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Filtering
• Recall that a signal may be filtered by …

1. transforming it into the frequency domain (using DFT)
2. multiplying the signal spectrum by the filter spectrum
3. transforming it back into the time domain (using IDFT)

• An alternative is to characterise the action of a filter in 
the time domain (i.e. on the waveform itself)

• This is done using ‘difference equations’

2



11/7/19

2

© 2019  The University of Sheffield

COM3502-4502-6502 Speech Processing: Lecture 16, slide 3

Difference Equations
• Consider a linear filter where …

– x[nT] is the input
– y[nT] is the output (response)

• ‘Difference equations’ relate the current 
filter output to the current and past inputs 
and outputs

Filter
Input 
Signal

Output 
Signalx[nT] y[nT]
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a

Difference Equations: an example

Filter
Input 
Signal

Output 
Signalx[nT] y[nT]

y[nT] = ay[(n-1)T] + x[nT]
Difference 
equation

Equivalent 
processing 

diagram
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a

Difference Equations: an example
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a

Difference Equations: an example

Filter
Input 
Signal

Output 
Signalx[nT] y[nT]

y[nT] = ay[(n-1)T] + x[nT]
Difference 
equation

Result 
is a 

simple 
low-
pass 
filterEquivalent 

processing 
diagram a < 1
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Difference Equations: an example
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Linear Time-Invariant Filters
• A ‘linear filter’ obeys the principle of 

super-position …
– if x1 [kT] yields y1 [kT]
– and input is ax1 [kT] + bx2 [kT]
– then y[kT] = ay1 [kT] + by2 [kT]

• The response of a ‘time-invariant 
filter’ is the same for all times …
– if x[kT] yields y[kT]
– then x[(k-k0)T] yields y[(k-k0)T]
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Linear Time-Invariant Filters
• Linearity and time-invariance allows the input (and 

the response) of a filter to be constructed from a 
weighted sum of time-shifted impulses d[kT]

where d[kT] is 1 when k = 0 (and 0 otherwise)

• Time-invariance and super-position thus allows the 
input signal to be expressed as …
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Linear Time-Invariant Filters
• Given the ‘impulse response’ of a 

filter h[kT], the output is …

• This is the ‘discrete convolution’ of 
the input signal with the filter impulse 
response, and it can be written as …
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Linear Time-Invariant Filters
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Convolution

http://en.wikipedia.org/wiki/Convolution
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The Z-Transform
• Analysis of filters in the time domain (i.e. 

using difference equations) is cumbersome

• The ‘Z-transform’ is a power series
representation of a discrete-time sequence

• E.g. for the sequence x[0] x[1] x[2] x[3], the Z 
transform simply multiplies each coefficient in 
the sequence by a power of z corresponding 
to its index …

• By convention, negative powers of z are used 
for positive time indices (i.e. z-n represents a 
delay of n samples)
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The Z-Transform

• For a general sequence, the Z transform 
is written as …

• The transform is denoted by the Z{.} 
operator …
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The Z-Transform
Key properties of the transform are …

– linearity

– time-shifting

– convolution
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The Z-Transform
• As we saw, the output of a linear filter is 

described by the discrete convolution …

• This can be expressed using the Z 
transform as a product …

• Hence the ‘z-plane transfer function’ H[z]
may be written as …
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Common Z-Transform Pairs
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Link with the Fourier Transform

• If z>1, then the transform is equivalent to multiplying the 
sequence by a rising exponential

• If 0<z<1, then the transform is equivalent to multiplying 
the sequence by a falling exponential

• If z is a complex number lying on the unit circle, then the 
transform is equivalent to multiplying the sequence by a 
real cosine and imaginary sinusoid

i.e. this is directly equivalent to the Fourier transform!

• Hence, given a filter transfer function H[z], the filter 
frequency response can be evaluated at any frequency 
w by setting …
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The Z-Plane
Tjez w=
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Z-Plane versus Phasor Diagram
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Poles and Zeros
• Linear filter transfer functions (arising from general 

difference equations) can be written as the ratio of two 
polynomials in z …

• The values of z for which P[z]=0 are known as the ‘zeros’ 
of H[z]

• The values of z for which Q[z]=0 are known as the ‘poles’ 
of H[z]

• Poles correspond to frequencies at which a filter transfer 
function tends to infinity (i.e. ‘resonances’)

• Zeros correspond to frequencies at which a filter  transfer 
function tends to zero (i.e. ‘anti-resonances’)

• A filter is completely characterised by its poles and zeros
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Poles and Zeros
• The z-domain polynomials are often written in terms of 

their poles and zeros zi …

• The poles and zeros correspond to the ‘roots’ of the 
difference equations

• They can be visualised by plotting their positions in the 
‘Z-Plane’ …
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Poles and Zeros: an example
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Poles and Zeros
• The magnitude response of a filter can be quickly 

understood based on the location of its poles and 
zeros

• By starting with a pole/zero plot, it is possible to 
design a filter and obtain its transfer function very 
easily …
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Filter Frequency Response
• The frequency response of a filter can be 

plotted using the distances from the ‘unit 
circle’ to the poles and zeros

• While moving around the unit circle …
– if close to a zero, then the magnitude is small
– if close to a pole, then the magnitude is large

• If a zero is on the unit circle, then the 
frequency response is zero at that point

• If a pole is on the unit circle, then the 
frequency response goes to infinity at that 
point
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Filter Response: an example
• Consider the simple averaging filter with the following 

difference equation …

• Taking Z transforms, this becomes …

• Hence the transfer function (Y/X) is given by …

XaYzY += -1
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Filter Response: real pole
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Filter Response: real pole
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Filter Response: complex pole
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Poles & Zeros in Pd
• As well as [fexpr~], Pd provides 

several ‘raw’ pole/zero filter objects:
– real pole [rpole~]
– real zero [rzero~]
– complex pole [cpole~]
– complex zero [czero~]

• Each of these objects takes the 
appropriate real/complex filter 
coefficients as inputs
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Filter Response: complex pole
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This lecture has covered …

• Filtering
• Difference equations
• Convolution
• The Z transform
• Link with the Fourier transform
• Poles and zeros
• The Z Plane
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Any Questions ?
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Next time …

Linear Filters
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