

	Filter Design
	 The behaviour of a filter is defined by the number and the location of its 'poles' and 'zeros' (as we saw in Lecture #16)
	 The <u>complexity</u> of a filter is often characterised by its 'order'
	 In a digital filter, order is defined as the number of <u>past</u> (<i>input or output</i>) values that are involved in the calculation
	 For example, a filter that takes two past values is termed a 'second-order filter'
	 Filter order can thus be related to the number of poles and zeros
The University	 Hence, the degree to which a practical filter approximates the idealised form is a function of its order (<i>i.e. the number of poles and zeros</i>)
Of Sheffield.	COM3502-4502-6502 Speech Processing: Lecture 17 slide 5

	© 2019 The University of Sheffield
	'FIR' Filters
	 Finite impulse response (<i>FIR</i>) filters express each output sample as a weighted sum of the last N inputs (where N is the order of the filter)
	 Advantages inherently stable since they don't use feedback (<i>i.e. only zeros</i>) the coefficients are usually symmetrical, hence the phase response is linear and signals of all frequencies are delayed equally overflow is straightforward to avoid generally easier to design than IIR filters
	 Disadvantages may require significantly more processing and memory resources than the equivalent IIR filter often require a much higher filter order than IIR filters delay can be much graater than for an equivalent IIR filter
The University Of	COM3502-4502-6502 Speech Processing: Lecture 17 slide 10
The University Of Sheffield.	 generally easier to design than IIR filters Disadvantages may require significantly more processing and memory resources than the equivalent IIR filter often require a much higher filter order than IIR filters delay can be much greater than for an equivalent IIR filter COM3502-4502-6502 Speech Processing: Lecture 17 slide 10

	© 2019 The University of Sheffield
-	The Biquad Filter in Pd
pd~	 Pd provides a raw biquadratic filter object [biquad~]
	 The five coefficients (b₀, b₁, b₂, a₁, a₂) can be sent as a single message
	 For a <u>bandpass</u> filter, the coefficients can be calculated using the [bandpass] object
	 Pd provides the following objects for calculating filter coefficients for [biquad~] - [lowpass] [highpass] - [bandpass] [notch] - [lowshelf] [highshelf] [hlshelf] - [equalizer]
The University	
Sheffield.	COM3502-4502-6502 Speech Processing: Lecture 17 slide 15

