerms. However, coverage improvement is only
significative at all ranks (p < 0.01) when comparing BigIte

to DropBig.

5.4 Structure Analysis
As an initial exploration of whether recognising structure
within questions can contribute to effective retrieval for QA,
we investigate an approach StrIte which distinguishes proper
names and quoted expressions from other terms in a ques-
tion, and treats these three groups differently during query
formulation and post-hoc ranking of results. The motiva-
tion for distinguishing these elements is that where a ques-
tion contains a proper name, e.g. What college did Magic
Johnson attend?, one would like to find passages containing
these proper nouns more than anything else. Likewise, if a
question contains a quoted expression, e.g. Who starred in
”The Poseidon Adventure”?, those terms typically represent
a particular entity such as the name of a book or film or a
famous quotation, and one should search for all of them in
candidate passages. We perform a simple analysis of the
question that extracts quoted expressions, and uses POS
tagging to identify proper nouns (i.e. selecting NNPs). For
example, analysis of the question What is Richie’s surname
on “Happy Days”? yields the following three term groups:

Name terms: Richie
Quote terms: Happy Days
Common terms: What is ’s surname on

The StrIte configuration begins with the conjunctive All-
Terms query, and then iteratively drops terms until at least
one matching sentence is returned. This deletion process
selects firstly common terms, then name terms, and then
finally quote terms, and within each of these groups selects
terms in order of increasing informativeness (i.e. decreasing
document frequency order). Using StrIte we find match-
ing sentences for the question What band did the music for
the 1970’s film “Saturday Night Fever”?, which was not the
case with previous strategies. This configuration produces
answer sets for all questions.

Configuration StrIteMorph is a variant of StrIte, where each
term is expanded with its morphological variant before query-
ing the collection. As an example, the question What city
did Duke Ellington live in? finds a matching sentence with
the correct answer after removing term city and expand-
ing term live with its morphological variant lived. Our final
configuration StrIteMorph20 is a variation of StrIteMorph in

Table 6: Strict coverage and redundancy for strategies Allterms, WordNet, MorphVar, DropBig, DropSmall,
BigIte, SmallIte

AllTerms WordNet MorphVar DropBig DropSmall BigIte SmallIte
Rank cov. red. cov. red. cov. red. cov. red. cov. red. cov. red. cov. red.
1 6.0 0.06 6.6 0.07 8.0 0.08 9.3 0.09 7.1 0.07 11.8 0.12 7.1 0.07
5 12.7 0.19 12.9 0.19 14.9 0.21 19.6 0.28 15.4 0.22 25.4 0.35 15.7 0.22
10 14.6 0.25 14.9 0.26 16.8 0.28 22.3 0.36 17.4 0.29 30.6 0.50 17.6 0.30
20 16.8 0.32 17.1 0.32 19.3 0.35 25.1 0.46 19.3 0.35 34.5 0.64 20.1 0.36
30 19.0 0.38 19.0 0.38 21.5 0.41 28.1 0.53 21.8 0.42 38.6 0.74 22.3 0.43
50 20.7 0.45 20.9 0.45 23.4 0.48 30.6 0.61 24.3 0.49 41.9 0.85 24.8 0.51
100 22.1 0.54 22.3 0.54 24.8 0.57 32.6 0.71 26.2 0.60 45.0 0.98 27.6 0.62
200 22.6 0.60 22.9 0.60 25.1 0.62 33.7 0.78 27.0 0.67 46.9 1.09 28.1 0.69
500 22.9 0.71 23.2 0.71 25.4 0.74 34.2 0.91 27.9 0.79 47.5 1.24 29.0 0.83
1000 23.7 0.80 24.0 0.80 26.2 0.83 35.0 1.00 28.7 0.88 49.1 1.37 29.8 0.90

which the broadening technique is applied until at least 20
sentences per question are retrieved or no more relaxation
can be done.

For these three configurations, we applied a different post-
hoc ranking method, which differentially weights question
terms Q in the quote, name and common groups, as in (3).
For the experiments reported here, we stipulated a weight
value w(t) of 1/6 for common terms, 2/6 for name terms,
and 3/6 for quote terms.

score(P,Q) =
∑

t∈Q∩P

w(t) ∗ idf(t) (3)

Coverage and redundacy figures for these three configura-
tions are shown in Table 7. Comparing StrIte to StrIte-
Morph, we see that the effect of including morphological
expansion is mixed, and mostly negative. Looking to the re-
sults for StrIteMorph20, we see that the impact of iterating
until at least 20 matches are returned is clearly negative for
ranks below twenty, but for higher ranks has a quite defi-
nitely positive effect. These results suggest that a promising
line for investigation is iterative retrieval to some minimum
number of results (here 20) combined with more effective re-
ranking of results to get more answer bearing documents at
lower ranks. A specific possibility suggested by comparing
StrIteMorph and StrIteMorph20 is that a ranking strategy
that takes into account the “iteration step” in which a sen-
tence was first found would lead to increased performance.

t-tests show that improvement in coverage is significative
(p < 0.01) at all ranks between StrIte and AllTerms, StrIte-
Morph and AllTerms, and StrIteMorph20 and AllTerms.
While significative differences are only observed between
StrIteMorph20 and StrIte and bewteen StrIteMorph20 and
StrIteMorph.

5.5 Effect of Match Window and Passage Size
An additional issue we have investigated is whether im-
proved coverage is gained by returning sentences additional
to the one in which the query is matched, or by allowing
the query to match in a window larger than just a single
sentence. Initial results for allowing a larger match window
with the StrIteMorph configuration have been negative, but
this issue requires further investigation which we are pursu-
ing, and whose results will be reported in due course.

Initial experiments using the StrIteMorph20 configuration
on matching within a single sentence but including addi-

Table 7: Strict coverage and redundancy for strate-
gies StrIte, StrIteMorph, and StrIteMorph20

StrIte StrIteMorph StrIteMorph20
Rank cov. red. cov. red. cov. red.
1 14.6 0.15 13.8 0.14 9.3 0.09
5 28.4 0.41 28.4 0.39 22.1 0.31
10 35.0 0.57 33.9 0.59 30.1 0.51
20 39.5 0.71 38.1 0.73 38.9 0.77
30 41.9 0.79 41.7 0.81 44.7 0.94
50 45.0 0.89 43.6 0.91 50.2 1.18
100 47.7 1.02 47.5 1.07 56.9 1.49
200 50.0 1.16 50.0 1.17 62.1 1.76
500 51.1 1.29 51.3 1.33 65.1 2.15
1000 51.3 1.40 53.0 1.49 68.5 2.42

tional adjacent sentences as part of the returned passage
have produced positive results. When a sentence either side
of the matching sentence is also returned (when they ex-
ist), the coverage of this configuration goes up to 60.50 at
rank 100, and to 72.93 at rank 1000. The alternative of
returning the two preceding sentences, produces somewhat
less improvement: a coverage of 58.56 at rank 100 and 70.99
at rank 1000. As an example, the question What is the state
with the smallest population? produces no answer bearing
sentences under the standard StrIteMorph20 configuration,
but a sentence immediately preceding one of these match-
ing sentences does provide the correct answer (“Wyoming”);
other such cases exist. Note that these improved coverage
results should be judged in light of the fact that a greater
volume of text will be supplied to the answer extraction
component, which may in fact, as a consequence, return less
correct answers overall, due to the distraction effect of ad-
ditional irrelevant material.

6. DISCUSSION AND FUTURE WORK
In the foregoing we have explored various strategies by which
natural language questions can be converted into boolean
queries and used in conjunction with a boolean retrieval sys-
tem and a post-retrieval ranking function to generate ranked
passage sets for question answering. The goal of this work
was to gain a deeper understanding of how more answer
bearing passages could be returned at higher ranks, and in
smaller passages so as to maximize the number of questions
an answer extraction system is likely to be able to answer
while minimizing the chance of distracting it with irrelevant
text.

A number of valuable results and useful insights have emerged

from this work. First, while the numerically highest cover-
age and redundancy results we have been able to achieve so
far using the boolean strategies described above are still not
as good as the best results achieved by conventional ranked
retrieval approaches, the story here is not entirely negative.
At rank 200 StrIteMorph20 achieves 62.15% coverage, as
compared to 72.9% for Lucene, 78.2% for Okapi, and 80.4%
for Z-PRISE. However, if the amount of text each system
returns at this rank is taken into account then we observe a
direct correlation with coverage: StrIteMorph20 returns on
average around 137 sentences at rank 200, Lucene around
300, Okapi around 800 and Z-PRISE around 4600. Choice
of which of these approaches will lead to overall best sys-
tem performance at question answering will depend on the
ability of any downstream answer extraction component to
avoid distraction in larger text volume.

Some avenues can be eliminated as simply not promising.
For example, the simple minded extension of the basic All-
Terms approach by using WordNet to expand all terms by
all possible synonyms offers negligible advantage. Again,
expanding all terms with morphological variants offers some
advantage, but does not offer a major improvement.

However, most importantly, since the work carried out so far
is by no means the end of the story, a number of promising
avenues of research have been identified as being worthy of
immediate pursuit:

• The post-retrieval ranking of results needs to be explored
in more detail. For example, the weightings adopted for
proper nouns, quoted phrases and other terms in our
later experiments have no empirical basis and so optimal
settings should be determined. Indeed, it remains to be
verified whether the more complicated ranking scheme
used for these experiments is in fact superior to the sim-
pler method used for the earlier experiments. Other
ranking methods should also be explored, such as sim-
ple overlap with the question (used, for example, in the
MURAX system), and methods that use the stage dur-
ing iterative query refinement that a particular result
was first retrieved.

• The most effective window size within which to match
boolean queries deserves further investigation, as does
the potential benefits of returning additional sentences
adjacent to the match window. This matter interacts
with the further issue of the relation between the volume
of text provided to an answer extraction system and that
system’s performance in correctly identifying answers.
If we wish to limit the amount of text analysed, it is
better on balance to go further down a ranked set of
narrower passages, or to provide a smaller number of
wider passages.

• The appropriate way to limit iterative query refinement
should be further explored, for example whether it is
better to have a larger or smaller lower limit for the
number of results returned as the condition for stopping
this iteration. There is also the question of whether we
should apply an upper limit on the iteration, i.e. since if
a very large number of results are returned for a boolean
query, this may indicate that it has been weakened to
the extent of no longer selecting useful passages.

• The impact of various possible term expansion methods

deserves further attention. Although our preliminary re-
sults on using synonym expansion indicated only a small
improvement in performance, these results are tied to
a particular strategy, and so cannot be assumed to be
more generally correct. Generalising queries by term ex-
pansion has obvious advantages over generalisation by
the deletion of terms, i.e. the latter can more easily go
too far and end up returning large number of unhelpful
passages.

Work on some of these topics is currently underway. While
addressing these topics is certainly not guaranteed to lead
to coverage or redundancy results superior to those of more
conventional ranked retrieval systems, these investigations
should eventually lead to a better understanding of how to
tailor retrieval and question manipulation for QA.

7. REFERENCES
[1] D. Dimmick. Guide to Z39.50/PRISE 2.0: Its

Installation, Use, & Modification. http://www.itl.
nist.gov/iaui/894.02/works/papers/zp2/zp2.html,
2000.

[2] R. Gaizauskas, M. A. Greenwood, M. Hepple,
I. Roberts, H. Saggion, and M. Sargaison. The
University of Sheffield’s TREC 2003 Q&A
Experiments. In Proceedings of the 12th Text REtrieval
Conference, 2003.

[3] S. Harabagiu, D. Moldovan, M. Paşca, R. Mihalcea,
M. Surdeanu, R. Bunescu, R. Gı̂rju, V. Rus, and
P. Morǎrescu. FALCON: Boosting Knowledge for
Answer Engines. In Proceedings of the 9th Text
REtrieval Conference, 2000.

[4] J. Kupiec. MURAX: A Robust Linguistic Approach for
Question Answering Using an On-Line Encyclopedia.
In Proceedings of the 16th Annual International ACM
SIGIR Conference on Research and Development in
Information Retrieval, pages 181–190, 1993.

[5] M. Porter. An Algorithm for Suffix Stripping. Program,
14(3):130–137, 1980.

[6] I. Roberts and R. Gaizauskas. Evaluating passage
retrieval approaches for question answering. In
Advances in Information Retrieval: Proceedings of the
26th European Conference on Information Retrieval
(ECIR04), number 2997 in LNCS, pages 72–84,
Sunderland, 2004. Springer.

[7] S. Robertson and S. Walker. Okapi/Keenbow at
TREC-8. In Proceedings of the 8th Text REtrieval
Conference, 1999.

[8] S. E. Robertson, S. Walker, S. Jones, M. M.
Hancock-Beaulieu, and M. Gatford. Okapi at TREC-3.
In Proceedings of the 3rd Text REtrieval Conference,
1994.

[9] E. M. Voorhees. Overview of the TREC 2003 Question
Answering Track. In Proceedings of the 12th Text
REtrieval Conference, 2002.

