
Verification of hardware
dependent software

Submitted for the candidature of the degree of Doctor of Philosophy
Department of Computer Science

Author: Ramsay G. Taylor
Supervisor: Professor John Derrick

17th January 2012

ii

Abstract

Many good processes exist for ensuring the integrity of software
systems. Some are analysis processes that seek to confirm that cer-
tain properties hold for the system, and these rely on the ability to
infer a correct model of the behaviour of the software. To ensure
that such inference is possible many high-integrity systems are writ-
ten in “safe” language subsets that restrict the program to constructs
whose behaviour is sufficiently abstract and well defined that it can
be determined independent of the execution environment. This ne-
cessarily prevents any assumptions about the system hardware, but
consequently makes it impossible to use these techniques on software
that must interact with the hardware, such as device drivers.

This thesis addresses this shortcoming by taking the opposite
approach: if the analyst accepts absolute hardware dependence —
that the analysis will only be valid for a particular target system: the
hardware that the driver is intended to control — then the specifica-
tion of the system can be used to infer the behaviour of the software
that interacts with it. An analysis process is developed that operates
on disassembled executable files and formal system specifications to
produce CSP-OZ formal models of the software’s behaviour. This
analysis process is implemented in a prototype called Spurinna, that
is then used in conjunction with the verification tools Z2SAL, the
SAL suite, and IsabelleHOL, to demonstrate the verification of prop-
erties of the software.

iii

iv

Declaration

I declare that this thesis was composed entirely by myself and that the work
contained herein is my own except where explicitly stated otherwise. This work
has not been submitted for any degree or professional qualification other than
as specified.

Ramsay Taylor

v

vi

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Objective of this work . 2

1.3 Thesis Outline . 4

2 Background 5

2.1 Introduction . 5

2.2 Verification . 5

2.3 Code analysis . 6

2.3.1 Overview . 6

2.3.2 MISRA C . 7

2.3.3 SPARK Ada . 8

2.3.4 Hardware verification . 9

2.3.5 Summary . 9

2.4 Modeling . 10

2.4.1 Overview . 10

2.4.2 The Z notation . 11

2.4.3 B . 13

2.4.4 CSP . 13

2.4.5 Object Z . 15

2.4.6 CSP-OZ . 17

2.4.7 Summary . 17

2.5 Property verification . 18

2.5.1 Overview . 18

2.5.2 Hoare logic . 19

2.5.3 Separation logic . 21

2.5.4 IsabelleHOL . 22

2.5.5 SAL . 23

2.5.6 Z2SAL . 24

2.5.7 Summary . 25

vii

viii CONTENTS

3 The proposed solution 27
3.1 Introduction . 27
3.2 The analysis process . 27
3.3 Formal model . 28

3.3.1 System state specification 29
3.3.2 Sequential instruction specifications 30
3.3.3 Branch instruction set specification 34

3.4 Automated inference . 38

4 Separation in Z 41
4.1 Overview . 41
4.2 Introduction . 41
4.3 Basic case . 42
4.4 A relaxation of the basic case . 44
4.5 A simple function case . 46
4.6 A simple relational case . 51
4.7 Conclusion . 52

5 Analysis 53
5.1 Disassembly . 53

5.1.1 Overview . 53
5.1.2 Executable files, object code, and disassembly 53
5.1.3 Parsing . 57
5.1.4 Summary . 59

5.2 Branch Identification . 59
5.2.1 Overview . 59
5.2.2 Branch instructions . 59
5.2.3 Branch template format 60
5.2.4 Example . 61
5.2.5 Summary . 64

5.3 Formal Instantiation . 64
5.3.1 Overview . 64
5.3.2 Template specifications 64
5.3.3 Instantiation . 67
5.3.4 Summary . 67

5.4 Simplification . 68
5.4.1 Overview . 68
5.4.2 Sequential block compression 68
5.4.3 Algorithm . 69
5.4.4 Summary . 69

5.5 Program Encapsulation . 70
5.5.1 Overview . 70
5.5.2 Internal branch instructions 70
5.5.3 Function calls . 71
5.5.4 Class definition . 72
5.5.5 Summary . 72

CONTENTS ix

6 The Spurinna implementation 73
6.1 Overview . 73
6.2 Input files . 73
6.3 Analysis stages . 75

6.3.1 Architecture . 75
6.3.2 Branch identification . 76
6.3.3 Formal instantiation . 77
6.3.4 Simplification . 78
6.3.5 Program encapsulation . 78

6.4 Output formats . 79
6.5 Summary . 81

7 Model checking for verification 83
7.1 Overview . 83
7.2 System, requirements, and analysis 83
7.3 Z2SAL . 84
7.4 Model checking Linear Temporal Logic properties 87
7.5 Model checking for fault detection 89
7.6 Summary . 92

8 Verification by symbolic proof 95
8.1 Overview . 95
8.2 Symbolic proof in IsabelleHOL 95
8.3 Converting Z to an Isabelle model 97
8.4 Proofs of properties . 101
8.5 Proof assistant counterexamples for fault detection and tracing . 102
8.6 Summary . 104

9 Verifying a hardware usage requirement 105
9.1 Overview . 105
9.2 A hardware interaction example 105
9.3 SAL verification . 107
9.4 Summary . 110

10 Conclusions 111
10.1 Software analysis . 111
10.2 Future work . 112

Bibliography 119

A Flattening CSP-OZ to pure Z 121

B Derived MaxInt CSP-OZ model 125

C MaxInt for import to Z2SAL 133

D MaxInt SAL file 137

x CONTENTS

E SAL suite counter example for brokenmaxint 145

F Isabelle Z theory file 153

G Max example Isabelle theory file 155

H Exdev SAL file 163

Chapter 1

Introduction

1.1 Motivation

This work was prompted by the author’s experiences with safety critical soft-
ware projects in industry. Many good processes exist for ensuring the integrity
of software. Some are verification techniques that seek to confirm that the soft-
ware satisfies necessary requirements, others are development processes that are
designed to minimise the creation of faults by ensuring that the programmers
always have a clear idea of their objectives, and always have a clear understand-
ing of the source code that they and other team members are writing. All of
these techniques are valuable to software development, but many of the pro-
cesses in use have limitations that prevent or complicate their application to
software that interacts directly with hardware.

Many projects make use of static analysis to give a measure of assurance
for the safe functioning of the code. Some of these analysis techniques measure
a general software quality metric (such as conformance to a coding standard)
to give an engineering estimate of its quality. This is often demonstrably very
accurate and able to give a very high level assurance, but it lacks the mathemat-
ical certainty that is (at least philosophically) possible through the application
of formal methods. Other techniques have a formal underpinning, particularly
those that are based on “safe” language subsets. These use restricted versions
of common programming languages to make the code completely statically de-
terminable and so amenable to static analysis. The details of these languages
are discussed further in §2.3 but the significant issue is that by restricting the
language they necessarily make themselves unusable for applications that rely
on the features that have been removed. One area that depends heavily on
features that are often restricted or removed is hardware control. This will be
the focus for the work presented here.

Hardware control and interaction is an area that is central to many safety-
critical systems as they tend to be embedded systems or systems with a device
control aspect. Many restricted languages remove any feature that interacts

1

2 CHAPTER 1. INTRODUCTION

with the hardware, since these features reduce portability and prevent determin-
istic reasoning about the code without making assumptions about the behaviour
of the hardware. However, in the case of device drivers it makes perfect sense
to make assumptions about the hardware — a specification of the hardware’s
behaviour is always necessary if software is to be written to control it.

1.2 Objective of this work

The principle difficulties that current techniques face when verifying hardware-
dependent software are:

• They have no way to statically determine the behaviour of code that in-
teracts directly with the hardware.

• Current techniques are necessarily detached from the hardware (for in-
stance language subsets, discussed in §2.3) or treat hardware in an ab-
stract, general way (such as the heap model in Separation Logic §2.5.3).

• Verification must fit into an industrial workflow and not be overly de-
pendent on expert skills, and must be applicable to large scale systems in
reasonable time.

This work aims to produce techniques that use knowledge of the behaviour
of specific hardware in order to allow the verification of its control software.
More detailed background on verification in general, and the use of restricted
language subsets is presented in §2. This work attempts to avoid the difficulties
of analysing high level language code by taking the opposite approach — ana-
lysing code at the executable file level. While restricted languages attempt to
make code sufficiently abstract that hardware details are irrelevant, the object-
ive here is to make use of known hardware details to make high level language
concerns irrelevant. The intention is to disassemble executables using a formal
specification of their target architecture as a guide. This should produce an
interpretation of the software based on the environment in which it will run
and should provide a better basis for understanding its interaction with the
hardware.

The principle contribution of this work is a technique for inferring a formal
model of the behaviour of a hardware dependent system that has the following
properties:

• The ability to represent the interaction of software and hardware com-
ponents in the same model, and allow the verification of properties of
hardware usage;

• a fully automatic implementation with no human input required after the
submission of the hardware specification and the software for analysis;

• produces models of a size and complexity that can be understood by hu-
mans and is practical for the application of formal verification techniques;

1.2. OBJECTIVE OF THIS WORK 3

• maintains traceability from the produced model back to the source pro-
gram to support fault localisation and repair.

Along with solving the technical problem of analysing executable code using
formal methods, this work will strive to produce techniques that can be auto-
mated wherever possible. Two common criticisms of working at the executable
code level are that the sheer number of individual instructions make analysis
difficult, and that the code is in a machine readable form rather than one inten-
ded for human understanding. By allowing automation of the labourious parts
of the analysis it is possible to avoid both concerns, since computer systems are
intended to handle large volumes of repetitive work, and no criticism can be
made of using a machine to interpret machine readable data.

The potential for exploring the analysis of specific, complex assembly lan-
guage and CPU detail was present at many stages of this work. Areas such
as virtual memory addressing, multi-processor architectures, timing, and in-
terrupts could each have been explored individually for the entire duration of
the work. This exploration was eschewed in favour of developing a complete
workflow that converts an executable to a formal representation with a focus
on being applicable to industrial verification processes. This required certain
assumptions to be made about the software and the execution environment. It
is assumed that the target of this verification will be a high integrity embedded
system in which the hardware and software design emphasises reliability over
“rich” features, and all components of both the hardware and software system
are under the control of the implementing organisation. This may not be dir-
ect design control, but it is assumed that the hardware and operating system
components will be known, expected to be relatively static for the life of the
system, and available for analysis.

Specifically, the analysis assumes that the virtual memory and execution en-
vironment of the program is correctly maintained. It assumes that the virtual
address space is free of aliasing, and is predictable — so the value written to a
location is the value that will be read subsequently unless it is explicitly altered
by this program. Also, interrupts are ignored since it is assumed that the CPU
will resume the program with the same environment as when it was interrup-
ted. Where the interrupt mechanism alters hardware registers or something
else that is observed by the program this should be represented in the hardware
specification or in the verification properties.

These assumptions are not unreasonable, and can be considered in the frame-
work of a layered process of system verification. The assumptions should be
based on the verification of the CPU hardware, and of the operating system
components that drive it — such as the interrupt handlers and the code that
maintains the Memory Management Unit (MMU) control registers. Both of
these are instances of highly hardware-dependent software they might well be
the first elements of a system to be analysed and verified using the techniques
presented here. Since it is usual for interrupt handlers to be executed without
the possibility of being further interrupted it would be quite reasonable to use
these assumptions when performing the verification of their behaviour. They

4 CHAPTER 1. INTRODUCTION

could be verified against the property that they return the CPU to the interrup-
ted program without altering its state, and so analysis of the remaining software
could proceed with this as a well-founded assumption. Similarly, the operation
of the MMU could be conducted on a system specification that models the in-
teractions between the real address space and the virtual address space. The
correct maintenance of the properties of the virtual address space could be veri-
fied and used as justification for the assumptions used analysing higher layer
software.

Another assumption is that the structure of the software is static for the
active life of the system. Self-modifying code is an interesting and active research
area[23], but preventing the application of such ideas is an acceptable loss if an
extremely high-integrity system is required. Similar arguments can be made
about other complex system structures.

1.3 Thesis Outline

This document consists of ten chapters and eight appendices. These form five
parts:

• §2 gives an overview of the background to hardware-dependent software
verification and a review of relevant prior work.

• §3,§4, and §5 describe the analysis process that was developed by this
work, including some theoretical work developed to support the analysis,
and detail of the phases of the analysis workflow that converts an input
executable into a formal model.

• §6 introduces the Spurinna package that implements this analysis process,
§7, §8, and §9 describe some case studies that analyse small code samples
and verify defined properties.

• §10 contains conclusions and discusses potential future work.

• The appendices contain materials that may be useful for reference when
considering the analysis process. The contain the full text of the example
formal models and the SAL and Isabelle files used in the verification ex-
amples.

Chapter 2

Background

2.1 Introduction

This section presents a literature review of the areas that are relevant to this
work. After a general outline of the verification problem, the literature is presen-
ted in three areas, corresponding to the three elements needed for a verification
process. Each section contains a brief summary of the use made of the material
in this thesis. The selection and application of particular methods is described
in detail in §3.

2.2 Verification

The aim of any verification process is to ensure that a system exhibits certain
properties. What these properties are is one of the inputs to the process, and the
choice of suitable property definitions to ensure general reliability is a large and
complex subject that is outside the scope of this work. Once the properties have
been selected the verification of these properties in a software system requires
three phases of analysis:

• Code analysis A technique to determine how the software behaves.

• Modeling A language is needed to represent the behaviour at a level of
abstraction appropriate to analyse the properties of interest.

• Property verification A process to check that the behaviour satisfies
the required properties, and identify violations with information that can
be used to correct the problem.

Different verification techniques will have a greater or smaller explicit em-
phasis on some of these phases, but they will all exist in some fashion. Even
in manual code reviews the behavioral model will be encoded in the reviewer’s
notes and mental model, and the property verification technique will be the
reviewer’s approach to fault finding.

5

6 CHAPTER 2. BACKGROUND

The remainder of this chapter will give an overview of the work that already
exists in each of these three areas, with the intention of identifying suitable
building blocks for an analysis technique that can be applied to hardware de-
pendent software.

2.3 Code analysis

2.3.1 Overview

The first phase of analysis — determining how the software behaves — is com-
plicated by many factors. Sheer size and complexity of software can make it
difficult to fully determine the behaviour of the system, but size and complexity
can be countered with automation. A more critical difficulty in understanding
the behaviour of a software system is the lack of clear semantic definitions for
many of the most common high level languages.

C.A.R. Hoare wrote [35] that:

Computer programming is an exact science in that all the properties
of a program and all the consequences of executing it in any given
environment can, in principle, be found out from the text of the
program itself by means of pure deductive reasoning.

Unfortunately, this is only true if the meaning of every statement in the text
of the program has a well defined operation. Whilst most programmers operate
on the assumption that they know what any given language element will do, their
understanding often rests on a number of implicit assumptions. As an example,
the C language has been in use for 40 years and multiple documents have existed
as de facto and de jure standards. The book published by the language authors
[41] was used as a standard in many areas; the American National Standards
Institute released a standard in [11]; the International Standards Organization
accepted the 1990 revision of ANSI C as a standard, and have since published an
updated standard [38] that includes many features — such as inline functions —
that were available in compilers for several years. Although ISO C99 is largely
accepted as the standard there is a very large variation both in the standard that
a compiler implements, and the extent to which a compiler correctly implements
the standard.

This multiplicity of standards and compiler implementations produces a situ-
ation where the exact behaviour of a program written in C cannot be determined
with certainty, even if the entire source code is available. Different compilers
may produce different executable code, or they may produce semantically dif-
ferent code for different target platforms. In many cases this is due to the
flexible and platform-independent nature of the C language. Many features are
deliberately and explicitly standardised as “implementation dependent” where
the compiler authors are expected to chose the behaviour that will accomplish
the rough specification of the behaviour in the way that is most efficient on the
target platform. Compiler verification is also an open research area that has

2.3. CODE ANALYSIS 7

had some successes [21] but is still not widely adopted, so even if the standard
was well understood there would be no certainty that the compiler produced a
correct implementation.

The implementation dependent choices in the standards highlight the plat-
form independence of the C language as its advantage for general programming,
but a significant problem faced where high integrity verification is required. The
language is designed to be written with the user unaware of the exact nature
of the system on which the program will run. This can be handled elegantly
by language constructs that allow the programmer to specify intent and have
the compiler select the optimal implementation. However, this can go wrong if
the programmer makes too many assumptions based on the system he is using
for testing, rather than the target platform, or if the compiler writer has as-
sumed a different interpretation of the programmer’s intent and optimises for
that instead.

These assumptions about intent and implementation can have particularly
drastic repercussions when the limits of the system are exceeded in some way.
Attempting to use more memory than exists, assuming a particular layout of the
content of structures in memory that is not replicated on a different platform,
expecting certain devices to be “memory mapped” at particular locations which
actually vary across architectures, and many other errors can occur as the result
of assumptions made at different levels.

2.3.2 MISRA C

In an effort to reduce the uncertainty resulting from the C standards’ implement-
ation dependent aspects, the Motor Industry Software Reliability Association
(MISRA) released a “restricted subset” of the C language. The MISRA-C [46]
guidelines remove most of the features whose behaviour is implementation de-
pendent or incompletely defined in the major standards. The guidelines also
include various coding style guidelines that seek to eliminate code patterns that
have seemingly obvious but practically indeterminate meanings.

The incrementation operators are a particularly good example. The C state-
ment:

x = y++;

can be expected to assign to variable x the current value of y and then increment
the value contained in y. However, the statement:

x = y++ / y++;

is legal C but will have a different behaviour depending on the compiler’s eval-
uation choices. It could have the same semantics as:

x = y / (y+1);

y = y + 2;

or as:

8 CHAPTER 2. BACKGROUND

x = y/y;

y = y + 2;

depending on exactly when the post-increment operator is evaluated. The
MISRA-C guidelines ban the use of the increment operator inside compound
statements, much to the chagrin of some of C programmers. Many other sim-
ilar patterns are banned from MISRA-C compliant code.

The MISRA-C rules are usually implemented in the form of static analysis
tools that check that code conforms to a coding standard. Tools such as PC-
Lint[8] and LDRA testbed[7] can check conformity to the MISRA-C ruleset, as
well as other coding standards, including user-supplied ones.

The dissatisfaction of some C programmers — notably those who aim for
maximum semantic density in their code — highlights a key area of resistance
to the uptake of language restrictions as a partial solution to software defects.
By limiting the language features available to the programmer it can make
programming more time consuming for the same semantics. However, this extra
time is a result of requiring more explicit reasoning about the operations being
performed. In some cases simply forcing programmers to think and explicitly
write the operations they wish to perform can result in the identification of
logical errors.

2.3.3 SPARK Ada

These problems are not exclusive to C. SPARK Ada begins with a similar ap-
proach to MISRA-C. The SPARK Ada language is a restricted subset of the Ada
language that removes features that allow for indeterminate behaviour. SPARK
Ada goes beyond simply eliminating things that are inadequately specified and
also seeks to prevent errors that are caused by runtime dynamism. By requiring
all collections to be finite and statically defined it is possible for static analysis
tools to determine the total resource requirements of the program. This sort of
information is vital for embedded systems with limited system resources.

The SPARK restrictions are similar to the MISRA-C rules in that they
increase the burden on programmers, but in doing so force the programmers to
think explicitly about their systems. The introduction to the SPARK Ada book
[17] describes the approach:

Those familiar with the evolution of Ada 83 into Ada 95 will note
that many of the facilities added in Ada 95 are not available in
SPARK. This is almost inevitable because most of the new facilities
in Ada 95 were added in order to increase dynamic flexibility – that
is to give more flexibility at run time. But this is precisely what
SPARK is not about; in order to prove that a program is correct, it
is necessary that the dynamic flexibility be kept to a minimum.

Having restricted the language to allow meaningful static analysis, the SPARK
system includes a suite of static analysis tools maintained by Altran-Praxis Ltd.
[9]. To facilitate analysis SPARK Ada code is annotated with Ada comments

2.3. CODE ANALYSIS 9

that have a defined format that is read by the analysis tools. These annota-
tions contain assertions about the attached Ada code that should be statically
determined. The statements include explicit lists of imports and exports, and
statements of derivations that show how the author perceives the posterior val-
ues of variables exported to be derived from anterior values of imports. The
static analysis tools can check that only explicitly imported variables are used
and only explicitly exported variables are written, so identifying any unintended
side-effects that are possible in pure Ada. The dependency analysis checks the
derivation statements to ensure that the values of exported variables cannot be
influenced by unexpected sources.

In addition to this data flow analysis, the SPARK toolset can perform con-
trol flow analysis. Annotations describing pre- and postconditions of the code
segments can be checked by analysis of the control flow graph of the program.

2.3.4 Hardware verification

The phrase “hardware verification” is used here to refer to the verification of
properties of digital electronic systems, particularly those that compose to form
the computer systems on which the software under analysis will run.

Verification has been applied to many classes of digital system, but CPUs
are the most relevant to this work. Two examples of formally verified CPUs
are VIPER and AMULET. The VIPER processor was developed in the 1980s
with the intention of being an entirely formally verified processor to be used
in high integrity systems. The design was formalised in Z [40] and later in
HOL [49]. The development was performed at the Royal Signals and Radar
Establishment, in Malvern and the processor was used in a number of Ministry
of Defence applications. The AMULET project developed a verified ARM-based
processor in 1993 [33]. The latest AMULET is AMULET3 [34]. The AMULET
research group at the University of Manchester continues to develop formally
verified hardware projects [53, 57].

In both of these cases, and others [31, 32, 19] the digital system is modelled
and verified in a formal modeling language such as CSP, Pi Calculus, Z, or HOL.
Understanding the working of the system on which software runs is important
to understanding the operation of the software itself, but the practical scope of
work possible requires this thesis to take a layered approach. Since the verific-
ation of hardware implementations of formal models is a mature subject this
work will use a formal model of the computer system and its architecture as an
input and assume that the verification of the real implementation is performed
independently.

2.3.5 Summary

Although MISRA-C, SPARK Ada, and related approaches make it possible to
write high level programs that can still be properly analysed, they do so by
making concrete the separation between the software and the system on which
it runs. This approach is ideal for the vast majority of applications, where

10 CHAPTER 2. BACKGROUND

portability with semantic certainty is the key requirement. However, such an
approach makes the direct hardware control applications that are the focus of
this work impossible. Consequently, it will be necessary to avoid high level lan-
guages and all of the uncertainties that come with compilation. The desire to
be independent of specific hardware is not present in the development of hard-
ware control software, so the abstraction of implementation details to simplify
understanding and portability across platforms is not relevant. Given that this
objective is reversed, it is logical to reverse the approach taken by the language
abstractions. Instead of trying to remove any requirement for knowledge of the
target platform, this work will require a specification of the platform. This spe-
cification will be used to gain an understanding of the behaviour of the software
on that platform.

Hardware verification is beyond the scope of this research, and is a well-
understood field, so it will be assumed that an abstract representation of the
system hardware is adequate. The nature of the representation will be discussed
in §3 but it will operate at the level usually found in the instruction set reference
documentation of the target processor. System features such as registers and
memory locations will be modeled explicitly, but electrical and digital logic
details will be abstracted.

2.4 Modeling

2.4.1 Overview

Once the behaviour of the software has been inferred its semantics must be
documented in a notation that will best support the verification or refutation
of the properties of interest. There are many different notations and languages
for representing particular aspects of software behaviour, whilst deliberately
abstracting others. This abstraction and simplification is necessary to allow the
analysis to be computable in reasonable time, but also to allow the conclusions
of the analysis to be comprehensible.

The selection of a formal modeling language largely depends on the nature
of the properties that will be analysed. All formal languages emphasise some
type of problem and their syntax is designed to write such problems clearly,
whilst deliberately hiding other details behind abstraction. The correct choice
of emphasis and abstraction is vital if the final model is to be readable, either
by humans or by analysis tools. The criteria for readability are slightly different
depending on whether human comprehensibility or machine processing are the
objectives, but in both cases there is a need for succinctness: presenting the
semantically critical elements in enough detail to allow meaningful understand-
ing, but abstracting other elements behind the symbology so that the model
elements are small enough to be handled easily.

Available tool support is another important criteria. The techniques for
proving or falsifying properties are discussed in more detail in §2.5 but the
availability of automated support for analysis will influence the choice of lan-

2.4. MODELING 11

guage.

2.4.2 The Z notation

The Z notation is described by Woodcock and Davies [61] as:

[...] based upon set theory and mathematical logic. The set theory
used includes standard set operators, set comprehensions, Cartesian
products, and power sets. The mathematical logic is a first-order
predicate calculus. Together, they make up a mathematical language
that is easy to learn and to apply. [...]

Z was originally proposed by Abrial et al. [14] and developed at the Pro-
gramming Research Group at Oxford University. The ISO standard for Z was
completed in 2002 [39].

Z allows simple axiomatic definitions of entities that are irrelevant to the
specification being written, such as:

[Man]
[Woman]

It then allows simple definitions in BNF and set theory:

Person ::= Man |Woman
Class == PPerson

The mathematical parts of Z are mainly contained in schemas. A schema
contains two parts: variable declarations and predicates. State schemas define
pieces of the system state, usually — but not necessarily — the state of discrete
components.

AdvancedAlgebra
students : Class

#students ≤ 100

This defines that the AdvancedAlgebra course contains students , which is of
type Class — so is a set of Person items. Below the horizontal line is a predicate
that limits the class size to 100 students. Schemas can be written on one line
in a simpler form, so AdvancedAlgebra could be written as:

[students : Class | #students ≤ 100]

Another state schema might define the marks the students have obtained
using a function:

AlgebraMarks
students : Class

12 CHAPTER 2. BACKGROUND

marks : Person 7→ N

∀ s : Person | s ∈ students •
s ∈ dommarks

The predicate here requires that there is a mark for every student. We can
now perform schema conjunction on these two:

MarkedAlgebra == AdvancedAlgebra ∧ AlgebraMarks

This produces a new schema — here called MarkedAlgebra — that uses all
the variables from both the conjunct schemas, and has a predicate that is the
logical conjunction of the two predicates. Where variables in different schemas
have the same name and type they are assumed to refer to the same thing.
Other logical connectives, such as disjunction, are also possible. The conjoined
schema in this case is:

MarkedAlgebra
students : Class
marks : Person 7→ N

#students ≤ 100
dommarks = students

The other type of schema available in Z areOperation schemas. These specify
how operations in the system change the state. They can define variables but
more usually import state schemas for the parts of the system they alter or
refer to. They are written in a pre- and post-condition form, with undecorated
variable names referring to the state before the operation, and decorated variable
names (e.g. x ′) referring to the state after the operation.

AddMark
∆ MarkedAlgebra
who? : Person
mark? : N

who? ∈ students
students ′ = students
marks ′ = marks ⊕ {(who? 7→ mark?)}

A number of features are illustrated here. Question marks on variables
are a convention to indicate inputs. Exclamation marks are the convention
for outputs. The Greek symbol ∆ is shorthand for bringing into scope all the
contents of the state schema, as both before and after states — so every variable
in MarkedAlgebra is brought into scope in both undecorated and decorated
form. The predicate declaring that students ′ = students is important in Z,
since unspecified post-conditions are not automatically considered unchanged

2.4. MODELING 13

— they are considered unspecified, so an implementation is free to set them to
any value. The symbol Ξ is shorthand for not only bringing into scope both
decorated and undecorated forms of all variables in a state schema, but also
including the predicate that their values are unchanged.

Finally, relations of all types are modeled as sets of pairs, where the first
element is from the domain of the relation and the second is from the range.
The ⊕ operator is overriding, so the marks function is left unchanged except
where the domain matches the domain of the second argument. Here the second
argument is an anonymous function (i.e. set of pairs) with only one element:
(who?,mark?), so only the value of marks(who?) is altered.

Operation schemas are usually instantiated by using renaming in the stand-
ard [x/y] form, where x is used in place of all occurrences of y. Operation
schema can be composed in a number of ways, including sequential composition
(o9), conjunction (∧), and disjunction (∨).

AddMark [Bob, 75/who?,mark?] o

9 AddMark [Jane, 92/who?,mark?]

This specifies performing the AddMark operation to give Bob 75 points, fol-
lowed by performing the same operation to give Jane 92 points. The conjunction
of the two operations would not be significantly different in this case as it would
resolve to adding both marks simultaneously, but the disjunction would result
in either Bob’s or Jane’s mark being entered. This is particularly powerful
where the predicates are mutually exclusive, so the decision can be made by the
conditions. For example [x , x ′ : N | x < 30 ∧ x ′ = x + 1] ∨ [x , x ′ : N | x ≥
30 ∧ x ′ = 30] will increment x until it reaches 30, after which it will leave it
unchanged.

2.4.3 B

The B formal method [12] is a state based specification language, with many
similarities to Z (see §2.4.2). A critical difference to Z is that B is based around
an explicit abstract machine model. The emphasis in the design of B was for a
direct relationship to the implementation. This implementation based machine
model simplifies the creation of tools for simulation and code generation.

Several extensions to B appeared around the time that this work was be-
ginning. CSP||B [58] composes B and CSP in a similar way to CSP-OZ (see
§2.4.6). Event-B [13] is an evolution of B to have a simpler syntax and a more
heavily process driven style. Event-B has strong tool support from the Rodin
suite [15].

2.4.4 CSP

Communicating Sequential Processes (CSP)[36] is a process calculus — that is,
a language for specifying the behaviour of a system as a collection of processes
that evolve separately but interact. In CSP the interaction is modelled through
communication along defined channels. The evolution of a process can be guided

14 CHAPTER 2. BACKGROUND

by its communication with other processes. More critically, the evolution of two
processes can be synchronised by their communication. This synchronisation is
the key element of CSP. It allows a simple and elegant abstraction to reason
about many of the most fault-causing problems of distributed systems.

The CSP model contains processes and events. The most basic process
evolution is prefix, where an event occurs and then the process evolves to a
different process:

x → P

This statement defines a process, so can be the target of a prefix evolution,
which can itself be the target of an evolution, etc.:

a → (b → (c → P))

The STOP process represents deadlock, and is used as the terminal process
of all finite-trace models:

a → (b → (c → STOP))

Processes can also be recursive:

P = x → (y → P)

The evolution of a process can also contain choices. These choices are defined
as either internal (⊓) or external (✷) choices. In the case of internal choice the
decision is made entirely by the system and the environment cannot influence
the choice. With external choice the decision is usually made by the environment
precluding one path and allowing the other.

P = (x → A) ⊓ (y → B)

Q = (x → A) ✷ (y → B)

In this example P and Q have different observable behaviours since Q will
“allow” either event x or y to synchronise with it, whereas P will only allow
one — and which one will be determined by the system at run time.

The notion of communication and synchronisation is central to CSP models.
Where two processes are executed concurrently (which is defined using the ||
symbol) and their alphabets have an intersection they are assumed to require
synchronisation on the shared events.

P = a → (b → P)

Q = b → Q

System = P || Q

2.4. MODELING 15

In the process System the sub-process Q will not be able to evolve through
the b event until the sub-process P is also ready to evolve with a b event. Since
P requires an a event first, this forces the whole system to wait for an a event
before either component proceeds past the b event. This simple syntax for
representing synchronisation and inter-process control is the core of most CSP
models.

The events are then enhanced to represent communications. Processes can
input and output on channels using the ? and ! operators. The pipe operator
>> directs the output from one process to the inputs of another:

P = a!v → P

Q = a?v → Q

System = P >> Q

This will pass an endless stream of values v from P to Q along the a channel.
Verifications on CSP models usually operate on traces in the systems. Veri-

fication techniques such as refinement measure possible traces, and refused
events at different points in the traces. A process Q is a traces refinement
of P if all the traces of Q are also traces of P . If P specifies the “safe traces” of
a system then an implementation Q performing a subset of them seems reason-
able. This is incomplete as a requirement system though, so failures refinement
requires that the failures of Q is a subset of the failures of P . Failures are
defined as a pair (s ,X) where s is a trace that ends with an event X being re-
fused. This models the behaviour that an implementation is allowed to refuse,
and prevents the STOP process satisfying a requirement, even though its traces
are a subset of any processes traces so it is always a traces refinement. Finally,
failures divergence refinement adds requirements to identify and limit livelock,
where a system may perform internal events but not produce any externally
visible actions.

Failure Divergence Refinement (FDR) [44] is a software system designed
to analyse CSP models. As its name implies it emphasises failures divergence
refinement, as discussed in §2.4.4, and can also check the more general traces
refinement and failures refinement properties. It is also capable of measuring
other system properties, such as identifying potential for deadlock and livelock.

2.4.5 Object Z

Object Z[24] is an extension to the Z language (see §2.4.2) to add object oriented
ideas such as classes, inheritance, and polymorphism. Object Z creates classes
by collecting a Z state schema with a Z operation defining initialisation and
some Z operation schemas to define the methods. Visibility notions similar to
public and private in other OO notions are handled with a “visibility list” that
identifies public and, implicitly, private methods. An example from [27]:

Memory[D]
↿ (INIT ,Read ,Write)

16 CHAPTER 2. BACKGROUND

m : A 7→ D

INIT
m = ∅

Read
a? : A
d ! : D

a? ∈ domm
d ! = m(a?)

Write
∆(m)
a? : A
d? : D

m ′ = m ⊕ {a? 7→ d?}

Inheritance is handled by including all the state and transition information
but not the visibility list. Multiple inheritance is allowed and is modeled by
simply including all of the content from the parents in any order. Schema with
the same name are conjoined.

Instantiation of classes simply uses class names as variable types and then
uses the dot notation for methods:

ct : Count
[...]
ct .INIT
[...]

Object Z allows communication between classes using a CSP style || notation,
so two methods can be parallel composed and then inputs and outputs with
identical base names are matched.

BankAcct ...

Withdraw
∆(money)
amount ! : N

money ′ = money − amount !

Deposit
∆(money)
amount? : N

money ′ = money + amount?

2.4. MODELING 17

Transfer
from? : BankAcct
to? : BankAcct
amount? : N

from?.Withdraw(amount?) || to?.Deposit(amount?)

2.4.6 CSP-OZ

CSP-OZ[30] takes the Object Z extension of Z (see §2.4.5) and extends it further
by using the CSP process calculus (see §2.4.4) to add process-based control flow
specification for the operations. A CSP-OZ class has a collection of CSP process
in which the event alphabet is the Z operation schema names from the body of
the class. The main process defines the entry point and the evolution of this
CSP process specifies the allowed traces of operations that can occur on the
class.

Printer
channel print : [p : PID]
channel card , nocard : []
main : print?x → (card → main ⊓ nocard → main)

2.4.7 Summary

The analysis process presented later in this work separates the inferred program
behaviour into control flow and state change components. Consequently, it is
ideal to represent the inferred behaviour in one of the languages that combines
a process calculus with a state based language. Within reason, the choice of
modeling language between Z and B is arbitrary. The B language has arguably
greater tool support and its machine model makes many forms of symbolic ex-
ecution and model checking easy to implement. However, this machine model
is a core component of the language and this constrains all models to use at
least this basic structure, even if an entirely different system model might make
analysis more efficient or comprehensible. Z has no such constraints, being
completely arbitrary system specifications and state change operation specific-
ations. For this reason, and because of the author’s prior experience and the
Z community available in Sheffield, this work will use the CSP-OZ language
for modeling. CSP-OZ allows the control flow components of the analysis to be
rendered almost independently of the state change components, which simplifies
the analysis and its implementation.

18 CHAPTER 2. BACKGROUND

2.5 Property verification

2.5.1 Overview

Having inferred the behaviour of the system and modeled it in a formal language
it is possible to assess whether the required properties hold, and if not it is
desirable to produce counter-examples or other information that highlights the
ways in which the system violates the properties.

There are a number of ways to establish whether a system’s behaviour sat-
isfies a property. The most general method is simply to test the system in a
series of situations that have been designed to evaluate the property. Designing
a suite of tests that is certain to identify all possible violations of the property is
an extremely difficult task. Where the system has been formally modeled, and
where the property is specified in a rigorous way it becomes possible to be more
precise and complete with the test suite. The ultimate pinnacle of this approach
is model checking. Where a system can be represented by a state model and a
series of transitions it is possible to examine every possible trace of transitions
from every possible state. If this can be accomplished, and if the model is an
accurate representation of the system behaviour, then it is certain that the sys-
tem satisfies the property, or that all failure situations have been identified. For
systems of anything above trivial size this approach quickly becomes intractable.
Since every possible state must be examined, along with every possible trace,
a small increase in the potential state space creates an exponential increase in
the search space — a problem known as state space explosion. For this reason
most model checking is done with a complete transition system by a significantly
simplified and abstracted state model. If the state model is chosen well then
this does not need to impact the validity of the analysis. It is generally the case
that system failures occur at critical values — division by 2 tends to imply that
division by 3 will work, whereas division by 0 must be handled more carefully.

An alternative to model checking is a symbolic approach. If division by zero
is to be avoided, for example, but all division operations occur within guarded
code sections, then it is sufficient to demonstrate that the guards are such that it
would be impossible to enter the code section with the divisor set to zero. This
approach can produce powerful results since it is not computationally dependent
on the size of the state space or of the model. The key drawback of symbolic
proof is that anything beyond the more basic proofs requires a level of creative
thought that has not been automatable. This forces the proofs to be performed
manually, although various tools are available to simplify the proof process,
provide feedback and verification of the proofs, and to tackle the simple proofs
automatically once the proof condition has been imaginatively rephrased to be
handled by machine.

As with formal modeling languages, different proof and analysis techniques
are available for different classes of problems. They each have restrictions and
abstractions that must be weighed when selecting a technique for a particular
set of properties. The choice of CSP-OZ for the formal modeling language was
partly influenced by the possibility of easily translating the produced models to

2.5. PROPERTY VERIFICATION 19

emphasise the components necessary for particular analysis techniques.

2.5.2 Hoare logic

What is now known as Hoare Logic or Floyd-Hoare Logic was presented in the
paper titled “An Axiomatic Basis for Computer Programming”[35]. The inten-
tion of the work was to present a method for performing deductive reasoning
about the properties of a program. To do this it was necessary to introduce
the axioms that describe the behaviour of the basic components of computer
programs.

The paper begins by describing the rules for computer arithmetic — es-
pecially highlighting the differences from conventional mathematics’ version of
arithmetic, such as value overflow. It then proceeds to present axioms for the
operations in a pseudocode language that contains elements common to all im-
perative programming languages. The axioms are presented in the form of
Hoare triples, which contain a precondition, the pseudocode statement, and a
postcondition.

P{Q}R

Here P is the precondition predicate, that specifies the conditions that must
hold if the defined operation is to occur. All the axioms of Hoare Logic have this
form, which is known as an Hoare triple; division is only properly defined if the
divisor is non-zero, for example. Some axioms are universally applicable and so
have the precondition true. Q is the program statement in pseudocode. R is
the postcondition, which is a predicate defining what can be relied upon to be
true after executing this statement, assuming that the precondition is satisfied.

The first axiom is for assignment:

⊢ P0{x := f }P

where x is a variable identifier;
f is an expression;
P0 is obtained from P by substituting f for all occurrences of x .

This pattern of defining preconditions as transformations of the postcondi-
tion is repeated for the other axioms and reflects the predicate transformation
semantics that underlay the system. It allows useful reasoning about the be-
haviour of the whole program by eventually representing the operation of the
program as a transformation of the expected postcondition into the precondi-
tion. Verifying properties then requires proving that the properties are guaran-
teed by the postcondition predicate, and then assessing the limitations implied
by the precondition. Errors in the program are usually manifest as unexpected
preconditions (x > 4 or something equally strange) that highlight unanticipated
dependence on properties of the inputs.

The next axioms are the Rules of Consequence:

20 CHAPTER 2. BACKGROUND

If ⊢ P{Q}R and ⊢ R ⊃ S then ⊢ P{Q}S
If ⊢ P{Q}R and ⊢ S ⊃ P then ⊢ S{Q}R

and the Rule of Composition:

If ⊢ P{Q1}R1 and ⊢ R1{Q2}R then ⊢ P{Q1; Q2}R

These rules allow for a program to be built from a sequential composition
of operations, as is the case in almost all imperative programming languages,
and allow for the satisfaction of following preconditions to be determined by
components of preceding postconditions.

The final rule covers the other major class of imperative programming lan-
guage construct: iteration. The Rule of Iteration is presented as:

If ⊢ P ∧ B{S}P then ⊢ P{while B do S}¬ B ∧ P

This defines some guard condition B that determines the limit of the itera-
tion, and some loop invariant P that is always true during the execution of the
loop. Generally, the loop invariant is phrased so that it guarantees some prop-
erty of the elements that have been iterated over, or the value of some variable
derived from the iteration steps.

Although not mentioned in this paper, the axioms of Hoare logic also include
a conditional rule:

If
⊢ P ∧ B{S}P and ⊢ P ∧ ¬ B{T}P
then
⊢ P{if B then S else Y endif}Q

Subsequent work would eventually reverse the bracket notation to enclose
the predicates at either side of the statement: {P}Q{R} and to add a loop
variant to the iteration rule that must decrease to guarantee termination.

Once the axioms have been established it is possible to prove properties of
programs by chaining the rules together. The post condition of a preceding
element can be used to show that the precondition of a succeeding element
is satisfied, and so certify its postcondition to be used to satisfy a following
element’s precondition, and so on. Although Hoare logic axioms are defined
over pseudocode elements, it is generally possible to rephrase any imperative
language program into these basic components.

Since its publication, Hoare logic has been applied to a wide range of verific-
ation tasks, on languages as disparate as Java[59] and Z [29]. The application
of pre- and postconditions and invariants that was pioneered by this work has
formed the foundation of verification techniques such as SPARK Ada (discussed
in §2.3.3) and Spec#[18]. It has been applied to compiler verification [21] and
has been extended to accommodate extra analysis features, such as those presen-
ted in Separation Logic discussed in §2.5.3.

2.5. PROPERTY VERIFICATION 21

2.5.3 Separation logic

Separation logic is an extension to Hoare logic [35] that supports reasoning about
programs that alter data structures. Reynolds [51] first suggested extending
Hoare logic to include an operator to conjoin two propositions that depend
on distinct areas of storage. Ishtiaq and O’Hearn [37] then used the Logic of
Bunched Implications [47] to extend Reynolds ideas and first began using the ∗
and −∗ operators. The ideas were then clarified in [48], which saw many of the
definitions and axioms of Separation logic defined. A more detailed semantic
analysis followed in [62].

Intuitionistic Reasoning about Shared Mutable Data Structure [51]

This paper extends Hoare logic “to deal with programs that perform destruct-
ive updates to data structures containing more than one pointer to the same
location”. The key concept is what the paper calls “independent conjunction”.
It uses the & operator — which is superseded by ∗ in later Separation Logic
papers — to produce syntax such that P&Q holds only when P and Q hold
and depend on disjoint areas of storage.

The model defined here has a value as either an integer, an Atom, or a
Location, with these sets disjoint and countably infinite. The possible stores
and heaps are defined as:

StoresV = (V → Values) Where V is a finite set of variables
HeapsL = (L→ Values+) Where L is a finite set of Locations

The paper uses a style similar to LISP [45] to represent constructing new
variables. It uses cons1, cons2, cons3, etc. to construct sequences of items on
the heap. So x := cons3(1, 2, 3) will create a new entry in the heap function that
maps some unique location to the sequence of values 1, 2, 3 and then updates
the store so that x is mapped to this location. Figure 2.1 shows this relationship
diagrammatically.

x (x loc) 1 2 3
Store Heap

Figure 2.1: An example of the cons operation

This differs slightly from the normal programming model of referencing since
the sequence 1, 2, 3 is not, itself, in the same store as the location. In C - and in
actual implementations of all languages - reference locations are data values in
the program’s memory space, just like the values to which they refer. Also, the
collections of values that are referred to by the Heap function are not subsets of a

22 CHAPTER 2. BACKGROUND

contiguous store but are independent sets. Consequently, in this model, there is
no way to represent offsets to Locations. If x 7→ a, b, c were in the Heap it is not
implied in this model that x +1 7→ b, c since x +1 is an entirely separate entry
in the domain of the Heap function. Figure 2.2 shows this diagrammatically.

x

y

(x loc)

(y loc)

1 2 3

4 5 6

Store
Heap

Figure 2.2: The cons operation producing disjoint sets

Altering the model to better capture realistic behaviour of offsets was one
of the significant additions by O’Hearn et al. [48].

The paper introduces the use of a comma separated list into its system of
propositions to represent the condition that holds after the use of cons described
above. So it is now possible to produce some Hoare logic assertions:

{P} x := consn(E1, ...,En) {P&(x → E1, ...,En)}

Later separation logic papers update this both the Heap model and the
proposition to better represent the notion of sequential locations used in real
systems.

This, with a few other straightforward definitions, allows the style of Hoare
logic definitions and statements that will be used throughout Separation Logic.
The paper ends with a partial correctness specification — that is, the series of
Hoare logic assertions between the statements of the program — for a program
that deletes zero value elements from a doubly linked list.

2.5.4 IsabelleHOL

Higher Order Logic is a branch of mathematical logic, but in this context it
refers to the proof assistance systems developed at the Automated Reasoning
Group in Cambridge. The original HOL systems were designed for verifying
hardware, as discussed in §2.3.4. Isabelle is a related proof assistant developed
by the same group for more general logical reasoning [1].

Proof assistants work by allowing the user to present proofs in a particular
logical system and the assistant checking that the proof is a correct application
of the logic’s rules. HOL and Isabelle support a large range of logic systems,
both higher order and first order. Systems produced for Isabelle include Hoare
Logic, Zermelo-Fraenkel set theory [16], Z [43], and B [25].

A theory in Isabelle is a collection of datatypes, functions, and definitions,
along with proofs of theorems over these. A theory begins by importing a

2.5. PROPERTY VERIFICATION 23

suitable logic system. This imports all of the basic rules of the selected system,
which can then be used in the definitions.

theory Test

imports Datatype

begin

datatype ’a list = Nil ("[]")

| Cons ’a "’a list" (infixr "" 65)

primrec app ::

"’a list => ’a list

=> ’a list" (infixr "@" 65)

where

"[] @ ys = ys" |

"(x # xs) @ y = x # (xs @ y)"

primrec rev :: "’a list => ’a list"

where

"rev [] = []" |

"rev (x # xs) = (rev xs) @ (x # [])"

Having created definitions it is possible to write theorems and lemmas that
encode properties of the definitions. These can then be proven by referencing
the definitions and rules from the imported logic. Isabelle contains a number of
automated tactics that will attempt to apply certain common patterns of rules
to achieve a proof.

lemma app_Nil [simp]: "xs @ [] = xs"

apply(induct_tac xs)

apply(auto)

done

Additionally, Isabelle contains a package called sledgehammer [52] that will
automatically convert the theorem and the definitions into the correct input
formats for a range of external automated theorem provers and SMT solvers,
which are then run to attempt to find proofs. There are also the nitpick [20]
and refute [60] counter example generators that attempt to find descriptive
counterexamples to the theorem if it is false.

IsabelleHOL has been used successfully in the verification of various systems
[42], and has been incorporated as the backend to a software analysis system
[22].

2.5.5 SAL

The Symbolic Analysis Laboratory (SAL [4]) is a suite of tools for perform-
ing analysis on state machine models. The tool suite includes a simulator, a

24 CHAPTER 2. BACKGROUND

deadlock checker, a symbolic model checker, a bounded model checker, and a
counterexample finder. The SAL input language [26] is common to all of the
tools and there is a large community creating new tools that all use the common
input language.

The SAL input language requires all types to be finite, but then supports
finite sets, triples, subranges, arrays, records, total functions, modules, and re-
cursive definitions. The state machines are defined with a collection of state
variables and an initialisation, and then a collection of transitions. The syntax
for the operations includes conditions on the state that control when the trans-
ition can be traced. The effect of the operation on the system state is defined
using anterior and posterior variables, with the posterior variables identified
with a prime symbol (′) in a similar way to the Z notation (see §2.4.2).

The simulator allows a machine to be loaded and transition paths to be
explored. The deadlock checker analyses the transition conditions to detect
potential states from which no transition will be possible. The SAL language
allows for an ELSE transition that is always available, which can deliberately
remove the possibility of deadlock, but for meaningful deadlock analysis this
should be omitted.

The model checkers can check properties written in Linear Temporal Logic
(LTL) or Computation Tree Logic (CTL) forms. The symbolic model checker
compiles the definitions into optimised binary decision diagrams (BDDs) and
simulates models using Buchi automata. The bounded model checker uses the
SMT solver yices [10], which was also developed at SRI.

2.5.6 Z2SAL

The Z2SAL[28] project has developed an automated system for converting Z
specifications (see §2.4.2) into the input language of the SAL suite (see §2.5.5).
The parser and translation system currently only works for pure Z, and not
derivatives such as Object-Z or CSP-OZ. However, within this limitation it is
possible to automatically translate entire Z specifications into SAL state ma-
chine models.

The process assumes that a Z state schema defines the system state, and a Z
initialisation schema provides the details of the state initialisation. Thereafter,
all Z operation schema are converted to transitions in the SAL model. The out-
put SAL model is then available immediately for modelchecking against suitable
LTL or CTL property specifications. The translation has the distinct advant-
age of retaining the names of state variables and operations as variable names
and transition names respectively in the SAL model. This, coupled with the
innate similarity between the anterior/posterior variable conventions between
Z and SAL means that users familiar with the Z model can easily read the
SAL model. This is of critical importance when errors are detected as they can
quickly be traced back to the original Z specification. This makes the use of
Z2SAL with the SAL model checkers a very easy and powerful technique for
exploring temporal logic properties of a specification.

2.5. PROPERTY VERIFICATION 25

2.5.7 Summary

All of the techniques surveyed here could be applied to executable files that
control hardware. In all cases it is possible to translate either CSP-OZ or one of
its sub components into the form necessary for the analysis. Different analysis
goals will necessitate different approaches, and this work deliberately takes no
position on which technique should be applied. If any technique were favoured
it would be easy to question the need to render the model to CSP-OZ and
then convert, instead of rendering the model directly into the input language
of the analysis technique, but this generalism was precisely the objective in the
selection of CSP-OZ and in the efforts made in §3.3 to ensure that both the
control flow and state transition features are rendered as fully as possible.

Time limitation prevented extensive case studies of verification, but the avail-
ability of the Z2SAL tool [28] made this an ideal example, the results of which
are presented in §7.

26 CHAPTER 2. BACKGROUND

Chapter 3

The proposed solution

3.1 Introduction

As described in §1, the aim of this thesis is to develop a technique to verify
properties of high integrity software systems that interact directly with hard-
ware. This chapter presents the design decisions that were made to produce
an analysis process to achieve this goal. The decisions in choice of code ana-
lysis technique, modeling language, and verification approach were made with
particular emphasis on the three principle objectives of this work:

• Analyse software that depends on hardware behaviour

• Handle large instruction count or large quantities of fine detail

• Produce results that are comprehensible and provide traceability between
the results and the original code.

As identified in §1.2, the target for this work is high integrity embedded
systems where the engineering team can be expected to have more control over
the low level system components than might be the case in a more general
software system.

3.2 The analysis process

The hardware dependence will be countered with reference to supplied specific-
ations of the hardware behaviour. Given that the target domain for this work is
software elements that are designed to provide hardware control or interaction it
is reasonable to make the interaction of the software with the hardware the core
of the analysis and the produced behaviour model. For the reasons discussed in
§1.2 the analysis will be performed on executable files.

Because executable files potentially contain millions of instructions even for
relatively small software subsystems it is important that scalability and auto-
mation be highly prioritised in the design of the analysis methodology. This

27

28 CHAPTER 3. THE PROPOSED SOLUTION

is handled by presenting the specifications in machine-readable form and then
creating an entirely automated analysis work-flow that requires no human in-
teraction.

With the absence of human interaction in the analysis process it is import-
ant that the eventual results are not totally divorced from the input materials.
Identifying property violations is only useful if it is combined with enough trace-
ability information to allow the problem to be localised in the source code and
corrected. Additionally, the presentation of the analysis results must be clear
and reasonable enough to be understood by a developer of the source program,
rather than exclusively by expert users of the analysis technique. These condi-
tions seem competitive since the greatest hurdle for comprehensibility will be the
sheer number of instructions, whilst traceability requires that exact information
be kept about the source of a particular model element.

Most executable files — especially, but not exclusively, those compiled with
debugging information — contain considerable symbol information with func-
tion names and other readable information derived from the high level language.
This information will be retained in the formal model to allow easy and compre-
hensible linkage to the source. The programmatic structure will also be retained
as the model will encapsulate program elements at the function level, which on
most architectures is clearly defined and used by compilers to implement func-
tions (or their equivalents) in the high level language. Finally the virtual address
of the instructions that are modeled by a particular formal model component
will be retained as a subscript to the name. After the simplification stage (de-
scribed in detail in §5.4) these will be collected into address ranges but they
will still identify small and programmaticly self-contained sections of the source
executable.

The sequential parts of the executable may contain long chains of instruc-
tions that are sequentially composed. To improve readability and to simplify
subsequent application of verification techniques each of these sequential chains
can be compressed into single operation schema that represents the entire chain’s
effect in the system. There are likely to be many of these sequences so the effi-
ciency of this compression is of considerable importance. The techniques presen-
ted in §4 can be used to identify operations whose behaviour will not be altered
by simple, textual concatenation into a single operation schema. This drastic-
ally reduces the computational overhead required to compress these chains as
no evaluation of the semantics of the Z is required.

3.3 Formal model

The system state is easily represented by a Z state schema. This may be im-
practically large but Z supports compositional definitions so it can be compon-
entised to whatever degree suits its author. It is not necessary to specify the
entire working of the system under analysis, only such details as are of interest
for the properties being analysed. The analysis process makes no demands at all
on the system specification other that it contains a state schema named System.

3.3. FORMAL MODEL 29

The behaviour of software instructions will be divided into two classes. As
far as possible the model will separate the control flow of the program from its
interaction with the system state. Those instructions that define the execution
paths will be referred to as branch instructions, whilst those that alter the
system state but not the control flow will be labeled sequential instructions.
The sequential instructions are easily modeled by Z operation schema. The
control flow is more elegantly modeled in CSP. Those branch instructions whose
behaviour depends on or alters the system state will have components in both
languages.

The CSP-OZ notation allows for the combination of both languages into an
organised, object-oriented framework. Other languages such as Circus or B allow
for similar combinations of state and control flow but have more tightly entwined
semantics, as well as a larger body of syntactically implicit components. For
simplicity of automated processing — especially with a view to parallel analysis
of large-volume, simple components — it was decided that CSP-OZ offered the
best notation.

Although the system state can be modeled as a Z state schema directly,
the instructions in the program all need individual operation schemas. The
format of CPU instruction sets is as a collection of instructions with identifying
mnemonics and parameters. It is reasonable to formally specify the instruction
set in the same pattern. §3.3.2 and §3.3.3 introduce notations for template
specifications. These have identifiable names and parameter signatures that can
be matched to each instruction in the program and instantiated by syntactic
replacement of identifiers in the template to produce a formal representation of
the instructions’ effect in the system.

3.3.1 System state specification

All the specifications in subsequent sections will describe operations that can be
performed on the system state. Whilst the system state itself is not used directly
as an input to the analysis process, its structure will influence the specification
of the sequential and branch instructions. This section briefly discusses some
design considerations for system state specifications and presents some simple
examples that will be used for the remainder of this document.

The construction of the system state model will depend on the complexity
and structure necessary to adequately represent each of the instructions in the
instruction set. This work is deliberately ignorant of the exact system state
model chosen. Different verification goals will require more or less detail spe-
cifications of certain aspects of a given platform. For any choice of specification
it will always be possible to argue that it does not adequately represent some
particular feature of the system’s behaviour, but the model should be chosen
to emphasise those aspects of the behaviour over which some property will be
analysed.

The example system models in this work are chosen with one objective:
clarity and simplicity of the examples. As such they will be deliberately crude
models of the systems in questions. They will use very basic models of system

30 CHAPTER 3. THE PROPOSED SOLUTION

memory access as a simple function from address to stored value, and they will
encode processor registers as first class elements of the system state.

Figure 3.1 shows a simple representation of the address space and six 32bit
registers of an Intel x86 system. The invariants encode the relationship between
the extended registers eax , ebx , ecx , and edx , and their smaller, historic com-
ponents ax , ah, al , etc. The zero flag and carry flag components of the status
register are represented by zf , sf , and cf . The complete status register could be
represented, including the necessary invariants to tie the values of zf , sf , and
cf in with its 32-bit word interpretation but that would not add usefully to the
examples that will appear here.

Figure 3.2 shows an even simpler representation of an Intel x86 system.
This ignores the legacy registers and uses a function to model the contents of
the registers. This is the system specification that will be used for the remainder
of this thesis, principally because using the function model allows the use of the
Z function overriding operator ⊕ to change one register value whilst leaving
the others unchanged. This will occur often in the instruction set specifications
and the requirement to explicitly state the unchanged nature of all the other
registers would vastly increase the textual size of the specifications. Once the
analysis process is being run automatically this will be irrelevant since much
of the repetition will be removed by the simplification stage, but the simplified
version is used for the sake of readable examples whilst the details of the analysis
are being described.

Figure 3.3 shows a simple definition of the state of a PowerPC system with
its 32-bit memory address space and its 32 registers (r0 through r31 — each
holding a 32-bit integer value). The PowerPC assembly code represents registers
with integer values rather than names, so this function representation will make
for clearer instruction set specifications that will be instantiated to statements
like registers(1)′ = memory(43).

All of these system specifications are inadequate to capture the behaviour of
the entire instruction sets of the processors in question, but they are adequate
to capture the behaviour of the small subset of the instruction sets that will
appear in the examples in subsequent sections. The analysis process will have
no direct involvement with the System schema. Users of the analysis process
are free so specify as large or small as System schema as they need for their
verification, but it is likely that they will similarly restrict themselves to only
those components that are necessary to verify the properties of interest.

3.3.2 Sequential instruction specifications

The analysis process converts the instructions in a disassembled executable file
into a formal model of their behaviour by referring to a specification of the
behaviour of the CPU in response to its instruction set. The instruction set
is separated into sequential and branch instructions. This section considers
the first of these and presents a template specification format that allows the
instruction set to be specified in a general way, such that it can be instantiated
automatically for each instruction that is encountered.

3.3. FORMAL MODEL 31

INT32 == {x : Z | −231 < x < 231}
INT16 == {x : Z | −215 < x < 215}
INT8 == {x : Z | −27 < x < 27}
WORD32 == {x : N | x < 232}
WORD16 == {x : N | x < 216}
WORD8 == {x : N | x < 28}
BIT == {x : N | x ≤ 1}

System
memory : INT32→ INT32
eax : INT32
ax : INT16
ah, al : INT8
ebx : INT32
bx : INT16
bh, bl : INT8
ecx : INT32
cx : INT16
ch, cl : INT8
edx : INT32
dx : INT16
dh, dl : INT8
esp : INT32
ebp : INT32
zf : BIT
cf : BIT
sf : BIT

ax = (ah ∗ 256) + al
eax mod 216 = ax
bx = (bh ∗ 256) + bl
ebx mod 216 = bx
cx = (ch ∗ 256) + cl
ecx mod 216 = cx
dx = (ah ∗ 256) + dl
edx mod 216 = dx

Figure 3.1: A simple model of the state of an x86 system

32 CHAPTER 3. THE PROPOSED SOLUTION

REGNAMES == {eax , ebx , ecx , edx , esp, ebp}

System
memory : INT32→ INT32
registers : REGNAMES → INT32
ioports : INT32→ INT32
zf : BIT
cf : BIT
sf : BIT

Figure 3.2: An even simpler model of the state of an x86 system

System
memory : WORD32→ INT32
registers : WORD32 7→ INT32

dom registers = {x : N | x < 32}

Figure 3.3: A simple model of the state of a PowerPC system

Having specified the state of the system in §3.3.1, it is now necessary to
specify the operation of each of the instructions. An assembly language program
consists of large numbers of instruction instances, each of which contains an op
code mnemonic and some number of arguments. The mnemonic identifies the
particular instruction from the instruction set. This work is not concerned
with the binary encoding of these components (RISC vs CISC, little-endian
bytes, big-endian words, etc.) as these details are handled by GNU objdump
in the disassembly stage. Consequently, the instruction instances will have
identifiable mnemonics and parsable argument values. The argument encoding
varies between different platforms. In some cases there are multiple different
encodings available for one platform1.

This analysis process separates the instruction set into two parts: those
instructions that alter the control flow of the program, and those that do not.
Branch instructions will be discussed in §3.3.3; this section deals with purely
sequential instructions. The analysis will identify all the branch instructions in

1Intel platforms can use the Intel assembly syntax, as used in the Intel instruction set
specification documents, or the AT&T syntax, which is the default output format from ob-
jdump. The examples that follow expect the analysis input to be objdump output files, so
use the AT&T syntax. The argument ordering is the significant difference between the two
— mov ebx , 0ffh in Intel syntax becomes movl $0xff ,%ebx in AT&T syntax. GNU objdump
is capable of outputting Intel syntax, but the explicit typing of the AT&T syntax arguments
is a useful aid to the parser.

3.3. FORMAL MODEL 33

the program in the Branch Identification stage (see §5.2) by identifying all the
mnemonics presented in the branch instruction set specification. Any remaining
instructions will be assumed to be sequential instructions.

Sequential instruction specifications

The structure of a processor’s Arithmetic Logic Unit (ALU) is such that the
op code defines the behaviour that will be performed. In order to specify the
behaviour of the instruction set, the analysis process user must supply one Z
operation schema for each op code. These will be identified by being named for
the assembly mnemonic, for example the leave mnemonic in Figure 3.4.

leave49
∆ System

ebp′ = memory(ebp + 4)
esp′ = memory(ebp′)

Figure 3.4: A simple specification for an instance of the x86 leave instruction

Sequential blocks

All instructions that alter the control flow of the program should be handled as
branch instructions, which are discussed in §3.3.3. Consequently those remain-
ing as sequential instructions can be represented by Z sequential composition of
the individual operation schema.

Figure 3.5 shows an example of a short block of sequential instructions. The
subscripts on the schema names are the hexadecimal addresses of the instruc-
tions in the disassembler output. The analysis process retains these addresses to
aid debugging during verification. If a problem is detected when the produced
model is compared to the design specification it will be possible to trace the
problem back to a small portion of the assembly code. It could be argued that
this is of only limited value if the executable has been compiled from a high level
language but modern compilers can include considerable debugging information
to aid traceability back to the higher level language. Additionally, this analysis
process is intended for use in specialist, hardware dependent software. In such
an environment the developers are likely to be more comfortable than most with
reading the assembly code.

The example in Figure 3.5 is relatively short but blocks of sequential instruc-
tions can be fairly long. The techniques presented in §4 were created specifically
to simplify these blocks. The mechanics of the simplification process are detailed
in §5.4.

All of these examples import the entire System schema and only operate
on part of it without specifying that the other elements are unchanged. In

34 CHAPTER 3. THE PROPOSED SOLUTION

mov42
∆ System

eax ′ = 38

o

9

mov47
∆ System

eax ′ = memory(eax)
memory ′ = memory

o

9

leave49
∆ System

ebp′ = memory(ebp + 4)
esp′ = memory(ebp′)

Figure 3.5: A short block of sequential instructions

Z these operations do not automatically maintain the state of elements whose
post-condition is not explicitly set, but this detail is omitted from these and all
subsequent examples for brevity and clarity. This behaviour of the Z notation
was one of the explicit choices in the selection of CSP-OZ as the language for
this project since some processor instructions will not maintain the status of
some components of the system that are used for temporary data storage in the
execution of the instruction.

3.3.3 Branch instruction set specification

Template specifications for sequential instructions were introduced in §3.3.1,
along with a machine readable template specification representation. This sec-
tion takes a similar approach to branch instructions and expands the template
representation to include such information as is necessary to capture the control
flow information present in these instructions. This will be used in §5.5 (Pro-
gram encapsulation) to produce the CSP component of the final model, but is
also used in §5.2 (Branch identification) to break the assembly instructions up
into sequential blocks.

3.3. FORMAL MODEL 35

The analysis process is as independent as possible from the model of the
target system but program control flow was considered sufficiently important to
be handled explicitly. Whilst the behaviour of the sequential components can be
represented by Z operation schema, the control flow and branching behaviour
is most elegantly modeled in CSP (see §2.4.4 and Hoare [36]). The CSP-OZ
language (§2.4.6 and Fischer [30]) allows for the combination of the CSP control
flow components with the Z state and sequential operation schema.

Once the sequential blocks have been identified and instantiated the CSP
can be used to thread them together. For unconditional branching it is a simple
matter of defining the CSP process. The assembly instruction:

e: eb 03 jmp 13 <max+0x13>

becomes:

Branche = Block13 → Leave

In this case the sequential block at address 13 ends with a function return
(which is discussed in detail in §3.3.3). The entire control flow within a func-
tion can be represented by a sequence of such CSP processes that execute the
sequential operations and the evolve to the next branch.

Branch and no-branch prefixes

Most branch instructions are conditional — that is, control flow may branch to
a different point or continue sequentially depending on some condition on the
system state. The combination of CSP and Z also provides a way to represent
conditional branching with the control flow modeled in CSP and the state-
derived conditions modeled in Z. The CSP external choice operator can compose
two processes and allow a systematic choice between the paths. By prefixing
the two paths with a Z schema containing precondition invariants it is possible
to make the choice in the formal model correspond with the choice made by the
implementation.

The specification fragment Figure 3.6 represents the conditional branch in-
struction (b is the hexadecimal address of the instruction immediately following
this one, used for the NoBranch condition):

9: 76 05 jbe 10 <max+0x10>

Retaining the address of instructions in the names of sequential blocks serves
a useful purpose here, as well as its use in debugging. So long as the target of
the branch can be resolved to an instruction address it is simple to automatic-
ally produce the CSP representations. The analysis process assumes that such
a resolution is possible and that it is performed by the disassembler. In the case
of instructions with literal values this is simple. Instruction sets also contain
branch instructions with more complex arguments — dynamic values from re-
gisters or memory addresses for example. In this case it will be more difficult

36 CHAPTER 3. THE PROPOSED SOLUTION

example
[...]
Branch9 = (OnBranch9 → Block10 → Branch13)

✷ (NoBranch9 → Blockb → Branch13)
[...]

OnBranch9
ΞSystem

zf = 1 ∨ sf = 1

NoBranch9
ΞSystem

zf 6= 1 ∧ sf 6= 1

[...]

Figure 3.6: A conditional branch specification

to evaluate the instruction. It should not be impossible; static evaluation of the
program up to this point should yield either an exact value or a limited set of
possibilities. This level of analysis is not considered further in this document.
Given that the target for this analysis is sub-components of highly safety critical
systems it is reasonable to require a restriction on this style of programming.
Byzantine structures such as dynamic program branching can be excluded by
coding standards in safety critical applications, without adversely affecting the
development effort.

Function call instructions

In addition to short program jumps within a function, the analysis process
considers function calls and function returns. Most instruction sets have explicit
instructions for this behavior that differ from simple jump instructions. In
principle the same behaviour can be performed with jump instructions and it
is possible to represent this by specifying long jump instructions to be function
call instructions, or specific patterns, such as jumps to the address at the stack
base pointer, as function returns. In most cases — especially those derived
from compiled C or other high level language programs — there will be a clear
separation between local branching and function calls. Since GNU objdump
is capable of interpreting executable file symbol tables with enough detail to
identify original functions it is advantageous to retain this information in the
structure of the produced model.

In any well-engineered program functions should represent self-contained
blocks of program that perform some clear operation. It is here that the third

3.3. FORMAL MODEL 37

component of CSP-OZ is used: the Object Orientation. Representing functions
as CSP-OZ classes suitably collects the sequential and branching behaviour into
operational units. It only remains to represent the entry and return from these
functions. The operation of imperative programs is for each function to alter
the system state in some way defined on the parameters provided as part of the
system state when the function is called.

Figure 3.7 presents the CSP-OZ class that all functions will extend. The
System schema from §3.3.1 is included as the state for the class. The mechanism
of function calls and returns makes use of schema promotion to pass the system
state to the called function, allow it to alter the system state as designed, and
then return the new system state, which is unified into the calling function’s
local state before execution continues.

Function

System

Leave = Exit → Stop

Entry
call? : System

θSystem ′ = call?

Exit
return! : System

θSystem = return!

Call
call ! : System

θSystem = call !

Return
return? : System

θSystem ′ = return?

Figure 3.7: Function call operations

An example of a function call is this instruction:

80483fd: e8 be ff ff ff call 80483c0 <max>

This has been taken from a complete executable file so that the target address
is fully resolved, and objdump has identified that 80483c0 is the start of the max

38 CHAPTER 3. THE PROPOSED SOLUTION

function. Assuming that the max function has been analysed into a suitable
CSP-OZ class this instruction can be represented by the specification compon-
ents shown in Figure 3.8. The CSP sequence (Call → Return → Block42 →
Branch49) is executed in parallel with the max class. This will synchronise on
the call communication and pass the System state into the max function. Since
the CSP sequence immediately executes the Return event, which synchronises
on the return input, it will wait for the max function to return. When the max
function executes the Leave event it will return the updated System to the call-
ing function, which can then continue with the next Block event in its control
flow.

max
inherit Function
[...]
main = Entry → Block0 → Branch1
[...]
Branch13 = Block13 → Leave
[...]

maxint
inherit Function
[...]
Branch3d = (Call → Return → Block42 → Branch49) ‖ max
[...]

Figure 3.8: Function call example

3.4 Automated inference

The automatic analysis of a given executable to produce a model of the form
described in §3.3 will be broken into discrete stages that allow for as much
parallel processing as possible. This allows problems of pure scale to be tackled
most efficiently by the available resources and allows for the greatest impact of
increased resources.

The phases in the analysis workflow are:

• Loading of 3 specification sets

– System specification

3.4. AUTOMATED INFERENCE 39

– Sequential instruction set

– Branch instruction set

• Disassembly of executable and parsing of objdump output The
objdump information provides the functions and some symbol informa-
tion.

• Branch identification Identifying branch instructions and their poten-
tial targets to separate the code into sequential blocks.

• Formal instantiation Each sequential instruction is matched to a tem-
plate from the instruction set specification and that template instantiated
for the individual instruction.

• Simplification The compression of sequential blocks into as few Z oper-
ation schemas as possible — ideally a single schema per block.

• Program encapsulation Collection of the sequential blocks and the in-
stantiation of branch instructions into CSP-OZ representing the internal
control flow and the external function call mechanisms.

The output of the final stage is a set of CSP-OZ classes that model the
complete behaviour of the executable to a level of detail determined by the
supplied specifications.

40 CHAPTER 3. THE PROPOSED SOLUTION

Chapter 4

Separation in Z

4.1 Overview

One of the critical difficulties with the analysis of executable files is the sheer
number of instructions that must be analysed and whose behaviour must be
incorporated into the produced model. The concept of sequential blocks is in-
troduced in §3.3.2. These consist of chains of instructions that are sequentially
composed as they do not influence the control flow of the program. It makes
sense to compress these into one single Z operation schema that represents the
effect in the system state of this chain of sequential operations. To correctly
determine the effect of a chain of Z operation schema requires some reasoning
about the semantics of each operation and its influence on the system state that
forms the precondition of the following operation, but this level of reasoning
requires considerable computing power and so impacts on the scalability of the
process. To counter this problem this section presents a technique to determine
whether the precondition of a Z operation is impacted by the preceding opera-
tion using only syntactic analysis. This can be implemented with a very limited
Z parser and a series of string comparison operations that can be highly optim-
ised. Where two schema do not interact they can be compressed into one by
simply concatenating their state and invariant statements. Not all sequential
compositions will be independent but if this method can remove a considerable
percentage of the compositions — as seems likely with simple operations as
might be expected in assembly instructions — then the remaining specification
will have gained comprehensibility for a limited computation expense.

The contents of this section were presented as a short talk at ABZ 2008[55]

4.2 Introduction

When trying to reason about a long chain of sequentially composed operations
(such as a program in a sequential, imperative language) it would be helpful to
be able to group together sequences of instructions and consider their overall

41

42 CHAPTER 4. SEPARATION IN Z

effects. In order to determine the overall effect of a sequence it must first be
determined how the individual effects of the operations interact. The simplest
but most crucial question is whether they interact at all. Here we shall attempt
to develop a test for Z operations that will determine whether the effects of an
operation are altered by the effects of the preceding operation.

Where an operation is unaffected by the preceding operation we shall say
that they are Separate and shall use the symbol ‘&’ after Reynolds [50].

4.3 Basic case

For any Z operation we can require that every state variable referenced is
brought into scope explicitly. We can then collect these variables together into
two state schemas that we shall call State∆ and StateΞ. The second of these,
StateΞ, will contain all the variables that are unchanged by the operation. The
first schema, State∆, will contain all the others - i.e. all the variables that are
changed or whose resulting state is left unspecified.

This will allow us to rewrite an operation as follows:

P
x , x ′ : N
y, y ′ : N

x ′ = x + y
y ′ = y

State∆ == [x : N]
StateΞ == [y : N]

Rewriting P :

P ′

∆ State∆
Ξ StateΞ

x ′ = x + y
y ′ = y

From now on we shall treat any operation as possessing a State∆ and StateΞ
and shall use the notation Op.State∆ and Op.StateΞ to refer to them. We shall
also use set notation on these schemas, so Op1.State∆ ∩ Op2.State∆ refers to
those variables that are changed by both Op1 and Op2.

Being able to refer to all the variables changed and unchanged by an opera-
tion allows us to write the most general definition of our version of Separation.
The notation we shall use is Op1&Op2 if, in the sequential compositionOp1o

9Op2,
the effect of Op2 is unaffected by the actions of Op1. The important part of this

4.3. BASIC CASE 43

for our aim is that this should mean that the precondition of the whole compos-
ition is simply the conjunction of the preconditions of the two operations, and
the post condition is simply the conjunction of the two post conditions.

The naively simple definition would be just:

Op1.State∆ ∩Op2.State∆ = ∅

That is: the two operations change entirely different variables and so are
unaffected by each other. This is not adequate, however, as our P operation
above demonstrates. If we introduce another operation, Q , that alters only y we
would expect to - and our naive rule would allow us to - be able to sequentially
compose Q and P without problems:

Q
y, y ′ : N

y ′ = y + 1

Now consider the composition Q o

9
P . Our naive rule is satisfied, since Q

changes only y and P changes only x the intersection is empty. However the
effect of P is altered by the composition with Q since it depends on the value
of y when increasing x . Consequently we need to check that the first operation
does not change any variables that are used anywhere in the second operation.

This is easily done with our State definitions since Op.State∆ ∪ Op.StateΞ
will include all the variables in scope in the operation. Our new definition for
separation is then:

Op1.State∆ ∩ (Op2.State∆ ∪Op2.StateΞ) = ∅ 〈Total Separation〉

For our Q o

9
P example this new rule will correctly fail to prove separation

since P .State∆∪P .StateΞ includes both x and y, and Q .State∆ includes y, so the
intersection is non-empty (y). However the opposite ordering, P o

9Q , is separate
according to this new rule - and our natural language description above.

P .State∆ = {x}
P .StateΞ = {y}
Q .State∆ = {y}
Q .StateΞ = ∅

The Total Separation definition is then instantiated:

{x} ∩ ({y} ∪∅) = ∅

≡ 〈union with emptyset〉
{x} ∩ {y} = ∅

≡ 〈definition of intersection〉
∅ = ∅

≡ 〈reflexivity of =〉
true

QED

44 CHAPTER 4. SEPARATION IN Z

This also serves as an example of the difference between separation and
commutativity. When first presented with the idea of separation used here many
people suggest it is only the same as commutativity - that is if two operations
don’t affect each other’s behaviour they can be sequentially composed in either
order. Our Q o

9 P example illustrates why this is not the case. In our study
of separation here we are not interested in showing that two operations never
interfere with each other, simply that in the presented usage their effects on the
state of the system are independent. Our model of separation also requires that
the precondition of the second operation is not modified by the first. In this case
a failure to prove separation may be a positive thing for analysis since it suggests
an interplay between the operations that could simplify the overall conditions
- such as the post-condition of the first necessarily satisfying a precondition of
the second, and so removing it from consideration elsewhere.

4.4 A relaxation of the basic case

Although the Total Separation definition presented above does satisfy our
requirements for identifying independent operations it is too restrictive in some
cases. Consider the following operations:

R
x , x ′ : N

x ′ = x + 1

S
x , x ′ : N
y, y ′ : N

x ′ = x
y ′ = y + 1

Although the use of x in S seems foolishly Byzantine, it is a situation that
occurs often in Z specifications since system state is often contained in reason-
ably sized state schemas and the entire schema is brought into scope when a
change is made.

In this case our Total Separation rule will not allow us to prove R&S ,
that is we can’t show that the operation of S is unaffected by R in the compos-
ition R o

9 S . This is clearly an over-restriction, since S doesn’t use the value of
x in determining any of its effects. Also, since S leaves x unchanged it doesn’t
affect our other requirement: if we want to consider the overall effect of the
composition we need to know that any effects produced by R aren’t undone
by S . With Total Separation this was implicit, since the second operation
wasn’t allowed to even mention anything changed by the first. When relaxing

4.4. A RELAXATION OF THE BASIC CASE 45

the rule to allow situations such as R&S we must be careful not to violate this
requirement.

A naive approach would be to require that, if a variable is mentioned by both
of the operations then one of them must leave it unchanged. Just as we created
State∆ and StateΞ, we can imagine that a Z operation has a property called
Propositions that is the set of propositions in the schema. We can continue to
abuse set notation, so we can talk about a proposition being in this set, e.g.
p ∈ Op.Propositions . We can use this for our relaxed definition:

∀ x | x ∈ (Op1.State∆ ∩ (Op2.State∆ ∪Op2.StateΞ)) •
([x ′ = x] ∈ Op1.Propositions) ∨ ([x ′ = x] ∈ Op2.Propositions)

This seems ok - and it will correctly prove R&S - but it is now too weak.
Although it requires x to be unchanged it no longer prevents the value of x
being used in determining the value of another variable. The example of Q&P
from §4.3 would be proven using this rule, since P does contain the proposition
[y ′ = y]. Unfortunately, since it relies on the value of y when modifying x , it
should not be considered Separate.

We need to specify that one of the operations should only refer to the variable
in the proposition that leaves it unchanged. So, if both operations refer to x
one of them should only do so to state that it is unchanged; that is it should
contain [x ′ = x] and no other propositions that refer to x . The neatest way to
identify this property is to say that, if we removed the statement [x ′ = x] from
one of the operations it would no longer refer to x in any way. This gives us the
following new definition for separation:

∀ x | x ∈ (Op1.State∆ ∩ (Op2.State∆ ∪Op2.StateΞ)) •
∃Op2a | Op2 == Op2a ∧ [Ξx] • Op1&Op2a

〈Effective Separation〉

Clearly the separation requirement in these predicates can be satisfied either
by the Total Separation definition from §4.3 or by recursive application of this
definition if there are multiple variables to be considered.

We can now prove the separation R&S :

46 CHAPTER 4. SEPARATION IN Z

∀ x | x ∈ (Op1.State∆ ∩ (Op2.State∆ ∪Op2.StateΞ)) •
∃Op2a | Op2 == Op2a ∧ [Ξx] • Op1&Op2a

= 〈Instantiating for R and S〉
∀ x | x ∈ ({x} ∩ ({y} ∪ {x})) •
∃Sa | S == Sa ∧ [Ξx] • R&Sa

= 〈Set union and intersection〉
∀ x | x ∈ {x} •
∃Sa | S == Sa ∧ [Ξx] • R&Sa

= 〈Universal quantification over a single element set〉
∃Sa | S == Sa ∧ [Ξx] • R&Sa

= 〈One point rule using [y, y ′ : N | y ′ = y + 1] for Sa〉
R&[y, y ′ : N | y ′ = y + 1]

Proof of R&[y , y ′ : N | y ′ = y + 1] by Total Separation
Op1.State∆ ∩ (Op2.State∆ ∪Op2.StateΞ) = ∅

= 〈Instantiating for R and [y, y ′ : N | y ′ = y + 1]〉
{x} ∩ ({y} ∪∅) = ∅

= 〈Union with empty set〉
{x} ∩ {y} = ∅

= 〈Set intersection〉
∅ = ∅

= 〈Reflexivity of =〉
true

QED

4.5 A simple function case

We now have two rules for separation that give us the appropriate results for
simple Z operations where we require that the variables modified and referred
to are different between the operations. However, it is quite common for parts
of a system to be specified as relations. First we will look at functions - which
are only a restricted type of relation - then we will generalise this to relations
in §4.6

A == {1, 2}

T
f , f ′ : A→ N

f ′(1) = 42
f ′(2) = f (2)

U
f , f ′ : A↔ N

4.5. A SIMPLE FUNCTION CASE 47

f ′(1) = f (1)
f ′(2) = 1

If we try to prove T&U using the separation rules from the previous sections
we will fail, since the variable f is mentioned and modified by both operations.
However, T modifies f (1) but leaves f (2) unaltered; U modifies f (2) (without
reference to f (1)) and makes no change to R(1). If we consider each element
of the domain of the relation to be a distinct variable it is clear that these
operations should be considered separate - the changes wrought by T do not
influence and are not undone by U .

A naive solution would be to simply identify operations that referred to the
same variable but the domain of their referral was disjoint. Unfortunately this
would fail since leaving an after-state unspecified in Z allows the implementation
to modify the value or not as it sees fit. We could not argue that the operation
did not alter the value since an implementation could legitimately assign any
value to the elements outside the specified range - they are “unspecified”!

Consequently we must construct a rule that requires that any elements of the
function used by the second operation are left unchanged by the first and any
changes that are made are by the first operation are not changed or referenced
by the second operation. This is identical to the requirement we made about
variables in previous sections. As we have said above, unless an element of the
function is explicitly unchanged we have to assume it has changed. Using a
similar style to §4.4 we shall define this using schema conjunction.

A simple solution to the functional case is to define a rule that, for each
element of a function’s domain, requires that one or the other operation leaves
the function unchanged.

∀ f : A→ B | f ∈ (Op1.State∆ ∩ (Op2.State∆ ∪Op2.StateΞ)) •

∧

a∈A

(

¬ ∃Op′

1 • Op1 ==

Op′

1 ∧ [f : A→ B | f ′(a) = f (a)]

)

⇒

(

∃Op′

2 • Op2 ==

Op′

2 ∧ [f : A→ B | f ′(a) = f (a)]

)

Although this rule requires the invention of an Op′

1 or an Op′

2 it should be
easy to do this syntactically. A Z operation on a function will appear (or can
be re-written) as a series of propositions on elements of the function. Simply
removing the item that appears as f ′(a) = f (a) from the text will leave the
required operation.

Unfortunately, this rule isn’t complete. It correctly defines our separation
rule for the functional element, but we need a recursive part to take care of any
other (possibly non-functional) variables in the operations. If the operations
have met the separation conditions for the functional variable f then we can
simply require - recursively - that the operations meet some separation rule
without the function f (i.e. for all their other variables). We produce the
following rule:

48 CHAPTER 4. SEPARATION IN Z

∀ f : A→ B | f ∈ (Op1.State∆ ∩ (Op2.State∆ ∪Op2.StateΞ)) •

∧

a∈A

(

¬ ∃Op′

1 • Op1 ==

Op′

1 ∧ [f : A→ B | f ′(a) = f (a)]

)

⇒

(

∃Op′

2 • Op2 ==

Op′

2 ∧ [f : A→ B | f ′(a) = f (a)]

)

∧

(Op1.State∆\{f } ∩ (Op2.State∆ ∪Op2.StateΞ)) 6= ∅

⇒ ∃Op′

1 •
Op′

1.State∆ = Op1.State∆\{f }
∧ Op′

1.StateΞ = Op1.StateΞ\{f }

∧

∃Op1f •
Op1f .State∆ = {f } ∧ Op1f .StateΞ = ∅

∧ Op1 == Op′

1 ∧ Op1f

∧ Op′

1&Op2

〈Functional Separation〉

We should now be able to prove T&U .

〈Instantiate functional separation for T and U 〉
∀ f : A→ B | f ∈ ({f } ∩ ({f } ∪∅)) •

∧

a∈A

(

¬ ∃T ′ • T ==

T ′ ∧ [f : A→ B | f ′(a) = f (a)]

)

⇒

(

∃U ′ • U ==

U ′ ∧ [f : A→ B | f ′(a) = f (a)]

)

∧

(T .State∆\{f } ∩ (U .State∆ ∪ U .StateΞ)) 6= ∅

⇒ ∃T ′ •
T ′.State∆ = {f }\{f }
∧ T ′.StateΞ = ∅\{f }

∧

∃Tf •
Tf .State∆ = {f } ∧ Tf .StateΞ = ∅

∧ T == T ′ ∧ Tf

∧ T ′&U

= 〈Set Union and intersection〉
∀ f : A→ B | f ∈ {f } •
[...]

4.5. A SIMPLE FUNCTION CASE 49

= 〈Universal quantification over a one-element set〉

∧

a∈A

(

¬ ∃T ′ • T ==

T ′ ∧ [f : A→ N | f ′(a) = f (a)]

)

⇒

(

∃U ′ • U ==

U ′ ∧ [f : A→ N | f ′(a) = f (a)]

)

∧

(T .State∆\{f } ∩ (U .State∆ ∪ U .StateΞ)) 6= ∅

⇒ ∃T ′ •
T ′.State∆ = T .State∆\{f }
∧ T ′.StateΞ = T .StateΞ\{f }

∧

∃Tf •
Tf .State∆ = {f } ∧ Tf .StateΞ = ∅

∧ T == T ′ ∧ Tf

∧ T ′&U

=

〈

Expanding
∧

a∈A

〉

(

¬ ∃T ′ • T ==

T ′ ∧ [f : A→ N | f ′(1) = f (1)]

)

⇒

(

∃U ′ • U ==

U ′ ∧ [f : A→ N | f ′(1) = f (1)]

)

∧

(

¬ ∃T ′ • T ==

T ′ ∧ [f : A→ N | f ′(2) = f (2)]

)

⇒

(

∃U ′ • U ==

U ′ ∧ [f : A→ N | f ′(2) = f (2)]

)

∧
(

[...]
)

=

〈

‘One point’ rule using [f : A→ N | f ′(1) = 42]
as T ′ in the second predicate

〉

(

[...]
)

∧

¬ true

⇒

(

∃U ′ • U ==

U ′ ∧ [f : A→ N | f ′(2) = f (2)]

)

∧
(

[...]
)

= 〈Defn. of ¬ 〉
(

[...]
)

∧

false

⇒

(

∃U ′ • U ==

U ′ ∧ [f : A→ N | f ′(2) = f (2)]

)

∧
(

[...]
)

50 CHAPTER 4. SEPARATION IN Z

= 〈Defn. of ⇒〉
(

[...]
)

∧
true

∧
(

[...]
)

= 〈Defn. of ∧〉

(

¬ ∃T ′ • T ==

T ′ ∧ [f : A→ N | f ′(1) = f (1)]

)

⇒

(

∃U ′ • U ==

U ′ ∧ [f : A→ N | f ′(1) = f (1)]

)

∧
(

[...]
)

=

〈

Nothing can be found to instantiate T ′,

so defn. of ¬ ∃

〉

(

true ⇒

(

∃U ′ • U ==

U ′ ∧ [f : A→ N | f ′(1) = f (1)]

))

∧
(

[...]
)

= 〈Defn. of ⇒〉
(

∃U ′ • U ==

U ′ ∧ [f : A→ N | f ′(1) = f (1)]

)

∧
(

[...]
)

= 〈‘One-point’ rule using [f : A→ N | f ′(2) = 1] as U ′〉
(U == [f : A→ N | f ′(2) = 1] ∧ [f : A→ N | f ′(1) = f (1)])
∧
(

[...]
)

= 〈Schema conjunction and schema equality〉
true
∧
(

[...]
)

= 〈Defn. of ∧〉

(T .State∆\{f } ∩ (U .State∆ ∪ U .StateΞ)) 6= ∅

⇒ ∃T ′ •
T ′.State∆ = {f }\{f }
∧ T ′.StateΞ = ∅\{f }

∧

∃Tf •
Tf .State∆ = {f } ∧ Tf .StateΞ = ∅

∧ T == T ′ ∧ Tf

∧ T ′&U

4.6. A SIMPLE RELATIONAL CASE 51

= 〈Set hiding〉

(∅ ∩ (U .State∆ ∪ U .StateΞ)) 6= ∅

⇒ ∃T ′ •
[...]

= 〈Set intersection on ∅〉

∅ 6= ∅

⇒ ∃T ′ •
[...]

= 〈Defn. of 6=〉

false
⇒ ∃T ′ •

[...]

= 〈Defn. of ⇒〉
true

QED

4.6 A simple relational case

Extending our functional separation rule to cover all types of relation can be
achieved simply by using the image of the relation instead of the function applic-
ation. So, [f : A → B | f ′(x) = f (x)] becomes [r : A ↔ B | r ′(| x |) = r(| x |)].
The functional separation rule then becomes the relational separation rule.

∀ r : A↔ B | r ∈ (Op1.State∆ ∩ (Op2.State∆ ∪Op2.StateΞ)) •

∧

a∈A

(

¬ ∃Op′

1 • Op1 ==

Op′

1 ∧ [r : A↔ B | r ′(| a |) = r(| a |)]

)

⇒

(

∃Op′

2 • Op2 ==

Op′

2 ∧ [r : A↔ B | r ′(| a |) = r(| a |)]

)

∧

(Op1.State∆\{f } ∩ (Op2.State∆ ∪Op2.StateΞ)) 6= ∅

⇒ ∃Op′

1 •
Op′

1.State∆ = Op1.State∆\{r}
∧ Op′

1.StateΞ = Op1.StateΞ\{r}

∧

∃Op1r •
Op1r .State∆ = {r} ∧ Op1r .StateΞ = ∅

∧ Op1 == Op′

1 ∧ Op1r

∧ Op′

1&Op2

〈Relational Separation〉

This rule has not been demonstrated for all of the relational types in the Z
language. It may be that more subtle separation rules could be written for some
types, in the same way as the functional rule. However, this general relational
rule satisfies the original requirement that operations proven separate certainly
do not intefere with each other.

52 CHAPTER 4. SEPARATION IN Z

4.7 Conclusion

The rules presented here provide a simple test for two sequentially composed
operations to determine if the effects of the first modify the behaviour of the
second, compared to its operation individually. Although this does not provide
any means for analysing the nature of the inteference, it is intended that this
form part of a larger analysis. The intention is that the separation tests be
used to eliminate from consideration the large number of sequentially composed
operations whose behaviours need not be analysed together.

These rules are written in a pure Z form, using existential quantification
to identify various arbitray schemas that are used to decompose the original
operations. Generating suitable instantiations for these schemas would be a
difficult — if not intractable — problem for an automated theorem prover if the
rules are considered in isolation. However, it is obvious to any human reader
that the schemas are almost invariably formed from the original operation with
some stated part removed. Future work on these rules will be directed at both
representing the necessary rules in a format suitable for automated proving, and
providing heuristics or proof tactics to allow the tools to perform the obvious,
syntactic modifications to allow easy instantiation in these cases.

Chapter 5

Analysis

5.1 Disassembly

5.1.1 Overview

The source material for this analysis process will be compiled, assembled pro-
gram files. This section discussed the methods used to convert this binary
format into a stream of instruction representations and other structural inform-
ation that can be used as input to the later stages of the analysis process.

5.1.2 Executable files, object code, and disassembly

The four stages between high-level source code and execution are compilation
which produces assembly code, assembly which produces relocatable machine
code object files, linking which collects object files into executable files and
resolves the symbols in the function calls, and loading where the executable file
is loaded into a virtual address space ready for execution.

For all the reasons discussed in §1, this process needs to operate on the
level closest to execution, however capturing the image of the virtual address
space after loading is impractical. Producing a formally-verified simulation of
the loader in the target system would be ideal but the development of such a
system is beyond the scope of this work. Consequently, it is the executable
file that is as close as is practical and that will be the source material for this
analysis.

Executable files contain various information as well as the program itself —
specifically information about the layout of the virtual address space that the
program requires. To retain complete formality of the process it would be ideal if
the disassembly of the executable into a processable form was a formal, traceable
process. The development of this system is beyond the scope of this work, so it
is necessary to depend on existing technology. The GNU objdump[2] program
includes a disassembler, which converts executable files into a more readable
representation of their contents. It is capable of accepting input files in a wide

53

54 CHAPTER 5. ANALYSIS

variety of forms and for a large range of platforms. An example of the output
from objdump is shown below, along with the original C program that was
compiled.

int max(unsigned int x, unsigned int y) {

if(x > y) {

return x;

} else {

return y;

}

}

int maxint(unsigned int *ints) {

unsigned int result, *ptr;

result = ints[0];

ptr = (ints + 1);

while(*ptr != 0) {

result = max(*ptr, result);

ptr++;

}

return result;

}

maxint: file format elf32-i386

Disassembly of section .text:

080480d8 <max>:

80480d8: 55 push %ebp

80480d9: 89 e5 mov %esp,%ebp

80480db: 8b 45 08 mov 0x8(%ebp),%eax

80480de: 3b 45 0c cmp 0xc(%ebp),%eax

80480e1: 76 05 jbe 80480e8 <max+0x10>

80480e3: 8b 45 08 mov 0x8(%ebp),%eax

80480e6: eb 03 jmp 80480eb <max+0x13>

80480e8: 8b 45 0c mov 0xc(%ebp),%eax

80480eb: 5d pop %ebp

80480ec: c3 ret

080480ed <maxint>:

80480ed: 55 push %ebp

80480ee: 89 e5 mov %esp,%ebp

80480f0: 83 ec 18 sub $0x18,%esp

80480f3: 8b 45 08 mov 0x8(%ebp),%eax

80480f6: 8b 00 mov (%eax),%eax

5.1. DISASSEMBLY 55

80480f8: 89 45 f8 mov %eax,-0x8(%ebp)

80480fb: 8b 45 08 mov 0x8(%ebp),%eax

80480fe: 83 c0 04 add $0x4,%eax

8048101: 89 45 fc mov %eax,-0x4(%ebp)

8048104: eb 1b jmp 8048121 <maxint+0x34>

8048106: 8b 45 fc mov -0x4(%ebp),%eax

8048109: 8b 00 mov (%eax),%eax

804810b: 8b 55 f8 mov -0x8(%ebp),%edx

804810e: 89 54 24 04 mov %edx,0x4(%esp)

8048112: 89 04 24 mov %eax,(%esp)

8048115: e8 be ff ff ff call 80480d8 <max>

804811a: 89 45 f8 mov %eax,-0x8(%ebp)

804811d: 83 45 fc 04 addl $0x4,-0x4(%ebp)

8048121: 8b 45 fc mov -0x4(%ebp),%eax

8048124: 8b 00 mov (%eax),%eax

8048126: 85 c0 test %eax,%eax

8048128: 75 dc jne 8048106 <maxint+0x19>

804812a: 8b 45 f8 mov -0x8(%ebp),%eax

804812d: c9 leave

804812e: c3 ret

This displays each instruction in the text1 segment of the executable file
and the address in the virtual address space at which the instruction will be
loaded. Objdump also processes the symbol table of the executable file to add
useful labels to some of the addresses — notably, the function names from
the original C source file are displayed. This file was not compiled with explicit
debugging information included. Unless the symbol table is deliberately stripped
from executable files this level of useful symbols is present in all gcc compiled
executables.

Most significant for this analysis process is the action of disassembly that
objdump performs on the instructions. Each instruction is represented by a
line of text containing the mnemonic and the parameters that are applied to it.
Objdump presents its output for Intel executables in AT&T syntax, so that will
be the standard used for the examples in the remainder of this document.

It is significant that the disassembly output above was produced from a
compiled and linked executable file. Compilers can perform the compilation
and assembly steps but stop before linking to produce object files. These inter-
mediate files are used in large systems where many modules may be compiled
separately and then linked together to form the executable. References between
functions cannot be resolved until linking. References to functions in other

1An executable file contains all of the information necessary for the loader to produce
the virtual memory image in which the program will run. The text segment conventionally
contains the program code. Other segments such as bss have historical names, but contain
pre-initialised stack and heap space that may be filled with initial values that were defined
as part of the high level language program. These values are not considered in the examples
presented here, but if their content was important then objdump can create output files that
include all sections

56 CHAPTER 5. ANALYSIS

modules are impossible to determine, but references within the object file also
cannot be resolved as the load address of the target is not determined until the
entire executable is available and the linker determines the layout in the virtual
address space.

/home/ramsay/maxint.o: file format elf32-i386

Disassembly of section .text:

00000000 <max>:

0: 55 push %ebp

1: 89 e5 mov %esp,%ebp

3: 8b 45 08 mov 0x8(%ebp),%eax

6: 3b 45 0c cmp 0xc(%ebp),%eax

9: 76 05 jbe 10 <max+0x10>

b: 8b 45 08 mov 0x8(%ebp),%eax

e: eb 03 jmp 13 <max+0x13>

10: 8b 45 0c mov 0xc(%ebp),%eax

13: 5d pop %ebp

14: c3 ret

00000015 <maxint>:

15: 55 push %ebp

16: 89 e5 mov %esp,%ebp

18: 83 ec 18 sub $0x18,%esp

1b: 8b 45 08 mov 0x8(%ebp),%eax

1e: 8b 00 mov (%eax),%eax

20: 89 45 f8 mov %eax,-0x8(%ebp)

23: 8b 45 08 mov 0x8(%ebp),%eax

26: 83 c0 04 add $0x4,%eax

29: 89 45 fc mov %eax,-0x4(%ebp)

2c: eb 1b jmp 49 <maxint+0x34>

2e: 8b 45 fc mov -0x4(%ebp),%eax

31: 8b 00 mov (%eax),%eax

33: 8b 55 f8 mov -0x8(%ebp),%edx

36: 89 54 24 04 mov %edx,0x4(%esp)

3a: 89 04 24 mov %eax,(%esp)

3d: e8 fc ff ff ff call 3e <maxint+0x29>

42: 89 45 f8 mov %eax,-0x8(%ebp)

45: 83 45 fc 04 addl $0x4,-0x4(%ebp)

49: 8b 45 fc mov -0x4(%ebp),%eax

4c: 8b 00 mov (%eax),%eax

4e: 85 c0 test %eax,%eax

50: 75 dc jne 2e <maxint+0x19>

52: 8b 45 f8 mov -0x8(%ebp),%eax

5.1. DISASSEMBLY 57

55: c9 leave

56: c3 ret

This example shows the output of objdump if used to disassemble the max-
int example compiled as an object file. Although the jmp instructions resolve
correctly the call instruction at address 3d is erroneously disassembled to direct
execution to address 3e. This value is actually an offset into the relocation table
of the object file, which lists all the references that must be resolved once the
linker has assigned locations in the virtual address space.

RELOCATION RECORDS FOR [.text]:

OFFSET TYPE VALUE

0000003e R_386_PC32 max

The consequence of this is that the analysis process must operate on com-
plete, linked executable files if it is to work directly on the output of the objdump
disassembler. The analysis could read the relocation table and resolve the ref-
erences but this would require far more processing of the files and a far more
complex understanding of the executable file format for the target architecture
of each system, so this was not implemented as part of this work.

5.1.3 Parsing

If objdump is used to disassemble a linked executable then its output contains
all the information necessary to produce a model of the software’s behaviour.
Before the instructions can be instantiated in the formal model the output
format must be parsed to extract the relevant information. The general layout
of the output format is simple and well structured so producing a basic parser
using a parser generator such as JavaCC[6] is straightforward, but some features
of the instructions and their parameters deserve special consideration.

Objdump produces assembly language that is appropriate for the target ar-
chitecture, including the language syntax. For Intel systems it uses the AT&T
syntax, but for PowerPC it uses the standard PowerPC syntax, as in this ex-
ample:

00000000 <max>:

0: 94 21 ff e0 stwu r1,-32(r1)

4: 93 e1 00 1c stw r31,28(r1)

8: 7c 3f 0b 78 mr r31,r1

c: 90 7f 00 08 stw r3,8(r31)

10: 90 9f 00 0c stw r4,12(r31)

14: 81 3f 00 08 lwz r9,8(r31)

18: 80 1f 00 0c lwz r0,12(r31)

1c: 7f 89 00 40 cmplw cr7,r9,r0

20: 40 9d 00 0c ble- cr7,2c <max+0x2c>

24: 80 1f 00 08 lwz r0,8(r31)

28: 48 00 00 08 b 30 <max+0x30>

58 CHAPTER 5. ANALYSIS

2c: 80 1f 00 0c lwz r0,12(r31)

30: 7c 03 03 78 mr r3,r0

34: 39 7f 00 20 addi r11,r31,32

38: 83 eb ff fc lwz r31,-4(r11)

3c: 7d 61 5b 78 mr r1,r11

40: 4e 80 00 20 blr

The syntax for each architecture is sufficiently distinct that it requires a
specific parser but the analysis process has been designed such that a suitable
general semantic representation can be constructed that will be adequate for
most mainstream processors. The parser attempts to retain not only information
that is necessary to produce a semantically accurate formal model, but also
information such as function names and instruction addresses that makes the
formal model more readable and, critically, more tracable back to the original
executable. Retaining function names will allow the inferred model to have
a readable structure with model components retaining names appropriate to
the component they represent in the original system. Retaining instruction
addresses allows faults identified in the model to be traced back to particular
sections of the original code, and so direct fault repair most efficiently.

Since the details of the operation of each instruction will be provided as
an input to the analysis in the instruction set specification, it is sufficient to
parse the disassembly output only far enough to provide values that can be
textually substituted into the instruction set specification to produce the correct
specification for an instruction instance. More detail on this substitution process
is presented at §5.3.3, but the parameters that are given to most instructions on
most modern processors fall into a small number of distinct categories, including:

• literals — exact values.

• registers — the identifier for a register whose contents should be used.

• register indirect — a combination of a register identifier and an offset,
where the value to be used is found at the memory address produced by
adding the offset value to the value contained in the register.

Both the Intel and PowerPC examples here show all of these classes of para-
meter. Intel registers have identifying names such as eax and ecx , while the
registers in the PowerPC CPU are numbered from 0 to 31. The Intel AT&T
syntax denotes register names with a prefix percent symbol, and literals with a
prefix dollar symbol, as in this example:

18: 83 ec 18 sub $0x18,%esp

which subtracts the literal value 24 (hexadecimal 0x18) from the content of
the esp register (the stack pointer). The PowerPC architecture prefixes registers
with the letter r and has no prefix for literal values.

For indirect addressing both syntaxes wrap the register identifier (including
prefix) in brackets and then prefix the brackets with the offset value (without
an identifying prefix), as in these examples:

5.2. BRANCH IDENTIFICATION 59

1b: 8b 45 08 mov 0x8(%ebp),%eax

c: 90 7f 00 08 stw r3,8(r31)

The final parameter type of significance is branch targets. Branch instruc-
tions are analysed differently from sequential instructions, as is discussed further
in §5.2. The objdump disassembler produces the virtual address location of the
target of the branch instruction, along with a helpful description based on an
offset from a function name from the symbol table. Both Intel and PowerPC
syntaxes follow a similar convention:

e: eb 03 jmp 13 <max+0x13>

28: 48 00 00 08 b 30 <max+0x30>

Since the analysis process parsing will retain the virtual addresses of all
instructions it is only this component that is necessary to produce a correct
model of the branch behaviour.

5.1.4 Summary

This section has covered the process of disassembling an executable file into a
structured set of instructions, and the process of parsing adequate information
about each instruction to support the formal model inference. The parsed in-
struction representations will be used as input to the subsequent process stages
where the branch points will be identified to produce a control flow graph, and
the the instructions will be instantiated with formal models from the provided
instruction set.

5.2 Branch Identification

5.2.1 Overview

The disassembly from §5.1 produced a set of instructions and some structural
information such as function names and locations. This section presents the
process by which the branch instructions are identified. Using the specifications
of the branch instruction set the assembly language instructions are partitioned
into sequential blocks with the branch instructions forming nodes in a control
flow graph.

5.2.2 Branch instructions

The disassembly process described in §5.1 converted an executable file into a set
of functions, each containing a sequence of instructions. At the most general
level these instructions can be divided into two classes: sequential instructions,
that affect the state of the system and then allow execution to proceed to the

60 CHAPTER 5. ANALYSIS

next instruction in the function, and branch instructions, that direct execution
to proceed from a different place in the program, possibly only when some
condition is met. The analysis phase presented in this section will identify the
branch instructions and their target locations in the program. This will allow
the program to be segmented into sequential block — contiguous sequences
of sequential instructions where execution is certain to proceed through the
complete sequence.

The two inputs to this process are:

• A function from the assembly language output of the disassembler

• A set of branch instructions with enough information to identify the in-
struction instances and the potential targets of the branch.

5.2.3 Branch template format

For most branch instructions only two pieces of information are necessary: the
mnemonic and identification of which parameter forms the target address of
the jump. A LATEX-style representation of the jmp instruction, specifying the
mnemonic and that the first argument contains the target of the branch, is
written this way:

\begin{binst}{jmp}

Target: FIRST

\end{binst}

Since the jmp instruction is an unconditional branch this is all the inform-
ation necessary to process instances in the assembly code. For conditional
branch instructions it is necessary to specify the OnBranch and NoBranch pre-
fix schema, as discussed in §3.3.3. The jne instruction from the x86 instruction
set, which exhibits conditional branching behaviour, is specified in this form:

\begin{binst}{jne}

Target: FIRST

\begin{schema}{branch}

\Xi System

\where

zf = 1

\end{schema}

\begin{schema}{nobranch}

\Xi System

\where

5.2. BRANCH IDENTIFICATION 61

zf \neq 1

\end{schema}

\end{binst}

This analysis of branch instructions has assumed that the branch target will
be within the same function. Calls to other functions in the system are generally
handled by different processor instructions, which this process will refer to as call
instructions. These often have additional system effects such as pushing return
addresses onto the stack. They transfer execution to the beginning of the target
function, and are matched by return instructions that transfer execution back
to the next instruction in the calling function. In principle it is possible to write
assembly language programs which use the regular jump instructions to branch
out of the function and into another — possibly at an arbitrary point in the
other function — but it is unlikely that any compiler would compile a high level
language to use this type of construction. The attitude that this work takes
to such constructions mirrors the MISRA-C attitude: that the presence of such
constructions in high-integrity code is itself hazardous. If such code must be
analysed then it would have to be analysed as s single, large function, but it will
be inherently difficult to comprehend and is best discouraged by the overarching
software development management.

\begin{callinst}{call}

Target: FIRST

\end{callinst}

\begin{returninst}{ret}

\end{returninst}

The call instruction shown above is unconditional, and the ret instruction
takes no parameters, so this is enough information to process instances of these
two instructions. This model of the ret instruction produces no effect in the
system other than the return of execution. The correct operation of the ret
instruction requires that the return address is at the top of the stack. This ana-
lysis process opts not to model this behaviour specifically as it would complicate
the formal model of function calls and returns that is created in §5.5.3. For the
model to be correct it is required that the return address is not overwritten dur-
ing the operation of the function (the stack overflow attack). This requirement
should be confirmed as part of the verification of requirements on the model.

5.2.4 Example

The maxint function from the example in §5.1 illustrates all of these features.

080480ed <maxint>:

80480ed: 55 push %ebp

62 CHAPTER 5. ANALYSIS

80480ee: 89 e5 mov %esp,%ebp

80480f0: 83 ec 18 sub $0x18,%esp

80480f3: 8b 45 08 mov 0x8(%ebp),%eax

80480f6: 8b 00 mov (%eax),%eax

80480f8: 89 45 f8 mov %eax,-0x8(%ebp)

80480fb: 8b 45 08 mov 0x8(%ebp),%eax

80480fe: 83 c0 04 add $0x4,%eax

8048101: 89 45 fc mov %eax,-0x4(%ebp)

8048104: eb 1b jmp 8048121 <maxint+0x34>

8048106: 8b 45 fc mov -0x4(%ebp),%eax

8048109: 8b 00 mov (%eax),%eax

804810b: 8b 55 f8 mov -0x8(%ebp),%edx

804810e: 89 54 24 04 mov %edx,0x4(%esp)

8048112: 89 04 24 mov %eax,(%esp)

8048115: e8 be ff ff ff call 80480d8 <max>

804811a: 89 45 f8 mov %eax,-0x8(%ebp)

804811d: 83 45 fc 04 addl $0x4,-0x4(%ebp)

8048121: 8b 45 fc mov -0x4(%ebp),%eax

8048124: 8b 00 mov (%eax),%eax

8048126: 85 c0 test %eax,%eax

8048128: 75 dc jne 8048106 <maxint+0x19>

804812a: 8b 45 f8 mov -0x8(%ebp),%eax

804812d: c9 leave

804812e: c3 ret

There are four branch instructions in this function (including the ret at the
end). The following shows the function broken around the branch instructions.

080480ed <maxint>:

80480ed: 55 push %ebp

80480ee: 89 e5 mov %esp,%ebp

80480f0: 83 ec 18 sub $0x18,%esp

80480f3: 8b 45 08 mov 0x8(%ebp),%eax

80480f6: 8b 00 mov (%eax),%eax

80480f8: 89 45 f8 mov %eax,-0x8(%ebp)

80480fb: 8b 45 08 mov 0x8(%ebp),%eax

80480fe: 83 c0 04 add $0x4,%eax

8048101: 89 45 fc mov %eax,-0x4(%ebp)

--

8048104: eb 1b jmp 8048121 <maxint+0x34>

--

8048106: 8b 45 fc mov -0x4(%ebp),%eax

8048109: 8b 00 mov (%eax),%eax

804810b: 8b 55 f8 mov -0x8(%ebp),%edx

804810e: 89 54 24 04 mov %edx,0x4(%esp)

8048112: 89 04 24 mov %eax,(%esp)

5.2. BRANCH IDENTIFICATION 63

--

8048115: e8 be ff ff ff call 80480d8 <max>

--

804811a: 89 45 f8 mov %eax,-0x8(%ebp)

804811d: 83 45 fc 04 addl $0x4,-0x4(%ebp)

8048121: 8b 45 fc mov -0x4(%ebp),%eax

8048124: 8b 00 mov (%eax),%eax

8048126: 85 c0 test %eax,%eax

--

8048128: 75 dc jne 8048106 <maxint+0x19>

--

804812a: 8b 45 f8 mov -0x8(%ebp),%eax

804812d: c9 leave

--

804812e: c3 ret

--

This forms four sequential blocks. The call instruction targets the max
function, which will be processed separately; the ret instruction is identified as
a function return, so will invoke the standard function return mechanism (Leave
from the Function class).

Of particular importance is the jmp instruction at address 8048104 that
causes program execution to branch to address 8048121. This address is cur-
rently in the middle of a sequential block. This must be represented by splitting
this block at this point, as shown here:

08048195 <maxint>:

[...]

8048104: eb 1b jmp 8048121 <maxint+0x34>

[...]

804811a: 89 45 f8 mov %eax,-0x8(%ebp)

804811d: 83 45 fc 04 addl $0x4,-0x4(%ebp)

<entry point from 8048104>

8048121: 8b 45 fc mov -0x4(%ebp),%eax

8048124: 8b 00 mov (%eax),%eax

8048126: 85 c0 test %eax,%eax

[...]

This produces a block from 804811a to 804811d that is not followed by an
explicit branch instruction but that will continue on into the new block starting

64 CHAPTER 5. ANALYSIS

at 8048121. The analysis process inserts a trivial, unconditional straight through
branch at this point.

The result of this is the control flow graph presented in Figure 5.1.
The branch identification process, like all the analysis phases that follow, is

independent of the analysis of other functions. This allows all of the functions
in a program to be processed concurrently in systems capable of making use of
concurrent execution.

5.2.5 Summary

This section has detailed the process by which the sequences of instructions
produced from the disassembler can be segmented into sequential blocks, and
these blocks arranged into a control flow graph, with the branch instructions
forming the nodes. The subsequent phases of the analysis process will operate
on this graph and will begin to instantiate the formal model of the program’s
behaviour.

5.3 Formal Instantiation

5.3.1 Overview

The sequential blocks produced by the branch identification stage can be conver-
ted into formal representations of the behaviour of their constituent instructions.
This section presents the process by which the template specifications described
in §3.3.2 are instantiated into Z operation schema. These are then sequentially
composed to form a formal representation of the sequential block in Z.

5.3.2 Template specifications

To produce a formal representation of a block of assembly code it is necessary
to convert each of the instructions into a Z operation schema. To do this the
analysis process user must provide a template specification that defines the be-
haviour of each instruction in the instruction set. These template specifications
are parameterised in the same way as the instruction set descriptions from the
processor manufacturer. As an example, the sub instruction is described thus:

Subtracts the second operand (source operand) from the first

operand (destination operand) and stores the result in the

destination operand. the destination operand can be a register

or a memory location; the source operand can be an immediate,

register, or memory location. [...]

The SUB instruction performs integer subtraction. It

evaluates the result for both signed and unsigned integer

operands and sets the OF and CF flags to indicate an overflow

in the signed or unsigned result, respectively. The SF flag

5.3. FORMAL INSTANTIATION 65

Figure 5.1: The control flow graph of the maxint function

66 CHAPTER 5. ANALYSIS

indicates the sign of the signed result.

The supplied sequential instruction set specification should consist of a set of
template schema — Z operation schema with names that match the instruction
mnemonics. In some cases the same mnemonic can represent several different
underlying op codes depending on the type of the arguments. The operation
schema therefore require a type signature. This is provided as a subscript on the
end of the schema name with the pattern TYPE#NAME . The types currently
supported are LIT for literal values, REG for register names, and REGIND for
register-indirect memory access (where a value in a register is offset by some
literal amount before being dereferenced). The parser component will identify
the type of the parameters present in the disassembly, and the analysis process
will use this information to select the appropriate operation schema template.
The name component of the signature should be a text string that will be
replaced throughout the schema with the parsed value of a particular instance
of the argument. This replacement is done as a naive string match, so it is
important that the string does not appear elsewhere in the schema (even as a
substring).

subLIT#VAL,REG#TGT

∆ System

registers ′ = registers ⊕ {TGT 7→ registers(TGT) −VAL}
memory ′ = memory
(zflag ′ = 1)⇔ (registers ′(TGT) = 0)

To allow for maximum scalability these template specifications should be
instantiated with the minimum possible semantic knowledge. The parameter
names will be simply textually substituted without any processing of the state-
ments into which it is inserted. This requires some consideration when designing
the system specification and the instruction set operations, but it does not need
to be overly constrictive. It does create some interesting results in the instanti-
ation: the sub example could be given a negative literal, resulting in a double
negation in the instantiated operation:

registers ′ = registers ⊕ {eax 7→ registers(esp) − (−10)}

This is semantically correct but can cause problems with some automatic Z
interpreters — including the Z2SAL system used in §7. It is easy to perform a
text search and replace on the output if a correction is required.

The REGIND type includes two components: a register and an offset. In the
type signature the replacement names for these are separated with a comma:

movREG#SRC ,REGIND#TGT ; OFF

∆ System

memory ′ = memory ⊕ {(registers(TGT) +OFF) 7→ registers(SRC)}

5.3. FORMAL INSTANTIATION 67

registers ′ = registers

This can present another arithmetic problem if negative offset values are
used, but this can again be corrected by text search and replace for those inter-
preters that fail to handle it correctly.

5.3.3 Instantiation

The maxint example from §5.2.4 contains an instance of the sub instruction in
Block80480ed . This has the arguments 〈literal〉0x10, 〈register〉esp. The template
schema for the sub instruction presented above matches both mnemonic and
type signature, so can be instantiated to produce in this way:

80480ed <maxint>:

[...]

80480f0: 83 ec 18 sub $0x18,%esp <<-------

[...]

sub80480f 0
∆ System

registers ′ = registers ⊕ {esp 7→ registers(esp) − 24}
memory ′ = memory
zflag ′ = 1⇔ registers ′(esp) = 0

Since this process requires only text matching of the mnemonic and type
signature, and then text substitution of the parameters it is easily scalable to
large numbers of instructions. This process can be repeated for each instruction
in the sequential block. Once instantiated the resultant Z operation schema can
be sequentially composed to produce a valid (but not minimal) model of the
behaviour of the sequential block.

When the instruction template is instantiated the subscript containing the
type signature is replaced with a subscript that contains the virtual address
of the instruction being instantiated. In this way the traceability between the
formal model and the original executable file is maintained. Throughout the
rest of the analysis process the formal model components will retain the virtual
addresses of the instructions whose behaviour they model. The consequence is
that a property violation identified in the formal model can be traced back to
at least the sequential block that caused it. This traceability is a key objective
of this work.

5.3.4 Summary

This section has described the process by which the sequential blocks of the
control flow graph can be converted into formal models in Z that represent the

68 CHAPTER 5. ANALYSIS

sequence of state changes that the sequential instructions produce in the system.
These sequences are modeled by a chain of sequentially composed Z operation
schema. The next chapter will discuss a process to compress these chains into
a single Z operation schema, or at least a much shorter chain of operations to
model the same sequential block. The branch instructions that form the control
flow nodes will be considered in §5.5.

5.4 Simplification

5.4.1 Overview

This section presents the application of the theory from §4 to compress the
long sequential compositions produced by the previous analysis stage. This
should yield much more comprehensible Z representations of the behaviour of
the sequential blocks without compromising either the scalability of the process,
or the traceability afforded by the naming conventions in §5.3.

5.4.2 Sequential block compression

The result of the formal instantiation process described in §5.3 is a series of
sequential blocks that are modeled as long chains of sequentially composed Z
operation schema representing each instruction. The size of these chains can
quickly become unmanageable. The nine line maxint .c program produced a 35
line assembly file with only 7 branch instructions, and a 54 line PowerPC as-
sembly file with 7 branch instructions. The PowerPC file included a sequential
block with 13 unbroken instructions, and this is a simple function. Some tech-
nique is needed to simplify these sequential blocks if the objective is readable
formal models.

The balance of readability, accuracy, and automation has to be carefully
managed. In principle, if program interruption is to be ignored, then the se-
quential blocks could be resolved to single Z operation schema but to do this
requires some considerable formal analysis of the semantics of the operations
which would be prohibitively difficult as the program size increased. This could
be engineered if readability was the overriding objective. This may be the case
if a stable, existing program is to be reverse engineered to determine its be-
haviour. In this case the long execution time of an analysis task would be
acceptable for the end product, but if the analysis forms part of the feed-back
workflow of a development process then timely verification analysis must take
precedence. In the latter case a partial composition, where a sequential block
of 13 instructions is reduced to perhaps 5 sequentially composed schema in a
short time may be adequate. A CSP-OZ proof assistant tool should be able to
process a 5 instruction sequential composition and still prove useful properties.

5.4. SIMPLIFICATION 69

5.4.3 Algorithm

This level of concatenation is possible for limited computation expense using the
techniques outlined in §4. The process operates by comparing two sequentially
composed schemas and determining whether their semantics is altered by simply
textually concatenating their invariants into one single operation. Since this
process is text-based with only minimal parsing of the Z semantics it can be
performed very quickly on large blocks of instructions. Additionally, since the
compression of one sequential block has no impact on the behaviour of another it
is possible to perform the simplification process on all the sequential blocks in a
function concurrently. With the approximate ratio of five sequential instructions
to one branch instruction there is considerable scope for concurrent execution
to be used efficiently on multi-processor or distributed systems.

Analysis begins with the first pair of operations in the sequence and attempts
to compress them into one. Using the rules of separation in Z, the two operations
are compared and a separation proof attempted. The separation rules were
designed to be performed with limited semantic knowledge, and to be satisfied
in those conditions where the two schema can be compressed by simply placing
all the variable definitions and invariant statements in one Z operation schema.
If the separation test is successful then the two schema are removed from the
sequence and replaced with the new operation schema. The process continues
with the new schema and the next schema in the sequence. If the separation
test fails then the process attempts to merge the second and third schema, and
so it continues through the entire sequential block, compressing as many schema
as possible. The design of the separation test rules is such that a second pass
of the compressed sequential composition is not necessary.

In cases where a sequence does not meet any of the criteria for separa-
tion, a human interpreter or a sufficiently well informed proof tool could resolve
them into a single schema but they will remain sequentially composed in this
implementation. There is a necessary choice between producing the most suc-
cinct model theoretically possible and producing a model entirely automatically.
Since it will be possible to apply automatic tools to the analysis of the model
(for example Z2SAL, see §7) it can be argued that the simplification does not
need to be complete if that would require excessive human effort.

5.4.4 Summary

The simplification stage takes the Z formal model representing the sequential
sections of the executable and compresses the long sequential compositions into
shorter Z operation representations or the state effects. The balance of compres-
sion with computational speed can be varied to suit different analysis process
goals, but the ideas from §4 allow for a moderate reduction in the number of
composed operations for a limited computational effort.

The control flow graph is updated with the new, compressed sequential
blocks. This will form the input to the final stage, where the control flow
elements are rendered to CSP representations and the other structural and

70 CHAPTER 5. ANALYSIS

debugging components used to form a complete CSP-OZ specification of the
system.

5.5 Program Encapsulation

5.5.1 Overview

Having identified the branch instructions and sequential blocks, instantiated the
formal specifications of the sequential components, and simplified the sequential
blocks, the final element of the analysis process is to compose the sequential
blocks into a CSP-OZ class that represents the function. The branch instructions
and the straight through pseudo-instructions must be instantiated to form the
CSP components. The OnBranch and NoBranch schema from the conditional
branch instructions are instantiated as Z operation schema where necessary.
Function calls and returns must be instantiated with suitable models, as must
the entry and exit of the functions.

5.5.2 Internal branch instructions

Each unconditional branch instruction (including the straight through pseudo-
instructions) has a defined target. Similarly, the analysis process records the
branch that follows each sequential block as part of the internal model of the
sequential block. With this information is is simple to convert unconditional
branches and their target blocks into CSP statements. The branch instruction

8048104: eb 1b jmp 8048121 <maxint+0x34>

will always cause execution to transfer to virtual address 0x8048121. The
control flow graph shows that the block beginning at 0x8048121 ends with the
branch instruction at address 0x8048128. The branch instructions will all be
represented by CSP processes named Branch with a subscript containing the
virtual address of the instruction they represent. Knowing that the branch at
address 0x8048128 will be instantiated elsewhere and named consistently allows
this instruction to be instantiated as the CSP process that simply executed the
Z operation representing the block from address 0x8048121 and then evolves to
Branch0x8048128

Branch0x8048104 = Block0x8048121 → Branch0x8048128

The jne instruction at address 0x8048128 is a conditional branch instruction.
As is discussed in §3.3.3, this will be modeled by instantiating each possible
target sequential block as a CSP arrow as before, then prefixing this arrow with a
Z operation that serves to constrain the execution of the possible paths according
to the conditions of the branch instruction. Finally, the two paths are conjoined
with a CSP external choice operator — although the two preconditions should
be mutually exclusive, which will collapse the choice for a particular program
run to only the path whose prefix is satisfied by the current system state.

5.5. PROGRAM ENCAPSULATION 71

example
[...]
Branch8048128 = (OnBranch8048128 → Block8048106

→ Branch8048109) ✷ (NoBranch8048128
→ Block804812a → Branch804812d)

[...]

OnBranch8048128
Ξ System

zflag = 1

NoBranch8048128
Ξ System

zflag 6= 1

[...]

Ideally all of the sequential blocks will have been converted to single Z oper-
ation schema that represent the block’s behaviour. In the event that this hasn’t
been possible it is necessary to encode their sequential behaviour. The simplest
way to do this is with a series of straight through branch instructions. These are
treated as unconditional branch instructions that execute the next sequential
block. They are added to the CSP section in the same way as any unconditional
branch, and named for the block that they prefix.

Branch8048121 = Block8048121 → Branch8048124

5.5.3 Function calls

As described in §3.3.3, function calls are modeled by executing the function in
parallel, passing the system state using schema promotion, and then synchron-
ising on the communication. The sequence Call → Return is common to all
function calls, from there the remainder of the process continues exactly as with
unconditional branches: the next block is executed, and the process evolves to
the next branch instruction.

8048115: e8 be ff ff ff call 80480d8 <max>

becomes

Branch8048115 = (OnBranch8048115 → Call → Return

→ Block804811a → Branch804811d) || max

72 CHAPTER 5. ANALYSIS

5.5.4 Class definition

CSP-OZ classes require a main process to begin execution. This will begin with
the Entry operation that will receive the System state schema from a parallel
call operation. Then the process continues with the first block and the first
branch as any other branch.

All that remains is to collect these components into a CSP-OZ class, which
is named according to the function name extracted by the disassembler. This
produces a formal model where each function in the analysed system is contained
in a CSP-OZ class.

5.5.5 Summary

This final stage of the analysis process completes the model inference with two
components: the instantiation of the control flow structure in CSP, and the
collection of components into Object Z classes. This produces a complete rep-
resentation of the behaviour of the system as a series of CSP-OZ classes that
represent the various functions from the source executable. This model can now
be used for verification of system properties using any verification technique
that is defined over CSP-OZ. Examples of property verification techniques are
presented in §7 and §8.

Chapter 6

The Spurinna

implementation

6.1 Overview

The analysis workflow described in the preceding sections has been implemented
as a research prototype named Spurinna1. This chapter describes the Spurinna
implementation, giving a description of its structure and describing the imple-
mentation of the various components of the analysis process.

6.2 Input files

The Spurinna implementation includes several parsers for the different inputs.
The parsers are all implemented using the JavaCC[6] parser generator.

Both the sequential and branch instruction sets are parsed in a LATEX Z style
with some required structures. The sequential instructions are represented as
LATEX Z schema but with the requirement that their names are the mnemonics
of the assembly language, and that the names contain a subscript that details
their type signature. More discussion of instruction type signatures can be found
in §3.3.

The input version of this sub template for a literal parameter and register
target is written:

\begin{schema}{sub_{LIT#VAL,REG#TGT}}

\Delta~System \\

\where

registers’ = registers \oplus {TGT \mapsto registers(TGT) - VAL}

1Titus Vestricius Spurinna is believed to be the name of the Roman haruspex who warned
Caesar to “beware the ides of march”. Since the practise of an haruspex was to cut open
animals and divine the future by inspecting their entrails this seemed an appropriate name
for a disassembly analysis system

73

74 CHAPTER 6. THE SPURINNA IMPLEMENTATION

memory’ = memory

(zflag’ = 1) \iff (registers’(TGT) = 0)

\end{schema}

The branch instruction input format is similar but collects the various branch
prefix schema into a LATEX environment called binst. Detailed discussion of
branch instruction specifications can be found in §3.3.3. The collection also
contains a Target attribute that specifies which instruction parameter should
contain the branch target address. In the Intel instruction set there is only ever
one parameter and this is always the branch target, so they are all defined as
FIRST. Currently the implementation only supports FIRST, SECOND, or THIRD.
The branch prefix schema must be named onbranch and nobranch.

\begin{binst}{jbe}

Target: FIRST

\begin{schema}{onbranch}

\Xi~System

\where

zflag = 1 \lor sflag = 1

\end{schema}

\begin{schema}{nobranch}

\Xi~System

\where

zflag \neq 1 \land sflag \neq 1

\end{schema}

\end{binst}

The other source of input to the analysis process is the disassembled execut-
able file. The Spurinna implementation expects to be provided with a text file
containing the output of a GNU objdump disassembly. The system contains
a parser switcher that reads the beginning of the file to determine the target
architecture and to activate the appropriate assembly language parser. The top
of the file should contain a line of this form:

maxint: file format elf32-i386

This is produced by objdump from the target information in the execut-
able file header. Currently the Spurinna implementation contains a parser for
i386, and an untested parser for PowerPC, but the Java class structure contains
suitable superclasses to allow rapid development for any other formats.

The remainder of the file should be the output of the objdump disassembly
of the text segment. This expects functions to begin with a line containing the
start address and the function name.

080480d8 <max>:

6.3. ANALYSIS STAGES 75

As discussed in §3.2, these function name symbols exist even if debugging
was not turned on in the compiler. They exists unless they have been explicitly
stripped. Between function name lines should be a sequence of instructions with
a pattern that depends on the target platform. Intel instruction lines contain
a virtual address, the hexadecimal representation of the binary instruction, the
instruction mnemonic, and the parameters.

80480f0: 83 ec 18 sub $0x18,%esp

This stage of the system makes no attempt to understand the semantics of
the instructions. It parses the lines and created ASMInstruction objects that
have an address and a mnemonic, and a collection of Argument objects for the
parameters. The Argument class contains three subclasses: IntLitArgument,
RegArgument, and RegIndirectArgument for the three classes of parameter that
are modeled. The register identifiers are stored as strings and not interpreted
further. It is required that the instruction specifications be written so that
these strings can be substituted in without modification, hence the BNF type
containing the register names as atoms that is used in §3.3.1. Literals other
than integer are not considered in this implementation. Where floating point
numbers are used they are generally split up into integers representing sign,
exponent, and mantissa. String literals will handled by pointers, and characters
by their numeric representation.

The collection of ASMInstruction objects is collected into an ASMFunction
object, which contains the name, and start and end addresses of the function.
These are then collected into an ASMFile object that also contains the name
extracted from the first line of the file. This object is then the target of the
subsequent analysis phases.

6.3 Analysis stages

6.3.1 Architecture

All of the analysis phases are child classes of the ProcessStage abstract class.
This contains the structure needed to break the input down into several in-
dependent tasks, that can be represented by subclasses of ProcessTask. The
subclasses of ProcessStage must implement the makeNewComponent method
that can be given on of the ProcessTask objects and returns a subclass of Pro-
cessComponent. This sets up a collection of worker objects, where ProcessCom-
ponent implements the Java interface Runnable. The ProcessStage class then
contains the mechanics necessary to administer running many ProcessCompon-
ent threads in parallel. It refers to the Configuration singleton class to load the
number of concurrent threads to execute and then begins to execute that many
ProcessComponent objects. It monitors their progress and updates a public
percentComplete value, along with a public done Boolean variable.

This collects all of the concurrent processing mechanics into these abstract
classes. Each phase of the analysis process is then implemented by a set of

76 CHAPTER 6. THE SPURINNA IMPLEMENTATION

subclasses of these. The progress of the stages is controlled via the interface
and some mechanics in the interface classes that prevents the phases being
performed out of order and connects the output objects from one phase to the
task lists of the next phase.

6.3.2 Branch identification

The branch identification phase is described in detail in §5.2. The implementa-
tion uses the ASMFunction objects contained in the parsed ASMFile object as
the process tasks. Each BranchIdentificationComponent object operates on one
function. Due to the way internal and external branch instructions are modeled
there is nothing preventing different functions being analysed separately.

The collection of instructions is processed by searching for each instruction’s
mnemonic in the list of mnemonics available from the BranchInstructionSpec
object produced by parsing the branch instruction set specification file. Where
an instruction matches a branch mnemonic it is removed from the instruction
listing and its target identified using the information from the ASMInstruction
object and the BranchInst object that represents the parsed component of the
branch instruction set specification. In the case of local branches this may
partition another sequential block, as described in §5.2.3.

The process creates a FunctionGraph object. This contains CodeBlock ob-
jects that contain the sequential blocks of ASMInstruction objects, and Branch-
Node objects representing the branch instructions. The latter retain the inform-
ation from the branch instruction specification, including the prefix schema.

6.3. ANALYSIS STAGES 77

6.3.3 Formal instantiation

The formal instantiation stage has two layers. The FunctionGraph objects from
the branch identification stage form the process tasks for the top layer. Since the
instantiation of each code block in the graph is independent there is a further
process stage created for each graph. In this child stage the process tasks are
the CodeBlock objects from the graph. This allows each multiple blocks to be
processed concurrently, as well as multiple graphs.

The process of instantiating a CodeBlock object requires iterating through
the ASMInstruction objects and matching the mnemonics to elements of the
sequential instruction set specification. Once a matching mnemonic is found a
further check must be performed to match the type signature from the subscript
of the specification to the types of the parameters in the ASMInstruction.

Once the matching template is found it is instantiated. A clone of the ZS-
chema object is made and then the identifiers from the type signature subscript
are textually replaced throughout the body of the schema with the values from
the parameters in the ASMInstruction object. Finally the subscript is changed
to the virtual address of the instruction.

Each schema is added to a SequentialBlock object. The higher layer process
waits for completion of all of its children and then produces a FormalFunction-
Graph object using the BranchNode objects from the FunctionGraph and these
SequentialBlock objects.

78 CHAPTER 6. THE SPURINNA IMPLEMENTATION

6.3.4 Simplification

The simplification stage is layered in a similar way to the formal instantiation
stage. Again, the design of the simplification process is such that each block can
be considered independently, allowing for maximum use of concurrent processing
resources.

Simplification proceeds by processing the ZSchema objects from a Sequen-
tialBlock object and attempting to combine them. Using the rules from §4 it
seeks schema that can be simply concatenated. Where the condition is met the
two schema are concatenated and the result renamed as Block with a subscript
containing the first address.

The simplification stage is the least well implemented in the current version
of Spurinna. The Total Separation and Effective Separation conditions from §4
are implemented, but the Functional Separation condition is not. As such it is
not as effective as it could be on the examples presented in §7. The BlockSim-
plification class is also the place where additional simplification using external
tools with an understanding of Z semantics could be added.

The product of this stage is the same FormalFunctionGraph but, hopefully,
with shorter sequential block components.

6.3.5 Program encapsulation

The final stage implements program encapsulation as described in §5.5. This
converts a FormalFunctionGraph object into a CSPOZClass object. It iterates
through the BranchNode objects in the graph and performs the necessary in-
stantiation into CSPProcess objects. Additionally, it clones the OnBranch and

6.4. OUTPUT FORMATS 79

NoBranch schema from the branch instruction specification and adds them to
the CSP-OZ class with a subscript containing the address of the branch instruc-
tion.

Finally, the Entry, Exit , Call , and Return schema are added as described in
§5.5.3. This CSPOZClass object is the final result of the analysis. One CSP-OZ
class is produced for each function. The collection of classes forms the formal
model of the executable file.

6.4 Output formats

Spurinna uses a basic, text based representation of the CSP-OZ schema for its
user interface. To aid the application of verification tools to the inferred model
it is capable of producing LATEX files for either CSP-OZ, of plain Z using the
flattening algorithm described in Appendix A.

80 CHAPTER 6. THE SPURINNA IMPLEMENTATION

6.5. SUMMARY 81

6.5 Summary

This chapter has presented the Spurinna system, which implements the analysis
process developed by in this thesis. The subsequent chapters use Spurinna in
conjunction with other verification tools to demonstrate complete verifications
of properties of software systems.

The Spurinna software described in this chapter is available from http://www.dcs.shef.ac.uk/ ram-
say/Spurinna/ along with the sample specifications developed during this work.
As a research prototype, its immediate use in the verification of safety or security
critical system cannot be supported.

82 CHAPTER 6. THE SPURINNA IMPLEMENTATION

Chapter 7

Model checking for

verification

7.1 Overview

The aim of this work is to develop a process that can analyse software that
interacts with hardware and support verification of specified system properties.
The previous sections have provided the techniques necessary to analyse such
software and infer formal models of its behaviour. This chapter presents the
application of model checking techniques to verify properties about the sys-
tem using the inferred model. Additionally, it demonstrates how errors can
be identified in the model and traced back to the implementation to support
corrections.

7.2 System, requirements, and analysis

To demonstrate a complete analysis and verification process this section will
concentrate on the maxint example that has been used in §5.1-§5.5. The source
code in C is presented in Figure 7.1. The maxint function should be given
a pointer to a zero-terminated list of unsigned integers and should return the
largest. It uses the max function to compare two integers and return the value
of the largest. If they are equal it doesn’t matter which is used as the source of
the return value.

The disassembly and analysis to this example is presented elsewhere, so this
chapter will concentrate on verification of the behaviour of the inferred model.
The complete CSP-OZ model is documented in Appendix B. The decision to
produce CSP-OZ models of system behaviour was based on the large range of
available analysis techniques that can be applied to CSP-OZ, and to its constitu-
ent languages. This chapter will use the Z2SAL[28] system to translate Z into
the input language of the SAL model-checker suite. The system requirements

83

84 CHAPTER 7. MODEL CHECKING FOR VERIFICATION

int max(unsigned int x, unsigned int y) {

if(x > y) {

return x;

} else {

return y;

}

}

int maxint(unsigned int *ints) {

unsigned int result, *ptr;

result = ints[0];

ptr = (ints + 1);

while(*ptr != 0) {

result = max(*ptr, result);

ptr++;

}

return result;

}

Figure 7.1: maxint.c

will be represented as Linear Temporal Logic theorems that the SAL suite can
then verify or counter with examples.

The Z2SAL system does not support Z’s Theta notation, so the function call
and return model cannot be converted. Consequently this analysis is limited
to a single function. The max function was chosen, as its behaviour is not
dependent on any other function. The requirements of the max function can be
defined in natural language as:

• Termination The function should always reach a return state, and it
should not perform further operations from this state

• Sensible return value C functions pass arguments on the stack, along
with the return value. For the Intel system modeled here the arguments
are found at esp + 4 and esp + 8 on function entry. The max function
should return one or other of these, and not some spurious value

• Correctness of return value The value returned should be the numer-
ically higher of the two arguments. Since the return is by value it does not
matter which of two equal values is used as the source of the assignment

7.3 Z2SAL

Z2SAL converts Z specifications into the input language of the SAL suite of
model checkers and related tools. SAL models are state machines and so SAL

7.3. Z2SAL 85

input models consist of a state specification (with various data type definitions)
and a series of operations. SAL machine operations have pre and post conditions
with a primed syntax for postconditions that is not dissimilar to that of Z. The
various SAL model checkers can then evaluate Linear Temporal Logic (LTL)
theorems over these models. Due to the exhaustive behaviour of model checking,
the range of datatypes has to be finite and must be constrained as far as possible,
since entire state spaces are explored.

Z2SAL is capable of translating a range of Z specifications into SAL models
completely automatically. There are some minor limitations to the input parser
(such as not supporting subscripts in schema names) but very little needs to be
changed from the output format of Spurinna to use Z2SAL immediately on the
inferred models.

The most significant limitation is that Z2SAL only processes Z, and not
CSP-OZ. Consequently the program branching behaviour that is modeled by
the CSP component of the Spurinna models must be “flattened” into pure Z.
SAL state machine models contain a set of operations with preconditions, so
the natural way to perform this flattening is to add a suitable precondition and
postcondition to each operation that will constrain the order of execution to the
sequence prescribed by the CSP model. Performing this flattening automatically
is possible, and has been implemented in the Spurinna system for the simple
CSP cases that occur in the inferred models. The algorithm is discussed in
detail in Appendix A. As an example the CSP-OZ combination:

Branch80480d9 = Block80480d9 → Branch80480db

Block80480d9
∆ System

registers ′ = registers ⊕ {ebp 7→ registers(esp)}
memory ′ = memory

becomes:

Block80480d9
∆ System
cspstate : CSPSTATE
cspstate ′ : CSPSTATE

registers ′ = registers ⊕ {ebp 7→ registers(esp)}
memory ′ = memory
cspstate = Branch80480d9
cspstate ′ = Branch80480db

The precondition on the cspstate variable ensures that this operation will
only execute if the system has reached the state represented by the CSP Branch80480d9

86 CHAPTER 7. MODEL CHECKING FOR VERIFICATION

process. Some additional complexity occurs where several paths pass the same
operation. Concurrency for the CSP parallel composition operator has not yet
been implemented because it was not necessary for any of the examples presen-
ted here. It could be represented by the introduction of a separate cspstate
variable for each parallel process, and a shared variable that constrains the exe-
cution of both paths until the CSP system enters the parallel section. The pos-
sible interleavings should then be explored automatically by the modelchecker,
as all the possible interleaved sequences would be executable in the SAL repres-
entation.

The Z representation presented at Appendix C was automatically produced
by Spurinna. Some minor syntactic modifications had to be performed manually
because of limitations in the Z2SAL parser. The Init schema can only initialise
variables from the System state schema, so the initialisation for the cspstate
variable had to be added to the SAL file manually. Additionally, the Z2SAL
system always includes an ELSE transition in its machine that can always ex-
ecute and which doesn’t alter the system state. This produces a mathematically
complete transition function but it confounds attempts to prove LTL theorems,
since the machine can loop in the ELSE transition without ever completing the
modeled operation. Removing the ELSE transition from the SAL file solved
this problem, but then produced another: the end of any CSP process sequence
is the STOP transition, which represents deadlock, but is modeling correct ter-
mination. The SAL suite correctly identified this deadlock condition, but its
presence prevents the detection of other deadlock conditions, since it is easy
to identify it will always be returned as the counterexample from the dead-
lock checker, possibly masking other deadlock conditions. To account for this
the STOP operation was added, using the same operation code as the original
ELSE transition (i.e. performing no action) but it has the precondition that
cspstate variable must contain Leave, the value assigned to termination. Once
the system has reached the Leave state this STOP operation can execute infin-
itely, but causes no changes to the system state. Since it is able to execute it
does not show up as a deadlock state in the deadlock checker, allowing for an
accurate analysis of the rest of the model.

Initial experiments identified an interesting additional limitation of the sys-
tem as represented. The stack operations on Intel processors grow the stack
downwards (that is, they decrement the stack pointer and place the next value
at a numerically lower address), so it is conventional to compile programs to
be loaded at the middle of the virtual address space and have the heap grow
upwards and the stack grow downwards (hence the 80 prefixes on all of the
instruction addresses in the small examples). However, the SAL model is us-
ing natural numbers and limits their range to as small a set as possible. Con-
sequently, without additional guidance it became very easy for the stack pointer
to be close to zero and then decremented. Since decrementing a natural number
below zero is not possible it produced unpredictable results. This is an import-
ant insight into a possible failure mode of the program on a system with a much
more limited address space, but it can be safely excluded if the address space
will always be many orders of magnitude too big for it to occur. To represent

7.4. MODEL CHECKING LINEAR TEMPORAL LOGIC PROPERTIES 87

this while still limiting the state space for the SAL natural number type, it was
necessary to introduce an explicit Init function to tell Z2SAL to provide ad-
equate space for the stack to contain two parameters and a return address, and
to grow by at least one 32bit value when the base pointer is pushed on entry.

The full SAL file can be found at Appendix D.

7.4 Model checking Linear Temporal Logic prop-

erties

The principle requirements for the max function were defined as:

• Termination The function should always reach a return state, and it
should not perform further operations from this state

• Sensible return value C functions pass arguments on the stack, along
with the return value. For the Intel system modeled here the arguments
are found at esp + 4 and esp + 8 on function entry. The max function
should return one or other of these, and not some spurious value

• Correctness of return value The value returned should be the numer-
ically higher of the two arguments. Since the return is by value it does not
matter which of two equal values is used as the source of the assignment

The termination condition was encoded in two SAL LTL theorems:

alwaysTerminates : THEOREM State |- F(cspstate = Leave);

neverRestarts : THEOREM State |-

G((cspstate = Leave) => NOT F(cspstate /= Leave));

The first theorem states that the system should eventually reach the Leave
state of the cspstate variable. The second theorem requires that this be a
terminal state and the system cannot proceed once it reaches this state. Running
the SAL symbolic model checker on the first theorem produces the following
response:

bash-3.2$ sal-smc maxint alwaysTerminates

proved.

WARNING: Your property is only true if it is deadlock free.

You should run sal-deadlock-checker for that.

Following the advice and running the deadlock checker confirms that there
are no deadlock states possible. This demonstrates the necessity of the STOP
operation to exclude the terminal deadlock and allow SAL to confirm that no
other deadlock conditions occur.

bash-3.2$ sal-deadlock-checker maxint State

ok (module does NOT contain deadlock states).

88 CHAPTER 7. MODEL CHECKING FOR VERIFICATION

The second theorem is completely proven for the state space.

bash-3.2$ sal-smc maxint neverRestarts

proved.

The definition of the ret instruction in §5.2.3 assumes that the return address
on the stack has not been altered, so it is important to verify this property.

noStackOverflow : THEOREM State |-

FORALL (VAL:NAT):

((cspstate = Anon2) AND ((memory(registers(esp)) = VAL))

=>

G((cspstate = Leave) => (memory(registers(esp)) = VAL)));

This takes a considerable time but is eventually proven.

bash-3.2$ sal-smc maxint noStackOverflow

proved.

The requirement that the function returns one of the two parameters on the
stack is encoded with the third LTL theorem:

returnsSomethingSensible : THEOREM State |-

G(

(cspstate = Leave) =>

(

(registers(eax) = memory(registers(esp) + 4))

OR

(registers(eax) = memory(registers(esp) + 8))

)

);

This states that once the system reaches the terminal Leave state then the
value in the eax register should be one of the two parameters that are on the
stack, and so present in memory at the indirect addresses of esp+4 and esp+8
It is proven by the symbolic model checker in a short time.

bash-3.2$ sal-smc maxint returnsSomethingSensible

proved.

Finally, the requirement that the function returns the maximum of the two
values can be encoded thus:

returnsTheRightAnswer : THEOREM State |-

G((cspstate = Leave) =>

(

(

(registers(eax) = memory(registers(esp) + 4)) =>

7.5. MODEL CHECKING FOR FAULT DETECTION 89

int max(unsigned int x, unsigned int y) {

if(x < y) {

return x;

} else {

return y;

}

}

Figure 7.2: brokenmaxint.c

memory(registers(esp) + 4) >= memory(registers(esp) + 8)

)

AND

(

(registers(eax) = memory(registers(esp) + 8)) =>

memory(registers(esp) + 8) >= memory(registers(esp) + 4)

)

)

);

This is also proven in a reasonable time.

bash-3.2$ sal-smc maxint returnsTheRightAnswer

proved.

7.5 Model checking for fault detection

Presenting a series of LTL theorems that seem to represent the required prop-
erties and then presenting that the SAL suite returns “proved” is not a totally
compelling demonstration of a verification system. Proving properties about a
system is important, but the behaviour of the analysis technique when identify-
ing defects (deviations from the required properties) provides a better demon-
stration of its usefulness in a software engineering workflow, and gives more
confidence in the validity of the proven properties.

To demonstrate the fault identification abilities of these techniques the max
function was modified to introduce a deliberate error. Figure 7.2 presents the
max function with the > symbol replaced by <. This sort of typographic error
occurs frequently and is easily overlooked in code reviews, especially in the
middle of large blocks of complex code.

The resulting C file was saved as “broken-maxint.c” and underwent the same
compilation, linking, disassembly, and analysis as was described for maxint . It
is a reassuring demonstration of the structural compatibility between the CSP-
OZ model and the underlying program that the only difference between the two
inferred models is in the branch choice. A diff of the two LATEX files shows only
two lines changed:

90 CHAPTER 7. MODEL CHECKING FOR VERIFICATION

75c75

< sflag = 0 \\

> zflag = 1 \lor sflag = 1 \\

81c81

< sflag \neq 0 \\

> zflag \neq 1 \land sflag \neq 1 \\

The conversion to SAL with the Z2SAL system proceeds easily, with the
same small manual changes to the SAL file. Again, diff only highlights the
difference that is expected in the branch precondition and the change of file
name.

1c1

< brokenmaxint : CONTEXT = BEGIN

> maxint : CONTEXT = BEGIN

124c124

< sflag = 0 AND

> (zflag = 1 OR sflag = 1) AND

144c144,145

< sflag /= 0 AND

> zflag /= 1 AND

> sflag /= 1 AND

The same sequence of theorems can be evaluated for the broken program,
since they are the requirements that would be expected of the final system.
The change to the logic makes no difference to program termination, or to the
program returning one of the two potential results:

bash-3.2$ sal-smc brokenmaxint alwaysTerminates

proved.

WARNING: Your property is only true if it is deadlock free.

You should run sal-deadlock-checker for that.

bash-3.2$ sal-deadlock-checker brokenmaxint State

ok (module does NOT contain deadlock states).

bash-3.2$ sal-smc brokenmaxint neverRestarts

proved.

bash-3.2$ sal-smc brokenmaxint returnsSomethingSensible

proved.

It is only the final theorem, representing the semantic condition of the result
that identifies the failure. The complete counterexample is included at Appendix
E. The last step of the counterexample is adequate to demonstrate that there
is a flaw in the logic of this max implementation:

7.5. MODEL CHECKING FOR FAULT DETECTION 91

Transition Information:

(module instance at [Context: brokenmaxint, line(257), column(34)]

(label Block80480eb

transition at [Context: brokenmaxint, line(215), column(10)]))

Step 7:

--- System Variables (assignments) ---

registers(eax) = 12

[...]

registers(esp) = 4

registers(ebp) = 12

[...]

memory(8) = 13

[...]

memory(12) = 12

[...]

cspstate = Leave

invariant__ = true

With esp set to 4 the two parameters are found at memory addresses 8 and
12. In this example these contain the values 13 and 12, but the register eax
contains 12. This seems a difficult to read, but the requirements of the style of
low level code that this analysis targets are often written at this level. As such,
the authors of such code are likely to be familiar with the low level system and
can be expected to be used to reviewing similar register and stack “dumps” in
the course of standard debugging. The complete counter example trace can be
followed to identify the point at which the erroneous value is written to the eax
register; in this case it is loaded in Step 5 (Block80480e8).

Step 5:

--- System Variables (assignments) ---

registers(eax) = 13

[...]

Transition Information:

(module instance at [Context: brokenmaxint, line(257), column(34)]

(label Block80480e8

transition at [Context: brokenmaxint, line(199), column(10)]))

Step 6:

--- System Variables (assignments) ---

registers(eax) = 12

[...]

The importance of retaining the instruction addresses throughout the entire
analysis process is now apparent, as this can be immediately connected back to
the disassembly:

92 CHAPTER 7. MODEL CHECKING FOR VERIFICATION

080480d8 <max>:

80480d8:55 push %ebp

80480d9:89 e5 mov %esp,%ebp

80480db:8b 45 08 mov 0x8(%ebp),%eax

80480de:3b 45 0c cmp 0xc(%ebp),%eax

80480e1:73 05 jae 80480e8 <max+0x10>

80480e3:8b 45 08 mov 0x8(%ebp),%eax

80480e6:eb 03 jmp 80480eb <max+0x13>

*80480e8:8b 45 0c mov 0xc(%ebp),%eax

80480eb:5d pop %ebp

80480ec:c3 ret

By directing the user’s attention to this line in a short sequence of assembly
instructions a rapid understanding can be gained the program component that
is being considered. The instruction at 80480db loads the first parameter into
eax , and the immediately following instruction compares this to the other para-
meter. By reading only a few more instructions the user can identify that the
third instruction in the sequence makes a branching decision based on that
comparison. The branch target loads the other parameter, whereas the block
that would be executed if the branch was not followed skips the instruction at
80480e8, which was identified as the mistake in the SAL model. Clearly, the
program should not have branched on the conditional at 80480e1, and yet it
did, suggesting that the logic of that condition is wrong. This should direct the
user to look at the choice logic in the original C file, whereupon they should
identify the error.

This level of comprehension is only possible once the user has been directed
to the critical three or four lines. In this example the entire assembly program
can be reasonably comprehended, but in a system with a million or more in-
structions that is simply not possible. Additionally, this example depends on
the operation of a relatively simple conditional branch. In a different example
— perhaps where the error occurred in the application of a more complex in-
struction — the user could return to the SAL counter example and view the
following sequence to appreciate the changes wrought in the system state by the
subsequent instructions and so gain a better understanding of the interrelation
between state components that was the source of the error.

7.6 Summary

The Z2SAL tool offers an easy and efficient way to allow the use of the SAL
model checking suite on the model inferred by the analysis process. This chapter

7.6. SUMMARY 93

has demonstrated the use of Z2SAL and the SAL suite to verify requirements
of the system by encoding them as LTL theorems and applying the SAL tools.
Additionally, this chapter has demonstrated the usefulness of the traceability
information maintained in the model when requirement violations are identified.
The only limitations to this verification process are the limitations of the Z2SAL
parser, and the finite nature of the SAL state models. The next chapter will
address the state limitations by applying symbolic proof techniques to evaluate
properties over infinite domains.

94 CHAPTER 7. MODEL CHECKING FOR VERIFICATION

Chapter 8

Verification by symbolic

proof

8.1 Overview

In §7 various properties of the max example were confirmed with a model
checker. In this section the same example and the same properties will be
proven using the formal proof environment Isabelle (see §2.5.4). This requires
rendering the model as an Isabelle theorem, using a lightweight Z representation
that preserves the traceability data that has been maintained throughout the
analysis process.

8.2 Symbolic proof in IsabelleHOL

Model checking is an effective way to assess properties of a system with a small
state space, but as the state space grows the model checker becomes more
time consuming, and quickly exhausts its memory. In the case of a large state
space but a relatively straightforward operational model there are advantages
to applying symbolic proof techniques. Whilst a model checker can demonstrate
that a property holds for a finite range of values, a symbolic proof can show
that the property is universally true. This has certain limitations in that not all
properties can be proven, and the proof of even simple properties can require a
large number of facts about the system. This limits the model complexity that
can be realistically handled by formal proof, since more complex models may
require intractably large numbers of facts, in the same way that the state space
size is the limiting factor for model checkers. The choice between model checking
and proof rests on the simplicity of automation. As shown by the Z2SAL tool
and the work in §7 it is possible to achieve almost complete automation of
the analysis of properties in a model checker, but the verification is limited to
finite domains. Formal proof systems like Isabelle can make use of more subtle

95

96 CHAPTER 8. VERIFICATION BY SYMBOLIC PROOF

approaches to verify properties over infinite domains, but this can require some
level of human interaction to direct the proof.

A number of representations of Z exist for Isabelle, including HOLZ[43] but
these require higher-order features of Isabelle in order to properly represent the
more advanced semantics of Z. A specific intention of this work is to prioritise
readability and traceability for the semantically simple machine instructions
found in assembly language. As such it was decided that a new, lightweight
representation of Z in Isabelle would be constructed for this verification. By
using a lightweight, first order model it becomes possible to apply the automated
theorem provers that are included in the Isabelle system.

The representation used here models Z state schema as records (in a similar
way to the Z schema promotion syntax). The current state of the system at a
given point contains two elements: a record containing all of the state variables
and their current values, and a Boolean value representing whether this state has
been reached but in violation of the precondition of an operation. The Z theory
file contains a generic definition of a system state that must be parameterised
by the actual system state schema.

The representation of a Z operation schema then contains two propositions:
a Boolean proposition that models the precondition of the operation, and a
record function that uses the record assignment syntax to update the state in
according to the postcondition of the Z operation.

record system =

x :: int

y :: int

definition S :: "system Op" where

"S St ≡
L sys = L x = (x (sys St)) + 1, y = (y (sys St)) M,
cond = x < y M"

This example defines a system state containing two integer variables and then
defines an operation on that state that increments x and leaves y unchanged,
but has the precondition that x is less than y. The Op type is defined in the Z
theory file to represent single Z operations.

The Z model also includes composition operators based on the Z and CSP-
OZ operators. The semicolon operator models sequential composition and the
external choice operator is included. To model the choice operator the oper-
ations are expanded with the AllPos function to apply across a list of states
and produce a list of states. This maps the operation across all of the states in
the argument, and then filters the results based on the precondition so that the
resulting list is only those states that have not violated the precondition of the
operation. The sequential operator then applies the second operation to all of
the outputs of the first and performs similar precondition check.

definition doubleS :: "system AllPosOp" where

"doubleS ≡ (AllPos S) ; (AllPos S)"

8.3. CONVERTING Z TO AN ISABELLE MODEL 97

The AllPosOp type is defined in the Z theory file to represent the mapped
operation. It is equivalent to ’a state list ⇒ ’a state list, where ’a is
the Isabelle syntax for a type parameter.

The choice operator applies both operations to the argument list and pro-
duces the list that combines both the output lists, since this model is designed
to verify properties of the system it is necessary that the properties hold on all
possible results.

definition maybeS :: "system state ⇒ system state" where

"maybeS ≡ (AllPos S) � (AllPos R)"

This models the external choice between performing operation S and some
other operation, R. In this model, however, the output will be the list containing
the result of mapping both operations over the input set, so it will be the list
of all possible states that could be reached from this list of initial states.

Both the sequential composition and choice operators’ definitions include
rules to filter the output lists to only contain states where the precondition
has not been violated. This is particularly important in the case of the choice
operator. Since it models external choice if it composes two operations, only
one of which has its preconditions satisfied, it will fill the output list with only
the result state from the branch that is available and not the branch that is
refused.

8.3 Converting Z to an Isabelle model

The max example was converted manually to the Isabelle representation to
demonstrate the applicability of this verification technique. In the future is
would be possible to automate this rendering process in a similar way to the
Z2SAL process for the SAL input language.

Several helper functions are included to simplify access to registers and
memory locations in the two-level record structure.

definition mem :: "system state ⇒ int ⇒ int" where

"mem St ≡ (memory (sys St))"

declare mem_def [simp]

This defines themem operator as simply equivalent to requesting thememory
element from the sys record element of the St record parameter. The last line
explicitly identifies this as a simplification rule that the Isabelle simplifier is
allowed to apply to all instances of the mem operator to make their behaviour
more explicit.

definition reg :: "system state ⇒ Regname ⇒int" where

"reg St ≡ (registers (sys St))"

declare reg_def [simp]

98 CHAPTER 8. VERIFICATION BY SYMBOLIC PROOF

definition regind :: "system state ⇒ Regname ⇒ int ⇒ int" where

"regind St ≡ λr . λoff . ((mem St) ((reg St r) + off))"

declare regind_def [simp]

These rules produce similar operators for the register and register indirect
access mechanisms. The first block of the CSP-OZ model, Block80480d8, is
modeled thus:

Block80480d8
∆ System

registers ′ = registers ⊕ {esp 7→ registers(esp) − 4}
memory ′ = memory ⊕ {registers ′(esp) 7→ registers(ebp)}

definition Block80480d8 :: "system Op" where

"Block80480d8 St ≡
Lsys=(sys St)L
registers := (registers (sys St))(esp := ((reg St esp) - 4)),

memory :=

(memory (sys St))(((reg St esp) - 4) := (reg St ebp))M
, cond=TrueM"

declare Block80480d8_def [simp]

This demonstrates the advantage of this lightweight notation over the more
semantically rich HOL Z notations in that it retains a large portion of the
syntactic structure of the original, making traceability easier. The lack of the
posterior variables forces the only substantial change: that registers ′(esp) has
to be rendered with the expression used in the other assignment, (reg St esp)

- 4. These operation definitions are also registered as simplification rules so
that the Isabelle simplifier can unravel the compositions that will be created
later and produce their behaviors explicitly.

The next few blocks can be written similarly. The complete Isabelle theory
file is included at Appendix G. The first three blocks of the program setup the
stack after the function call and load some registers from memory. This should
always work, there should be no precondition for this sequence. In this model
that is represented by the statement that for all possible argument states the
AllPos operation produces at least one state — that is, the precondition never
prevents the composition operator from producing a result state.

lemma firstThreeNoPrecond [simp] :

"∀St::(system state) .

¬ ((((AllPos Block80480d8)

;(AllPos Block80480d9)

;(AllPos Block80480db)) [St]) = [])"

by simp

The lemma is presented to Isabelle, which typechecks the statement and
builds an internal model of the proposition. The proof can be presented as a

8.3. CONVERTING Z TO AN ISABELLE MODEL 99

sequence of applications of rules from the base logic or from previous parts of
this theory file. In this case the simplifier is able to expand all of the proposition
elements to a point that the Isabelle system can resolve trivially, so only the
line by simp is necessary.

The AllPos function expands the singular operators to work on lists of states,
and the sequential composition combines them as described previously. Since
all the operation definitions are declared to be simplification definitions the
Isabelle simplifier can apply them to the composition. In this case that is all
that is needed to prove that the precondition is never violated. In this case they
all have the precondition true, so this is not surprising, but it does demonstrate
that all of the composition operators work correctly and that this approach to
specification and verification is succinct.

The process of converting operations is not complex and a rendering system
could be produced for most cases easily, but some Z postconditions are slightly
more difficult. For example the block at address 80480de includes conditional
postconditions:

Block80480de
∆ System

registers(eax)−memory(registers(ebp) + 12) < 0
⇒ sflag ′ = 1 ∧ zflag ′ = 0

registers(eax)−memory(registers(ebp) + 12) = 0
⇒ zflag ′ = 1 ∧ sflag ′ = 0

registers(eax)−memory(registers(ebp) + 12) > 0
⇒ zflag ′ = 0 ∧ sflag ′ = 0

memory ′ = memory
registers ′ = registers

This is easily modeled using the choice operator. Since the guards are mutu-
ally exclusive it can be modeled by representing each line as an operation that
uses the left hand site of the implication as the precondition and the right hand
side as the postcondition. The model for the complete block is then built as the
external choice between them, which will then resolve to apply the postcondition
from the one operation whose precondition is satisfied.

definition Block80480dePartA :: "system Op" where

"Block80480dePartA St ≡ Lsys=(sys St)L
zflag:=zero,sflag:=oneM
, cond=((((reg St) eax) - (regind St ebp 12)) < 0)M"

declare Block80480dePartA_def [simp]

definition Block80480dePartB :: "system Op" where

"Block80480dePartB St ≡ Lsys=(sys St)L
zflag:=one,sflag:=zeroM
, cond=((((reg St) eax) - (regind St ebp 12)) = 0)M"

100 CHAPTER 8. VERIFICATION BY SYMBOLIC PROOF

declare Block80480dePartB_def [simp]

definition Block80480dePartC :: "system Op" where

"Block80480dePartC St ≡ Lsys=(sys St)L
zflag:=zero,sflag:=zeroM
, cond=((((reg St) eax) - (regind St ebp 12)) > 0)M"

declare Block80480dePartC_def [simp]

definition Block80480de :: "system AllPosOp" where

"Block80480de St ≡ (((AllPos Block80480dePartA)

�(AllPos Block80480dePartB))

�(AllPos Block80480dePartC)) St"

declare Block80480de_def [simp]

However, this interpretation requires a fairly deep semantic understanding of
the CSP-OZ model, so is more than a simple textual conversion. The remainder
of the Z operations can be represented in a similar way. The full Z theory file
is presented in Appendix F.

The operations are then combined into sets of sequential compositions, and
finally composed with choice operators to form the complete model:

(* The first sequential blocks with no branches *)

definition Entry :: "system AllPosOp" where

"Entry ≡ λSt .

((AllPos Block80480d8)

;(AllPos Block80480d9)

;(AllPos Block80480db)

;Block80480de) St"

declare Entry_def [simp]

(* The two choices at 189 *)

definition Left :: "system AllPosOp" where

"Left ≡ λSt .

((AllPos OnBranch80480e1)

;(AllPos Block80480e8)

;(AllPos Block80480eb)) St"

declare Left_def [simp]

definition Right :: "system AllPosOp" where

"Right ≡ λSt .

((AllPos NoBranch80480e1)

;(AllPos Block80480e3)

;(AllPos OnBranch80480e6)

;(AllPos Block80480eb)) St"

declare Right_def [simp]

8.4. PROOFS OF PROPERTIES 101

(* The complete spec for the Max function *)

definition MaxOp :: "system AllPosOp" where

"MaxOp St = (Entry;(Left�Right)) St"

declare MaxOp_def [simp]

8.4 Proofs of properties

The significant properties required of the system were:

• Termination The function should always reach a return state, and it
should not perform further operations from this state

• Sensible return value C functions pass arguments on the stack, along
with the return value. For the Intel system modeled here the arguments
are found at esp + 4 and esp + 8 on function entry. The max function
should return one or other of these, and not some spurious value

• Correctness of return value The value returned should be the numer-
ically higher of the two arguments. Since the return is by value it does not
matter which of two equal values is used as the source of the assignment

Additionally, the definition of the ret instruction required a check that there
was no stack overflow possible. These properties can be written and proven as
follows:

theorem MaxTerminates : "∀St::system state .

MaxOp [St] 6= []"

by simp

theorem NoStackOverflow :

"∀St::system state . ∀ASt::system state .

cont ASt (MaxOp [St]) −→ (regind St esp 0 = regind ASt esp 0)"

by simp

For the last two properties the simplifier requires a few hints before it is able
to completely discharge the proof requirements, but these can be supplied in the
form of lemmas. The simplifier has a limit to the depth to which it will simplify
in one call, so these lemmas simply guide it and allow it to take a number of
shorter steps.

lemma functionsAreSane [simp] : "∀St . ∀n . ((mem St) n = (mem St) n)"

by simp

lemma intCommute [simp] : "∀n::int . ∀m::int . (n + m) = (m + n)"

by simp

theorem MaxGetsSomethingSensible [simp] :

102 CHAPTER 8. VERIFICATION BY SYMBOLIC PROOF

"∀St::system state . ∀ASt::system state .

cont ASt (MaxOp [St]) −→
(

let n = (regind St esp 4); m = (regind St esp 8) in

((reg ASt eax) = n) ∨ ((reg ASt eax) = m)

)"

by simp

theorem MaxReturnsMax :

"∀St::system state . ∀ASt::system state .

cont ASt (MaxOp [St]) −→
(

let n = (regind St esp 4); m = (regind St esp 8) in

(n ≥ m ←→ (reg ASt eax = n))

)"

by simp

8.5 Proof assistant counterexamples for fault de-

tection and tracing

Unlike the model checking example, these proofs are not limited to finite ranges
of values and should apply universally. Nonetheless, the ability to detect defects
and the level and style of feedback provided is still a more useful measure of a
verification process. The same brokenmax implementation that was used in the
modelchecking example in §7.5, with the same defect, can be rendered in the Isa-
belle representation. The only significant changes to the correct implementation
are the branch prefixes at address 80480e1:

(* Changes in the broken version... *)

definition WrongOnBranch80480e1 :: "system Op" where

"WrongOnBranch80480e1 St = Lsys=(sys St),

cond=(sflag (sys St) = zero)M"
declare WrongOnBranch80480e1_def [simp]

definition WrongNoBranch80480e1 :: "system Op" where

"WrongNoBranch80480e1 St = Lsys=(sys St),

cond=(sflag (sys St) 6= zero)M"
declare WrongNoBranch80480e1_def [simp]

As with the model checking, this does not alter the first verification condi-
tions.

(* The two wrong choices at 189 *)

definition WrongLeft :: "system AllPosOp" where

"WrongLeft ≡ λSt .

8.5. PROOFASSISTANT COUNTEREXAMPLES FOR FAULTDETECTIONAND TRACING103

((AllPos WrongOnBranch80480e1)

;(AllPos Block80480e8)

;(AllPos Block80480eb)) St"

declare WrongLeft_def [simp]

definition WrongRight :: "system AllPosOp" where

"WrongRight ≡ λSt .

((AllPos WrongNoBranch80480e1)

;(AllPos Block80480e3)

;(AllPos OnBranch80480e6)

;(AllPos Block80480eb)) St"

declare WrongRight_def [simp]

definition WrongMaxOp :: "system AllPosOp" where

"WrongMaxOp St = (Entry;(WrongLeft�WrongRight)) St"

declare WrongMaxOp_def [simp]

(* It should still get an answer *)

lemma WrongMaxTerminates :

"∀St::system state .

WrongMaxOp [St] 6= []"

by simp

(* We should still get one of the two arguments. *)

lemma WrongMaxGetsSomethingSensible [simp] :

"∀St::system state .

∀ASt::system state .

cont ASt (WrongMaxOp [St]) −→
(let n = (regind St esp 4); m = (regind St esp 8) in

(((reg ASt eax) = n) ∨ ((reg ASt eax) = m))

)"

by simp

These are all discharged in the same way as the correct versions. Any at-
tempts to prove the correctness theorem, however, will not succeed. The refute
and nitpick tools can be used to find counter examples.

theorem WrongMaxReturnsMax :

"∀St::system state .

∀ASt::system state .

(

(cont ASt (WrongMaxOp [St])) −→
(let n = (regind St esp 4); m = (regind St esp 8) in

(n ≥ m) ←→ (reg ASt eax = n)

)

)

104 CHAPTER 8. VERIFICATION BY SYMBOLIC PROOF

"

nitpick

apply(simp)

nitpick [verbose=true,show_all=true]

8.6 Summary

This chapter has demonstrated the feasibility of converting the formal model
inferred by the analysis process into a lightweight IsabelleHOL representation.
Once converted, it was shown that formal proofs can be constructed that verify
the system requirements. The symbolic nature of these proofs makes them
applicable over infinite variable domains, unlike the model checking results in §7.
However, they require more human interaction than is necessary with the Z2SAL
and SAL suite and the language conversion process is not yet automated.

Chapter 9

Verifying a hardware usage

requirement

9.1 Overview

The previous two chapters have demonstrated the use of the analysis process to
verify properties of software systems, but these properties have been abstract
properties. This chapter presents the verification of a hardware usage property
of the kind that cannot be analysed in safe language subsets.

9.2 A hardware interaction example

The example used in this chapter is a fictional hardware system. The natural
language description of the requirements for the function are:

The system has an Intel i386 based processor. The device to be
controlled has two ports: a control port and a data port. The control
port is accessible at the processor’s IO port1 address 0. The data
port is accessed at IO port address 4. To request data the driver
must write a 1 to the control port, then wait 10ms before the data
on the data port is valid. To facilitate the timing there is a clock
device available at IO port 8, which presents an integer representing
time on an arbitrary scale that increments once per ms.

The designed operation of the device driver function is to write a 1 to the
control port, read the clock port and store the value read as the start time, loop
reading from the clock port until the value has increased by at least 10 from

1Intel processors separate IO port operations from memory accesses and have different
instructions for each. The in and out instructions are used to read from and write to IO
ports.

105

106 CHAPTER 9. VERIFYING A HARDWARE USAGE REQUIREMENT

the start time, read the data port and return the value read. The C program
to implement this is presented below.

#define out(port, value) asm("out %1,%0" : : "dN" (port), "a" (value))

#define in(port, result) asm("in %1,%0" : "=a" (result) : "dN" (port))

#define CONTROL_REG 0

#define DATA_REG 4

#define CLOCK_REG 8

int exdev() {

int starttime;

int endtime;

int now;

int result;

// Output a request

out(CONTROL_REG, 1);

// read the clock to get the start time.

in(CLOCK_REG, starttime);

// Wait 100ms

endtime = starttime + 10;

do {

in(CLOCK_REG, now);

} while(now < endtime);

// Return the response register;

in(DATA_REG, result);

return result;

}

The use of IO port operations is sufficiently target specific that it is not even
possible with pure C, additional inline assembler code must be included. The
literal addresses of the IO ports are contained in the preprocessor definitions to
ease readability.

The process of compilation to an executable, disassembly, analysis with
Spurinna, and conversion to a SAL model with the Z2SAL tool is identical
to the process used for the maxint example in §7, so it is not described here.
The only change to the system specification is to add the ports function that
is defined from natural numbers to natural numbers in the same way as the
memory function. Unlike the memory function, the instruction operations do
not contain any postconditions that ensure that the values present at particular
ports are unchanged between operations. Since the posterior state of the ports
function is undefined the modelchecker and any other verification tool must as-
sume that the ports could assume any value at each step. This neatly represents

9.3. SAL VERIFICATION 107

the volatile nature of data on IO devices, and demonstrates the reason for the
choice of the Z language — which allows variables to be left unspecified — over
more incremental state based modeling languages.

System
registers : REGNAME → N

memory : N→ N

ports : N→ N

zflag : {0, 1}
cflag : {0, 1}
oflag : {0, 1}
sflag : {0, 1}

The C function has four local variables. The GCC compiler creates space
for these variables on the stack when the function is entered. Since this is
a 32bit system the four integers require 16 bytes, and the 4 byte stack base
pointer that is also pushed on function entry totals 20 bytes required for stack
space. To simplify the model and optimise the size of the NAT type in the SAL
representation the system is initialised with the stack pointer at address 20.

Init
System ′

registers ′(esp) = 20
registers ′(ebp) = 20

9.3 SAL verification

The SAL model that is produced has 20 transitions and uses a set of natural
numbers that runs from 0 to 21, with 22 as the unused bottom element required
by the Z2SAL models of functions2. It is included at Appendix H.

Unfortunately, using natural numbers up to 22, and the introduction of
the ports function that is also defined over them, produces a state space that
is too large for the symbolic model checker. In principle, this model could be
simplified by creating smaller types for the port addresses, containing only those
values that are used — 0, 4, and 8 — but this would only solve the problem
for a borderline case such as this. Instead, the SAL suite contains a bounded
model checker that produces all possible traces to some specified depth and
then applies a SAT solver to evaluate the required LTL property over the trace
set. This has several limitations that are discussed by the SAL FAQ page[5].
Specifically, it is not possible to evaluate the F (future) and U (until) operators
correctly. For properties that must be true in the future the suite is searching
for a counter example, if it does not find the required property in the traces
presented it assumes that it may be present if the traces were extended, and so

2The SAL modeling of Z functions is fully described in Derrick et al. [28]

108 CHAPTER 9. VERIFYING A HARDWARE USAGE REQUIREMENT

does not present this as a counter example. The only violation it can detect is a
deterministic cycle that do not contain the property. The strict until operator
requires that the property is eventually true, and this has the same difficulties
as the future operator. The G (globally) and W (weak until) operators can be
evaluated over finite traces, although their evaluation is not technically accurate
since they could be violated if the traces were extended.

These limitation prevent the application of the termination properties that
were verified in the maxint example. The alwaysTerminates property can be
evaluated on finite traces but its evaluation demonstrates nothing since a trace
not ending in the terminal state would result in SAL assuming it would if the
trace were extended. This is an incorrect assumption given the arbitrarily volat-
ile specification of the ports function. Since the formal specification does not
require the values in the clock port to increment it is a legitimate instantiation
for the delay loop to never terminate if the clock port never presents a value
that is 10 greater than its initial value. The LTL properties could all be prefixed
by the requirement that the clock port increments:

FORALL (VAL:NAT): G((ports(8) = VAL) => X(ports(8) > VAL)) => <...>

This would require the properties to only hold on those traces that can be
expected to exist in the real system. Since termination is difficult to determine
using the bounded model checker, and the other properties can be evaluated
without this requirement, it is not explored further.

The neverRestarts property can be evaluated meaningfully but its evalu-
ation only demonstrates that none of the finite traces ever left the terminal state
within the bounded number of steps. Since only the Stop transition is valid in
the terminal Leave state it is a reasonable assumption that this property will
continue to hold.

That the system ever terminates can be demonstrated by evaluating the
inverse property and finding a counter example.

neverTerminates : THEOREM State |- G(cspstate /= Leave);

A counter example is quickly identified that shows a trace which reaches the
terminal state.

Due to the volatile nature of the IO port contents the system properties
regarding the hardware usage must use quantified variables that capture the
state of the ports at the moment they are read or written by the software.
A simple text search can identify the transition in the model that operate on
a specific port. This ability to identify the parts of a system that interact
with particular state is known as slicing[56] when performed in a formal way,
and its applicability to CSP-OZ models — which includes the development of
automated tools such as developed by Syspect [54] — was another consideration
in the choice of CSP-OZ as an output language.

The accesses to the ports are identified as:

• Control port - ports(0) written to in Block80480c3, which is activated
by cspstate Branch80480c3

9.3. SAL VERIFICATION 109

• Data port - ports(4) read in Block80480e0, which is activated by csp-
state Anon0

• Clock port - ports(8) read in Block80480c3 (cspstate Branch80480c3),
and again in Block80480d3 (cspstate Branch80480d3)

Since these are the only uses of the control ports, and it can be textually veri-
fied that these are the only ports ever used, the system usage requirements can
be formulated as LTLs based on the sequence of activation of these transitions.

writeBeforeRead : THEOREM State |-

W((cspstate /= Anon0),(cspstate = Branch80480c3));

The writeBeforeRead property guarantees that the control port is written
at some point before the data port is read. The SAL syntax uses prefix notation
for the weak until operator, so this states that the system does not activate
the data port read transition — preconditioned to require cspstate = Anon0

— until the system has activated the control port write transition, which is
preconditioned to require cspstate = Branch80480c3.

delayIsCorrect : THEOREM State |- FORALL (START:NAT):

G(

((cspstate = Branch80480c3) AND (ports(8) = START)) =>

FORALL (FINISH:NAT):

G(((cspstate = Branch80480d3) AND (ports(8) = FINISH)) =>

G(((cspstate = Anon0) AND (registers(eax) = FINISH)) =>

(FINISH >= (START + 10))

)

)

);

In the delayIsCorrect property, the clock values at the point of the write
to the control register is bound to the variable START. The value of the clock
register in the loop guard is bound to FINISH. The condition that the loop
ends (the system reaches state Anon0 after using this value in eax for the cmp
instruction) requires that the FINISH values is at least 10 greater than the START
value.

Having verified that the read only happens after the control register write,
and that the delay is of sufficient magnitude, it only remains to verify that the
delay occurs between the write and the read.

delayBetweenWriteAndRead : THEOREM State |-

W((cspstate /= Anon0), (cspstate = Branch80480d3));

The delayBetweenWriteAndRead property uses the weak until operator to
verify that the delay happens before the data port read. An additional statement
would be added to enforce that the control port write occurred before the initial
clock port read, but the Spurinna simplifier has merged the two operations

110 CHAPTER 9. VERIFYING A HARDWARE USAGE REQUIREMENT

to happen simultaneously. This is a good example of the simplifier merging
operations to the limit of correct simultaneous representation, and not beyond,
since to merge any further operations from the loop would have altered the
properties.

9.4 Summary

This chapter has demonstrated that the analysis process can be applied to hard-
ware usage conditions. Some of the limitations in applying the SAL model
checking suite to realistic examples were discussed, along with some mitigating
approaches.

Chapter 10

Conclusions

10.1 Software analysis

In the introduction to this thesis it was stated that the principle difficulties that
current techniques face when verifying hardware-dependent software are:

• They have no way to statically determine the behaviour of code that in-
teracts directly with the hardware.

• Current techniques are necessarily detached from the hardware (for in-
stance language subsets, discussed in §2.3) or treat hardware in an ab-
stract, general way (such as the heap model in Separation Logic §2.5.3).

• Verification must fit into an industrial workflow and not be overly de-
pendent on expert skills, and must be applicable to large scale systems in
reasonable time.

Each of these items has been addressed in this work. The analysis process is
entirely static and produces a formal model documenting the behaviour of the
executable, so is independent of the high-level language concerns that prevent
analysis of hardware interaction. The CSP-OZ model is developed at the level
of registers and memory addresses, allowing meaningful representation of the
hardware interaction likely to be of interest when verifying requirements on
hardware usage.

Finally, the process has been automated in the Spurinna prototype, demon-
strating that this technique can be performed without human interaction, and
so on large scale projects and without excessive requirements for highly skilled
users. When developing the model checking example described in §7, the com-
plete process — from compiling the C code, disassembling the executable, in-
ferring a formal model with Spurinna, creating a SAL model with Z2SAL, and
checking the LTL properties — was performed several times. After a brief
period of familiarisation with the minor file changes required this entire process
could be performed in under 10 minutes. This ability to identify faults, correct

111

112 CHAPTER 10. CONCLUSIONS

the faults, and confirm the corrections within a reasonable time is vital if a
technique is to be usable in an industrial development process.

The Z2SAL demonstration, the IsabelleHOL demonstration, and the hard-
ware usage demonstration show that the inferred model is not only readable
and complete, but also practically useful for verifying properties of the system.
The properties verified by the three examples were not limited to arbitrary
model properties, but show the encoding of useful correctness properties on the
behaviour of the software.

10.2 Future work

Processor and instruction set specification repository

The most significant factor limiting the application of the prototype imple-
mentation to larger and more complex examples was the size of the instruction
set model available. The model produced for the Intel platform was adequate
to demonstrate all of the features necessary to specify instructions for a real
processor system, but was limited to only 18 sequential instructions, and 10
branch instructions. The development of more instructions is not difficult or,
individually, very time consuming but it had limited research value, so was not
performed during this work. To develop more complete specifications would
require a commitment of time, but the results could then be shared amongst
the entire community of potential users. A valuable future achievement would
be a repository of specifications for common processors — possibly multiple
specifications for each processor that emphasise analysis of different classes of
properties. All interested parties could contribute more instruction specifica-
tions to the repository, and could highlight and correct errors in those present.
This would spread the time consumption and provide at least a starting point
for anyone wishing to begin applying this analysis technique.

Automatic conversion of Z to the lightweight Isabelle rendering

The example verification presented in §8 demonstrates the value of the Isa-
belle proof techniques for verification of system properties. Unfortunately, the
creation of the Isabelle model had to be performed manually. A tool similar
to Z2SAL could be created to parse Z specifications and render the model in
the Isabelle form. This would allow an automated workflow similar to the one
present when using Spurinna with Z2SAL.

Automatic backwards traceability

A key design objective of the analysis process was to allow traceability of faults
from the verification stage back to the original code. The examples in §7 and
§8 demonstrate the power and applicability of this technique. This process
could be automated, at least as far as the assembly code. The block addresses
provide enough information, combined with Spurinna’s internal graph model

10.2. FUTURE WORK 113

of the segmented code, to allow for syntax highlighting to be applied to the
assembly code. This could be performed with a user directed interface where
clicking on the block names in the SAL output, the Isabelle output, or the
CSP-OZ model, could activate highlighting of the related area. Ideally, if the
cause of a requirement violation could be identified automatically, then the
code could be automatically annotated where a particular section is the cause
of a violation. The range and style of requirements for which this would be
applicable is limited, but it has been shown to be possible and useful in other
verification systems[3].

114 CHAPTER 10. CONCLUSIONS

Bibliography

[1] Automated reasoning group. URL http://www.cl.cam.ac.uk/research/

hvg/about.html.

[2] Objdump. URL http://www.gnu.org/software/binutils/.

[3] Polyspace. URL www.polyspace.com.

[4] The symbolic analysis laboratory (SAL), . http://sal.csl.sri.com/.

[5] SRI SAL frequently asked questions, . URL http://sal-wiki.csl.sri.

com/index.php/FAQ.

[6] javacc. http://javacc.java.net/.

[7] Ldra testbed. http://www.ldra.com/testbed.asp.

[8] Pc-lint. http://www.gimpel.com/html/pcl.htm.

[9] Altran-praxis ltd. http://www.altran-praxis.com/.

[10] Yices. http://yices.csl.sri.com/.

[11] American National Standard Programming Language C, ANSI X3.159-
1989, December 14 1989.

[12] J.-R. Abrial. The B-book: assigning programs to meanings. Cambridge
University Press, New York, NY, USA, 1996. ISBN 0-521-49619-5.

[13] J.-R. Abrial. Modeling in Event-B: System and Software Engineering. Cam-
bridge University Press, New York, NY, USA, 1st edition, 2010. ISBN
0521895561, 9780521895569.

[14] J-R. Abrial, S. A. Schuman, and B. Meyer. Specification language. In On
the Construction of Programs, pages 343–410, 1980.

[15] J.-R. Abrial, M. Butler, S. Hallerstede, T. S. Hoang, F. Mehta, and
L. Voisin. Rodin: an open toolset for modelling and reasoning in Event-B.
STTT, 12(6):447–466, 2010.

115

116 BIBLIOGRAPHY

[16] S. Agerholm and M. J. C. Gordon. Experiments with zf set theory in hol
and isabelle. In TPHOLs, pages 32–45, 1995.

[17] J. G. Barnes. High Integrity Software: The SPARK Approach to Safety
and Security. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 2003. ISBN 0321136160.

[18] Michael Barnett, Robert DeLine, Manuel Fähndrich, K. Rustan M. Leino,
and Wolfram Schulte. Verification of object-oriented programs with invari-
ants. Journal of Object Technology, 3(6):27–56, 2004.

[19] G. Birtwistle and M. Morely. Case study: specifying and checking tk, an
asychronous amulet-like microprocessor. February 2003.

[20] J. C. Blanchette and T. Nipkow. Nitpick: A counterexample generator for
higher-order logic based on a relational model finder. In M. Kaufmann and
L. C. Paulson, editors, ITP, volume 6172 of Lecture Notes in Computer
Science, pages 131–146. Springer, 2010. ISBN 978-3-642-14051-8.

[21] S. Blazy, Z. Dargaye, and X. Leroy. Formal verification of a C compiler
front-end. pages 460–475. Springer-Verlag, 2006.

[22] Sascha Bhme, Micha Moskal, Wolfram Schulte, and Burkhart Wolff. Hol-
boogie – an interactive prover-backend for the verifiying c compiler.

[23] H. Cai, Z. Shao, and A. Vaynberg. Certified self-modifying code. In
Proceedings of the 2007 ACM SIGPLAN conference on Programming lan-
guage design and implementation, PLDI ’07, pages 66–77, New York, NY,
USA, 2007. ACM. ISBN 978-1-59593-633-2. doi: http://doi.acm.org/
10.1145/1250734.1250743. URL http://doi.acm.org/10.1145/1250734.

1250743.

[24] D. A. Carrington, D. Duke, R. Duke, P. King, G. A. Rose, and G. Smith.
Object-z: An object-oriented extension to z. In S. Vuong, editor, Formal
Description Techniques II, FORTE’89, pages 281–296. North-Holland,
1990.

[25] P. Chartier. Formalisation of b in isabelle/hol. In D. Bert, editor, B, volume
1393 of Lecture Notes in Computer Science, pages 66–82. Springer, 1998.
ISBN 3-540-64405-9.

[26] L. de Moura, S. Owre, and N. Shankar. The SAL language manual, 2003.

[27] J. Derrick and E. Boiten. Refinement in Z and Object-Z: Foundations and
Advanced Applications. Formal Approaches to Computing and Information
Technology. Springer, May 2001. ISBN 1-85233-245-X. URL http://www.

cs.kent.ac.uk/pubs/2001/1200.

BIBLIOGRAPHY 117

[28] J. Derrick, S. North, and A. J. H. Simons. Z2SAL: a translation-based
model checker for Z. Formal Aspects of Computing, 23:43–71, January
2011. ISSN 0934-5043. doi: http://dx.doi.org/10.1007/s00165-009-0126-7.
URL http://dx.doi.org/10.1007/s00165-009-0126-7.

[29] A. Diller. Z and hoare logics. In J. E. Nicholls, editor, Z User Workshop,
Workshops in Computing, pages 59–76. Springer, 1991. ISBN 3-540-19780-
X.

[30] C. Fischer. CSP-OZ: a combination of Object-Z and CSP. In H. Bowman
and J. Derrick, editors, Proc. 2nd IFIP Workshop on Formal Methods for
Open Object-Based Distributed Systems (FMOODS), pages 423–438, Can-
terbury, UK, 1997. Chapman and Hall, London. URL citeseer.ist.psu.

edu/316011.html.

[31] A. Fox. An algebraic framework for modelling and verifying microprocessors
using hol. Technical report, March 2001.

[32] A. Fox. Formal verification of the ARM6 micro-architecture. Technical
report, November 2002.

[33] Stephen B. Furber, P. Day, Jim D. Garside, N. C. Paver, and John V.
Woods. Amulet1: A micropipelined arm. In COMPCON, pages 476–485,
1994.

[34] Jim D. Garside, Stephen B. Furber, and S.-H. Chung. Amulet3 revealed. In
ASYNC, pages 51–59. IEEE Computer Society, 1999. ISBN 0-7695-0031-5.

[35] C. A. R. Hoare. An axiomatic basis for computer programming. Com-
munications of the ACM, 12(10):576–580, 1969. ISSN 0001-0782. doi:
http://doi.acm.org/10.1145/363235.363259.

[36] C. A. R. Hoare. Communicating sequential processes. Commun. ACM,
21(8):666–677, 1978. ISSN 0001-0782. doi: http://doi.acm.org/10.1145/
359576.359585.

[37] S. Ishtiaq and P. O’Hearn. BI as an assertion language for mutable data
structures. In proceedings of POPL’01, 2001.

[38] ISO. Iso/iec 9899 - programming languages - C. Technical report. URL
http://www.open-std.org/JTC1/SC22/WG14/www/standards.

[39] ISO. Iso/iec 13568:2002 information technology – Z formal specification
notation – syntax, type system and semantics. Technical report, 2002.

[40] D. H. Kemp. Specification of VIPER1 in Z. Technical report, Royal Signals
and Radar Establishment, September 1988.

[41] B. W. Kernighan and D. M. Ritchie. C Programming Language (2nd Edi-
tion). Prentice Hall PTR, March 1988. ISBN 0131103628.

118 BIBLIOGRAPHY

[42] G. Klein, J. Andronick, K. Elphinstone, G. Heiser, D. Cock, P. Derrin,
D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell, H. Tuch,
and S. Winwood. sel4: formal verification of an operating-system kernel.
Commun. ACM, 53(6):107–115, 2010.

[43] Kolyang, T. Santen, and B. Wolff. A structure preserving encoding of z
in isabelle/hol. In J. von Wright, J. Grundy, and J. Harrison, editors,
TPHOLs, volume 1125 of Lecture Notes in Computer Science, pages 283–
298. Springer, 1996. ISBN 3-540-61587-3.

[44] Formal Systems (Europe) Ltd. Failure divergence refinement: Fdr2 user
manual, 1997. URL http://www.fsel.com/fdr2_manual.html.

[45] J. McCarthy. Recursive functions of symbolic expressions and their com-
putation by machine, part I. Communications of the ACM, 3(4):184–195,
April 1960.

[46] MISRA. Guidelines for the use of the C language in vehicle based software.
Technical report, April 1998.

[47] P. W. O’Hearn and D. J. Pym. The logic of bunched implications. Bulletin
of Symbolic Logic, June 1999.

[48] P. W. O’Hearn, J. Reynolds, and H. Yang. Local reasoning about programs
that alter data structures. In Proceedings of CSL’01, Paris, 2001. Pages
1-19, LNCS 2142. Springer-Verlag, 2001.

[49] C. H. Pygott. Formal specification of the viper microprocessor in hol.
Technical report, Royal Signals and Radar Establishment, June 1990.

[50] J. Reynolds. Separation logic: A logic for shared mutable data structures.
In Proceedings of LICS 2002, pages 55–74, 2002.

[51] J. C. Reynolds. Intuitionistic reasoning about shared mutable data struc-
ture. In Proceedings of the Symposium in Celebration of the Work of C.A.R.
Hoare, 1999.

[52] E. T. Schubert, P. J. Windley, and J. Alves-Foss, editors. Higher Order
Logic Theorem Proving and Its Applications, 8th International Workshop,
Aspen Grove, UT, USA, September 11-14, 1995, Proceedings, volume 971
of Lecture Notes in Computer Science, 1995. Springer. ISBN 3-540-60275-5.

[53] Wei Song and Doug Edwards. Asynchronous spatial division multiplexing
router. Microprocessors and Microsystems - Embedded Hardware Design,
35(2):85–97, 2011.

[54] Syspect. Final report of the syspect project. Technical report, Carl
von Ossietzky University of Oldenburg, 2006. URL http://syspect.

informatik.uni-oldenburg.de/doc/Endbericht.pdf.

BIBLIOGRAPHY 119

[55] R. Taylor. Separation of Z operations. In Egon Börger, Michael J. Butler,
Jonathan P. Bowen, and Paul Boca, editors, ABZ, volume 5238 of Lecture
Notes in Computer Science, page 350. Springer, 2008. ISBN 978-3-540-
87602-1.

[56] F. Tip. A survey of program slicing techniques. Journal of programming
languages, 3:121–189, 1995. URL citeseer.ist.psu.edu/tip95survey.

html.

[57] W. B. Toms and David A. Edwards. Indicating combinational logic decom-
position. IET Computers & Digital Techniques, 5(4):331–341, 2011.

[58] H. Treharne and S. Schneider. Using a process algebra to control b
operations. In Proceedings of the 1st International Conference on In-
tegrated Formal Methods, pages 437–456, London, UK, 1999. Springer-
Verlag. ISBN 1-85233-107-0. URL http://dl.acm.org/citation.cfm?

id=647981.743520.

[59] D. von Oheimb. Hoare logic for java in isabelle/hol. Concurrency and
Computation: Practice and Experience, 13(13):1173–1214, 2001.

[60] T. Weber. Bounded model generation for isabelle/hol. Electr. Notes Theor.
Comput. Sci., 125(3):103–116, 2005.

[61] J. Woodcock and J. Davies. Using Z: specification, refinement, and proof.
Prentice-Hall, Inc., Upper Saddle River, NJ, US, 1996. ISBN 0-13-948472-8.

[62] H. Yang and P. W. O’Hearn. A semantic basis for local reasoning. In
Proceedings of FOSSACS’02, 2002.

120 BIBLIOGRAPHY

Appendix A

Flattening CSP-OZ to pure

Z

The models produced by this analysis process are written in the CSP-OZ spe-
cification language. CSP-OZ classes can be considered as a state transition
system with the state modeled by the Z state schema, the transition effects
modeled by the Z operation schema, and the transition matrix — essentially,
which transition is allowed when — modeled by the CSP component. Some
verification processes are only defined over Z and not over CSP-OZ it is helpful
to be able to convert a CSP-OZ model into a pure Z model that encodes the
same state transition system.

The Object Z components exist principally to collect schema together and
ease readability. This can be accomplished adequately with naming conventions
so that operation schema from a particular class all have the class name as a
prefix. That was not implemented for these examples since all of the verifica-
tion is performed on single functions but implementation would be easy. The
CSP component encodes the transition acceptance and refusal information. To
encode this in Z it is necessary to add an additional variable to the operation
schema that tracks the current position in the CSP model. Preconditions can be
added to the operations that are defined over this variable to allow an operation
to be performed only if the system is at the appropriate point in the transition
model. Postconditions update the variable to reflect the movement along edges
of the transition graph.

This conversion can be achieved entirely automatically. The process requires
walking the CSP process system and modifying the Z operations accordingly.
Only three of the CSP operators are used in the models produced by this process
so these are the only operators handled here.

The simplest CSP operator is the arrow operator that represents action
prefixing.

P = Op → Q

121

122 APPENDIX A. FLATTENING CSP-OZ TO PURE Z

Process P allows the Z operation Op to execute and then evolves to become
process Q . Z operation Op must be enhanced to require that the system is
behaving as process P before it will execute. This pattern of using the process
name to permit operation will be repeated for all other operations, so the post-
condition of Op can be enhanced to set the cspstate variable to Q . This will
allow any operations that are allowed in the Q process to execute.

Op
...
cspstate : CSPSTATE
cspstate ′ : CSPSTATE

...
cspstate = P
cspstate ′ = Q

This assumes that the variable cspstate is unused elsewhere in the Z spe-
cification, but any other unused name could be used instead. If process Q is
defined thus:

Q = Op2 → R

then Op2 can be expanded similarly.

Op2
...
cspstate : CSPSTATE
cspstate ′ : CSPSTATE

...
cspstate = Q
cspstate ′ = R

The CSPSTATE type can be automatically defined as a BNF type with the
various process names as atomic components. These two schema now encode
the same transition acceptance information as the CSP-OZ model, but in pure
Z. Op2 cannot execute until the cspstate variable has been set to Q , and that
is performed as the postcondition of Op. This reflects exactly the allowed trace
in the CSP model, where Op occurs as an event in P , before the system evolves
to Q and allows Op2 to occur.

Since the prefix operator defines a process it can be used in a chain. This
pattern is common in CSP models:

A = b → c → D

where A and D are processes, b and c are events. In this case, the right hand
side — c → D — is not explicitly named. To handle this the flattening process

123

must assign it a name and include the name in the CSPSTATE type. The
Spurinna implementation uses the string Anon with a natural number prefix
drawn from an internal, incrementing list.

b
...

cspstate = A
cspstate ′ = Anon1

c
...

cspstate = Anon1
cspstate ′ = D

External choice is the second operator that is used. This should allow either
of the branches to occur, the decision being made by the environment. Since the
external choice operator is defined to conjoin two CSP processes, it is necessary
to look at the contents of each of the branches to find the first event.

R = P ✷ Q

Using the definitions of P and Q from above this identifies the first Z oper-
ation schema in the branches as Op and Op2. If these are both preconditioned
to allow execution when the system is behaving as R, then they can have post-
conditions to evolve as defined by the branch processes.

Op
...

...
cspstate = R
cspstate ′ = Q

Op2
...

...
cspstate = R
cspstate ′ = R

This encodes the behaviour of the R process, but it removes the path to Op2
via process P , since Op2 no longer responds when the system behaves as Q .
Additionally, any other processes that evolve to process P cannot activate Op.

124 APPENDIX A. FLATTENING CSP-OZ TO PURE Z

To complicate things even further, P may not be the only process that uses Op as
an event. This combines to require a more subtle set of pre- and postconditions.
The flattening process builds an internal model of all the references in and out
of an operation and then, if the situation is not trivial, creates a suitable set of
implication statements and a precondition disjunction.

Op
...

cspstate = P ∨ Q
cspstate = P ⇒ cspstate ′ = Q
cspstate = R ⇒ cspstate ′ = Q

Op2
...

cspstate = Q ∨ R
cspstate = Q ⇒ cspstate ′ = R
cspstate = R ⇒ cspstate ′ = R

If an additional process used one of these operations then that could be
included as an additional implication.

Z = Op → A

Op
...

cspstate = P ∨ R ∨ Z
cspstate = P ⇒ cspstate ′ = Q
cspstate = R ⇒ cspstate ′ = Q
cspstate = Z ⇒ cspstate ′ = A

The final operator used in the inferred models is the parallel composition.
This is not used in any of the examples in this thesis, so it is not yet imple-
mented by the Spurinna system. In principle it could be modeled by assigning
separate cspstate style variables to each component of the composition, and then
adding a shared variable that activates both sets of transitions once the system
enters the parallel process. The added complexity is that CSP processes must
synchronise on communications. The elements of each process could be scanned
for communications and then the acceptance variables updated to only allow
a transition if one of the corresponding operations — i.e. one with a partner
output for each of this operations inputs, and partner input for each output —
is ready to execute. The detail of connecting the inputs and outputs together
is more complex and would require the use of suitable Z pipe notation. This
complexity, and the fact that parallel composition is only used with the schema
promotion notation, which is not supported by Z2SAL, is the reason it has not
yet been implemented.

Appendix B

Derived MaxInt CSP-OZ

model

max

System
Branch80480e1 = (OnBranch80480e1 → Block80480e8 → Branch80480eb)

✷ (NoBranch80480e1 → Block80480e3 → Branch80480e6)
Branch80480e6 = OnBranch80480e6 → Block80480eb → Leave
Branch80480eb = Block80480eb → Leave
Branch80480d9 = Block80480d9 → Branch80480db
Branch80480db = Block80480db → Branch80480de
Branch80480de = Block80480de → Branch80480e1

Main = Entry → Block80480d8 → Branch80480d9
Leave = Exit → Stop

Entry
call? : System

Θ System ′ = call?

Exit
return! : System

Θ System = return!

Call
call ! : System

Θ System = call !

125

126 APPENDIX B. DERIVED MAXINT CSP-OZ MODEL

Return
return? : System

Θ System ′ = return?

Block80480d8
∆ System

registers ′ = registers ⊕ {esp 7→ registers(esp) − 4}
memory ′ = memory ⊕ {registers ′(esp) 7→ registers(ebp)}

Block80480d9
∆ System

registers ′ = registers ⊕ {ebp 7→ registers(esp)}
memory ′ = memory

Block80480db
∆ System

registers ′ = registers ⊕ {eax 7→ memory(registers(ebp) + 8)}
memory ′ = memory

Block80480de
∆ System

registers(eax)−memory(registers(ebp) + 12) < 0
⇒ sflag ′ = 1 ∧ zflag ′ = 0
registers(eax)−memory(registers(ebp) + 12) = 0
⇒ zflag ′ = 1 ∧ sflag ′ = 0
registers(eax)−memory(registers(ebp) + 12) > 0
⇒ zflag ′ = 0 ∧ sflag ′ = 0
memory ′ = memory
registers ′ = registers

OnBranch80480e1
Ξ System

zflag = 1 ∨ sflag = 1

NoBranch80480e1
Ξ System

zflag 6= 1 ∧ sflag 6= 1

127

Block80480e3
∆ System

registers ′ = registers ⊕ {eax 7→ memory(registers(ebp) + 8)}
memory ′ = memory

OnBranch80480e6
Ξ System

true

Block80480e8
∆ System

registers ′ = registers ⊕ {eax 7→ memory(registers(ebp) + 12)}
memory ′ = memory

Block80480eb
∆ System

registers ′ = registers⊕
{ebp 7→ memory(registers(esp)), esp 7→ registers(esp) + 4}
memory ′ = memory

maxint

System

128 APPENDIX B. DERIVED MAXINT CSP-OZ MODEL

Branch8048104 = OnBranch8048104 → Block8048121 → Branch8048124
Branch8048121 = Block8048121 → Branch8048124
Branch8048115 = OnBranch8048115 → Call → Return

→ Block804811a → Branch804811d || max
Branch8048128 = (OnBranch8048128 → Block8048106 → Branch8048109)

✷ (NoBranch8048128 → Block804812a → Branch804812d)
Branch80480ee = Block80480ee → Branch80480f 0
Branch80480f 0 = Block80480f 0 → Branch80480f 3
Branch80480f 3 = Block80480f 3 → Branch80480f 6
Branch80480f 6 = Block80480f 6 → Branch80480f 8
Branch80480f 8 = Block80480f 8 → Branch80480fb
Branch80480fb = Block80480fb → Branch80480fe
Branch80480fe = Block80480fe → Branch8048101
Branch8048101 = Block8048101 → Branch8048104
Branch8048109 = Block8048109 → Branch804810b
Branch804810b = Block804810b → Branch804810e
Branch804810e = Block804810e → Branch8048112
Branch8048112 = Block8048112 → Branch8048115
Branch804811d = Block804811d → Branch8048121
Branch8048124 = Block8048124 → Branch8048128
Branch804812d = Block804812d → Leave

Main = Entry → Block80480ed → Branch80480ee
Leave = Exit → Stop

Entry
call? : System

Θ System ′ = call?

Exit
return! : System

Θ System = return!

Call
call ! : System

Θ System = call !

Return
return? : System

Θ System ′ = return?

Block80480ed
∆ System

registers ′ = registers ⊕ {esp 7→ registers(esp) − 4}
memory ′ = memory ⊕ {registers ′(esp) 7→ registers(ebp)}

129

Block80480ee
∆ System

registers ′ = registers ⊕ {ebp 7→ registers(esp)}
memory ′ = memory

Block80480f 0
∆ System

registers ′ = registers ⊕ {esp 7→ registers(esp) − 24}
memory ′ = memory
zflag ′ = 1⇔ registers ′(esp) = 0

Block80480f 3
∆ System

registers ′ = registers ⊕ {eax 7→ memory(registers(ebp) + 8)}
memory ′ = memory

Block80480f 6
∆ System

registers ′ = registers ⊕ {eax 7→ memory(registers(eax) + 0)}
memory ′ = memory

Block80480f 8
∆ System

memory ′ = memory ⊕ {ebp − 8 7→ registers(eax)}
registers ′ = registers

Block80480fb
∆ System

registers ′ = registers ⊕ {eax 7→ memory(registers(ebp) + 8)}
memory ′ = memory

Block80480fe
∆ System

memory ′ = memory ⊕ {4 7→ registers(eax)}
registers ′ = registers

Block8048101
∆ System

memory ′ = memory ⊕ {ebp − 4 7→ registers(eax)}
registers ′ = registers

130 APPENDIX B. DERIVED MAXINT CSP-OZ MODEL

OnBranch8048104
Ξ System

true

Block8048106
∆ System

registers ′ = registers ⊕ {eax 7→ memory(registers(ebp) +−4)}
memory ′ = memory

Block8048109
∆ System

registers ′ = registers ⊕ {eax 7→ memory(registers(eax) + 0)}
memory ′ = memory

Block804810b
∆ System

registers ′ = registers ⊕ {edx 7→ memory(registers(ebp) +−8)}
memory ′ = memory

Block804810e
∆ System

memory ′ = memory ⊕ {esp + 4 7→ registers(edx)}
registers ′ = registers

Block8048112
∆ System

memory ′ = memory ⊕ {esp 7→ registers(eax)}
registers ′ = registers

OnBranch8048115
∆ System

registers ′ = registers ⊕ {esp 7→ registers(esp) − 4}
memory ′ = memory ⊕ {registers ′(esp) 7→ registers(ip)}

Block804811a
∆ System

memory ′ = memory ⊕ {ebp − 8 7→ registers(eax)}
registers ′ = registers

131

Block804811d
∆ System

memory ′ = memory ⊕ {ebp 7→ memory(registers(ebp) +−4) + 4}
registers ′ = registers

Block8048121
∆ System

registers ′ = registers ⊕ {eax 7→ memory(registers(ebp) +−4)}
memory ′ = memory

Block8048124
∆ System

registers ′ = registers ⊕ {eax 7→ memory(registers(eax) + 0)}
memory ′ = memory
BITAND(eax , eax) = 0⇒ zflag ′ = 1
BITAND(eax , eax) 6= 0⇒ zflag ′ = 0
cflag ′ = 0
oflag ′ = 0

OnBranch8048128
Ξ System

zflag = 1

NoBranch8048128
Ξ System

zflag 6= 1

Block804812a
∆ System

registers ′ = registers ⊕ {eax 7→ memory(registers(ebp) +−8)}
memory ′ = memory

Block804812d
∆ System

registers ′ = registers⊕
{esp 7→ registers(ebp) + 4, ebp 7→ memory(registers(ebp))}
memory ′ = memory

132 APPENDIX B. DERIVED MAXINT CSP-OZ MODEL

Appendix C

MaxInt for import to

Z2SAL

[CSPSTATE ::=
Branch80480e1 | Anon2 | Branch80480d9 | Branch80480db |
Branch80480de | Anon1 | Anon0 | Branch80480eb | Main |
Leave | Branch80480e6 | Stop]

[REGNAME ::= eax | ebx | ecx | edx | esp | ebp | ip]

System
registers : REGNAME → N

memory : N→ N

zflag : {0, 1}
cflag : {0, 1}
oflag : {0, 1}
sflag : {0, 1}

Init
System ′

registers ′(esp) = 4
registers ′(ebp) = 12

Block80480d8
∆ System
cspstate : CSPSTATE
cspstate ′ : CSPSTATE

registers ′ = registers ⊕ {esp 7→ registers(esp) − 4}

133

134 APPENDIX C. MAXINT FOR IMPORT TO Z2SAL

memory ′ = memory ⊕ {registers ′(esp) 7→ registers(ebp)}
cspstate = Anon2
cspstate ′ = Branch80480d9

Block80480d9
∆ System
cspstate : CSPSTATE
cspstate ′ : CSPSTATE

registers ′ = registers ⊕ {ebp 7→ registers(esp)}
memory ′ = memory
cspstate = Branch80480d9
cspstate ′ = Branch80480db

Block80480db
∆ System
cspstate : CSPSTATE
cspstate ′ : CSPSTATE

registers ′ = registers ⊕ {eax 7→ memory(registers(ebp) + 8)}
memory ′ = memory
cspstate = Branch80480db
cspstate ′ = Branch80480de

Block80480de
∆ System
cspstate : CSPSTATE
cspstate ′ : CSPSTATE

registers(eax)−memory(registers(ebp) + 12) < 0
⇒ sflag ′ = 1 ∧ zflag ′ = 0

registers(eax)−memory(registers(ebp) + 12) = 0
⇒ zflag ′ = 1 ∧ sflag ′ = 0

registers(eax)−memory(registers(ebp) + 12) > 0
⇒ zflag ′ = 0 ∧ sflag ′ = 0

memory ′ = memory
registers ′ = registers
cspstate = Branch80480de
cspstate ′ = Branch80480e1

OnBranch80480e1
Ξ System
cspstate : CSPSTATE

135

cspstate ′ : CSPSTATE

zflag = 1 ∨ sflag = 1
cspstate = Branch80480e1
cspstate ′ = Anon0

NoBranch80480e1
Ξ System
cspstate : CSPSTATE
cspstate ′ : CSPSTATE

zflag 6= 1 ∧ sflag 6= 1
cspstate = Branch80480e1
cspstate ′ = Anon1

Block80480e3
∆ System
cspstate : CSPSTATE
cspstate ′ : CSPSTATE

registers ′ = registers ⊕ {eax 7→ memory(registers(ebp) + 8)}
memory ′ = memory
cspstate = Anon1
cspstate ′ = Branch80480e6

OnBranch80480e6
Ξ System
cspstate : CSPSTATE
cspstate ′ : CSPSTATE

true
cspstate = Branch80480e6
cspstate ′ = Branch80480eb

Block80480e8
∆ System
cspstate : CSPSTATE
cspstate ′ : CSPSTATE

registers ′ = registers ⊕ {eax 7→ memory(registers(ebp) + 12)}
memory ′ = memory
cspstate = Anon0
cspstate ′ = Branch80480eb

136 APPENDIX C. MAXINT FOR IMPORT TO Z2SAL

Block80480eb
∆ System
cspstate : CSPSTATE
cspstate ′ : CSPSTATE

registers ′ = registers⊕
{ebp 7→ memory(registers(esp)), esp 7→ registers(esp) + 4}

memory ′ = memory
cspstate = Branch80480eb
cspstate ′ = Leave

Appendix D

MaxInt SAL file

maxint : CONTEXT = BEGIN

NAT : TYPE = [0..14];

CSPSTATE : TYPE = DATATYPE

Branch80480e1,

Anon2,

Branch80480d9,

Branch80480db,

Branch80480de,

Anon1,

Anon0,

Branch80480eb,

Main,

Leave,

Branch80480e6,

Stop

END;

REGNAME : TYPE = DATATYPE

eax,

ebx,

ecx,

edx,

esp,

ebp,

ip,

REGNAME__B

END;

State : MODULE =

137

138 APPENDIX D. MAXINT SAL FILE

BEGIN

LOCAL registers : [REGNAME -> NAT]

LOCAL memory : [NAT -> NAT]

LOCAL zflag : [0..1]

LOCAL cflag : [0..1]

LOCAL oflag : [0..1]

LOCAL sflag : [0..1]

LOCAL cspstate : CSPSTATE

LOCAL invariant__ : BOOLEAN

DEFINITION

invariant__ = (

function {REGNAME, NAT; REGNAME__B, 14} ! total?(registers) AND

function {NAT, NAT; 14, 14} ! total?(memory))

INITIALIZATION [

registers(esp) = 4 AND

registers(ebp) = 12 AND

cspstate = Anon2 AND

invariant__

-->

]

TRANSITION [

Block80480d8 :

registers’ = function {REGNAME, NAT; REGNAME__B, 14} !

insert(registers, (esp, registers(esp) - 4)) AND

memory’ = function {NAT, NAT; 14, 14} !

insert(memory, (registers’(esp), registers(ebp))) AND

cspstate = Anon2 AND

cspstate’ = Branch80480d9 AND

invariant__’

-->

registers’ IN {x : [REGNAME -> NAT] | TRUE};

memory’ IN {x : [NAT -> NAT] | TRUE};

zflag’ IN {x : [0..1] | TRUE};

cflag’ IN {x : [0..1] | TRUE};

oflag’ IN {x : [0..1] | TRUE};

sflag’ IN {x : [0..1] | TRUE};

cspstate’ IN {x : CSPSTATE | TRUE}

[]

Block80480d9 :

registers’ = function {REGNAME, NAT; REGNAME__B, 14} !

insert(registers, (ebp, registers(esp))) AND

memory’ = memory AND

cspstate = Branch80480d9 AND

cspstate’ = Branch80480db AND

invariant__’

-->

139

registers’ IN {x : [REGNAME -> NAT] | TRUE};

memory’ IN {x : [NAT -> NAT] | TRUE};

zflag’ IN {x : [0..1] | TRUE};

cflag’ IN {x : [0..1] | TRUE};

oflag’ IN {x : [0..1] | TRUE};

sflag’ IN {x : [0..1] | TRUE};

cspstate’ IN {x : CSPSTATE | TRUE}

[]

Block80480db :

registers’ = function {REGNAME, NAT; REGNAME__B, 14} !

insert(registers, (eax, memory(registers(ebp) + 8))) AND

memory’ = memory AND

cspstate = Branch80480db AND

cspstate’ = Branch80480de AND

invariant__’

-->

registers’ IN {x : [REGNAME -> NAT] | TRUE};

memory’ IN {x : [NAT -> NAT] | TRUE};

zflag’ IN {x : [0..1] | TRUE};

cflag’ IN {x : [0..1] | TRUE};

oflag’ IN {x : [0..1] | TRUE};

sflag’ IN {x : [0..1] | TRUE};

cspstate’ IN {x : CSPSTATE | TRUE}

[]

Block80480de :

(registers(eax) - memory(registers(ebp) + 12) < 0 => (sflag’ = 1 AND

zflag’ = 0)) AND

(registers(eax) - memory(registers(ebp) + 12) = 0 => (zflag’ = 1 AND

sflag’ = 0)) AND

(registers(eax) - memory(registers(ebp) + 12) > 0 => (zflag’ = 0 AND

sflag’ = 0)) AND

memory’ = memory AND

registers’ = registers AND

cspstate = Branch80480de AND

cspstate’ = Branch80480e1 AND

invariant__’

-->

registers’ IN {x : [REGNAME -> NAT] | TRUE};

memory’ IN {x : [NAT -> NAT] | TRUE};

zflag’ IN {x : [0..1] | TRUE};

cflag’ IN {x : [0..1] | TRUE};

oflag’ IN {x : [0..1] | TRUE};

sflag’ IN {x : [0..1] | TRUE};

cspstate’ IN {x : CSPSTATE | TRUE}

[]

OnBranch80480e1 :

140 APPENDIX D. MAXINT SAL FILE

(zflag = 1 OR sflag = 1) AND

cspstate = Branch80480e1 AND

cspstate’ = Anon0 AND

registers’ = registers AND

memory’ = memory AND

zflag’ = zflag AND

cflag’ = cflag AND

oflag’ = oflag AND

sflag’ = sflag AND

invariant__’

-->

registers’ IN {x : [REGNAME -> NAT] | TRUE};

memory’ IN {x : [NAT -> NAT] | TRUE};

zflag’ IN {x : [0..1] | TRUE};

cflag’ IN {x : [0..1] | TRUE};

oflag’ IN {x : [0..1] | TRUE};

sflag’ IN {x : [0..1] | TRUE};

cspstate’ IN {x : CSPSTATE | TRUE}

[]

NoBranch80480e1 :

zflag /= 1 AND

sflag /= 1 AND

cspstate = Branch80480e1 AND

cspstate’ = Anon1 AND

registers’ = registers AND

memory’ = memory AND

zflag’ = zflag AND

cflag’ = cflag AND

oflag’ = oflag AND

sflag’ = sflag AND

invariant__’

-->

registers’ IN {x : [REGNAME -> NAT] | TRUE};

memory’ IN {x : [NAT -> NAT] | TRUE};

zflag’ IN {x : [0..1] | TRUE};

cflag’ IN {x : [0..1] | TRUE};

oflag’ IN {x : [0..1] | TRUE};

sflag’ IN {x : [0..1] | TRUE};

cspstate’ IN {x : CSPSTATE | TRUE}

[]

Block80480e3 :

registers’ = function {REGNAME, NAT; REGNAME__B, 14} !

insert(registers, (eax, memory(registers(ebp) + 8))) AND

memory’ = memory AND

cspstate = Anon1 AND

cspstate’ = Branch80480e6 AND

141

invariant__’

-->

registers’ IN {x : [REGNAME -> NAT] | TRUE};

memory’ IN {x : [NAT -> NAT] | TRUE};

zflag’ IN {x : [0..1] | TRUE};

cflag’ IN {x : [0..1] | TRUE};

oflag’ IN {x : [0..1] | TRUE};

sflag’ IN {x : [0..1] | TRUE};

cspstate’ IN {x : CSPSTATE | TRUE}

[]

OnBranch80480e6 :

cspstate = Branch80480e6 AND

cspstate’ = Branch80480eb AND

registers’ = registers AND

memory’ = memory AND

zflag’ = zflag AND

cflag’ = cflag AND

oflag’ = oflag AND

sflag’ = sflag AND

invariant__’

-->

registers’ IN {x : [REGNAME -> NAT] | TRUE};

memory’ IN {x : [NAT -> NAT] | TRUE};

zflag’ IN {x : [0..1] | TRUE};

cflag’ IN {x : [0..1] | TRUE};

oflag’ IN {x : [0..1] | TRUE};

sflag’ IN {x : [0..1] | TRUE};

cspstate’ IN {x : CSPSTATE | TRUE}

[]

Block80480e8 :

registers’ = function {REGNAME, NAT; REGNAME__B, 14} !

insert(registers, (eax, memory(registers(ebp) + 12))) AND

memory’ = memory AND

cspstate = Anon0 AND

cspstate’ = Branch80480eb AND

invariant__’

-->

registers’ IN {x : [REGNAME -> NAT] | TRUE};

memory’ IN {x : [NAT -> NAT] | TRUE};

zflag’ IN {x : [0..1] | TRUE};

cflag’ IN {x : [0..1] | TRUE};

oflag’ IN {x : [0..1] | TRUE};

sflag’ IN {x : [0..1] | TRUE};

cspstate’ IN {x : CSPSTATE | TRUE}

[]

Block80480eb :

142 APPENDIX D. MAXINT SAL FILE

registers’ = function {REGNAME, NAT; REGNAME__B, 14} !

insert(function {REGNAME, NAT; REGNAME__B, 14} !

insert(registers, (ebp, memory(registers(esp)))), (esp,

registers(esp) + 4)) AND

memory’ = memory AND

cspstate = Branch80480eb AND

cspstate’ = Leave AND

invariant__’

-->

registers’ IN {x : [REGNAME -> NAT] | TRUE};

memory’ IN {x : [NAT -> NAT] | TRUE};

zflag’ IN {x : [0..1] | TRUE};

cflag’ IN {x : [0..1] | TRUE};

oflag’ IN {x : [0..1] | TRUE};

sflag’ IN {x : [0..1] | TRUE};

cspstate’ IN {x : CSPSTATE | TRUE}

[]

Stop :

cspstate = Leave AND

cspstate’ = Leave AND

invariant__’

-->

registers’ = registers;

memory’ = memory;

zflag’ = zflag;

cflag’ = cflag;

oflag’ = oflag;

sflag’ = sflag

]

END;

alwaysTerminates : THEOREM State |- F(cspstate = Leave);

neverRestarts : THEOREM State |-

G((cspstate = Leave) =>

NOT F(cspstate /= Leave));

returnsSomethingSensible : THEOREM State |-

G((cspstate = Leave) =>

(

(registers(eax) = memory(registers(esp) + 4))

OR

(registers(eax) = memory(registers(esp) + 8))

)

);

returnsTheRightAnswer : THEOREM State |-

143

G((cspstate = Leave) =>

(

(

(registers(eax) = memory(registers(esp) + 4)) =>

memory(registers(esp) + 4) >= memory(registers(esp) + 8)

)

AND

(

(registers(eax) = memory(registers(esp) + 8))=>

memory(registers(esp) + 8) >= memory(registers(esp) + 4)

)

)

);

END

Notes: The cmp instruction that is represented in Block80480de performs
a subtraction with two natural number variables and then checks if the result is
negative, zero, or positive. Clearly, there is a potential problem with this, since
the negative results are not natural numbers. However, since NAT is defined as
a set of numbers, and the result of the subtraction is never stored in a variable
SAL is happy to retain the full numeric value of the expression and evaluate the
rest of the statement properly.

144 APPENDIX D. MAXINT SAL FILE

Appendix E

SAL suite counter example

for brokenmaxint

Counterexample:

========================

Path

========================

Step 0:

--- System Variables (assignments) ---

registers(eax) = 4

registers(ebx) = 13

registers(ecx) = 6

registers(edx) = 11

registers(esp) = 4

registers(ebp) = 12

registers(ip) = 10

registers(REGNAME__B) = 14

memory(0) = 6

memory(1) = 10

memory(2) = 7

memory(3) = 13

memory(4) = 10

memory(5) = 9

memory(6) = 8

memory(7) = 11

memory(8) = 13

memory(9) = 1

memory(10) = 0

memory(11) = 0

memory(12) = 12

memory(13) = 2

145

146APPENDIX E. SAL SUITE COUNTER EXAMPLE FORBROKENMAXINT

memory(14) = 14

zflag = 0

cflag = 1

oflag = 0

sflag = 1

cspstate = Anon2

invariant__ = true

Transition Information:

(module instance at [Context: brokenmaxint, line(257), column(34)]

(label Block80480d8

transition at [Context: brokenmaxint, line(54), column(10)]))

Step 1:

--- System Variables (assignments) ---

registers(eax) = 4

registers(ebx) = 13

registers(ecx) = 6

registers(edx) = 11

registers(esp) = 0

registers(ebp) = 12

registers(ip) = 10

registers(REGNAME__B) = 14

memory(0) = 12

memory(1) = 10

memory(2) = 7

memory(3) = 13

memory(4) = 10

memory(5) = 9

memory(6) = 8

memory(7) = 11

memory(8) = 13

memory(9) = 1

memory(10) = 0

memory(11) = 0

memory(12) = 12

memory(13) = 2

memory(14) = 14

zflag = 1

cflag = 0

oflag = 1

sflag = 1

cspstate = Branch80480d9

invariant__ = true

Transition Information:

147

(module instance at [Context: brokenmaxint, line(257), column(34)]

(label Block80480d9

transition at [Context: brokenmaxint, line(71), column(10)]))

Step 2:

--- System Variables (assignments) ---

registers(eax) = 4

registers(ebx) = 13

registers(ecx) = 6

registers(edx) = 11

registers(esp) = 0

registers(ebp) = 0

registers(ip) = 10

registers(REGNAME__B) = 14

memory(0) = 12

memory(1) = 10

memory(2) = 7

memory(3) = 13

memory(4) = 10

memory(5) = 9

memory(6) = 8

memory(7) = 11

memory(8) = 13

memory(9) = 1

memory(10) = 0

memory(11) = 0

memory(12) = 12

memory(13) = 2

memory(14) = 14

zflag = 1

cflag = 0

oflag = 1

sflag = 0

cspstate = Branch80480db

invariant__ = true

Transition Information:

(module instance at [Context: brokenmaxint, line(257), column(34)]

(label Block80480db

transition at [Context: brokenmaxint, line(87), column(10)]))

Step 3:

--- System Variables (assignments) ---

registers(eax) = 13

registers(ebx) = 13

registers(ecx) = 6

148APPENDIX E. SAL SUITE COUNTER EXAMPLE FORBROKENMAXINT

registers(edx) = 11

registers(esp) = 0

registers(ebp) = 0

registers(ip) = 10

registers(REGNAME__B) = 14

memory(0) = 12

memory(1) = 10

memory(2) = 7

memory(3) = 13

memory(4) = 10

memory(5) = 9

memory(6) = 8

memory(7) = 11

memory(8) = 13

memory(9) = 1

memory(10) = 0

memory(11) = 0

memory(12) = 12

memory(13) = 2

memory(14) = 14

zflag = 0

cflag = 1

oflag = 1

sflag = 0

cspstate = Branch80480de

invariant__ = true

Transition Information:

(module instance at [Context: brokenmaxint, line(257), column(34)]

(label Block80480de

transition at [Context: brokenmaxint, line(103), column(11)]))

Step 4:

--- System Variables (assignments) ---

registers(eax) = 13

registers(ebx) = 13

registers(ecx) = 6

registers(edx) = 11

registers(esp) = 0

registers(ebp) = 0

registers(ip) = 10

registers(REGNAME__B) = 14

memory(0) = 12

memory(1) = 10

memory(2) = 7

memory(3) = 13

149

memory(4) = 10

memory(5) = 9

memory(6) = 8

memory(7) = 11

memory(8) = 13

memory(9) = 1

memory(10) = 0

memory(11) = 0

memory(12) = 12

memory(13) = 2

memory(14) = 14

zflag = 0

cflag = 0

oflag = 0

sflag = 0

cspstate = Branch80480e1

invariant__ = true

Transition Information:

(module instance at [Context: brokenmaxint, line(257), column(34)]

(label OnBranch80480e1

transition at [Context: brokenmaxint, line(124), column(10)]))

Step 5:

--- System Variables (assignments) ---

registers(eax) = 13

registers(ebx) = 13

registers(ecx) = 6

registers(edx) = 11

registers(esp) = 0

registers(ebp) = 0

registers(ip) = 10

registers(REGNAME__B) = 14

memory(0) = 12

memory(1) = 10

memory(2) = 7

memory(3) = 13

memory(4) = 10

memory(5) = 9

memory(6) = 8

memory(7) = 11

memory(8) = 13

memory(9) = 1

memory(10) = 0

memory(11) = 0

memory(12) = 12

150APPENDIX E. SAL SUITE COUNTER EXAMPLE FORBROKENMAXINT

memory(13) = 2

memory(14) = 14

zflag = 0

cflag = 0

oflag = 0

sflag = 0

cspstate = Anon0

invariant__ = true

Transition Information:

(module instance at [Context: brokenmaxint, line(257), column(34)]

(label Block80480e8

transition at [Context: brokenmaxint, line(199), column(10)]))

Step 6:

--- System Variables (assignments) ---

registers(eax) = 12

registers(ebx) = 13

registers(ecx) = 6

registers(edx) = 11

registers(esp) = 0

registers(ebp) = 0

registers(ip) = 10

registers(REGNAME__B) = 14

memory(0) = 12

memory(1) = 10

memory(2) = 7

memory(3) = 13

memory(4) = 10

memory(5) = 9

memory(6) = 8

memory(7) = 11

memory(8) = 13

memory(9) = 1

memory(10) = 0

memory(11) = 0

memory(12) = 12

memory(13) = 2

memory(14) = 14

zflag = 1

cflag = 0

oflag = 0

sflag = 0

cspstate = Branch80480eb

invariant__ = true

151

Transition Information:

(module instance at [Context: brokenmaxint, line(257), column(34)]

(label Block80480eb

transition at [Context: brokenmaxint, line(215), column(10)]))

Step 7:

--- System Variables (assignments) ---

registers(eax) = 12

registers(ebx) = 13

registers(ecx) = 6

registers(edx) = 11

registers(esp) = 4

registers(ebp) = 12

registers(ip) = 10

registers(REGNAME__B) = 14

memory(0) = 12

memory(1) = 10

memory(2) = 7

memory(3) = 13

memory(4) = 10

memory(5) = 9

memory(6) = 8

memory(7) = 11

memory(8) = 13

memory(9) = 1

memory(10) = 0

memory(11) = 0

memory(12) = 12

memory(13) = 2

memory(14) = 14

zflag = 0

cflag = 1

oflag = 0

sflag = 0

cspstate = Leave

invariant__ = true

152APPENDIX E. SAL SUITE COUNTER EXAMPLE FORBROKENMAXINT

Appendix F

Isabelle Z theory file

theory Z

imports Main

begin

record ’a state =

sys :: ’a

cond :: bool

type_synonym ’a Op = "’a state ⇒ ’a state"

type_synonym ’a Poss = "’a state list"

type_synonym ’a PossOp = "’a state ⇒ ’a Poss"

type_synonym ’a AllPosOp = "’a Poss ⇒ ’a Poss"

(* Some verification shortcuts *)

fun Good :: "’a state ⇒ bool" where

"Good S = cond S"

fun Bad :: "’a state ⇒ bool" where

"Bad S = (¬ (cond S))"

(* Convert plain Ops to AllPosOp *)

definition AllPos :: "’a Op ⇒ ’a AllPosOp" where

"AllPos a ≡ λS::’a state list . filter Good (map a S)"

declare AllPos_def [simp]

definition Semi :: "[’a AllPosOp,’a AllPosOp] ⇒ ’a AllPosOp" (infixl ";" 85) where

"a;b ≡ λS::’a state list . b (a S)"

declare Semi_def [simp]

definition Alt :: "[’a AllPosOp,’a AllPosOp] ⇒ ’a AllPosOp" (infixl "�" 95) where

153

154 APPENDIX F. ISABELLE Z THEORY FILE

"a�b ≡ λS . concat [(a S),(b S)]"

declare Alt_def [simp]

lemma goodChoice [simp] :

"∀S::’a state . ∀op1::’a Op . ∀op2::’a Op .

6(cond (op2 S)) −→ (((AllPos op1)�(AllPos op2)) [S]) = filter Good [op1 S]"

by simp

lemma goodComp [simp] :

"∀op1::’a Op . ∀op2::’a Op . ∀S::’a state .

6(cond (op1 S)) −→ (((AllPos op1);(AllPos op2)) [S]) = []"

by simp

lemma veryGoodComp :

"∀op1::’a Op . ∀op2::’a Op . ∀S::’a state .

(cond (op1 S)) −→ (((((AllPos op1);(AllPos op2)) [S]) = [op2 (op1 S)])

−→ cond (op2 (op1 S)))"

by simp

lemma goodCompA [simp] :

"∀op1::’a Op . ∀op2::’a Op . ∀S::’a state .

6(cond (op1 S)) −→ (((AllPos op1);(AllPos op2)) [S]) = []"

by simp

lemma associativityOfSemi [simp] :

"∀St . ∀op1::’a Op . ∀op2::’a Op . ∀op3::’a Op .

((AllPos op1);(AllPos op2);(AllPos op3)) St =

(((AllPos op1);(AllPos op2));(AllPos op3)) St"

by simp

lemma AllPosRequiresGood [simp] : "∀St . ∀op1::’a Op .

((AllPos op1) St) = filter Good ((AllPos op1) St)"

by (simp del: Good.simps)

end

Appendix G

Max example Isabelle

theory file

theory Max

imports Z

begin

declare [[smt_solver = remote_z3]]

declare [[smt_timeout = 60]]

declare [[z3_options = "-memory:500"]]

datatype Regname = eax | ebx | ecx | edx | esp | ebp | ip

datatype bit = zero | one

record system =

cflag :: bit

zflag :: bit

sflag :: bit

memory :: "int ⇒ int"

registers :: "Regname ⇒ int"

(* Some helpful shortcuts for ASM programs... *)

definition mem :: "system state ⇒ int ⇒ int" where

"mem St ≡ (memory (sys St))"

declare mem_def [simp]

definition reg :: "system state ⇒ Regname ⇒int" where

"reg St ≡ (registers (sys St))"

155

156 APPENDIX G. MAX EXAMPLE ISABELLE THEORY FILE

declare reg_def [simp]

definition regind :: "system state ⇒ Regname => int ⇒ int" where

"regind St ≡ λr . λoff . ((mem St) ((reg St r) + off))"

declare regind_def [simp]

(* Z Operation schema converted from the Max example *)

definition Block80480d8 :: "system Op" where

"Block80480d8 St =

Lsys=(sys St)L
registers := (registers (sys St))(esp := ((reg St esp) - 4)),

memory := (memory (sys St))(((reg St esp) - 4) := (reg St ebp))M
, cond=TrueM"

declare Block80480d8_def [simp]

definition Block80480d9 :: "system Op" where

"Block80480d9 St =

Lsys=(sys St)L
registers := (registers (sys St))(ebp := reg St esp),

memory := (memory (sys St))M
, cond=TrueM"

declare Block80480d9_def [simp]

definition Block80480db :: "system Op" where

"Block80480db St =

Lsys=(sys St)L
registers := ((registers (sys St))(eax :=

(memory (sys St)) (((registers (sys St)) ebp) + 8)))M
, cond=TrueM"

declare Block80480db_def [simp]

lemma firstThreeNoPrecond [simp] : "∀St::(system state) .

¬ ((((AllPos Block80480d8)

;(AllPos Block80480d9)

;(AllPos Block80480db)) [St]) = [])"

by simp

definition Block80480dePartA :: "system Op" where

"Block80480dePartA St = Lsys=(sys St)Lzflag:=zero,sflag:=oneM
, cond=((((reg St) eax) - (regind St ebp 12)) < 0)M"

declare Block80480dePartA_def [simp]

definition Block80480dePartB :: "system Op" where

"Block80480dePartB St = Lsys=(sys St)Lzflag:=one,sflag:=zeroM
, cond=((((reg St) eax) - (regind St ebp 12)) = 0)M"

157

declare Block80480dePartB_def [simp]

definition Block80480dePartC :: "system Op" where

"Block80480dePartC St = Lsys=(sys St)Lzflag:=zero,sflag:=zeroM
, cond=((((reg St) eax) - (regind St ebp 12)) > 0)M"

declare Block80480dePartC_def [simp]

definition Block80480de :: "system AllPosOp" where

"Block80480de St = (((AllPos Block80480dePartA)

�(AllPos Block80480dePartB))

�(AllPos Block80480dePartC)) St"

declare Block80480de_def [simp]

definition OnBranch80480e1 :: "system Op" where

"OnBranch80480e1 St = Lsys=(sys St),

cond=((zflag (sys St) = one) ∨ (sflag (sys St) = one))M"
declare OnBranch80480e1_def [simp]

definition NoBranch80480e1 :: "system Op" where

"NoBranch80480e1 St = Lsys=(sys St),

cond=((zflag (sys St) 6= one) ∧ (sflag (sys St) 6= one))M"
declare NoBranch80480e1_def [simp]

(* Choices should be total - i.e. there should be at least one right answer,

and in this model there should be exactly one right answer *)

lemma TotalBranch80480e1 : "∀St . ∃S .

hd (((AllPos OnBranch80480e1)

�(AllPos NoBranch80480e1)) [St]) = S"

by simp

lemma OnlyOneBranch80480e1 :

"∀St . (cond (OnBranch80480e1 St) ←→
¬ cond (NoBranch80480e1 St))"

by simp

definition Block80480e3 :: "system Op" where

"Block80480e3 St = Lsys = (sys St)L
registers:=(registers (sys St))(eax:=

(memory (sys St))(((registers (sys St)) ebp) + 8))M,
cond = TrueM"

declare Block80480e3_def [simp]

definition OnBranch80480e6 :: "system Op" where

"OnBranch80480e6 St = Lsys = sys St, cond = True M"
declare OnBranch80480e6_def [simp]

158 APPENDIX G. MAX EXAMPLE ISABELLE THEORY FILE

(* OnBranch80480e6 always occurs and does nothing

to the system state (its a JMP command...) *)

lemma OnBranch80480e6Simple : "∀St .

Good St −→ OnBranch80480e6 St = St"

by simp

definition Block80480e8 :: "system Op" where

"Block80480e8 St = Lsys = (sys St)L
registers:=(registers (sys St))(eax:=

(memory (sys St))(((registers (sys St)) ebp) + 12))M,
cond = TrueM"

declare Block80480e8_def [simp]

definition Block80480eb :: "system Op" where

"Block80480eb St = Lsys = (sys St)L
registers:=(registers (sys St))(

esp:=(reg St esp) + 4,

ebp:=regind St esp 0

)M,
cond = TrueM"

declare Block80480eb_def [simp]

(* The first sequential blocks with no branches *)

definition Entry :: "system AllPosOp" where

"Entry ≡ λSt .

((AllPos Block80480d8)

;(AllPos Block80480d9)

;(AllPos Block80480db)

;Block80480de) St"

declare Entry_def [simp]

(* The two choices at 189 *)

definition Left :: "system AllPosOp" where

"Left ≡ λSt .

((AllPos OnBranch80480e1)

;(AllPos Block80480e8)

;(AllPos Block80480eb)) St"

declare Left_def [simp]

definition Right :: "system AllPosOp" where

"Right ≡ λSt .

((AllPos NoBranch80480e1)

;(AllPos Block80480e3)

;(AllPos OnBranch80480e6)

;(AllPos Block80480eb)) St"

159

declare Right_def [simp]

(* The complete spec for the Max function *)

definition MaxOp :: "system AllPosOp" where

"MaxOp St = (Entry;(Left�Right)) St"

declare MaxOp_def [simp]

(* There is a right answer... *)

lemma EntryTermiintes : "∀St::system state .

Good St −→ Entry [St] 6= []"

by simp

lemma MaxTermiintes : "∀St::system state .

MaxOp [St] 6= []"

by simp

(* I can’t find the Isabelle List version of this... *)

fun cont :: "’a ⇒ ’a list ⇒ bool" where

"cont val [] = False" |

"cont val list = ((val = (hd list)) ∨ (cont val (tl list)))"

lemma NoStackOverflow :

"∀St::system state .

∀ASt::system state .

cont ASt (MaxOp [St]) −→
(regind St esp 0 = regind ASt esp 0)

"

by simp

(* Helpful, if obvious lemma *)

lemma functionsAreSane [simp] : "∀St . ∀n . ((mem St) n = (mem St) n)"

by simp

(* This must be a int rule somewhere... *)

lemma intCommute [simp] : "∀n::int . ∀m::int . (n + m) = (m + n)"

by simp

lemma MaxGetsSomethingSensible [simp] :

"∀St::system state .

∀ASt::system state .

cont ASt (MaxOp [St]) −→
(

let n = (regind St esp 4); m = (regind St esp 8) in

((reg ASt eax) = n) ∨ ((reg ASt eax) = m)

)"

160 APPENDIX G. MAX EXAMPLE ISABELLE THEORY FILE

by simp

(* We should get the right answer - i.e. the value returned

should be the greater of the two. Since the previous lemma

shows that it is either the value at esp+4 or esp+8 we can just say

that it is esp+4 iff that is the larger (or they are equal) *)

lemma MaxReturnsMax : "∀St::system state . ∀ASt::system state .

cont ASt (MaxOp [St]) −→
(

let n = (regind St esp 4); m = (regind St esp 8) in

(n ≥ m ←→ (reg ASt eax = n))

)"

by simp

(* Changes in the broken version... *)

definition WrongOnBranch80480e1 :: "system Op" where

"WrongOnBranch80480e1 St = Lsys=(sys St),

cond=(sflag (sys St) = zero)M"
declare WrongOnBranch80480e1_def [simp]

definition WrongNoBranch80480e1 :: "system Op" where

"WrongNoBranch80480e1 St = Lsys=(sys St),

cond=(sflag (sys St) 6= zero)M"
declare WrongNoBranch80480e1_def [simp]

lemma TotalWrongBranch80480e1 : "∀St . ∃S .

hd (((AllPos WrongOnBranch80480e1)

�(AllPos WrongNoBranch80480e1)) [St]) = S"

by simp

lemma OnlyOneWrongBranch80480e1 : "∀St .

(cond (WrongOnBranch80480e1 St) ←→
¬ cond (WrongNoBranch80480e1 St))"

by simp

(* The two wrong choices at 189 *)

definition WrongLeft :: "system AllPosOp" where

"WrongLeft ≡ λSt .

((AllPos WrongOnBranch80480e1)

;(AllPos Block80480e8)

;(AllPos Block80480eb)) St"

declare WrongLeft_def [simp]

definition WrongRight :: "system AllPosOp" where

"WrongRight ≡ λSt .

161

((AllPos WrongNoBranch80480e1)

;(AllPos Block80480e3)

;(AllPos OnBranch80480e6)

;(AllPos Block80480eb)) St"

declare WrongRight_def [simp]

(* The complete spec for the Max function *)

definition WrongMaxOp :: "system AllPosOp" where

"WrongMaxOp St = (Entry;(WrongLeft�WrongRight)) St"

declare WrongMaxOp_def [simp]

(* It should still get an answer *)

lemma WrongMaxTermiintes : "∀St::system state . WrongMaxOp [St] 6= []"

by simp

(* We should still get one of the two arguments... *)

lemma WrongMaxGetsSomethingSensible [simp] :

"∀St::system state .

∀ASt::system state .

cont ASt (WrongMaxOp [St]) −→
(let n = (regind St esp 4); m = (regind St esp 8) in

(((reg ASt eax) = n) ∨ ((reg ASt eax) = m))

)"

by simp

(* We should not get the right answer - i.e. the value returned

should not be the greater of the two - so this should fail to

prove and the counter example should be an informative description

of the problem. *)

theorem WrongMaxReturnsMax : "∀St::system state . ∀ASt::system state .

(

(cont ASt (WrongMaxOp [St])) −→
(let n = (regind St esp 4); m = (regind St esp 8) in

(n ≥ m) ←→ (reg ASt eax = n)

)

)

"

nitpick

apply(simp)

nitpick [verbose=true,show_all=true]

end

162 APPENDIX G. MAX EXAMPLE ISABELLE THEORY FILE

Appendix H

Exdev SAL file

exdev : CONTEXT = BEGIN

NAT : TYPE = [0..22];

CSPSTATE : TYPE = DATATYPE

Branch80480de,

Anon1,

Branch80480b9,

Branch80480bb,

Branch80480be,

Branch80480c3,

Branch80480c7,

Branch80480ca,

Branch80480cd,

Branch80480d0,

Branch80480d3,

Branch80480d5,

Branch80480d8,

Branch80480db,

Anon0,

Branch80480e2,

Branch80480e5,

Branch80480e8,

Main,

Leave,

Stop

END;

REGNAME : TYPE = DATATYPE

eax,

ebx,

163

164 APPENDIX H. EXDEV SAL FILE

ecx,

edx,

esp,

ebp,

ip,

REGNAME__B

END;

State : MODULE =

BEGIN

LOCAL registers : [REGNAME -> NAT]

LOCAL memory : [NAT -> NAT]

LOCAL ports : [NAT -> NAT]

LOCAL zflag : [0..1]

LOCAL cflag : [0..1]

LOCAL oflag : [0..1]

LOCAL sflag : [0..1]

LOCAL cspstate : CSPSTATE

LOCAL invariant__ : BOOLEAN

DEFINITION

invariant__ = (

function {REGNAME, NAT; REGNAME__B, 22} ! total?(registers) AND

function {NAT, NAT; 22, 22} ! total?(memory) AND

function {NAT, NAT; 22, 22} ! total?(ports))

INITIALIZATION [

cspstate = Anon1 AND

registers(esp) = 20 AND

registers(ebp) = 20 AND

invariant__

-->

]

TRANSITION [

Block80480b8 :

registers’ = function {REGNAME, NAT; REGNAME__B, 22} !

insert(registers, (esp, registers(esp) - 4)) AND

memory’ = function {NAT, NAT; 22, 22} !

insert(memory, (registers’(esp), registers(ebp))) AND

cspstate = Anon1 AND

cspstate’ = Branch80480b9 AND

invariant__’

-->

registers’ IN {x : [REGNAME -> NAT] | TRUE};

memory’ IN {x : [NAT -> NAT] | TRUE};

ports’ IN {x : [NAT -> NAT] | TRUE};

zflag’ IN {x : [0..1] | TRUE};

cflag’ IN {x : [0..1] | TRUE};

165

oflag’ IN {x : [0..1] | TRUE};

sflag’ IN {x : [0..1] | TRUE};

cspstate’ IN {x : CSPSTATE | TRUE}

[]

Block80480b9 :

registers’ = function {REGNAME, NAT; REGNAME__B, 22} !

insert(registers, (ebp, registers(esp))) AND

memory’ = memory AND

cspstate = Branch80480b9 AND

cspstate’ = Branch80480bb AND

invariant__’

-->

registers’ IN {x : [REGNAME -> NAT] | TRUE};

memory’ IN {x : [NAT -> NAT] | TRUE};

ports’ IN {x : [NAT -> NAT] | TRUE};

zflag’ IN {x : [0..1] | TRUE};

cflag’ IN {x : [0..1] | TRUE};

oflag’ IN {x : [0..1] | TRUE};

sflag’ IN {x : [0..1] | TRUE};

cspstate’ IN {x : CSPSTATE | TRUE}

[]

Block80480bb :

registers’ = function {REGNAME, NAT; REGNAME__B, 22} !

insert(registers, (esp, registers(esp) - 16)) AND

memory’ = memory AND

(zflag’ = 1) = (registers’(esp) = 0) AND

cspstate = Branch80480bb AND

cspstate’ = Branch80480be AND

invariant__’

-->

registers’ IN {x : [REGNAME -> NAT] | TRUE};

memory’ IN {x : [NAT -> NAT] | TRUE};

ports’ IN {x : [NAT -> NAT] | TRUE};

zflag’ IN {x : [0..1] | TRUE};

cflag’ IN {x : [0..1] | TRUE};

oflag’ IN {x : [0..1] | TRUE};

sflag’ IN {x : [0..1] | TRUE};

cspstate’ IN {x : CSPSTATE | TRUE}

[]

Block80480be :

registers’ = function {REGNAME, NAT; REGNAME__B, 22} !

insert(registers, (eax, 1)) AND

memory’ = memory AND

cspstate = Branch80480be AND

cspstate’ = Branch80480c3 AND

invariant__’

166 APPENDIX H. EXDEV SAL FILE

-->

registers’ IN {x : [REGNAME -> NAT] | TRUE};

memory’ IN {x : [NAT -> NAT] | TRUE};

ports’ IN {x : [NAT -> NAT] | TRUE};

zflag’ IN {x : [0..1] | TRUE};

cflag’ IN {x : [0..1] | TRUE};

oflag’ IN {x : [0..1] | TRUE};

sflag’ IN {x : [0..1] | TRUE};

cspstate’ IN {x : CSPSTATE | TRUE}

[]

Block80480c3 :

memory’ = memory AND

ports(0) = registers(eax) AND

registers’ = function {REGNAME, NAT; REGNAME__B, 22} !

insert(registers, (eax, ports(8))) AND

cspstate = Branch80480c3 AND

cspstate’ = Branch80480c7 AND

invariant__’

-->

registers’ IN {x : [REGNAME -> NAT] | TRUE};

memory’ IN {x : [NAT -> NAT] | TRUE};

ports’ IN {x : [NAT -> NAT] | TRUE};

zflag’ IN {x : [0..1] | TRUE};

cflag’ IN {x : [0..1] | TRUE};

oflag’ IN {x : [0..1] | TRUE};

sflag’ IN {x : [0..1] | TRUE};

cspstate’ IN {x : CSPSTATE | TRUE}

[]

Block80480c7 :

memory’ = function {NAT, NAT; 22, 22} !

insert(memory, (registers(ebp) - 16, registers(eax))) AND

registers’ = registers AND

cspstate = Branch80480c7 AND

cspstate’ = Branch80480ca AND

invariant__’

-->

registers’ IN {x : [REGNAME -> NAT] | TRUE};

memory’ IN {x : [NAT -> NAT] | TRUE};

ports’ IN {x : [NAT -> NAT] | TRUE};

zflag’ IN {x : [0..1] | TRUE};

cflag’ IN {x : [0..1] | TRUE};

oflag’ IN {x : [0..1] | TRUE};

sflag’ IN {x : [0..1] | TRUE};

cspstate’ IN {x : CSPSTATE | TRUE}

[]

Block80480ca :

167

registers’ = function {REGNAME, NAT; REGNAME__B, 22} !

insert(registers, (eax, memory(registers(ebp) - 16))) AND

memory’ = memory AND

cspstate = Branch80480ca AND

cspstate’ = Branch80480cd AND

invariant__’

-->

registers’ IN {x : [REGNAME -> NAT] | TRUE};

memory’ IN {x : [NAT -> NAT] | TRUE};

ports’ IN {x : [NAT -> NAT] | TRUE};

zflag’ IN {x : [0..1] | TRUE};

cflag’ IN {x : [0..1] | TRUE};

oflag’ IN {x : [0..1] | TRUE};

sflag’ IN {x : [0..1] | TRUE};

cspstate’ IN {x : CSPSTATE | TRUE}

[]

Block80480cd :

registers’ = function {REGNAME, NAT; REGNAME__B, 22} !

insert(registers, (eax, registers(eax) + 10)) AND

memory’ = memory AND

cspstate = Branch80480cd AND

cspstate’ = Branch80480d0 AND

invariant__’

-->

registers’ IN {x : [REGNAME -> NAT] | TRUE};

memory’ IN {x : [NAT -> NAT] | TRUE};

ports’ IN {x : [NAT -> NAT] | TRUE};

zflag’ IN {x : [0..1] | TRUE};

cflag’ IN {x : [0..1] | TRUE};

oflag’ IN {x : [0..1] | TRUE};

sflag’ IN {x : [0..1] | TRUE};

cspstate’ IN {x : CSPSTATE | TRUE}

[]

Block80480d0 :

memory’ = function {NAT, NAT; 22, 22} !

insert(memory, (registers(ebp) - 12, registers(eax))) AND

registers’ = registers AND

cspstate = Branch80480d0 AND

cspstate’ = Branch80480d3 AND

invariant__’

-->

registers’ IN {x : [REGNAME -> NAT] | TRUE};

memory’ IN {x : [NAT -> NAT] | TRUE};

ports’ IN {x : [NAT -> NAT] | TRUE};

zflag’ IN {x : [0..1] | TRUE};

cflag’ IN {x : [0..1] | TRUE};

168 APPENDIX H. EXDEV SAL FILE

oflag’ IN {x : [0..1] | TRUE};

sflag’ IN {x : [0..1] | TRUE};

cspstate’ IN {x : CSPSTATE | TRUE}

[]

Block80480d3 :

memory’ = memory AND

registers’ = function {REGNAME, NAT; REGNAME__B, 22} !

insert(registers, (eax, ports(8))) AND

cspstate = Branch80480d3 AND

cspstate’ = Branch80480d5 AND

invariant__’

-->

registers’ IN {x : [REGNAME -> NAT] | TRUE};

memory’ IN {x : [NAT -> NAT] | TRUE};

ports’ IN {x : [NAT -> NAT] | TRUE};

zflag’ IN {x : [0..1] | TRUE};

cflag’ IN {x : [0..1] | TRUE};

oflag’ IN {x : [0..1] | TRUE};

sflag’ IN {x : [0..1] | TRUE};

cspstate’ IN {x : CSPSTATE | TRUE}

[]

Block80480d5 :

memory’ = function {NAT, NAT; 22, 22} !

insert(memory, (registers(ebp) - 8, registers(eax))) AND

registers’ = registers AND

cspstate = Branch80480d5 AND

cspstate’ = Branch80480d8 AND

invariant__’

-->

registers’ IN {x : [REGNAME -> NAT] | TRUE};

memory’ IN {x : [NAT -> NAT] | TRUE};

ports’ IN {x : [NAT -> NAT] | TRUE};

zflag’ IN {x : [0..1] | TRUE};

cflag’ IN {x : [0..1] | TRUE};

oflag’ IN {x : [0..1] | TRUE};

sflag’ IN {x : [0..1] | TRUE};

cspstate’ IN {x : CSPSTATE | TRUE}

[]

Block80480d8 :

registers’ = function {REGNAME, NAT; REGNAME__B, 22} !

insert(registers, (eax, memory(registers(ebp) - 8))) AND

memory’ = memory AND

cspstate = Branch80480d8 AND

cspstate’ = Branch80480db AND

invariant__’

-->

169

registers’ IN {x : [REGNAME -> NAT] | TRUE};

memory’ IN {x : [NAT -> NAT] | TRUE};

ports’ IN {x : [NAT -> NAT] | TRUE};

zflag’ IN {x : [0..1] | TRUE};

cflag’ IN {x : [0..1] | TRUE};

oflag’ IN {x : [0..1] | TRUE};

sflag’ IN {x : [0..1] | TRUE};

cspstate’ IN {x : CSPSTATE | TRUE}

[]

Block80480db :

(registers(eax) - memory(registers(ebp) - 12) < 0 => (sflag’ = 1 AND

zflag’ = 0)) AND

(registers(eax) - memory(registers(ebp) - 12) = 0 => (zflag’ = 1 AND

sflag’ = 0)) AND

(registers(eax) - memory(registers(ebp) - 12) > 0 => (zflag’ = 0 AND

sflag’ = 0)) AND

memory’ = memory AND

registers’ = registers AND

cspstate = Branch80480db AND

cspstate’ = Branch80480de AND

invariant__’

-->

registers’ IN {x : [REGNAME -> NAT] | TRUE};

memory’ IN {x : [NAT -> NAT] | TRUE};

ports’ IN {x : [NAT -> NAT] | TRUE};

zflag’ IN {x : [0..1] | TRUE};

cflag’ IN {x : [0..1] | TRUE};

oflag’ IN {x : [0..1] | TRUE};

sflag’ IN {x : [0..1] | TRUE};

cspstate’ IN {x : CSPSTATE | TRUE}

[]

OnBranch80480de :

sflag = 1 AND

cspstate = Branch80480de AND

cspstate’ = Branch80480d3 AND

registers’ = registers AND

memory’ = memory AND

ports’ = ports AND

zflag’ = zflag AND

cflag’ = cflag AND

oflag’ = oflag AND

sflag’ = sflag AND

invariant__’

-->

registers’ IN {x : [REGNAME -> NAT] | TRUE};

memory’ IN {x : [NAT -> NAT] | TRUE};

170 APPENDIX H. EXDEV SAL FILE

ports’ IN {x : [NAT -> NAT] | TRUE};

zflag’ IN {x : [0..1] | TRUE};

cflag’ IN {x : [0..1] | TRUE};

oflag’ IN {x : [0..1] | TRUE};

sflag’ IN {x : [0..1] | TRUE};

cspstate’ IN {x : CSPSTATE | TRUE}

[]

NoBranch80480de :

sflag /= 1 AND

cspstate = Branch80480de AND

cspstate’ = Anon0 AND

registers’ = registers AND

memory’ = memory AND

ports’ = ports AND

zflag’ = zflag AND

cflag’ = cflag AND

oflag’ = oflag AND

sflag’ = sflag AND

invariant__’

-->

registers’ IN {x : [REGNAME -> NAT] | TRUE};

memory’ IN {x : [NAT -> NAT] | TRUE};

ports’ IN {x : [NAT -> NAT] | TRUE};

zflag’ IN {x : [0..1] | TRUE};

cflag’ IN {x : [0..1] | TRUE};

oflag’ IN {x : [0..1] | TRUE};

sflag’ IN {x : [0..1] | TRUE};

cspstate’ IN {x : CSPSTATE | TRUE}

[]

Block80480e0 :

memory’ = memory AND

registers’ = function {REGNAME, NAT; REGNAME__B, 22} !

insert(registers, (eax, ports(4))) AND

cspstate = Anon0 AND

cspstate’ = Branch80480e2 AND

invariant__’

-->

registers’ IN {x : [REGNAME -> NAT] | TRUE};

memory’ IN {x : [NAT -> NAT] | TRUE};

ports’ IN {x : [NAT -> NAT] | TRUE};

zflag’ IN {x : [0..1] | TRUE};

cflag’ IN {x : [0..1] | TRUE};

oflag’ IN {x : [0..1] | TRUE};

sflag’ IN {x : [0..1] | TRUE};

cspstate’ IN {x : CSPSTATE | TRUE}

[]

171

Block80480e2 :

memory’ = function {NAT, NAT; 22, 22} !

insert(memory, (registers(ebp) - 4, registers(eax))) AND

registers’ = registers AND

cspstate = Branch80480e2 AND

cspstate’ = Branch80480e5 AND

invariant__’

-->

registers’ IN {x : [REGNAME -> NAT] | TRUE};

memory’ IN {x : [NAT -> NAT] | TRUE};

ports’ IN {x : [NAT -> NAT] | TRUE};

zflag’ IN {x : [0..1] | TRUE};

cflag’ IN {x : [0..1] | TRUE};

oflag’ IN {x : [0..1] | TRUE};

sflag’ IN {x : [0..1] | TRUE};

cspstate’ IN {x : CSPSTATE | TRUE}

[]

Block80480e5 :

registers’ = function {REGNAME, NAT; REGNAME__B, 22} !

insert(registers, (eax, memory(registers(ebp) - 4))) AND

memory’ = memory AND

cspstate = Branch80480e5 AND

cspstate’ = Branch80480e8 AND

invariant__’

-->

registers’ IN {x : [REGNAME -> NAT] | TRUE};

memory’ IN {x : [NAT -> NAT] | TRUE};

ports’ IN {x : [NAT -> NAT] | TRUE};

zflag’ IN {x : [0..1] | TRUE};

cflag’ IN {x : [0..1] | TRUE};

oflag’ IN {x : [0..1] | TRUE};

sflag’ IN {x : [0..1] | TRUE};

cspstate’ IN {x : CSPSTATE | TRUE}

[]

Block80480e8 :

registers’ = function {REGNAME, NAT; REGNAME__B, 22} !

insert(function {REGNAME, NAT; REGNAME__B, 22} !

insert(registers, (esp, registers(ebp) + 4)), (ebp,

memory(registers(ebp)))) AND

memory’ = memory AND

cspstate = Branch80480e8 AND

cspstate’ = Leave AND

invariant__’

-->

registers’ IN {x : [REGNAME -> NAT] | TRUE};

memory’ IN {x : [NAT -> NAT] | TRUE};

172 APPENDIX H. EXDEV SAL FILE

ports’ IN {x : [NAT -> NAT] | TRUE};

zflag’ IN {x : [0..1] | TRUE};

cflag’ IN {x : [0..1] | TRUE};

oflag’ IN {x : [0..1] | TRUE};

sflag’ IN {x : [0..1] | TRUE};

cspstate’ IN {x : CSPSTATE | TRUE}

[]

Stop :

cspstate = Leave AND

cspstate’ = Leave AND

invariant__’

-->

registers’ = registers;

memory’ = memory;

ports’ = ports;

zflag’ = zflag;

cflag’ = cflag;

oflag’ = oflag;

sflag’ = sflag

]

END;

neverTerminates : THEOREM State |- G(cspstate /= Leave);

neverRestarts : THEOREM State |-

G((cspstate = Leave) => NOT F(cspstate /= Leave));

writeBeforeRead : THEOREM State |-

W((cspstate /= Anon0),(cspstate = Branch80480c3));

delayIsCorrect : THEOREM State |- FORALL (START:NAT):

G(

((cspstate = Branch80480c3) AND (ports(8) = START)) =>

FORALL (FINISH:NAT):

G(((cspstate = Branch80480d3) AND (ports(8) = FINISH)) =>

G(((cspstate = Anon0) AND (registers(eax) = FINISH)) =>

(FINISH >= (START + 10))

)

)

);

delayBetweenWriteAndRead : THEOREM State |-

W((cspstate /= Anon0), (cspstate = Branch80480d3));

END

