
The University of Sheffield’s TREC 2003 Q&A Experiments

Robert Gaizauskas, Mark A. Greenwood, Mark Hepple,
Ian Roberts, Horacio Saggion and Matthew Sargaison
r.gaizauskas,m.greenwood,
m.hepple,i.roberts,saggion

}

@dcs.shef.ac.uk

Department of Computer Science
University of Sheffield

1 Introduction
The systems entered by the University of Sheffield in
the question answering track of previous TRECs have
been developments of the system first entered in TREC
8 (Humphreys et al., 1999). Although a range of im-
provements have been made to the system over the last
four years (Scott and Gaizauskas, 2000; Greenwood
et al., 2002), none has resulted in a significant perfor-
mance increase. For this reason it was decided to ap-
proach the TREC 2003 evaluation more as a learning
experience than as a forum in which to promote a par-
ticular approach to QA. We view this as the beginning
of a process that will lead to much fuller appreciation
of how to build more effective QA systems.
Our efforts this year were focussed on a number of

objectives:

1. to understand better how certain key components
of our system architecture, specifically the infor-
mation retrieval (IR) component that feeds the an-
swer extraction component, were performing and
how modifying their behaviour might affect over-
all system performance;

2. to implement a simple baseline system that would
allow for comparison with the more linguistically
motivated system we have entered in the past;

3. to build a dedicated subsystem for the definition
question subtask that was introduced this year;

4. to preprocess the entire AQUAINT corpus to ex-
tract useful information for use by a QA system,
in particular named entities in specific classes.

In the following section we first briefly summarise
our overall system architecture and approach to QA –
largely unchanged from previous years – and then dis-
cuss our work with respect to each of the above four
objectives. With this detail as background, we then
describe the three runs we submitted and review their
results. While the final scores obtained are not high,
they do not reflect the value of what was learned in the
course of preparing for the evaluation, most of which

was learned too late to feed through into in the system
we entered.

2 System Development and
Experimentation

As detailed in our previous years’ TREC submissions,
our core QA system consists of an IR system coupled
to a natural language analysis system. The essence
of the approach is to pass the question unmodified to
the information retrieval (IR) system which uses it as a
query to do passage retrieval against the text collection.
The top ranked passages output from the IR system are
then passed to a modified information extraction (IE)
system. This system first carries out partial, robust
syntactic and semantic analysis of these passages and
of the question (in which a specific “sought entity” is
determined), transducing them both into a predicate-
argument or quasi-logical form (QLF) representation.
In this representation the predicates are, for the most
part, either the unary predicates formed from the mor-
phological roots of nominal or verbal forms in the text
or binary predicates from a closed set of grammatical
relations (e.g. object, subject) or of prepositions
(e.g. in, after).
Given these sentence level “semantic” representa-

tions of candidate answer-bearing passages and of the
question, a discourse interpretation step then creates a
discourse model of each retrieved passage by running
a coreference algorithm against the semantic represen-
tation of successive sentences in the passage, in order
to unify them with the discourse model built for the
passage so far. This results in multiple references to
the same entity across the passage being merged into
a single unified instance. Next, coreference is com-
puted again between the QLF of the question and the
discourse model of the passage, in order to unify com-
mon references.
In these passage+question models, possible answer

entities are identified and scored as follows. First each
sentence in each passage is given a score based on
counting matches of entity types (unary predicates) be-
tween the sentence QLF and the question QLF (simi-

lar to counting noun and verb overlap in word-overlap
approaches). Next each entity from a passage not so
matched with an entity in the question (and hence re-
maining a possible answer) gets a preliminary score ac-
cording to (1) its semantic proximity (in Wordnet) to
the type of the entity sought by the question and (2)
whether or not it stands in a relation R to some other
entity in the sentence in which it occurs which is itself
matched with an entity in the question which stands in
relation R to the sought entity (e.g. an entity in a can-
didate answer passage which is the subject of a verb
that matches a verb in the question whose subject is
the sought entity will have its score boosted). An over-
all score is computed for each entity as a function of
its preliminary score and the score of the sentence in
which it occurs.
Finally, the ranked entity list is post-processed to

merge and boost the scores of multiple occurrences of
the same answer found in multiple passages and the
top scoring answer is then proposed as the answer to
the question.
Overall the intention is that the matching of candi-

date answer entities to the sought entity of the ques-
tion be guided primarily by semantic type similarity
(so “who” questions should have persons proposed as
answers), then by lexeme overlap between question
and answer-bearing sentence, and finally by sharing of
grammatical relations where they can be identified. Re-
dundancy of the answer across the candidate answer
bearing passages (and optionally across external re-
sources such as the Web) is also taken into account.

2.1 Coupling IR and QA

Using an IR system as the first component in a QA sys-
tem to retrieve relevant candidate answer-bearing pas-
sages is an approach widely adopted by TREC partici-
pants. It makes sense as a way of narrowing the collec-
tion size down to something manageable for the more
detailed, and processor intensive, analysis required for
answer extraction. However, in such an architecture
the performance of the IR component cleary bounds the
performance of the overall system.
For the past two TREC QA evaluations in which

we have participated we have used the Okapi sys-
tem (Robertson and Walker, 1999), a probabilistic IR
system which has been evaluated very favourably in
the TREC mainstream IR evaluations. Despite these
favourable evaluations, our analysis of its performance
in the context of QA has shown up a serious prob-
lem. Experiments detailed in (Roberts and Gaizauskas,
2004) suggest that when using the top 20 relevant pas-
sages, answer bearing passages are found for only 66%
of the questions. This figure increases to about 80% if
the top 100 passages are considered and only to 82%

Document Coverage Percentage
Rank Correct
0 0.0% 0.000%
1 18.6% 11.549%
2 25.4% 14.930%
5 37.0% 16.056%
10 46.0% 17.746%
20 54.0% 18.592%
30 57.4% 16.620%
50 61.4% 17.183%
100 66.8% 16.056%
150 68.0% 13.803%
200 69.2% 12.676%

Table 1: Coverage and end-to-end performance when
using Okapi.

for the top 200 passages. Similar results have been
found by Hovy et al (2000), who report that this figure
rises only to 92% considering the top 1000 documents
returned per question by their IR system.
Since in the past we had been considering only the

top 20 passages per question, we were placing an upper
bound of 60% of questions being answered correctly on
our overall system before answer extraction even be-
gan. To address this major issue we pursued two lines
of enquiry this year:

1. How does supplying more documents from lower
down the IR system ranking affect overall QA per-
formance?

2. Can better IR performance, as viewed from a QA
perspective, and better combined IR/QA perfor-
mance be obtained by adopting a more hands-on
approach to IR, e.g. implementing an inverted in-
dex for boolean retrieval, and experimenting with
query formulation from natural language ques-
tions?

2.1.1 Descending the Ranking
Experiments were carried out with the aim of finding

if the increase in coverage (the percentage of questions
for which at least one answer bearing document is re-
turned) obtained by considering more documents im-
proves the end-to-end performance of the question an-
swering system. The top 200 relevant passages were re-
trieved from AQUAINT for 350 of the main track ques-
tions from TREC 20021. Coverage and end-to-end per-
formance was then determined at a number of docu-
ment ranks giving the results shown in Table 1.
It should be clear from the results in Table 1 that

although the best coverage is achieved by considering

1. All of these questions were known to have at least one
correct answer within the collection.

the top 200 relevant passages this does not translate
to better end-to-end performance of the system as this
is clearly achieved using only the top 20 relevant pas-
sages.
Although these results show that using Okapi as the

IR engine yields a relatively low coverage and end-to-
end performance it at least shows that the best results
are obtained when using just twenty relevant passages.
On the one hand these results are pleasing as this is the
configuration we were and will continue to use, now
with some justification. On the other hand, since this
places an upper bound of 60% of less on the correct-
ness of our QA system, it reveals that we must either
change the approach to IR, to get more answer-bearing
passages in the top ranks, or reduce the answer extrac-
tion component’s tendency to get distracted by noise as
it descends the ranking.

2.1.2 Boolean IR with MadCow
To experiment with a more hands-on approach to IR

we implemented a boolean search engine called Mad-
Cow which does word indexing at the sentence level.
That is, each document in the AQUAINT collection
is sentence-split and an inverted index of all words,
minus those in a stoplist, is created which associates
with each word a list of its document plus sentence off-
set occurrences and a count of how many documents
it occurs in across the collection (so-called document
frequency). A basic boolean query language was im-
plemented which supports queries of arbitrarily deeply
nested conjunctions and disjunctions of search terms
(words); negation is not supported at this point as there
has not appeared to be a need for it. When a query is is-
sued all sentences which satisfy the query are returned.
Note that this means that, e.g., a document or even two
adjacent sentences which satisfy the query will not be
returned: the query must be satisfied by a single sen-
tence. This constraint may prove to be too severe, but
it is a principled starting point. Relaxing the match-
ing conditions can straightforwardly be done in further
work.
Given the availability of a boolean search engine,

how can questions best be mapped into queries to max-
imise the number of answer-bearing sentences returned
from the collection? Where a conventional ranked re-
trieval engine is used in a QA system, for example
engines using a probabilistic model (like Okapi) or a
vector-space model, a question can be used directly
as an IR query to retrieve the documents that are to
be analysed for possible answers. More complicated
schemes can be employed, of course, but this simple
approach is both possible and widely used.
For boolean retrieval engines such as MadCow, how-

ever, the task of formulating queries to retrieve doc-
uments relevant to answering some question is non-

trivial. A query formed as a conjunction of the words
in the question (omitting stoplist words, perhaps) will
commonly be too restrictive, returning few or no docu-
ments, whereas a query that is a disjunction of the same
words will commonly retrieve too many. The best ap-
proach for formulating boolean retrieval queries is an
open research topic. In what follows, we will describe
the particular query formulation approach we imple-
mented.
This query formulation approach places particular

importance on the recognition of names within ques-
tions, and knowledge of variant forms for names of the
same person/company, as acquired from the corpus by
the methods described in Sec. 2.4.1. Query formula-
tion operates in two phases, of which the first phase
works with only names recognised within questions,
whilst the second phase uses other, non-name, words
from the question. A preprocessing component is ap-
plied to each question, returning the names identified,
plus any known variants of these names. These alter-
nate forms are used to create a ‘strong’ boolean con-
dition, which succeeds if all the words of any one of
the name variants are found in a document. A ‘weak’
condition is also computed for each name, which is
usually just the final word of the name. For exam-
ple, the system might recognise the name Bill Clinton
and suggest the variant President Clinton, giving rise
to the strong condition: ((Bill & Clinton)
| (President & Clinton)), with the weak
condition being just (Clinton). A range of
search expressions are generated for each question by
conjoining over conditions from the identified names,
where each name may be represented by either its
strong or weak condition, or might be omitted. For ex-
ample, for two names, we will have conditions such as
(str1&str2) and (wk1&str2), but also just (str1) and
(wk2) (giving eight in total, as the entirely null con-
dition is excluded). Retrieval is done for all of these
search expressions, whose ‘specificity’ is reflected in
the size of the passage set returned, i.e. the less pas-
sages retrieved, the more specific the query. Working
through these results in order of decreasing specificity,
the system collects the result passages together (delet-
ing duplicates) until either all results sets have been in-
cluded or adding passages for the next set would make
the collection exceed a specified upper limit of size
(we used a limit of 250 in these experiments). At the
end phase 1, the overall process may terminate if the
collected passages number more than some specified
lower limit of size (we used a limit of 100 in these ex-
periments). If not, phase 2 is initiated.
If phase 1 ended because the passage set for some

name condition N is too large, then phase 2 serves to
elaborate this condition by constructing search condi-

tions W built from non-name words in the question,
i.e. constraints (N & W) are used to documents for
addition to the collection. Otherwise, conditions W
built from non-name words in the question are used on
their own. The conditions W are built by taking non-
stoplist words from the question, which are known to
exist somewhere in the corpus (i.e. have document fre-
quency > 0). For each such word, its known vari-
ant forms are accessed (i.e. inflectional variants, e.g.
decided/decide, and related nouns/verbs, e.g. deci-
sion/decide) are disjoined together, and then the ex-
pressions that result for the different words in the ques-
tion are conjoined together. If the search condition that
results fails to retrieve enough documents, it is weak-
ened by deleting the sub-expression for the question
word having the highest document frequency in the cor-
pus (which is thereby deemed to be the ‘least informa-
tive’ term). This process iterates until either enough
documents have been collected, or the condition can-
not be further weakened (i.e. when it is derived from
only a single word of the question).
At the end of the two phases, the system has a col-

lection of documents from which a maximum of 50
are returned, with a preference being given firstly to
those extracted in phase 1, and secondly those having
greatest overlap with the question. If the system’s col-
lected document set is empty (which might happen if
all searches have retrieved either no documents or more
than the specified upper limit), then the system will fall
back to just using 50 documents from some oversized
set produced at an earlier stage.
Clearly there are many ways in whic this particular

query formulation approach might be varied or refined
and empirical work is required for the further develop-
ment of the approach.

2.2 A Simple Baseline System

For TREC-8 and 9, which required 50 or 250 byte an-
swers, we were able to implement a simple baseline
using Okapi only in which the central 50 or 250 bytes
in the top-ranked passages were returned as an answer.
This is not a sensible baseline for returning single, ex-
act answers, however, so for the past few years we have
not had a baseline system against which we could com-
pare our more complex, linguistically motivated sys-
tem.
To rectify this situation we decided to implement a

simple system that works as follows. First, the ap-
proach starts with the limiting assumption that all ques-
tions can be answered by one or more entities from a
fixed set of semantic types. The entity types which can
be recognised include the standard named entity cat-
egories from the MUC competitions (persons, organi-
zations, locations, times and dates, monetary amounts)

plus a wider class of measures (space, mass, duration,
etc.) and types frequently seen in previous TRECs, as
discussed below in 2.5.1 Clearly this assumption is not
always warranted as in the question “How did Patsy
Cline die?” for which the correct answer is “in a plane
crash” which is an event type and not an entity.
The operation of this simple baseline system is as

follows:

• Question Typing: The expected answer type is de-
termined using a set of hand coded rules which
operate over the words in the sentence. For exam-
ple a question containing the word “who” suggests
that the answer will be of type Person.

• Information Retrieval: Assuming the question can
be typed then the IR approach outlined in Sec-
tion 2.1.1 is used to find the top 20 most relevant
passages; if the question cannot be typed, then the
system simply returns no answer for this question.

• Answer Extraction: All named entities of the cor-
rect type are extracted from the relevant docu-
ments and retained as possible answers unless
they fail one of the following conditions:

– The document from which the current entity
is drawn must contain all the named entities
found in the question, and

– The current entity must have no overlap with
the question.

The remaining entities are then grouped together us-
ing the following equivalence test (Brill et al., 2001):
two answers are said to be equivalent if all of the non-
stopwords in one are present in the other or vice versa.
The most frequently occurring answer group is then
proposed as the answer to the question or if the ques-
tion requires multiple answers then all answers located
are proposed in order of frequency of occurrence2.

2.3 Answering Definition Questions Through
Query Expansion

Definition questions require a different approach to
that used by QA-LaSIE for answering factoid ques-
tions mainly because the questions contain very little
information useful for finding definition-bearing doc-
uments. For example there are 1108 sentences in the
AQUAINT collection which contain the word “aspirin”
most of which do not include a definition. However,
if we can determine from external sources that “anal-
gesic” occurs frequently in sentences defining aspirin

2. The longest realisation of the answer within the group
is used along with the highest ranked document identifier,
which can, on occasions, lead to unsupported answers – 15
of the 450 questions in this evaluation.

then we can reduce the search space to only eight sen-
tences in AQUAINT. The following method is used to
determine the secondary terms to help locate definition
bearing sentences:

• Definiendum Extraction: As the definiendum can
be a complex linguistic unit we rely on a chart
parser to produce a syntactic representation of the
question. The definiendum is then assumed to be
the right most noun phrase (note we assume that
all definiendums will be nouns).

• Pattern Generation: We generate definition
phrases, such as “aspirin is a” and “such as as-
pirin” from a set of fifty “seed” patterns ready for
later processing.

• Secondary Term Extraction: We rely on three ex-
ternal sources for secondary term extraction:

– WordNet (Miller, 1995): All adjectives,
nouns and verbs found in the glosses of the
definiendum are extracted as are the related
hypernyms of the definiendum.

– Britannica: All pages containing the
definiendum are retrieved and the nouns,
verbs and adjectives found in sentences
containing the definiendum are extracted.

– Web: The definition phrases generated ear-
lier are used to locate unique relevant doc-
uments on the web. The nouns, verbs and
adjectives are then extracted from the sen-
tences within these documents which contain
the definiendum.

A combined list of secondary terms, up to a max-
imum of n elements, is then generated as follows:

– all secondary terms found in WordNet (m
terms,m ≤ n),

– a maximum of (n−m)/2 terms from Britan-
nica with a frequency greater than one,

– web terms with a frequency greater than one
are then appended to the list until the maxi-
mum of n is reached.

The order of the list reflects a degree of confidence
we have in the source and also the fact that the
more a term is used in a particular “definition”
context the more we believe it is associated with
the definiendum.

• Query Generation and Passage Retrieval: We have
tried two different approaches to passage retrieval
which necessitate different approaches to query
generation. The approaches are as follows:

– When using the probabilistic IR engine,
Okapi, the search query is composed of the

tokens in the question and the full list of sec-
ondary terms found in the previous stage.
The twenty most relevant passages within
AQUAINT are then retrieved using this query.

– In the case of the MadCow boolean search
engine an iterative procedure is used to gen-
erate the search query. Suppose the term
sought is composed of tokens {mi} (1 ≤ i ≤
k) and the list of secondary terms consists of
tokens {sj} (0 ≤ j ≤ l), then during itera-
tion p the following boolean search is tried
(term conjunction is represented by & and
term disjunction by |):

(m1&m2&...&mk&(s1|s2|...|sp))
If the number of passages returned in itera-
tion p is greater than 20, then the searching
procedure stops. This procedure on the one
hand limits the scope of the main term at each
step by conjoining it with a secondary term
and on the other hand broadens its scope by
disjoining it with additional secondary terms.
In a sense this approach is similar to the nar-
rowing and broadening techniques used in
the MURAX system (Kupiec, 1993). In our
approach, the order in which the secondary
terms are used to expand the query reflects
their association with the main term; thus,
this search procedure is expected to retrieve
good passages.

• Definition Extraction: More than one definition
can be extracted at this stage not only because dif-
ferent fragments cover different aspects of the def-
inition (e.g. “aspirin is a drug” vs. “aspirin is a
blood thinner”) but also because the definiendum
can be ambiguous (i.e. there are seven senses of
“battery” in WordNet). We restrict our analysis of
definitions to the sentence level, as a sentence is
considered definition-bearing if it matches one of
the previously generated patterns or if it contains
the definiendum and at least three secondary terms
(this threshold was arrived at after several experi-
ments on a small training set).
Instead of returning the full sentence as a def-
inition we return the suffix which contains the
definiendum and all secondary terms appearing in
the sentence. This is in a crude attempt to remove
some of the unnecessary information the sentence
may contain.
In an attempt to return the same definition only
once, a vector representation of the definition,
consisting of its terms and term frequencies, is
created. If the current definition is too similar
to any of the previously extracted defintions then

it is discarded. Similarity here is quantified as
the cosine between two vector representations, i.e.
two vectors v1 and v2 are considered similar if
cosine(v1, v2) > threshold (the threshold was
determined through experimentation over a small
training set).

2.4 Corpus Pre-Processing

In previous years QA tracks we brought language pro-
cessing modules to the QA task that were not tailored
in any particular way to the evaluation corpus. Clearly
it makes sense to ensure your tools are able to work
effectively on the evaluation corpus and so to address
this issue we carried out two activities, one to prepro-
cess the corpus to attempt to extract information about
all named entities in the corpus, the other to extend our
POS tagger lexicon by attempting to assign tags to all
words in the corpus not in the lexicon.

2.4.1 Automatically Acquiring Named Entity
Information from AQUAINT

All groupings of two or more consecutive capitalised
word (plus full-stops and the lower-case word ‘of’)
were extracted from the corpus. This list, compris-
ing 14,919,780 multi-word expressions in 2,615,767
distinct forms, ranging from “UnitedStates” to “Prime
Minister Benjamin Netanyahu of Israel”, was used in
developing an experimental automated Named Entity
catalog.
Because of the size of the corpus and the fact that

these groups are lacking in complex grammar, the pro-
cess used was one of simple pattern matching against
key-word list including Titles (‘Mr’, ‘President’, etc),
Company markers (‘Ltd’, ‘AG’, etc), Place markers
(‘Road’, ‘Bridge’, etc), Country and City names (‘Is-
rael’, ‘New York’) and common First names (‘Ben-
jamin’). This initial process identified nearly 800,000
distinct people names, 160,000 institution names and
around 75,000 company names. Random sample anal-
ysis of the results suggest that the name identification
precision and recall are in the region of 0.92 and 0.88
respectively.
A second phase in the process was to automat-

ically group together similarly named people into
equivalence classes. On the basis of probable gen-
der, nickname information (e.g. Bill⇐⇒William),
middle-initial (where present), title similarity (e.g.
Gen⇐⇒General, but not Actress⇐⇒Congressman)
and simple spelling mistakes/deviations in long names
(‘Gennady Zyuganov’⇐⇒‘Gennadi Zyugavov’) the
800,000 people names were clustered down to 674,000
distinct individuals. 25 distinct instances of Bill Clin-
ton’s name were found to be equivalent, ranging from
“Billy Boy Clinton” to “William Milhous Clinton”,

with the titles “President”, “Governor”, “Gov” and (in-
correctly) “Senator”.
One beneficial side affect of this approach was the

amount of ‘extra’ information that was gathered about
individuals on the basis of frequency of associated title
and country keywords. Without further analysis of the
corpus, the list of named people already contains the
correct country of origin and main title/profession of at
least 30,000 members.
The ultimate aim in this work is to arrive at an im-

proved indexing of the corpus in which every distinct
variation on a person or company name is recognised
as the correct unique equivalence class. For this year’s
TREC, however, the process was not fully developed
and so only a simple query expansion was implented
for the MadCow system, as described in Sec. 2.1.2.

2.4.2 Lexicon Improvement for Part-of-Speech
Tagging

During development we noticed that there were a
large number of word types (over 180,000) found in the
AQUAINT corpus which were not in the lexicon used
by our part-of-speech tagger. As a majority of the fur-
ther processing relies, at least in part, on the POS tags
assigned to the words any improvement should be ben-
eficial to the system as a whole as well as improving
the tagger for use in other projects.
The approach taken to deal with these unknown

words was as follows:

• The entire AQUAINT corpus was tokenized and
sentence boundaries were determined.

• The tagger was adapted to tag unknown words
with UNK instead of a default tag, and then the
tagger was run over the sentence split corpus.

• All non-upper case words which were tagged as
UNK were then extracted from the corpus along
with their frequency of occurance.

• The POS tag for these unknown words was de-
termined from the tag assigned in the British Na-
tional Corpus (BNC). Unfortunately the BNC uses
a different tag set to the tagger and so the tags had
to be mapped to PTB tags using a mapping derived
by Steve Abney (1997).

The above approach provides tags for 63633 of the
183648 tokens previously assigned UNK and doubles
the size of the lexicon used by the POS tagger.

2.5 Miscellaneous Further Improvements
2.5.1 Improved Named Entity Recognition
Examination of questions used in the previous TREC

question answering evaluations, as well as questions

from various freely available sources on the web,
showed that the answers to some questions can be
drawn from a closed set of possibilities. For exam-
ple the question ”What is the state flower of Hawaii?”
should have a flower as the answer, however, we can
reduce this to the set of known state flowers (which is
finite) increasing the chance that a question answering
system will choose the right flower as answer. To this
end numerous gazetteer lists of (almost) closed sets of
entities were built including: languages, birthstones,
Greek, Roman and Egyptian Gods, national anthems,
planets, spacecraft, and state flowers, birds, mottos,
trees and nicknames
Further examination of our existing named entity

recogniser showed that it provided very little support
for recognising measurements (especially compound
measurements such as speed - meters per second). This
was rectified and the system can now recognise mea-
surements of distance, mass, time, speed, temperature
and currency plus combinations of these (e.g. 6 foot 6
inches, ten meters per second).
Combining these improvements with those of the

previous section results in named entity recognition
that is better suited to answering questions especially
via the AQUAINT corpus.

2.5.2 Updates to QA-LaSIE
The only major change from the version of QA-

LaSIE described in (Greenwood et al., 2002) was the
way in which questions requiring multiple answers are
handled. The list questions asked in TREC 2002 ex-
plicitly stated the number of answers expected whereas
the questions used for this evaluation do not. As QA-
LaSIE draws its answers from two locations, AQUAINT
and the web, using Google, it simply returns the over-
lap between the two sets of answers. Unfortunately this
can lead to the situation in which no answers are re-
turned for a question, but the guidelines for the evalua-
tion state that at least one answer must be given for each
list question. In these instances we return the string
UNKNOWN ANSWER so as to abide by the guidelines
while still allowing us to easily analyse the output from
the system.

3 Final Evaluation Results
From the development and experimentation detailed
above, we configured three evaluation runs as follows.

shef12okapi This run consisted of using Okapi to
retrieve the relevant documents (Section 2.1.1)
and then using either QA-LaSIE, with the ex-
tended named entity transducer and gazetteer lists,
(Sections 2.4.1 to 2.5.2) or the definition system
(Section 2.3) to extract the possible answers.

shef12madcow This run is identical to
shef12okapi other than the MadCow boolean
search engine (Section 2.1.2) was used to retrieve
the relevant documents instead of Okapi.

shef12simple This run consisted of using Okapi
to retrieve the relevant documents (Section 2.1.1)
and then using either the simple baseline system
(Section 2.2) or the definition system (Section 2.3)
to locate the possible answers.

The results from these three runs can be seen in Table
2. We discuss aspects of each in turn.

3.1 shef12okapi
Of the 413 factoid questions Okapi was able to find
answer bearing passages3 for 198 of them. As 30 of
the questions have NIL as the correct answer then the
system should be able to answer these as well giving a
maximum attainable score of 0.552 (228/413). Unfor-
tunately the official score for this run was only 0.046
(19/413). Part of the reason for such a low score is the
way in which the system selects the answer text, always
favouring the longest realisation, which causes quite a
few correct answers to be classed as inexact – in this
case 27 answer were marked as inexact.
For definition questions the system retrieved re-

sponse sets from the AQUAINT collection for 28 of the
50 definition questions. Of these 28 questions, 22 con-
tained at least one definition nugget all of which con-
tained at least one essential nugget giving a score of
0.230.

3.2 shef12madcow
Of the 413 factoid questions MadCow was able to find
answer bearing passages for 173 of them. As 30 of
the questions have NIL as the correct answer then the
system should be able to answer these as well giv-
ing a maximum attainable score of 0.492 (203/413).
Unfortunately the official score for this run was only
0.063 (26/413). This run suffers the same problem as
shef12okapi with 32 answers being marked as in-
exact.
For definition questions, the system retrieved re-

sponse sets from the AQUAINT collection for 28 of the
50 definition questions. Of these 28 questions, 20 con-
tained at least one definition nugget all but one of which
contained at least one essential nugget.

3.3 shef12simple
If we analyse the output of the intermediate stages
(question typing and information retrieval) then we can

3. A passage is classed as answer bearing if it comes from
a document known to contain the answer and one of the Perl
patterns, kindly supplied by Ken Litkowski, matches the text.

Run Tag Factoid List Definition Combined
shef12madcow 0.063 0.015 0.171 0.078
shef12okapi 0.046 0.033 0.230 0.089
shef12simple 0.138 0.029 0.236 0.135

Table 2: Summary results from our three main task entries.

arrive at a maximum attainable score for the final an-
swer extraction stage.
Of the 413 factoid questions the first stage assigned

an incorrect type to 53 questions, 27 of these were
typed as UNKNOWN so only 26 answers of the wrong
type could actually be returned. In total 146 of the
questions were assigned the UNKNOWN type, so 267
questions were typed – 241 correctly. The system re-
turned NIL for 191 of the questions so the system was
unable to find an answer for 45 of the typed questions.
Of the remaining 241 questions 18 have no known an-
swer leaving 223 documents to which the system could
return a correct non-NIL answer.
Unfortunately the IR stage was only able to locate

answer bearing passages for 131 of the 223 questions
correctly processed by the previous stage which means
that the maximum obtainable score for the whole sys-
tem is 0.317 (131/413). The official score for this run
is 0.138 (57/413) but this contains fifteen correct NIL
responses so we only provided a correct answer for 42
questions giving a score of 0.102 which is 32.2% of the
maximum score.
As the answers proposed by this system are named

entities, very few are marked as inexact (six are marked
as inexact of which only two are missing information)
so counting these as correct answers does very little to
the overall score increasing it to only 0.153 (63/413).
Of the three runs we submitted this run found the

most distinct answers for the list questions – 20 distinct
answers compared with 12 for shef12okapi and 7
for shef12madcow. Unfortuntaely the ability of the
system to locate many distinct answers was offset by
the fact that for each question many answers are pro-
posed dramatically lowering the precision scores and
hence the average F score for the run. For exam-
ple there are seven known answers to question 2346,
“What countries have won the men’s World Cup for
soccer?” for which this run returned 32 answers only
two of which were correct giving a recall of 0.286 but
a precision of only 0.062. Clearly more work needs
to be done to limit the number of answers returned for
questions of this type.
Although the score given in Table 2 for the defini-

tion section of this run is slightly different from that
for the shef12okapi run they are actually identical
submissions so for more details refer to Section 3.1.

4 Conclusions and Future Work

In comparison to our results from previous years, the
performance scores achieved by the three Sheffield sys-
tems this year are somewhat disappointing, although it
is difficult to have a clear view of their merit without
knowing how other systems have also performed this
year. Even so, our experiments have thrown up some
interesting results, which are suggestive of valuable di-
rections for future work, and we shall close with some
comments in this regard.
Firstly, it is striking (perhaps even distressing) to

observe that the ‘baseline’ shef12simple system
has performed better overall, and on factoid ques-
tions in particular, than either shef12madcow or
shef12okapi, the systems which incorporate QA-
LaSIE. Looking more closely at the answers produced
by the systems, we have found that, in contrast to the
short named entity expressions that shef12simple
typically returns, QA-LaSIE tends to return longer an-
swers, corresponding to the longest amongst the al-
ternative descriptions of the same entity brought to-
gether by co-reference resolution. A consequence of
this has been that many more of the answers pro-
duced by QA-LaSIE have been judged inexact than for
shef12simple. If we ignore the distinction between
answers judged inexact and correct, the performance of
the three systems come much more closely into line,
and so we expect that the actual performance of the
shef12madcow or shef12okapi systems could
be improved by modifying QA-LaSIE’s behaviour in
terms of its preference for long or short answers. Even
given these observations, the simple system has per-
formed sufficiently well that the approach appears wor-
thy of further development/refinement.
Secondly, in regard to the issue of retrieval models,

the results obtained using MadCow are better than us-
ing Okapi, even given the highly preliminary version of
query formulation used. Interestingly, the performance
with MadCow is better despite the fact that it returns
answer bearing passages for fewer of the questions than
Okapi. This result may relate to the fact that MadCow
passages are always single sentences, so that the vol-
ume of irrelevant text presented to the answer extrac-
tion system as ‘noise’ may be less. The results suggest
that boolean retrieval is a worthwhile direction for fur-
ther research, both in relation to better question analy-

sis and query formulation, and also regarding what is
the best size of passage for indexation and retrieval.
Thirdly, the results for the definition system look

promising. In future work, we hope to address the
following: general improvement of the definition pat-
terns; relaxation of the filters used for the identifica-
tion of answer-bearing passages; and development of
a syntactic-based technique that prunes a parse tree in
order to extract definition phases from answer-bearing
sentences.
Finally, the work on automatically identifying name

expressions within AQUAINT, and gathering these ex-
pressions into equivalence classes, has considerably
improved our capabilities for processing name expres-
sions. So far, the results of this work have only been
used in the query formulation process for boolean re-
trieval. However, using this approach, we could in-
stead seek to pre-identify all named entities within
AQUAINT, and fold the results of this analysis into the
inverted index created for boolean retrieval. Then, for
example, given a who question, we might restrict re-
trieval to address only those sentences which are known
in advance to contain a person entity. Likewise, hav-
ing identified a name such as President Clinton in the
question, we might use the index to directly access all
sentences known to contain an occurrence of any vari-
ant of this name, rather than just searching for sen-
tences that contain the words of this name and its vari-
ants,

References
Steve Abney, 1997. The SCOL Manual. University of
Tübingen.

Eric Brill, Jimmy Lin, Michele Banko, Susan Dumais,
and Andrew Ng. 2001. Data-Intensive Question An-
swering. In Proceedings of the Tenth Text REtrieval
Conference.

Mark A. Greenwood, Ian Roberts, and Robert
Gaizauskas. 2002. The University of Sheffield
TREC 2002 Q&A System. In Proceedings of the
11th Text REtrieval Conference.

Eduard Hovy, Laurie Gerber, Ulf Hermjakob, Michael
Junk, and Chin-Yew Lin. 2000. Question Answer-
ing in Webclopedia. In Proceedings of the 9th Text
REtrieval Conference.

Kevin Humphreys, Robert Gaizauskas, Mark Hepple,
and Mark Sanderson. 1999. University of Sheffield
TREC-8 Q & A System. In Proceedings of the 8th
Text REtrieval Conference.

Julian Kupiec. 1993. MURAX: A Robust Linguis-
tic Approach for Question Answering Using an On-

Line Encyclopedia. In Research and Development
in Information Retrieval, pages 181–190.

George A. Miller. 1995. WordNet: A Lexical
Database. Communications of the ACM, 38(11):39–
41, November.

Ian Roberts and Robert Gaizauskas. 2004. Evaluating
passage retrieval approaches for question answering.
In Proceedings of 26th European Conference on In-
formation Retrieval. To Appear.

S. Robertson and S. Walker. 1999. Okapi/Keenbow at
TREC-8. In Proceedings of the 8th Text REtrieval
Conference.

Sam Scott and Robert Gaizauskas. 2000. University of
Sheffield TREC-9 Q & A System. In Proceedings of
the 9th Text REtrieval Conference.

