
11/7/19

1

© 2019  The University of Sheffield

COM3502-4502-6502 Speech Processing: Lecture 15, slide 1

COM3502/4502/6502
SPEECH PROCESSING

Lecture 15
The Fourier Transform
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Phase in Spectral Analysis
• In the last lecture it was shown how the spectrum could 

be computed by ‘cosine correlation’
(Pd Example 14-6)

• However, this only worked because the target signals 
all had ‘zero phase’

• The correlation between two cosines varies according 
to the phase difference between them
– in-phase                      ® maximum correlation
– 90° phase difference   ® zero correlation
– 180° phase difference ® maximum negative correlation

• In fact the correlation between two cosines varies as a 
cosine!
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Phase in Spectral Analysis
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Phase in Spectral Analysis
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Phase in Spectral Analysis
Test Signal

Target Signal

This means that cosine 
correlation cannot
detect a p/2 (90°) 

phase shift in a target 
signal!
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Sine Correlation
Test Signal

Target Signal

The correlation between 
a cosine and a sine is a 

sine!
(and it varies according to 

the phase difference 
between them)
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Sine Correlation
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Sine Correlation
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Sine and Cosine Correlation
• Cosine correlation with cosine is a 

cosine

• Sine correlation with cosine is a sine

• Sine and cosine correlations are 90°
(p/2) out of phase

• So can cosine and sine correlation 
be combined in some useful way?
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Amplitude and Phase
• Correlate a signal with both sines and cosines …

cosinecorrelation = a.cos(f)
sinecorrelation = a.sin(f)

• Note …
(a.cos(f))2 + (a.sin(f))2 = a 2

• Hence the amplitude of the sinusoidal component 
independent of phase is given by …

a = √ (cosinecorrelation)2 + (sinecorrelation)2

• The phase of this component is given by …
tan(f) = a.sin(f)/a.cos(f)

\ f = tan-1(sinecorrelation/cosinecorrelation)
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General Spectral Analysis Algorithm
• Recall that any periodic signal can be expressed as the sum 

of a fundamental sinusoid and its harmonics (Fourier)

• The individual components at a frequency W = pw can be 
found by correlating s(nT) with cos(W nT) and sin(W nT)

• Let c(W) be the cosine correlation and s(W) the sine correlation 
…

• This is the ‘Discrete Fourier Transform’ (DFT)
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Discrete Fourier Transform
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Complex Numbers: A Reminder
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Complex Formulation of the DFT
• The DFT is often expressed using ‘complex 

number notation’

• The cosine and sine correlations are associated 
with the real and imaginary parts of a complex 
number …
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Complex Formulation of the DFT
• Hence the DFT can be expressed as …

… where Sp is a complex number whose magnitude 
and phase correspond to that of the spectrum of 
s(nT) at a frequency p/NT

• Note also the ‘inverse DFT’ …
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Using the DFT

This is the 
explanation for 

Nyquist’s theorem
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Time vs. Frequency Resolution
Frequency resolution = 1/NT (Hz)

• Increasing the analysis frame N
– decreases the spacing between 

the spectral components
– reduces the ability to respond to 

changes in the signal

• Hence large N leads to 
‘narrowband analysis’
– good spectral resolution
– poor time resolution

This is the time-frequency trade-off
we saw in Lecture 4

• Decreasing the analysis frame N
– increases the spacing between 

the spectral components
– increases the ability to respond 

to changes in the signal

• Hence small N leads to 
‘wideband analysis’
– good time resolution
– poor spectral resolution
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Time vs. Frequency Resolution

WIDEBAND

NARROWBAND
Taken from: Holmes, J. N., & Holmes, W. (2002). Speech 

Synthesis and Recognition: Taylor & Francis.
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Time vs. Frequency Resolution
In [wsprobe~] …

– narrowband analysis uses a frame/block size of 8192 
samples (~190 msecs)

– wideband analysis uses a frame/block size of 512 
samples (~12 msecs)
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Implicit Periodicity in the DFT
• The DFT computes the spectrum at N evenly 

spaced discrete frequencies

• The algorithm assumes periodicity outside the 
analysis frame (with a period equal to the frame 
length)

• This means that discontinuities will arise for …
– periodic signals with a non-integer number of cycles 

in the analysis frame
– all aperiodic signals
– all stochastic signals

• Such discontinuities give rise to unwanted spectral 
components

20



11/7/19

11

© 2019  The University of Sheffield

COM3502-4502-6502 Speech Processing: Lecture 15, slide 21

Implicit Periodicity in the DFT
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Implicit Periodicity in the DFT

22



11/7/19

12

© 2019  The University of Sheffield

COM3502-4502-6502 Speech Processing: Lecture 15, slide 23

Windowing
• The discontinuities arising from segmenting 

the signal into frames distorts the spectrum

• The distortion can be reduced by multiplying 
each signal frame with a ‘window function’

• The most common window function is the 
‘Hamming Window’ (proposed by Richard 
W. Hamming) …
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Windowing

Windowing attenuates the 
components caused by the 

discontinuity, but also 
smears the spectral peaks
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Windowing

Sharper peak
Higher floor

Broader peak
Lower floor
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The Fast Fourier Transform (FFT)
• Implementation of the DFT requires the order of N2

multiply-add operations

• By exploiting symmetry, it is possible to devise an 
algorithm  that requires only Nlog2N multiply-add 
operations
– e.g. for N=2048, the result is ~100x faster

• This more efficient algorithm is the …
‘Fast Fourier Transform’ (FFT)

• The FFT requires that the window/frame should be a 
power of 2 in size

• This can be achieved by …
– choosing the appropriate analysis frame size, and/or
– zero-padding a frame to the nearest power of 2
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The FFT in Pure Data
• There are two key FFT objects available in Pd …

– [rfft~] computes the forward transform
– [ifft~] computes the inverse transform

• We saw both [rfft~] and [ifft~] in action in 
Example 12-3

• The magnitude spectrum can be computed by 
squaring the real and imaginary outputs, then 
taking the square root [sqrt~]

• Alternatively, the Pd object [framp~] outputs 
frequencies and amplitudes directly

• [rfft~] followed by [framp~] is used in 
[wsprobe~]
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The FFT in Pure Data
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This lecture has covered …

• Phase in spectral analysis
• Sine and cosine correlation
• The discrete Fourier transform (DFT)
• Time versus frequency resolution
• Windowing
• The fast Fourier transform (FFT)
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Any Questions ?
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Next time …

The ‘Z’ Transform
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