
Verification of hardware interaction properties of

software

Ramsay Taylor

Department of Computer Science, The University of Sheffield

Abstract. Many high-integrity software development processes prevent
any assumptions about the system hardware, but this makes it impossi-
ble to use these techniques on software that must interact with the hard-
ware, such as device drivers. This work takes the opposite approach: if
the analyst accepts that the analysis will only be valid for a particular
target system then the specification of the system can be used to infer
the behaviour of the software that interacts with it. An analysis process
is developed that operates on disassembled executable files and formal
specifications of the target platform to produce CSP-OZ formal models
of the software’s behaviour. This analysis process is implemented in a
prototype called Spurinna. This is demonstrated in conjunction with the
verification tools Z2SAL and the SAL suite to demonstrate the verifica-
tion of properties of an example program.

1 Introduction

Many projects make use of static analysis to give a measure of assurance for
the safe functioning of the code. To facilitate static analysis these projects are
often based on “safe” language subsets such as MISRA-C [13] and SPARK Ada
[1]. These use restricted versions of common programming languages to make
the code behaviour determinable without knowledge of the context. However, by
restricting the language they necessarily make themselves unusable for applica-
tions that rely on the features that have been removed or restricted, and prevent
analysis of requirements that are defined in terms of a particular context. Hard-
ware control applications are a significant instance of this, and so they are the
focus for the work presented here.

Hardware control and interaction is an area that is central to many safety-
critical systems as it is often the device control aspect that gives them the poten-
tial to cause harm. Many restricted languages remove any feature that interacts
with the hardware, since these features prevent deterministic reasoning about the
code without making assumptions about the behaviour of the hardware. How-
ever, in the case of device drivers it is reasonable to make assumptions about
the hardware — a specification of the hardware’s behaviour is always necessary
if software is to be written to control it.

Projects such as [12] and [3] have provided complete verification of system
stacks, but these have required considerable manual effort that would have to be
repeated for each application. The objective of this work is to provide a general
process for verifying the behaviour of low level software that is independent of
the particular underlying system, and that is sufficiently automatic that it can
be easily and frequently repeated as part of a software development process.

The principal contribution of this work is a technique for inferring a formal
model of the behaviour of a hardware dependent system that has the following
properties:
– The ability to represent the interaction of software and hardware components

in the same model, and allow the verification of properties of hardware usage;
– a fully automatic implementation with no human input required after the

submission of the hardware specification and the software for analysis;
– produces models of a size and complexity that can be understood by humans

and is practical for the application of formal verification techniques;
– maintains traceability from the produced model back to the source program

to support fault localisation and repair.

The following example of a hardware usage scenario is used in this paper:

The device to be controlled has two ports: a control port and a data
port. The control port is accessible at IO port address 0. The data port
is accessed at IO port address 4. To request data the driver must write a
1 to the control port, then wait at least 10ms before the data on the data
port is valid. To facilitate the timing there is a clock device available at
IO port 8, which presents an integer representing time on a scale that
increments once per ms. The system has an Intel i386 based processor.

Fig. 1. The example device

A device driver that controls this device and presents the available data to
a software system must ensure that the device is used in the required fashion.
In this example that produces a set of specific behavioural properties that the
device control software must satisfy:

– A request value of 1 must be written to the control port at address 0, before
data is read from address 4.

– There must be a delay between the writing of this request and the reading
of the data.

– The delay must be 10ms long. Specifically, the value present in the clock
port at address 8 must have incremented by at least 10 between the writing
of the request and the reading of the data

These properties make explicit statements about IO addresses, and about the
sequence and content of interactions with these hardware features. The design
of the formal model presented in Section 3 must support the specification of the
combined software/hardware system such these details are present and properties
of their use can be written easily.

2

1.1 Document outline

Fig. 2. The analysis process outline

The analysis process described in this paper has been implemented in a proto-
type tool named Spurinna1. The development of a formal system for interpreting
executable file formats and performing disassembly was beyond the scope of this
project, so GNU objdump2 is used to convert the executable into assembly lan-
guage and symbol information. Section 2 discusses the analysed programs and
their disassembly. Spurinna takes this, and a supplied formal specification of the
processor and target platform as inputs. Section 3 describes the model of the
system that is required as input, the model of software behaviour that is pro-
duced by the analysis, and the design choices made to accommodate hardware
details and low-level software features into a manageable, formal representation.
From these inputs it is able to produce a formal model of the behaviour of the
software entirely automatically. The process of automatically inferring models
of this form from presented disassembly output is detailed in Section 4. This is
output in CSP-OZ in LATEX format, and can be used as input to any verification
tools or techniques applicable to Z or CSP. This paper demonstrates verification
of requirements using the Z2SAL tool [8] and the SAL model checking suite [7]
in Section 5. Conclusions are presented in Section 6.

2 Disassembly

The four stages between high-level source code and execution are compilation

which produces assembly code, assembly which produces relocatable machine
code object files, linking which collects object files into executable files and
resolves the symbols in the function calls, and loading where the executable file
is loaded into a virtual address space ready for execution.

This analysis process needs to operate on the level closest to execution, but
capturing the image of the virtual address space after loading is impractical. Pro-
ducing a formally-verified simulation of the loader in the target system would be

1 http://staffwww.dcs.shef.ac.uk/people/R.Taylor/Spurinna/
2 http://www.gnu.org/software/binutils/

3

ideal but the development of such a system is beyond the scope of this work. The
object code produced by the assembler but before linking are also not suitable,
since the linker makes a number of important decisions about the layout of the
program in memory and about the resolution of symbols to absolute addresses
and values. Consequently, it is the executable file that is as close as is practical
and that are the source material for this analysis.

To illustrate the analysis process a program was developed to interact with
the example device described in Section 1. The program was written in C and
is shown in Figure 3.

In order to access the IO ports of the processor this program must use inline
assembly code statements. This is a violation of the MISRA-C coding standards
and is a good example of the impossibility of writing device driver code that
stays within a safe language subset.

#define out(port, value) asm("out %1,%0" : : "dN" (port), "a" (value))

#define in(port, result) asm("in %1,%0" : "=a" (result) : "dN" (port))

#define CONTROL_REG 0

#define DATA_REG 4

#define CLOCK_REG 8

int exdev() {

int starttime;

int endtime;

int now;

int result;

out(CONTROL_REG, 1);

in(CLOCK_REG, starttime);

endtime = starttime + 10;

do {

in(CLOCK_REG, now);

} while(now < endtime);

in(DATA_REG, result);

return result;

}

Fig. 3. A C program that implements the device control behaviour

This program was compiled with gcc, the GNU C compiler. The resulting
executable file was then disassembled with GNU objdump to produce the output
show in Figure 4.

This shows the format of assembly instructions that are presented to the fol-
lowing stages of analysis, as well as the symbol information that was extracted
from the executable. In this case the exdev function from the C program has re-
mained identifiable, beginning at address 08048094. If the file contained multiple
functions then these would be separated and identified by name. This example
contains only local branch instructions but where function call instructions are
present their target addresses are identified and the name of their target func-
tions included. For example, a trivial program to identify the largest integer in
a list using a helper function that compares two integers and returns the larger
might contain a call instruction of the form: call 8048180 <max>.

4

08048094 <exdev>:

8048094: 55 push %ebp

8048095: 89 e5 mov %esp,%ebp

8048097: 83 ec 10 sub $0x10,%esp

804809a: b8 25 00 00 00 mov $0x25,%eax

804809f: c7 00 01 00 00 00 movl $0x1,(%eax)

80480a5: b8 2b 00 00 00 mov $0x2b,%eax

80480aa: 8b 00 mov (%eax),%eax

80480ac: 89 45 f4 mov %eax,-0xc(%ebp)

80480af: 8b 45 f4 mov -0xc(%ebp),%eax

80480b2: 83 c0 64 add $0x64,%eax

80480b5: 89 45 f8 mov %eax,-0x8(%ebp)

80480b8: b8 2b 00 00 00 mov $0x2b,%eax

80480bd: 8b 00 mov (%eax),%eax

80480bf: 89 45 fc mov %eax,-0x4(%ebp)

80480c2: eb 0a jmp 80480ce <exdev+0x3a>

80480c4: b8 2b 00 00 00 mov $0x2b,%eax

80480c9: 8b 00 mov (%eax),%eax

80480cb: 89 45 fc mov %eax,-0x4(%ebp)

80480ce: 8b 45 fc mov -0x4(%ebp),%eax

80480d1: 3b 45 f8 cmp -0x8(%ebp),%eax

80480d4: 7c ee jl 80480c4 <exdev+0x30>

80480d6: b8 26 00 00 00 mov $0x26,%eax

80480db: 8b 00 mov (%eax),%eax

80480dd: c9 leave

80480de: c3 ret

Fig. 4. The C program after compilation, assembly, linking, and disassembly

3 Behaviour model structure

Many current approaches to low-level software verification, such as Separation
Logic [14] are able to verify properties about programs by creating suitable,
abstract models of pointers, memory addresses, and other hardware interaction
that are applicable across all contemporary computer systems. This allows these
approaches to explore subtleties of program construction, such as self-modifying
programs [5], that are not possible with the model presented here. However, the
objective of this work is to create a model that deliberately does not abstract the
implementation details of the hardware in any way, since it is aimed at verifying
properties that make statements about specific hardware features.

The approach taken by this work is derived from the Z models of the state
and operation of processors that have been produced since the 1980s [4, 11].
Using process calculi also has a long history [2]. This analysis process uses both
approaches and separate the control flow components of the program from the
state change instructions. CSP-OZ [10] combines Object-Z [6] with CSP such
that the Object-Z defines classes with state and operations on that state, while
the CSP defines the possible control flow paths through those operations.

CSP-OZ specifications contain four types of component: A system state spec-
ification, operation schema that describe the state altering behaviour of events,
CSP processes that define the allowed sequences of events in the system, and

5

Object-Z classes that collect these components into an Object-Oriented frame-
work.

Where adequate symbol information exists to identify functions in the code
these are modeled as separate classes in the CSP-OZ model. This creates a model
with a modularised structure that should aid comprehension.

The analysis process separates those instructions that alter control flow from
those that do not. The former are referred to as branch instructions, while the
latter are referred to as sequential instructions. Once the branch instructions
have been separated, the remaining blocks of sequential instructions represent
code that will all be executed if it is begun3.

Branch instructions are further separated into local branch instructions, that
alter control flow within a function, and function call and function return in-
structions that direct control flow to other identified functions. The distinction
between the two is specified by the analysis user as part of the branch instruc-
tion set specification. Section 4.1 describes the process of separating the branch
instructions from the sequential instructions to form a control flow graph. The
nodes of this graph are the branch instructions, while the edges are the sequential
blocks — the sequences of sequential instructions that contain neither a branch
instruction, nor the target of a branch instruction, so are executed in sequence
from start to finish. The behaviour of these sequential blocks is represented by
the Z operations of the function’s class in the CSP-OZ model. The local branch
instructions are represented in the CSP part of the function’s class definition,
specifying the possible sequences of sequential blocks that can be executed. A
conditional branch is encoded as an external choice between the two possible
sequential blocks. To encode the decision procedure of the branch instructions
two additional Z operation schema are added to the class that contain suitable
precondition invariants. These operations are prefixed to the two possible se-
quential blocks such that the preconditions of each choice model the decision
behaviour of the instruction.

The model represents the function call and return behaviour using a more ab-
stract, OO notation to make the inferred model more readable and more clearly
resemble the structure of the original code, insofar as this can be determined
from the information in the executable file. Function call and return behaviour
is modelled by running the called function’s class in parallel with the calling
class. The calling class passes the system state along a channel to the called
class, which performs its function on the system state, and then passes the state
back to the calling class. The calling class synchronises on these transactions,
so does not proceed until the called function has returned, and uses the Z theta
notation to replace its current state with that received from the called function.
Section 4.4 describes the process of combining the components together into

3 Interrupts could violate this assumption, but their behaviour is ignored here as many
device drivers will be operating as interrupt handlers, or with interrupts disabled.
Alternatively, the impact of interrupts could be represented by making sections of
the system state volatile, that is, its state becomes unspecified between atomic op-
erations.

6

a complete CSP-OZ representation of both the control flow and state change
behaviours.

3.1 System state specification

The formal model produced by this work must contain adequate detail of both
the software and hardware behaviour to allow the properties of interest to be
verified. Even a simple computer system has considerable detail that could be
included, but only parts of this are relevant to the verification of a particular set
of requirements. Consequently, the analysis process developed here is deliberately
independent of the system specification used.

A simple specification of an Intel i386 based platform could be presented
thus:

BIT == {0, 1}
INT32 == {0..232}
REGNAMES == {eax , ebx , ecx , edx , esp, ebp}

System

memory : INT32 7→ INT32
registers : REGNAMES → INT32
ioports : INT32 7→ INT32
zf , cf , sf : BIT

For a particular Intel-based platform this schema could be augmented with
invariants — perhaps identifying sections of ROM, or memory-mapped devices.
The register interellations of an Intel processor, where al , ah, ax , and eax all refer
to different components of the same 32bit value can be clearly represented by
invariants, for example. Only a subset of the processor status flags are included
here, and only a subset of the valid register names, but these are adequate for
the short example used.

3.2 Sequential instruction templates

In addition to the system state specification, the user of this analysis process
must also provide two instruction set specifications. The anaylsis process is in-
dependent of the system specification used, and is independent of the effects of
the instruction set specifications but it does require a standardised format for
the instruction set descriptions. The sequential instructions must be specified
as template Z operation schemas. These are standard Z schema with a specific
naming convention: the name of the schema must be the mnemonic of the in-
struction it represents, with a subscript containing the type signature for which
this template defines behaviour.

Processor instructions are often defined with the same mnemonic having
subtly different behaviour for different types of parameter. The types of param-
eter recognised by this analysis process are literal, register, and register indirect

(where the value in a register is used as an address into memory, possibly with an
offset). These three types are clearly identifiable in objdump’s output. The Intel

7

mov instruction, applied to load a literal value into a register, can be specified
with this template:

movLIT#SRC ,REG#TGT

∆ System

registers ′ = registers ⊕ TGT 7→ SRC

memory ′ = memory

The subscript notation contains the parameters separated by commas, with
the type and a placeholder name separated by the hash sign. The processing of
the placeholders is described in Section 4.2.

3.3 Branch instruction templates

For branch instructions the binst collection is paramaterised with a mnemonic,
and must contain a Z operation schema called OnBranch and, optionally, one
named NoBranch. The OnBranch and NoBranch operation schema are prefixed
to the sequential block at the target address, and the sequential block immedi-
ately following this instruction respectively. Unconditional branch instructions,
such as the i386 jmp instruction, do not require a NoBranch schema, but the
OnBranch schema may contain state change effects of the branch instruction,
such as updating the program counter, if this is required for the verification.

Function call and return instructions are presented in the same way but in
callinst and returninst collections, respectively. The process of converting
these templates into representations of particular instruction instances is de-
scribed in Section 4.4.

4 Analysis Process

The automatic analysis of a given executable to produce a model of the form
described in Section 3 is broken into discrete stages that allow for as much
parallel processing as possible. This allows problems of pure scale to be tackled
most efficiently by the available resources and allows for the greatest impact of
increased resources. The stages in the analysis work-flow and their inputs and
outputs are shown in Figure 5.

4.1 Branch Identification

The branch identification stage of the analysis separates the branch instructions
from the sequential instructions (as discussed in Section 3) using the supplied
formal specification. Each mnemonic in the assembly language is compared to
the provided branch instruction set. Where a mnemonic is identified as a branch
instruction it is removed from the list of instructions, partitioning the block
at that point. Additionally, if it is a local branch, the target of the branch is
interpreted. If the target address falls inside an otherwise contiguous block of
sequential instructions then that block is also partitioned at that address and a
null, unconditional branch to the next block is inserted. This identifies that the
second half can be reached by multiple routes.

8

Fig. 5. The analysis workflow

This process produces a graph structure with the branch instructions forming
nodes, and the blocks of sequential instructions forming edges. The unbroken lists
of sequential instructions are referred to as sequential blocks and are named after
the address of the first instruction they contain. The Z subscript convention
is used, so the block starting at address 80480c4 is named Block80480c4. The
branch instructions are also named after their locations. This naming convention
retains tracability information throughout the analysis process. When a fault is
identified in the completed model it is possible to locate the cause of the fault to
a short block of instructions. Since these blocks represent state change with no
decision making they are likely to have a clear correspondence to a small section
of the original program.

4.2 Formal Instantiation

The sequential blocks produced by the branch identification stage can be con-
verted into formal representations of their behaviour. The instructions can be
independently analysed and instantiated into Z operation schema representing
their behaviour. All branching behaviour has been removed so these operation
schema can be sequentially composed to produce a correct (but not minimal)
representation of the system interactions of the block.

The instantiation process makes use of the template specifications described
in Section 3.2. Each instruction is classified by mnemonic and by the type of the
parameters present in the assembly language. The matching instruction template
is identified from the mnemonic and the type signature present in the subscript
of the template name. The template is then instantiated to represent a particular
instruction but textually replacing the parameter placeholders with the values
present in the assembly language at this point. The subscript of the name is
replaced with the address of the instruction to maintain tracability.

9

Fig. 6. Partitioning the exdev assembly code at the branch instructions

For example the instruction: 0x80480d6: mov $0x26, %eax has the mnemonic
“mov” and a literal parameter, followed by a register parameter. This matches
the following template:

movLIT#SRC ,REG#TGT

∆System

registers ′ = registers ⊕ {TGT 7→ SRC}
memory ′ = memory

This is then instantiated to form:
mov80480d6
∆System

registers ′ = registers ⊕ {eax 7→ 38}
memory ′ = memory

(Note: the Z convention represents integers in decimal, whilst the assembly
language is in hexadecimal, so hexadecimal 26 becomes decimal 38).

4.3 Simplification

The result of the formal instantiation process is a series of sequential blocks
that are modeled as long chains of sequentially composed Z operation schema
representing each instruction. The size of these chains can quickly become un-
manageable. The twelve line exdev function produced a 25 line assembly file with
only 3 branch instructions. Some technique is needed to simplify these sequential
blocks if the objective is readable formal models.

10

In principle, if program interruption is to be ignored, then the sequential
blocks could be resolved to single Z operation schema but to do this requires
some considerable formal analysis of the semantics of the operations which would
be prohibitively difficult as the program size increased. This could be engineered
if readability was the overriding objective. Some level of concatenation is possible
for limited computation expense using the techniques outlined in [16]. The pro-
cess operates by comparing two sequentially composed schemas and determining
whether their composed semantics is altered by simply textually concatenating
their invariants into one single operation. Since this process is text-based with
only minimal parsing of the Z semantics it can be performed very quickly on
large blocks of instructions.

There is a necessary choice between producing the most succinct model theo-
retically possible and producing a model entirely automatically. Since it is possi-
ble to apply automatic tools to the analysis of the model (for example Z2SAL, see
Section 5) it can be argued that the simplification does not need to be complete
if that would require excessive human effort.

4.4 Program Encapsulation

Having identified the branch instructions and sequential blocks, instantiated the
formal specifications of the sequential components, and simplified the sequential
blocks, the final element of the analysis process is to compose the sequential
blocks into a CSP-OZ class that represents the function. The branch instruc-
tions must be instantiated to form the CSP components. The OnBranch and
NoBranch schema from the conditional branch instructions are instantiated as
Z operation schema where necessary. Function calls and returns must be instan-
tiated with suitable models, as must the entry and exit of the functions.

Similarly, the analysis process records the branch that follows each sequential
block as part of the internal model of the sequential block. With this informa-
tion is is simple to convert unconditional branches and their target blocks into
CSP statements. The branch instruction jmp 80480ce <exdev+0x3a> will al-
ways cause execution to transfer to virtual address 0x80480ce. The control flow
graph shows that the block beginning at 0x80480ce ends with the branch in-
struction at address 0x80480d4. The branch instructions are all represented by
CSP processes named Branch with a subscript containing the virtual address of
the instruction they represent.

Branch80480c2 = Block80480ce → Branch80480d4

The jl instruction at address 0x80480d4 is a conditional branch instruction.
As is discussed in Section 3, this is modeled by instantiating each possible target
sequential block as a CSP arrow as before, then prefixing this arrow with a Z
operation that serves to constrain the execution of the possible paths according
to the conditions of the branch instruction. Finally, the two paths are conjoined
with a CSP external choice operator.

11

exdev

[...]
Branch80480d4 = (OnBranch80480d4 → Block80480c4 → Branch80480c9)

2 (NoBranch80480d4 → Block80480d6 → Branch80480db)
[...]

OnBranch80480d4
ΞSystem

sflag = 1

NoBranch80480d4
ΞSystem

sflag 6= 1

[...]

As described in Section 3, function calls are modeled by executing the func-
tion in parallel, passing the system state using schema promotion, and then
synchronising on the communication. All classes that use function call instruc-
tions include the Call and Return operations, which model this synchronisation.
The sequence Call → Return is common to all function calls, from there the
remainder of the process continues exactly as with unconditional branches: the
next block is executed, and the process evolves to the next branch instruction.
From the maxint example: call 80480d8 <max> becomes

Branch8048115 = (OnBranch8048115 → Call → Return

→ Block804811a → Branch804811d) || max

All functions contain an Entry operation and a Leave operation that syn-
chronise with the calling function and receive the system state, and then return
then modified system state to the calling function at the end. CSP-OZ classes
require a main process to begin execution. This begins with the Entry operation
that receive the System state schema from a parallel call operation. Then the
process continues with the first block and the first branch as any other branch.

All that remains is to collect these components into a CSP-OZ class, which
is named according to the function name extracted by the disassembler. This
produces a formal model where each function in the analysed system is contained
in a CSP-OZ class.

5 An example verification

To demonstrate the usefulness of the inferred models the model produced for the
example driver function was processed with the Z2SAL [8] tool. This produced
an input file for the SAL suite of model checking tools [7]. The requirements
specified in Section 1 were encoded as Linear Temporal Logic statements over
this model and were verified using the SAL bounded model checker.

The Z2SAL tool does not accept CSP-OZ so the CSP-OZ had to be “flat-
tened” to pure Z. The system state schema was augmented with a cspstate

12

variable, defined with a BNF type that contains an atom for each of the pro-
cesses in the CSP definition. The CSP control flow restrictions were converted to
preconditions on this variable such that any given Z operation could only execute
if the cspstate variable contained the name of a process that begins with this
operation. The post condition of the operation then sets the cspstate variable
to the name of the CSP process that follows this operation. This flattening is
performed automatically by Spurinna.

Although a verification in SAL was developed this was limited to the bounded
model checker, as even the small example state was too large for the symbolic
model checker. To complement this, the CSP-OZ elements have been converted
to a lightweight representation in Isabelle/HOL that allows properties to be
verified symbolically over universally quantified state representations. Further
details of this verification are presented in [17].

6 Conclusion

The principal difficulties that current techniques face when verifying hardware-
dependent software are that: they have no way to determine statically the be-
haviour of code that interacts directly with the hardware; current techniques
are necessarily detached from the hardware; and verification must fit into an
industrial work-flow and not be overly dependent on expert skills, and must be
applicable to large scale systems in reasonable time.

This work presents a technique that uses knowledge of the behaviour of spe-
cific hardware in order to allow the verification of its control software. This work
attempts to avoid the difficulties of analysing high level language code by tak-
ing the opposite approach: analysing code at the executable file level. While
restricted languages attempt to make code sufficiently abstract that hardware
details are irrelevant, the objective here is to make use of known hardware de-
tails to make high level language concerns irrelevant. The analyses operates on
disassembled executables, and uses a formal specification of their target archi-
tecture as a guide to infer a model of the behaviour of the software. This should
produce an interpretation of the software based on the environment in which it
will run and should provide a better basis for understanding its interaction with
the hardware.

The verification of properties on the inferred model has been demonstrated
using Z2SAL and Isabelle/HOL. The conversion to Isabelle/HOL has not yet
been automated, and still requires manual identification of the elements of the
model that interact with variables of interest. A more complete and automatic
embedding of the inferred models into Isabelle/HOL is intended as the continu-
ation of this work.

The original decision to use CSP-OZ was influenced by the Syspect tool [15]
that allows slicing techniques to be applied to CSP-OZ specifications. Slicing
is intended specifically to highlight elements of a program that interact with
particular state components, so this would address the identification problem
in a larger system model. Syspect has since been expanded to model timing
behaviour [9], which could also be valuable in verifying hardware control systems.

13

It has not yet been possible to import the CSP-OZ specifications produced by
Spurinna into Syspect, but this is a potential target for future work.

Acknowledgements

The author would like to thank his PhD supervisor, John Derrick, for his conti-
nous support, and also the PhD examiners, Georg Struth and Jonathan Bowen
for their valuable and detailed suggestions.

References

1. J. G. Barnes. High Integrity Software: The SPARK Approach to Safety and Secu-

rity. Addison-Wesley Longman Publishing Co., Inc., 2003.
2. G. Birtwistle. Control state in asynchronous micropipelines. In A. Yakovlev and

R. Nouta, editors, AINT, pages 45–55, 2000.
3. S. Bogan. Formal Specification of a Simple Operating System. PhD thesis, Saarland

University, Computer Science Department, 2008.
4. J. P. Bowen. Formal specification and documentation of microprocessor instruction

sets. Microprocessing and Microprogramming, 21(15):223 – 230, 1987.
5. H. Cai, Z. Shao, and A. Vaynberg. Certified self-modifying code. In J. Ferrante

and K. S. McKinley, editors, PLDI, pages 66–77. ACM, 2007.
6. D. A. Carrington, D. Duke, R. Duke, P. King, G. A. Rose, and G. Smith. Object-

Z: An object-oriented extension to Z. In S. Vuong, editor, Formal Description

Techniques II, FORTE’89, pages 281–296. North-Holland, 1990.
7. L. de Moura, S. Owre, and N. Shankar. The SAL language manual. Technical Re-

port SRI-CSL-01-02 (Rev.2), 2003. http://sal.csl.sri.com/doc/language-report.pdf
[Accessed 14th March 2012].

8. J. Derrick, S. North, and A. J. H. Simons. Z2SAL: a translation-based model
checker for Z. Formal Aspects of Computing, 23:43–71, 2011.

9. J. Faber, S. Linker, E.-R. Olderog, and J.-D. Quesel. Syspect - modelling, spec-
ifying, and verifying real-time systems with rich data. International Journal of

Software and Informatics, 5(1-2):117–137, 2011. ISSN 1673-7288.
10. C. Fischer. CSP-OZ: a combination of Object-Z and CSP. In H. Bowman and

J. Derrick, editors, FMOODS, pages 423–438. Chapman and Hall, London, 1997.
11. D. H. Kemp. Specification of VIPER1 in Z. Technical report, Royal Signals and

Radar Establishment, 1988.
12. G. Klein, J. Andronick, K. Elphinstone, G. Heiser, D. Cock, P. Derrin, D. Elkaduwe,

K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell, H. Tuch, and S. Winwood. seL4:
formal verification of an operating-system kernel. Commununications of the ACM,
53(6):107–115, 2010.

13. MISRA. Guidelines for the use of the C language in vehicle based software. Tech-
nical report, 1998.

14. J. C. Reynolds. Separation logic: A logic for shared mutable data structures. In
LICS, pages 55–74. IEEE Computer Society, 2002.

15. Syspect. Final report of the syspect project. Technical report, Carl von Ossietzky
University of Oldenburg, 2006.

16. R. Taylor. Separation of Z operations. In E. Börger, M. J. Butler, J. P. Bowen,
and P. Boca, editors, ABZ, volume 5238 of LNCS, page 350. Springer, 2008.

17. R. Taylor. Verification of hardware dependent software. PhD thesis, University of
Sheffield, 2012.

14

