
On the Use of the ‘Pure Data’ Programming Language for

Teaching and Public Outreach in Speech Processing

Roger K. Moore

Speech and Hearing Research Group, University of Sheffield, UK
r.k.moore@dcs.shef.ac.uk

Abstract

Many educational institutions include a course on speech

processing as part of their regular curriculum. Such courses

usually cover basic principles in acoustics, phonetics and

speech signal processing, and they often incorporate practical

lab classes using specialised speech processing toolboxes such

as ‘Praat’. Such toolkits are valuable resources for teaching

and learning, but they often involve scripting solutions based

on prescribed templates and non-real-time processing, and

they do not lend themselves to be used by non-specialists, such

as members of the general public or schoolchildren. This

paper introduces the Pure Data open-source real-time visual

programming language, and presents examples of its use for

teaching and public outreach in speech processing. The ‘Show

& Tell’ session will present ‘live’ examples as well as hands-

on interactive demonstrations to illustrate its value.

Index Terms: speech processing, pure data, real-time,

teaching, public outreach

1. Introduction

Many educational institutions around the world include a

course on speech processing as part of their

undergraduate/postgraduate curriculum. Whether it is within a

Phonetics, Engineering or Computer Science Department,

such courses usually cover basic principles in acoustics,

phonetics and speech signal processing, and they often

incorporate practical lab classes using specialised speech

processing toolboxes (e.g. Praat [1], VOICEBOX [2] or SFS

[3]), often in conjunction with a standard scientific

programming environment such as MATLAB®.

Such toolkits are valuable resources for teaching and

learning, but they often involve scripting solutions based on

prescribed templates and non-real-time processing. The latter

is particularly restrictive when it comes to explaining a

particular algorithm’s dynamic response to an incoming signal

or for generating ‘live’ output that can be controlled ‘on the

fly’. Such toolboxes are also highly technical, and they do not

lend themselves to be used by non-specialists, such as

members of the general public or schoolchildren.

For these reasons, in 2009 the long established Speech

Processing course in the Computer Science Department at the

University of Sheffield was redesigned to incorporate

examples, live demonstrations, lab classes and programming

assignments using the Pure Data programming language [4].

Since then, over 350 students (at 3rd-year undergraduate and

Master’s level) have taken the course, and have provided

positive feedback on the new more interactive approach. In

addition, some of the code was re-purposed to create hands-on

exhibits for a number of public outreach events (organised by

CREST – the ‘Creative Speech Technology Network’ [5]

funded by the UK Engineering and Physical Sciences

Research Council.

This paper introduces the main features of the Pure Data

language, highlights its advantages for real-time speech

processing and presents examples of its use in teaching and

public outreach. A number of real-time examples will be

shown ‘live’ during the ‘Show & Tell’ session, including

hands-on interactive demonstrations.

2. Pure Data (Pd)

Pure Data - known as ‘Pd’ - is an open-source real-time visual

programming language that is designed to operate on audio,

graphical and video signals [4]. Originally authored by Miller

Puckette at IRCAM in Paris, Pd is a free alternative to MaxTM

– a programming language popular in the professional music

industry [6]. Pd is available for Windows, Mac OSX and

GNU/Linux platforms, and Pd-extended is the recommended

version to download.

Pd is an object-oriented dataflow programming language

in which functions are created graphically and which run

immediately they are instantiated. A Pd program - known as a

‘patch’ - consists of objects, connections and data. Objects are

functions such as ‘print’, ‘+’, ‘min’ etc. and they connect

with other objects via inlets and outlets. Connections between

objects carry data; thin connections carry messages, and thick

connections carry audio. Pd also provides various GUI

objects, such as sliders, graphs and buttons. Figure 1

illustrates a Pd patch for real-time simulation of the larynx.

Figure 1: Example of a Pd ‘patch’ that simulates the

larynx in real-time. The three inlets take values from

a GUI patch for fundamental frequency (Fx), voice

quality (VQ) and degree of voicing (V/UV). The

output is a ‘live’ audio signal.

One of the main reasons to choose Pd as a programming

language is that it makes it extremely easy to deal with real-

time audio. Not only can audio be input and processed in real-

time, but audio can also be generated and output in real-time –

all at the same time. It is for this reason that Pd is very often

used to interface with MIDI devices and to synthesise

electronic music. Andy Farnell’s textbook - Designing Sound

- is an excellent resource that covers a wide range of Pd-based

applications in what he calls ‘procedural audio’ (especially

useful for generating rich soundscapes in computer games) [7].

As well as real-time processing, Pd objects are pre-

compiled. Hence a Pd program is actually running while it is

being edited. This means that, not only is debugging

particularly straightforward, but it is also possible to see/hear

the consequences of the connections between the different

parts of a program. For example, the necessity of both the real

and the imaginary parts of an FFT can be demonstrated ‘live’

by disconnecting one of them to hear the resulting distortion –

all with two clicks of the mouse. Also, since the underlying

codebase is C, it is easily possible to write your own Pd

objects. For example, a student at Sheffield has produced a

Pd-based real-time LPC analyser and synthesiser, and the

author of this paper has written a Pd object for an acoustic

waveguide (to form the basis of an articulatory synthesiser).

3. Pd in Teaching

The Sheffield course on Speech Processing consists of a series

of 20 one-hour lectures coupled with 20 hours of lab classes.

Assessment takes place through two on-line quizzes and two

lab-based programming assignments. The course is

effectively in two halves: the first part covers the principles of

speaking and hearing (including acoustic/articulatory-

phonetics, phonology and prosody) and the second part covers

algorithms for speech processing (including digital signal

processing, frequency analysis, the Fourier and Z transforms,

filtering, linear prediction and cepstral processing).

A total of 54 Pd-based examples have been constructed for

the course, all of which are demonstrated live during lectures

to illustrate particular speech processing techniques. The

examples range from simple demonstrations of resonances in

acoustic tubes, to simulations of the cochlea, formant

synthesis, channel vocoding, speech detection, and

homomorphic filtering – all demonstrated in real-time. All

programs are made available to the students for personal study

and for use in their assignments, together with various Pd-

based tools (such as a real-time display – see Figure 2).

Figure 2: Pd-based real-time waveform/spectrum display

(connected to the output of the patch shown in Figure 1).

4. Pd in Public Outreach

Since Pd makes it very easy to construct real-time interactive

speech processing, it has been used very successfully to

produce hands-on exhibits at public events as well as to create

simple educational activities for schoolchildren. For example,

an exercise known as ‘MakeSpeech’ was produced for use by

15 year-old potential computer science students in which they

were introduced to the human voice by leading them through a

step-by-step sequence culminating in a hand-controlled

formant synthesiser. Prizes were offered for the student who

could produce the best output speech.

As an example of engaging with the general public, a Pd-

based exhibit entitled Prof. Moore’s Digital Voice Factory

allowed users (especially young children) to experiment with

their voices– see Figure 3. The main technique underlying the

Digital Voice Factory was phase vocoding, and the exhibit

allowed speech to be reversed and modified (e.g. to sound

robotic). The GUI was programmed in GrIPD in order to

avoid users inadvertently editing the code, and the whole thing

was designed to be operated using a touch screen.

Figure 3: Screenshot of the Pd-based ‘Digital Voice Factory’

which allows users (especially children) to experiment with

their own voices.

5. Conclusion

This paper has introduced the Pure Data programming

language as a powerful open-source tool for real-time speech

processing. Examples have been given of its use in teaching

and public outreach, and its capabilities will be demonstrated

live during the hands-on interactive ‘Show & Tell’ session.

Finally, it may be of interest to note that Pd also provides an

excellent rapid prototyping environment for developing all

kinds of real-time systems (including sensorimotor control for

robots).

6. References

[1] Praat: doing phonetics by computer,

http://www.fon.hum.uva.nl/praat/

[2] VOICEBOX: Speech Processing Toolbox for MATLAB,

http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/voicebox.html

[3] Speech Filing System, http://www.phon.ucl.ac.uk/resource/sfs/

[4] Pure Data portal, http://puredata.info/

[5] The Creative Speech Technology Network (CreST),

http://crestnetwork.org.uk/

[6] Max, http://cycling74.com/products/max/

[7] Farnell, A., Designing Sound. London: Applied Scientific Press

Ltd, 2008.

