Verification of hardware
dependent software

Submitted for the candidature of the degree of Doctor of Philosophy
Department of Computer Science

Author: Ramsay G. Taylor
Supervisor: Professor John Derrick

17th January 2012
Abstract

Many good processes exist for ensuring the integrity of software systems. Some are analysis processes that seek to confirm that certain properties hold for the system, and these rely on the ability to infer a correct model of the behaviour of the software. To ensure that such inference is possible many high-integrity systems are written in “safe” language subsets that restrict the program to constructs whose behaviour is sufficiently abstract and well defined that it can be determined independent of the execution environment. This necessarily prevents any assumptions about the system hardware, but consequently makes it impossible to use these techniques on software that must interact with the hardware, such as device drivers.

This thesis addresses this shortcoming by taking the opposite approach: if the analyst accepts absolute hardware dependence — that the analysis will only be valid for a particular target system: the hardware that the driver is intended to control — then the specification of the system can be used to infer the behaviour of the software that interacts with it. An analysis process is developed that operates on disassembled executable files and formal system specifications to produce CSP-OZ formal models of the software’s behaviour. This analysis process is implemented in a prototype called Spurinna, that is then used in conjunction with the verification tools Z2SAL, the SAL suite, and IsabelleHOL, to demonstrate the verification of properties of the software.
Declaration

I declare that this thesis was composed entirely by myself and that the work contained herein is my own except where explicitly stated otherwise. This work has not been submitted for any degree or professional qualification other than as specified.

Ramsay Taylor
Contents

1 Introduction ... 1
 1.1 Motivation .. 1
 1.2 Objective of this work .. 2
 1.3 Thesis Outline .. 4

2 Background .. 5
 2.1 Introduction .. 5
 2.2 Verification ... 5
 2.3 Code analysis ... 6
 2.3.1 Overview .. 6
 2.3.2 MISRA C ... 7
 2.3.3 SPARK Ada ... 8
 2.3.4 Hardware verification 9
 2.3.5 Summary .. 9
 2.4 Modeling .. 10
 2.4.1 Overview .. 10
 2.4.2 The Z notation .. 11
 2.4.3 B .. 13
 2.4.4 CSP ... 13
 2.4.5 Object Z .. 15
 2.4.6 CSP-OZ ... 17
 2.4.7 Summary .. 17
 2.5 Property verification ... 18
 2.5.1 Overview .. 18
 2.5.2 Hoare logic .. 19
 2.5.3 Separation logic 21
 2.5.4 IsabelleHOL .. 22
 2.5.5 SAL .. 23
 2.5.6 Z2SAL .. 24
 2.5.7 Summary .. 25
CONTENTS

3 **The proposed solution** 27
3.1 Introduction 27
3.2 The analysis process 27
3.3 Formal model 28
3.3.1 System state specification 29
3.3.2 Sequential instruction specifications 30
3.3.3 Branch instruction set specification 34
3.4 Automated inference 38

4 **Separation in Z** 41
4.1 Overview 41
4.2 Introduction 41
4.3 Basic case 42
4.4 A relaxation of the basic case 44
4.5 A simple function case 46
4.6 A simple relational case 51
4.7 Conclusion 52

5 **Analysis** 53
5.1 Disassembly 53
5.1.1 Overview 53
5.1.2 Executable files, object code, and disassembly 53
5.1.3 Parsing 57
5.1.4 Summary 59
5.2 Branch Identification 59
5.2.1 Overview 59
5.2.2 Branch instructions 59
5.2.3 Branch template format 60
5.2.4 Example 61
5.2.5 Summary 64
5.3 Formal Instantiation 64
5.3.1 Overview 64
5.3.2 Template specifications 64
5.3.3 Instantiation 67
5.3.4 Summary 67
5.4 Simplification 68
5.4.1 Overview 68
5.4.2 Sequential block compression 68
5.4.3 Algorithm 69
5.4.4 Summary 69
5.5 Program Encapsulation 70
5.5.1 Overview 70
5.5.2 Internal branch instructions 70
5.5.3 Function calls 71
5.5.4 Class definition 72
5.5.5 Summary 72
CONTENTS

6 The Spurinna implementation 73
6.1 Overview .. 73
6.2 Input files 73
6.3 Analysis stages 75
 6.3.1 Architecture 75
 6.3.2 Branch identification 76
 6.3.3 Formal instantiation 77
 6.3.4 Simplification 78
 6.3.5 Program encapsulation 78
6.4 Output formats 79
6.5 Summary .. 81

7 Model checking for verification 83
7.1 Overview .. 83
7.2 System, requirements, and analysis 83
7.3 Z2SAL .. 84
7.4 Model checking Linear Temporal Logic properties 87
7.5 Model checking for fault detection 89
7.6 Summary .. 92

8 Verification by symbolic proof 95
8.1 Overview .. 95
8.2 Symbolic proof in IsabelleHOL 95
8.3 Converting Z to an Isabelle model 97
8.4 Proofs of properties 101
8.5 Proof assistant counterexamples for fault detection and tracing 102
8.6 Summary .. 104

9 Verifying a hardware usage requirement 105
9.1 Overview .. 105
9.2 A hardware interaction example 105
9.3 SAL verification 107
9.4 Summary .. 110

10 Conclusions 111
10.1 Software analysis 111
10.2 Future work 112

Bibliography 119

A Flattening CSP-OZ to pure Z 121
B Derived MaxInt CSP-OZ model 125
C MaxInt for import to Z2SAL 133
D MaxInt SAL file 137
<table>
<thead>
<tr>
<th>CONTENTS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>E SAL suite counter example for brokenmaxint</td>
<td>145</td>
</tr>
<tr>
<td>F Isabelle Z theory file</td>
<td>153</td>
</tr>
<tr>
<td>G Max example Isabelle theory file</td>
<td>155</td>
</tr>
<tr>
<td>H Exdev SAL file</td>
<td>163</td>
</tr>
</tbody>
</table>
Chapter 1

Introduction

1.1 Motivation

This work was prompted by the author’s experiences with safety critical software projects in industry. Many good processes exist for ensuring the integrity of software. Some are verification techniques that seek to confirm that the software satisfies necessary requirements, others are development processes that are designed to minimise the creation of faults by ensuring that the programmers always have a clear idea of their objectives, and always have a clear understanding of the source code that they and other team members are writing. All of these techniques are valuable to software development, but many of the processes in use have limitations that prevent or complicate their application to software that interacts directly with hardware.

Many projects make use of static analysis to give a measure of assurance for the safe functioning of the code. Some of these analysis techniques measure a general software quality metric (such as conformance to a coding standard) to give an engineering estimate of its quality. This is often demonstrably very accurate and able to give a very high level assurance, but it lacks the mathematical certainty that is (at least philosophically) possible through the application of formal methods. Other techniques have a formal underpinning, particularly those that are based on “safe” language subsets. These use restricted versions of common programming languages to make the code completely statically determinable and so amenable to static analysis. The details of these languages are discussed further in §2.3 but the significant issue is that by restricting the language they necessarily make themselves unusable for applications that rely on the features that have been removed. One area that depends heavily on features that are often restricted or removed is hardware control. This will be the focus for the work presented here.

Hardware control and interaction is an area that is central to many safety-critical systems as they tend to be embedded systems or systems with a device control aspect. Many restricted languages remove any feature that interacts
with the hardware, since these features reduce portability and prevent deterministic reasoning about the code without making assumptions about the behaviour of the hardware. However, in the case of device drivers it makes perfect sense to make assumptions about the hardware — a specification of the hardware’s behaviour is always necessary if software is to be written to control it.

1.2 Objective of this work

The principle difficulties that current techniques face when verifying hardware-dependent software are:

- They have no way to statically determine the behaviour of code that interacts directly with the hardware.
- Current techniques are necessarily detached from the hardware (for instance language subsets, discussed in §2.3) or treat hardware in an abstract, general way (such as the heap model in Separation Logic §2.5.3).
- Verification must fit into an industrial workflow and not be overly dependent on expert skills, and must be applicable to large scale systems in reasonable time.

This work aims to produce techniques that use knowledge of the behaviour of specific hardware in order to allow the verification of its control software. More detailed background on verification in general, and the use of restricted language subsets is presented in §2. This work attempts to avoid the difficulties of analysing high level language code by taking the opposite approach — analysing code at the executable file level. While restricted languages attempt to make code sufficiently abstract that hardware details are irrelevant, the objective here is to make use of known hardware details to make high level language concerns irrelevant. The intention is to disassemble executables using a formal specification of their target architecture as a guide. This should produce an interpretation of the software based on the environment in which it will run and should provide a better basis for understanding its interaction with the hardware.

The principle contribution of this work is a technique for inferring a formal model of the behaviour of a hardware dependent system that has the following properties:

- The ability to represent the interaction of software and hardware components in the same model, and allow the verification of properties of hardware usage;
- a fully automatic implementation with no human input required after the submission of the hardware specification and the software for analysis;
- produces models of a size and complexity that can be understood by humans and is practical for the application of formal verification techniques;
1.2. OBJECTIVE OF THIS WORK

• maintains traceability from the produced model back to the source program to support fault localisation and repair.

Along with solving the technical problem of analysing executable code using formal methods, this work will strive to produce techniques that can be automated wherever possible. Two common criticisms of working at the executable code level are that the sheer number of individual instructions make analysis difficult, and that the code is in a machine readable form rather than one intended for human understanding. By allowing automation of the labourious parts of the analysis it is possible to avoid both concerns, since computer systems are intended to handle large volumes of repetitive work, and no criticism can be made of using a machine to interpret machine readable data.

The potential for exploring the analysis of specific, complex assembly language and CPU detail was present at many stages of this work. Areas such as virtual memory addressing, multi-processor architectures, timing, and interrupts could each have been explored individually for the entire duration of the work. This exploration was eschewed in favour of developing a complete workflow that converts an executable to a formal representation with a focus on being applicable to industrial verification processes. This required certain assumptions to be made about the software and the execution environment. It is assumed that the target of this verification will be a high integrity embedded system in which the hardware and software design emphasises reliability over “rich” features, and all components of both the hardware and software system are under the control of the implementing organisation. This may not be direct design control, but it is assumed that the hardware and operating system components will be known, expected to be relatively static for the life of the system, and available for analysis.

Specifically, the analysis assumes that the virtual memory and execution environment of the program is correctly maintained. It assumes that the virtual address space is free of aliasing, and is predictable — so the value written to a location is the value that will be read subsequently unless it is explicitly altered by this program. Also, interrupts are ignored since it is assumed that the CPU will resume the program with the same environment as when it was interrupted. Where the interrupt mechanism alters hardware registers or something else that is observed by the program this should be represented in the hardware specification or in the verification properties.

These assumptions are not unreasonable, and can be considered in the framework of a layered process of system verification. The assumptions should be based on the verification of the CPU hardware, and of the operating system components that drive it — such as the interrupt handlers and the code that maintains the Memory Management Unit (MMU) control registers. Both of these are instances of highly hardware-dependent software they might well be the first elements of a system to be analysed and verified using the techniques presented here. Since it is usual for interrupt handlers to be executed without the possibility of being further interrupted it would be quite reasonable to use these assumptions when performing the verification of their behaviour. They
could be verified against the property that they return the CPU to the interrup-
ted program without altering its state, and so analysis of the remaining software
could proceed with this as a well-founded assumption. Similarly, the operation
of the MMU could be conducted on a system specification that models the in-
teractions between the real address space and the virtual address space. The
correct maintenance of the properties of the virtual address space could be veri-
fied and used as justification for the assumptions used analysing higher layer
software.

Another assumption is that the structure of the software is static for the
active life of the system. Self-modifying code is an interesting and active research
area[23], but preventing the application of such ideas is an acceptable loss if an
extremely high-integrity system is required. Similar arguments can be made
about other complex system structures.

1.3 Thesis Outline

This document consists of ten chapters and eight appendices. These form five
parts:

- §2 gives an overview of the background to hardware-dependent software
 verification and a review of relevant prior work.

- §3,§4, and §5 describe the analysis process that was developed by this
 work, including some theoretical work developed to support the analysis,
 and detail of the phases of the analysis workflow that converts an input
 executable into a formal model.

- §6 introduces the Spurinna package that implements this analysis process,
 §7, §8, and §9 describe some case studies that analyse small code samples
 and verify defined properties.

- §10 contains conclusions and discusses potential future work.

- The appendices contain materials that may be useful for reference when
 considering the analysis process. The contain the full text of the example
 formal models and the SAL and Isabelle files used in the verification ex-
 amples.
Chapter 2

Background

2.1 Introduction

This section presents a literature review of the areas that are relevant to this work. After a general outline of the verification problem, the literature is presented in three areas, corresponding to the three elements needed for a verification process. Each section contains a brief summary of the use made of the material in this thesis. The selection and application of particular methods is described in detail in §3.

2.2 Verification

The aim of any verification process is to ensure that a system exhibits certain properties. What these properties are is one of the inputs to the process, and the choice of suitable property definitions to ensure general reliability is a large and complex subject that is outside the scope of this work. Once the properties have been selected the verification of these properties in a software system requires three phases of analysis:

- **Code analysis** A technique to determine how the software behaves.
- **Modeling** A language is needed to represent the behaviour at a level of abstraction appropriate to analyse the properties of interest.
- **Property verification** A process to check that the behaviour satisfies the required properties, and identify violations with information that can be used to correct the problem.

Different verification techniques will have a greater or smaller explicit emphasis on some of these phases, but they will all exist in some fashion. Even in manual code reviews the behavioral model will be encoded in the reviewer’s notes and mental model, and the property verification technique will be the reviewer’s approach to fault finding.
The remainder of this chapter will give an overview of the work that already exists in each of these three areas, with the intention of identifying suitable building blocks for an analysis technique that can be applied to hardware dependent software.

2.3 Code analysis

2.3.1 Overview

The first phase of analysis — determining how the software behaves — is complicated by many factors. Sheer size and complexity of software can make it difficult to fully determine the behaviour of the system, but size and complexity can be countered with automation. A more critical difficulty in understanding the behaviour of a software system is the lack of clear semantic definitions for many of the most common high level languages.

C.A.R. Hoare wrote [35] that:

Computer programming is an exact science in that all the properties of a program and all the consequences of executing it in any given environment can, in principle, be found out from the text of the program itself by means of pure deductive reasoning.

Unfortunately, this is only true if the meaning of every statement in the text of the program has a well defined operation. Whilst most programmers operate on the assumption that they know what any given language element will do, their understanding often rests on a number of implicit assumptions. As an example, the C language has been in use for 40 years and multiple documents have existed as de facto and de jure standards. The book published by the language authors [41] was used as a standard in many areas; the American National Standards Institute released a standard in [11]; the International Standards Organization accepted the 1990 revision of ANSI C as a standard, and have since published an updated standard [38] that includes many features — such as inline functions — that were available in compilers for several years. Although ISO C99 is largely accepted as the standard there is a very large variation both in the standard that a compiler implements, and the extent to which a compiler correctly implements the standard.

This multiplicity of standards and compiler implementations produces a situation where the exact behaviour of a program written in C cannot be determined with certainty, even if the entire source code is available. Different compilers may produce different executable code, or they may produce semantically different code for different target platforms. In many cases this is due to the flexible and platform-independent nature of the C language. Many features are deliberately and explicitly standardised as “implementation dependent” where the compiler authors are expected to choose the behaviour that will accomplish the rough specification of the behaviour in the way that is most efficient on the target platform. Compiler verification is also an open research area that has
2.3. CODE ANALYSIS

had some successes [21] but is still not widely adopted, so even if the standard was well understood there would be no certainty that the compiler produced a correct implementation.

The implementation dependent choices in the standards highlight the platform independence of the C language as its advantage for general programming, but a significant problem faced where high integrity verification is required. The language is designed to be written with the user unaware of the exact nature of the system on which the program will run. This can be handled elegantly by language constructs that allow the programmer to specify intent and have the compiler select the optimal implementation. However, this can go wrong if the programmer makes too many assumptions based on the system he is using for testing, rather than the target platform, or if the compiler writer has assumed a different interpretation of the programmer’s intent and optimises for that instead.

These assumptions about intent and implementation can have particularly drastic repercussions when the limits of the system are exceeded in some way. Attempting to use more memory than exists, assuming a particular layout of the content of structures in memory that is not replicated on a different platform, expecting certain devices to be “memory mapped” at particular locations which actually vary across architectures, and many other errors can occur as the result of assumptions made at different levels.

2.3.2 MISRA C

In an effort to reduce the uncertainty resulting from the C standards’ implementation dependent aspects, the Motor Industry Software Reliability Association (MISRA) released a “restricted subset” of the C language. The MISRA-C [46] guidelines remove most of the features whose behaviour is implementation dependent or incompletely defined in the major standards. The guidelines also include various coding style guidelines that seek to eliminate code patterns that have seemingly obvious but practically indeterminate meanings.

The incrementation operators are a particularly good example. The C statement:

\[x = y++; \]

can be expected to assign to variable \(x \) the current value of \(y \) and then increment the value contained in \(y \). However, the statement:

\[x = y++ / y++; \]

is legal C but will have a different behaviour depending on the compiler’s evaluation choices. It could have the same semantics as:

\[x = y / (y+1); \]
\[y = y + 2; \]

or as:
CHAPTER 2. BACKGROUND

\[x = y/y; \]
\[y = y + 2; \]

depending on exactly when the post-increment operator is evaluated. The MISRA-C guidelines ban the use of the increment operator inside compound statements, much to the chagrin of some of C programmers. Many other similar patterns are banned from MISRA-C compliant code.

The MISRA-C rules are usually implemented in the form of static analysis tools that check that code conforms to a coding standard. Tools such as PC-Lint\[8\] and LDRA testbed[7] can check conformity to the MISRA-C ruleset, as well as other coding standards, including user-supplied ones.

The dissatisfaction of some C programmers — notably those who aim for maximum semantic density in their code — highlights a key area of resistance to the uptake of language restrictions as a partial solution to software defects. By limiting the language features available to the programmer it can make programming more time consuming for the same semantics. However, this extra time is a result of requiring more explicit reasoning about the operations being performed. In some cases simply forcing programmers to think and explicitly write the operations they wish to perform can result in the identification of logical errors.

2.3.3 SPARK Ada

These problems are not exclusive to C. SPARK Ada begins with a similar approach to MISRA-C. The SPARK Ada language is a restricted subset of the Ada language that removes features that allow for indeterminate behaviour. SPARK Ada goes beyond simply eliminating things that are inadequately specified and also seeks to prevent errors that are caused by runtime dynamism. By requiring all collections to be finite and statically defined it is possible for static analysis tools to determine the total resource requirements of the program. This sort of information is vital for embedded systems with limited system resources.

The SPARK restrictions are similar to the MISRA-C rules in that they increase the burden on programmers, but in doing so force the programmers to think explicitly about their systems. The introduction to the SPARK Ada book [17] describes the approach:

Those familiar with the evolution of Ada 83 into Ada 95 will note that many of the facilities added in Ada 95 are not available in SPARK. This is almost inevitable because most of the new facilities in Ada 95 were added in order to increase dynamic flexibility — that is to give more flexibility at run time. But this is precisely what SPARK is not about; in order to prove that a program is correct, it is necessary that the dynamic flexibility be kept to a minimum.

Having restricted the language to allow meaningful static analysis, the SPARK system includes a suite of static analysis tools maintained by Altran-Praxis Ltd. [9]. To facilitate analysis SPARK Ada code is annotated with Ada comments
2.3. CODE ANALYSIS

that have a defined format that is read by the analysis tools. These annotations contain assertions about the attached Ada code that should be statically determined. The statements include explicit lists of imports and exports, and statements of derivations that show how the author perceives the posterior values of variables exported to be derived from anterior values of imports. The static analysis tools can check that only explicitly imported variables are used and only explicitly exported variables are written, so identifying any unintended side-effects that are possible in pure Ada. The dependency analysis checks the derivation statements to ensure that the values of exported variables cannot be influenced by unexpected sources.

In addition to this data flow analysis, the SPARK toolset can perform control flow analysis. Annotations describing pre- and postconditions of the code segments can be checked by analysis of the control flow graph of the program.

2.3.4 Hardware verification

The phrase “hardware verification” is used here to refer to the verification of properties of digital electronic systems, particularly those that compose to form the computer systems on which the software under analysis will run.

Verification has been applied to many classes of digital system, but CPUs are the most relevant to this work. Two examples of formally verified CPUs are VIPER and AMULET. The VIPER processor was developed in the 1980s with the intention of being an entirely formally verified processor to be used in high integrity systems. The design was formalised in Z [40] and later in HOL [49]. The development was performed at the Royal Signals and Radar Establishment, in Malvern and the processor was used in a number of Ministry of Defence applications. The AMULET project developed a verified ARM-based processor in 1993 [33]. The latest AMULET is AMULET3 [34]. The AMULET research group at the University of Manchester continues to develop formally verified hardware projects [53, 57].

In both of these cases, and others [31, 32, 19] the digital system is modelled and verified in a formal modeling language such as CSP, Pi Calculus, Z, or HOL. Understanding the working of the system on which software runs is important to understanding the operation of the software itself, but the practical scope of work possible requires this thesis to take a layered approach. Since the verification of hardware implementations of formal models is a mature subject this work will use a formal model of the computer system and its architecture as an input and assume that the verification of the real implementation is performed independently.

2.3.5 Summary

Although MISRA-C, SPARK Ada, and related approaches make it possible to write high level programs that can still be properly analysed, they do so by making concrete the separation between the software and the system on which it runs. This approach is ideal for the vast majority of applications, where
portability with semantic certainty is the key requirement. However, such an approach makes the direct hardware control applications that are the focus of this work impossible. Consequently, it will be necessary to avoid high level languages and all of the uncertainties that come with compilation. The desire to be independent of specific hardware is not present in the development of hardware control software, so the abstraction of implementation details to simplify understanding and portability across platforms is not relevant. Given that this objective is reversed, it is logical to reverse the approach taken by the language abstractions. Instead of trying to remove any requirement for knowledge of the target platform, this work will require a specification of the platform. This specification will be used to gain an understanding of the behaviour of the software on that platform.

Hardware verification is beyond the scope of this research, and is a well-understood field, so it will be assumed that an abstract representation of the system hardware is adequate. The nature of the representation will be discussed in §3 but it will operate at the level usually found in the instruction set reference documentation of the target processor. System features such as registers and memory locations will be modeled explicitly, but electrical and digital logic details will be abstracted.

2.4 Modeling

2.4.1 Overview

Once the behaviour of the software has been inferred its semantics must be documented in a notation that will best support the verification or refutation of the properties of interest. There are many different notations and languages for representing particular aspects of software behaviour, whilst deliberately abstracting others. This abstraction and simplification is necessary to allow the analysis to be computable in reasonable time, but also to allow the conclusions of the analysis to be comprehensible.

The selection of a formal modeling language largely depends on the nature of the properties that will be analysed. All formal languages emphasise some type of problem and their syntax is designed to write such problems clearly, whilst deliberately hiding other details behind abstraction. The correct choice of emphasis and abstraction is vital if the final model is to be readable, either by humans or by analysis tools. The criteria for readability are slightly different depending on whether human comprehensibility or machine processing are the objectives, but in both cases there is a need for succinctness: presenting the semantically critical elements in enough detail to allow meaningful understanding, but abstracting other elements behind the symbology so that the model elements are small enough to be handled easily.

Available tool support is another important criteria. The techniques for proving or falsifying properties are discussed in more detail in §2.5 but the availability of automated support for analysis will influence the choice of lan-
2.4. MODELING

guage.

2.4.2 The Z notation

The Z notation is described by Woodcock and Davies [61] as:

[...] based upon set theory and mathematical logic. The set theory used includes standard set operators, set comprehensions, Cartesian products, and power sets. The mathematical logic is a first-order predicate calculus. Together, they make up a mathematical language that is easy to learn and to apply. [...]

Z was originally proposed by Abrial et al. [14] and developed at the Programming Research Group at Oxford University. The ISO standard for Z was completed in 2002 [39].

Z allows simple axiomatic definitions of entities that are irrelevant to the specification being written, such as:

\[
\begin{align*}
\text{Man} \\
\text{Woman}
\end{align*}
\]

It then allows simple definitions in BNF and set theory:

\[
\begin{align*}
\text{Person} &::= \text{Man} | \text{Woman} \\
\text{Class} &== \mathbb{P} \text{Person}
\end{align*}
\]

The mathematical parts of Z are mainly contained in schemas. A schema contains two parts: variable declarations and predicates. State schemas define pieces of the system state, usually — but not necessarily — the state of discrete components.

\[
\begin{array}{|c|}
\hline
\text{AdvancedAlgebra} \\
\text{students : Class} \\
\#\text{students} \leq 100 \\
\hline
\end{array}
\]

This defines that the AdvancedAlgebra course contains students, which is of type Class — so is a set of Person items. Below the horizontal line is a predicate that limits the class size to 100 students. Schemas can be written on one line in a simpler form, so AdvancedAlgebra could be written as:

\[
\begin{align*}
[\text{students : Class} \mid \#\text{students} \leq 100]
\end{align*}
\]

Another state schema might define the marks the students have obtained using a function:

\[
\begin{array}{|c|}
\hline
\text{AlgebraMarks} \\
\text{students : Class}
\end{array}
\]
The predicate here requires that there is a mark for every student. We can now perform schema conjunction on these two:

\[\text{MarkedAlgebra} = \text{AdvancedAlgebra} \land \text{AlgebraMarks} \]

This produces a new schema — here called \text{MarkedAlgebra} — that uses all the variables from both the conjunct schemas, and has a predicate that is the logical conjunction of the two predicates. Where variables in different schemas have the same name and type they are assumed to refer to the same thing. Other logical connectives, such as disjunction, are also possible. The conjoined schema in this case is:

\[
\begin{array}{c}
\text{MarkedAlgebra} \\
\text{students} : \text{Class} \\
\text{marks} : \text{Person} \rightarrow \text{N} \\
\# \text{students} \leq 100 \\
\text{dom marks} = \text{students}
\end{array}
\]

The other type of schema available in Z are \text{Operation schemas}. These specify how operations in the system change the state. They can define variables but more usually import state schemas for the parts of the system they alter or refer to. They are written in a pre- and post-condition form, with undecorated variable names referring to the state before the operation, and decorated variable names (e.g. \(x'\)) referring to the state after the operation.

\[
\begin{array}{l}
\text{AddMark} \\
\Delta \text{MarkedAlgebra} \\
\text{who?} : \text{Person} \\
\text{mark?} : \text{N} \\
\text{who?} \in \text{students} \\
\text{students'} = \text{students} \\
\text{marks'} = \text{marks} \oplus \{(\text{who?} \mapsto \text{mark?})\}
\end{array}
\]

A number of features are illustrated here. Question marks on variables are a convention to indicate inputs. Exclamation marks are the convention for outputs. The Greek symbol \(\Delta\) is shorthand for bringing into scope all the contents of the state schema, as both before and after states — so every variable in \text{MarkedAlgebra} is brought into scope in both undecorated and decorated form. The predicate declaring that \text{students'} = \text{students} is important in Z, since unspecified post-conditions are not automatically considered unchanged.
— they are considered unspecified, so an implementation is free to set them to any value. The symbol Ξ is shorthand for not only bringing into scope both decorated and undecorated forms of all variables in a state schema, but also including the predicate that their values are unchanged.

Finally, relations of all types are modeled as sets of pairs, where the first element is from the domain of the relation and the second is from the range. The \oplus operator is overriding, so the $marks$ function is left unchanged except where the domain matches the domain of the second argument. Here the second argument is an anonymous function (i.e. set of pairs) with only one element: $(who\?, mark\?)$, so only the value of $marks(who\?)$ is altered.

Operation schemas are usually instantiated by using renaming in the standard $[x/y]$ form, where x is used in place of all occurrences of y. Operation schema can be composed in a number of ways, including sequential composition (\circ), conjunction (\land), and disjunction (\lor).

$$AddMark[Bob, 75/who\?, mark\?] \circ AddMark[Jane, 92/who\?, mark\?]$$

This specifies performing the AddMark operation to give Bob 75 points, followed by performing the same operation to give Jane 92 points. The conjunction of the two operations would not be significantly different in this case as it would resolve to adding both marks simultaneously, but the disjunction would result in either Bob’s or Jane’s mark being entered. This is particularly powerful where the predicates are mutually exclusive, so the decision can be made by the conditions. For example $[x, x\': \mathbb{N} | x < 30 \land x' = x + 1] \lor [x, x\': \mathbb{N} | x \geq 30 \land x' = 30]$ will increment x until it reaches 30, after which it will leave it unchanged.

2.4.3 B

The B formal method [12] is a state based specification language, with many similarities to Z (see §2.4.2). A critical difference to Z is that B is based around an explicit abstract machine model. The emphasis in the design of B was for a direct relationship to the implementation. This implementation based machine model simplifies the creation of tools for simulation and code generation.

Several extensions to B appeared around the time that this work was beginning. CSP|B [58] composes B and CSP in a similar way to CSP-OZ (see §2.4.6). Event-B [13] is an evolution of B to have a simpler syntax and a more heavily process driven style. Event-B has strong tool support from the Rodin suite [15].

2.4.4 CSP

Communicating Sequential Processes (CSP) [36] is a process calculus — that is, a language for specifying the behaviour of a system as a collection of processes that evolve separately but interact. In CSP the interaction is modelled through communication along defined channels. The evolution of a process can be guided
by its communication with other processes. More critically, the evolution of two processes can be \textit{synchronised} by their communication. This synchronisation is the key element of CSP. It allows a simple and elegant abstraction to reason about many of the most fault-causing problems of distributed systems.

The CSP model contains \textit{processes} and \textit{events}. The most basic process evolution is \textit{prefix}, where an event occurs and then the process evolves to a different process:

\[x \rightarrow P \]

This statement defines a process, so can be the target of a prefix evolution, which can itself be the target of an evolution, etc.:

\[a \rightarrow (b \rightarrow (c \rightarrow P)) \]

The \textit{STOP} process represents deadlock, and is used as the terminal process of all finite-trace models:

\[a \rightarrow (b \rightarrow (c \rightarrow \text{STOP})) \]

Processes can also be recursive:

\[P = x \rightarrow (y \rightarrow P) \]

The evolution of a process can also contain choices. These choices are defined as either \textit{internal} (\(\cap\)) or \textit{external} (\(\Box\)) choices. In the case of internal choice the decision is made entirely by the system and the environment cannot influence the choice. With external choice the decision is usually made by the environment precluding one path and allowing the other.

\[P = (x \rightarrow A) \cap (y \rightarrow B) \]
\[Q = (x \rightarrow A) \Box (y \rightarrow B) \]

In this example \(P\) and \(Q\) have different observable behaviours since \(Q\) will “allow” either event \(x\) or \(y\) to synchronise with it, whereas \(P\) will only allow one — and which one will be determined by the system at run time.

The notion of communication and synchronisation is central to CSP models. Where two processes are executed concurrently (which is defined using the \(\parallel\) symbol) and their alphabets have an intersection they are assumed to require synchronisation on the shared events.

\[P = a \rightarrow (b \rightarrow P) \]
\[Q = b \rightarrow Q \]
\[\text{System} = P \parallel Q \]
In the process System the sub-process Q will not be able to evolve through the b event until the sub-process P is also ready to evolve with a b event. Since P requires an a event first, this forces the whole system to wait for an a event before either component proceeds past the b event. This simple syntax for representing synchronisation and inter-process control is the core of most CSP models.

The events are then enhanced to represent communications. Processes can input and output on channels using the ? and ! operators. The pipe operator >> directs the output from one process to the inputs of another:

\[
P = a!v \rightarrow P \\
Q = a?v \rightarrow Q \\
System = P >> Q
\]

This will pass an endless stream of values v from P to Q along the a channel.

Verifications on CSP models usually operate on traces in the systems. Verification techniques such as refinement measure possible traces, and refused events at different points in the traces. A process Q is a traces refinement of P if all the traces of Q are also traces of P. If P specifies the “safe traces” of a system then an implementation Q performing a subset of them seems reasonable. This is incomplete as a requirement system though, so failures refinement requires that the failures of Q is a subset of the failures of P. Failures are defined as a pair \((s, X)\) where \(s\) is a trace that ends with an event \(X\) being refused. This models the behaviour that an implementation is allowed to refuse, and prevents the STOP process satisfying a requirement, even though its traces are a subset of any processes traces so it is always a traces refinement. Finally, failures divergence refinement adds requirements to identify and limit livelock, where a system may perform internal events but not produce any externally visible actions.

Failure Divergence Refinement (FDR) [44] is a software system designed to analyse CSP models. As its name implies it emphasises failures divergence refinement, as discussed in §2.4.4, and can also check the more general traces refinement and failures refinement properties. It is also capable of measuring other system properties, such as identifying potential for deadlock and livelock.

2.4.5 Object Z

Object Z[24] is an extension to the Z language (see §2.4.2) to add object oriented ideas such as classes, inheritance, and polymorphism. Object Z creates classes by collecting a Z state schema with a Z operation defining initialisation and some Z operation schemas to define the methods. Visibility notions similar to public and private in other OO notions are handled with a “visibility list” that identifies public and, implicitly, private methods. An example from [27]:

\[
\text{Memory}[D] \\
| (INIT, Read, Write)
\]
Inheritance is handled by including all the state and transition information but not the visibility list. Multiple inheritance is allowed and is modeled by simply including all of the content from the parents in any order. Schema with the same name are conjoined.

Instantiation of classes simply uses class names as variable types and then uses the dot notation for methods:

```plaintext
c : Count
   ...
ct.INIT
   ...
```

Object Z allows communication between classes using a CSP style `||` notation, so two methods can be parallel composed and then inputs and outputs with identical base names are matched.

```plaintext
BankAcct
   Withdraw
      Δ(money)
      amount! : N
      money' = money - amount!
   Deposit
      Δ(money)
      amount? : N
      money' = money + amount?
```
2.4. MODELING

Transfer

\[
\begin{align*}
&\text{from}?: \text{BankAcct} \\
&\text{to}?: \text{BankAcct} \\
&\text{amount}?: \mathbb{N} \\
&\text{from}?: \text{Withdraw(amount)} || \text{to}?: \text{Deposit(amount)}
\end{align*}
\]

2.4.6 CSP-OZ

CSP-OZ[30] takes the Object Z extension of Z (see §2.4.5) and extends it further by using the CSP process calculus (see §2.4.4) to add process-based control flow specification for the operations. A CSP-OZ class has a collection of CSP process in which the event alphabet is the Z operation schema names from the body of the class. The main process defines the entry point and the evolution of this CSP process specifies the allowed traces of operations that can occur on the class.

\[
\begin{align*}
&\text{Printer} \\
&\text{channel print} : [p : \text{PID}] \\
&\text{channel card, nocard} : [] \\
&\text{main} : \text{print}?x \rightarrow (\text{card} \rightarrow \text{main} \cap \text{nocard} \rightarrow \text{main})
\end{align*}
\]

2.4.7 Summary

The analysis process presented later in this work separates the inferred program behaviour into control flow and state change components. Consequently, it is ideal to represent the inferred behaviour in one of the languages that combines a process calculus with a state based language. Within reason, the choice of modeling language between Z and B is arbitrary. The B language has arguably greater tool support and its machine model makes many forms of symbolic execution and model checking easy to implement. However, this machine model is a core component of the language and this constrains all models to use at least this basic structure, even if an entirely different system model might make analysis more efficient or comprehensible. Z has no such constraints, being completely arbitrary system specifications and state change operation specifications. For this reason, and because of the author’s prior experience and the Z community available in Sheffield, this work will use the CSP-OZ language for modeling. CSP-OZ allows the control flow components of the analysis to be rendered almost independently of the state change components, which simplifies the analysis and its implementation.
2.5 Property verification

2.5.1 Overview

Having inferred the behaviour of the system and modeled it in a formal language it is possible to assess whether the required properties hold, and if not it is desirable to produce counter-examples or other information that highlights the ways in which the system violates the properties.

There are a number of ways to establish whether a system’s behaviour satisfies a property. The most general method is simply to test the system in a series of situations that have been designed to evaluate the property. Designing a suite of tests that is certain to identify all possible violations of the property is an extremely difficult task. Where the system has been formally modeled, and where the property is specified in a rigorous way it becomes possible to be more precise and complete with the test suite. The ultimate pinnacle of this approach is model checking. Where a system can be represented by a state model and a series of transitions it is possible to examine every possible trace of transitions from every possible state. If this can be accomplished, and if the model is an accurate representation of the system behaviour, then it is certain that the system satisfies the property, or that all failure situations have been identified. For systems of anything above trivial size this approach quickly becomes intractable. Since every possible state must be examined, along with every possible trace, a small increase in the potential state space creates an exponential increase in the search space — a problem known as state space explosion. For this reason most model checking is done with a complete transition system by a significantly simplified and abstracted state model. If the state model is chosen well then this does not need to impact the validity of the analysis. It is generally the case that system failures occur at critical values — division by 2 tends to imply that division by 3 will work, whereas division by 0 must be handled more carefully.

An alternative to model checking is a symbolic approach. If division by zero is to be avoided, for example, but all division operations occur within guarded code sections, then it is sufficient to demonstrate that the guards are such that it would be impossible to enter the code section with the divisor set to zero. This approach can produce powerful results since it is not computationally dependent on the size of the state space or of the model. The key drawback of symbolic proof is that anything beyond the more basic proofs requires a level of creative thought that has not been automatable. This forces the proofs to be performed manually, although various tools are available to simplify the proof process, provide feedback and verification of the proofs, and to tackle the simple proofs automatically once the proof condition has been imaginatively rephrased to be handled by machine.

As with formal modeling languages, different proof and analysis techniques are available for different classes of problems. They each have restrictions and abstractions that must be weighed when selecting a technique for a particular set of properties. The choice of CSP-OZ for the formal modeling language was partly influenced by the possibility of easily translating the produced models to
2.5. PROPERTY VERIFICATION

emphasise the components necessary for particular analysis techniques.

2.5.2 Hoare logic

What is now known as Hoare Logic or Floyd-Hoare Logic was presented in the paper titled “An Axiomatic Basis for Computer Programming” [35]. The intention of the work was to present a method for performing deductive reasoning about the properties of a program. To do this it was necessary to introduce the axioms that describe the behaviour of the basic components of computer programs.

The paper begins by describing the rules for computer arithmetic — especially highlighting the differences from conventional mathematics’ version of arithmetic, such as value overflow. It then proceeds to present axioms for the operations in a pseudocode language that contains elements common to all imperative programming languages. The axioms are presented in the form of Hoare triples, which contain a precondition, the pseudocode statement, and a postcondition.

\[P \{ Q \} R \]

Here \(P \) is the precondition predicate, that specifies the conditions that must hold if the defined operation is to occur. All the axioms of Hoare Logic have this form, which is known as an Hoare triple; division is only properly defined if the divisor is non-zero, for example. Some axioms are universally applicable and so have the precondition \(\text{true} \). \(Q \) is the program statement in pseudocode. \(R \) is the postcondition, which is a predicate defining what can be relied upon to be true after executing this statement, assuming that the precondition is satisfied.

The first axiom is for assignment:

\[\vdash P_0 \{ x := f \} P \]

where \(x \) is a variable identifier;
\(f \) is an expression;
\(P_0 \) is obtained from \(P \) by substituting \(f \) for all occurrences of \(x \).

This pattern of defining preconditions as transformations of the postcondition is repeated for the other axioms and reflects the predicate transformation semantics that underlay the system. It allows useful reasoning about the behaviour of the whole program by eventually representing the operation of the program as a transformation of the expected postcondition into the precondition. Verifying properties then requires proving that the properties are guaranteed by the postcondition predicate, and then assessing the limitations implied by the precondition. Errors in the program are usually manifest as unexpected preconditions (\(x > 4 \) or something equally strange) that highlight unanticipated dependence on properties of the inputs.

The next axioms are the Rules of Consequence:
If $\vdash P\{Q\}R$ and $\vdash R \supset S$ then $\vdash P\{Q\}S$

If $\vdash P\{Q\}R$ and $\vdash S \supset P$ then $\vdash S\{Q\}R$

and the Rule of Composition:

If $\vdash P\{Q_1\}R_1$ and $\vdash R_1\{Q_2\}R$ then $\vdash P\{Q_1; Q_2\}R$

These rules allow for a program to be built from a sequential composition of operations, as is the case in almost all imperative programming languages, and allow for the satisfaction of following preconditions to be determined by components of preceding postconditions.

The final rule covers the other major class of imperative programming language construct: iteration. The Rule of Iteration is presented as:

If $\vdash P \land B\{S\}P$ then $\vdash P\{\text{while } B \text{ do } S\} \neg B \land P$

This defines some guard condition B that determines the limit of the iteration, and some loop invariant P that is always true during the execution of the loop. Generally, the loop invariant is phrased so that it guarantees some property of the elements that have been iterated over, or the value of some variable derived from the iteration steps.

Although not mentioned in this paper, the axioms of Hoare logic also include a conditional rule:

If

\[
\vdash P \land B\{S\}P \text{ and } \vdash P \land \neg B\{T\}P \\
\text{then} \\
\vdash P\{\text{if } B \text{ then } S \text{ else } Y \text{ endif}\}Q
\]

Subsequent work would eventually reverse the bracket notation to enclose the predicates at either side of the statement: $\{P\}Q\{R\}$ and to add a loop variant to the iteration rule that must decrease to guarantee termination.

Once the axioms have been established it is possible to prove properties of programs by chaining the rules together. The post condition of a preceding element can be used to show that the precondition of a succeeding element is satisfied, and so certify its postcondition to be used to satisfy a following element’s precondition, and so on. Although Hoare logic axioms are defined over pseudocode elements, it is generally possible to rephrase any imperative language program into these basic components.

Since its publication, Hoare logic has been applied to a wide range of verification tasks, on languages as disparate as Java[59] and Z [29]. The application of pre- and postconditions and invariants that was pioneered by this work has formed the foundation of verification techniques such as SPARK Ada (discussed in §2.3.3) and Spec#[18]. It has been applied to compiler verification [21] and has been extended to accommodate extra analysis features, such as those presented in Separation Logic discussed in §2.5.3.
2.5.3 Separation Logic

Separation logic is an extension to Hoare logic [35] that supports reasoning about programs that alter data structures. Reynolds [51] first suggested extending Hoare logic to include an operator to conjoin two propositions that depend on distinct areas of storage. Ishtiaq and O’Hearn [37] then used the Logic of Bunched Implications [47] to extend Reynolds’ ideas and first began using the $*$ and \triangleright operators. The ideas were then clarified in [48], which saw many of the definitions and axioms of Separation logic defined. A more detailed semantic analysis followed in [62].

Intuitionistic Reasoning about Shared Mutable Data Structure [51]

This paper extends Hoare logic “to deal with programs that perform destructive updates to data structures containing more than one pointer to the same location”. The key concept is what the paper calls “independent conjunction”. It uses the & operator — which is superseded by $*$ in later Separation Logic papers — to produce syntax such that $P \& Q$ holds only when P and Q hold and depend on disjoint areas of storage.

The model defined here has a value as either an integer, an Atom, or a Location, with these sets disjoint and countably infinite. The possible stores and heaps are defined as:

\[
\begin{align*}
\text{Stores}_V &= (V \rightarrow \text{Values}) \quad \text{Where } V \text{ is a finite set of variables} \\
\text{Heaps}_L &= (L \rightarrow \text{Values}^+) \quad \text{Where } L \text{ is a finite set of Locations}
\end{align*}
\]

The paper uses a style similar to LISP [45] to represent constructing new variables. It uses cons_1, cons_2, cons_3, etc. to construct sequences of items on the heap. So $x := \text{cons}_3(1, 2, 3)$ will create a new entry in the heap function that maps some unique location to the sequence of values 1, 2, 3 and then updates the store so that x is mapped to this location. Figure 2.1 shows this relationship diagrammatically.

\begin{figure}[h]
\centering
\begin{tikzpicture}
 \node (store) {\textbf{\textit{\textbf{x}}}};
 \node (heap) {\begin{tabular}{c}
 1 \\
 2 \\
 3
 \end{tabular}};
 \draw [->] (store) -- (heap);
 \node [draw=white, dashed, inner sep=0.5cm] (xloc) at (store -| heap) {\textbf{(x loc)}};
\end{tikzpicture}
\caption{An example of the cons operation}
\end{figure}

This differs slightly from the normal programming model of referencing since the sequence 1, 2, 3 is not, itself, in the same store as the location. In C - and in actual implementations of all languages - reference locations are data values in the program’s memory space, just like the values to which they refer. Also, the collections of values that are referred to by the heap function are not subsets of a
contiguous store but are independent sets. Consequently, in this model, there is no way to represent offsets to Locations. If $x \mapsto a$, b, c were in the Heap it is not implied in this model that $x + 1 \mapsto b$, c since $x + 1$ is an entirely separate entry in the domain of the Heap function. Figure 2.2 shows this diagrammatically.

![Diagram showing the cons operation producing disjoint sets](image)

Figure 2.2: The cons operation producing disjoint sets

Altering the model to better capture realistic behaviour of offsets was one of the significant additions by O’Hearn et al. [48].

The paper introduces the use of a comma separated list into its system of propositions to represent the condition that holds after the use of cons described above. So it is now possible to produce some Hoare logic assertions:

$$\{P\} \quad x := \text{cons}_n(E_1, ..., E_n) \quad \{P \& (x \mapsto E_1, ..., E_n)\}$$

Later separation logic papers update this both the Heap model and the proposition to better represent the notion of sequential locations used in real systems.

This, with a few other straightforward definitions, allows the style of Hoare logic definitions and statements that will be used throughout Separation Logic. The paper ends with a partial correctness specification — that is, the series of Hoare logic assertions between the statements of the program — for a program that deletes zero value elements from a doubly linked list.

2.5.4 IsabelleHOL

Higher Order Logic is a branch of mathematical logic, but in this context it refers to the proof assistance systems developed at the Automated Reasoning Group in Cambridge. The original HOL systems were designed for verifying hardware, as discussed in §2.3.4. Isabelle is a related proof assistant developed by the same group for more general logical reasoning [1].

Proof assistants work by allowing the user to present proofs in a particular logical system and the assistant checking that the proof is a correct application of the logic’s rules. HOL and Isabelle support a large range of logic systems, both higher order and first order. Systems produced for Isabelle include Hoare Logic, Zermelo-Fraenkel set theory [16], Z [43], and B [25].

A theory in Isabelle is a collection of datatypes, functions, and definitions, along with proofs of theorems over these. A theory begins by importing a
suitable logic system. This imports all of the basic rules of the selected system, which can then be used in the definitions.

```isar
theory Test
  imports Datatype
begin

datatype 'a list = Nil ("[]")
  | Cons 'a "'a list" (infixr "@" 65)

primrec app ::
  "'a list => 'a list => 'a list" (infixr @ 65)
where
  "[] @ ys = ys" |
  "(x # xs) @ y = x # (xs @ y)"

primrec rev :: 'a list => 'a list
where
  "rev [] = []" |
  "rev (x # xs) = (rev xs) @ (x # [])"

Having created definitions it is possible to write theorems and lemmas that encode properties of the definitions. These can then be proven by referencing the definitions and rules from the imported logic. Isabelle contains a number of automated tactics that will attempt to apply certain common patterns of rules to achieve a proof.

lemma app.Nil [simp]: "xs @ [] = xs"
apply(induct_tac xs)
apply(auto)
done
```

Additionally, Isabelle contains a package called sledgehammer [52] that will automatically convert the theorem and the definitions into the correct input formats for a range of external automated theorem provers and SMT solvers, which are then run to attempt to find proofs. There are also the nitpick [20] and refute [60] counter example generators that attempt to find descriptive counterexamples to the theorem if it is false.

IsabelleHOL has been used successfully in the verification of various systems [42], and has been incorporated as the backend to a software analysis system [22].

2.5.5 SAL

The Symbolic Analysis Laboratory (SAL [4]) is a suite of tools for performing analysis on state machine models. The tool suite includes a simulator, a
deadlock checker, a symbolic model checker, a bounded model checker, and a counterexample finder. The SAL input language [26] is common to all of the tools and there is a large community creating new tools that all use the common input language.

The SAL input language requires all types to be finite, but then supports finite sets, triples, subranges, arrays, records, total functions, modules, and recursive definitions. The state machines are defined with a collection of state variables and an initialisation, and then a collection of transitions. The syntax for the operations includes conditions on the state that control when the transition can be traced. The effect of the operation on the system state is defined using anterior and posterior variables, with the posterior variables identified with a prime symbol (′) in a similar way to the Z notation (see §2.4.2).

The simulator allows a machine to be loaded and transition paths to be explored. The deadlock checker analyses the transition conditions to detect potential states from which no transition will be possible. The SAL language allows for an ELSE transition that is always available, which can deliberately remove the possibility of deadlock, but for meaningful deadlock analysis this should be omitted.

The model checkers can check properties written in Linear Temporal Logic (LTL) or Computation Tree Logic (CTL) forms. The symbolic model checker compiles the definitions into optimised binary decision diagrams (BDDs) and simulates models using Buchi automata. The bounded model checker uses the SMT solver yices[10], which was also developed at SRI.

2.5.6 Z2SAL

The Z2SAL[28] project has developed an automated system for converting Z specifications (see §2.4.2) into the input language of the SAL suite (see §2.5.5). The parser and translation system currently only works for pure Z, and not derivatives such as Object-Z or CSP-OZ. However, within this limitation it is possible to automatically translate entire Z specifications into SAL state machine models.

The process assumes that a Z state schema defines the system state, and a Z initialisation schema provides the details of the state initialisation. Thereafter, all Z operation schema are converted to transitions in the SAL model. The output SAL model is then available immediately for modelchecking against suitable LTL or CTL property specifications. The translation has the distinct advantage of retaining the names of state variables and operations as variable names and transition names respectively in the SAL model. This, coupled with the innate similarity between the anterior/posterior variable conventions between Z and SAL means that users familiar with the Z model can easily read the SAL model. This is of critical importance when errors are detected as they can quickly be traced back to the original Z specification. This makes the use of Z2SAL with the SAL model checkers a very easy and powerful technique for exploring temporal logic properties of a specification.
2.5. Property Verification

2.5.7 Summary

All of the techniques surveyed here could be applied to executable files that control hardware. In all cases it is possible to translate either CSP-OZ or one of its sub components into the form necessary for the analysis. Different analysis goals will necessitate different approaches, and this work deliberately takes no position on which technique should be applied. If any technique were favoured it would be easy to question the need to render the model to CSP-OZ and then convert, instead of rendering the model directly into the input language of the analysis technique, but this generalism was precisely the objective in the selection of CSP-OZ and in the efforts made in §3.3 to ensure that both the control flow and state transition features are rendered as fully as possible.

Time limitation prevented extensive case studies of verification, but the availability of the Z2SAL tool [28] made this an ideal example, the results of which are presented in §7.
Chapter 3

The proposed solution

3.1 Introduction

As described in §1, the aim of this thesis is to develop a technique to verify properties of high integrity software systems that interact directly with hardware. This chapter presents the design decisions that were made to produce an analysis process to achieve this goal. The decisions in choice of code analysis technique, modeling language, and verification approach were made with particular emphasis on the three principle objectives of this work:

- Analyse software that depends on hardware behaviour
- Handle large instruction count or large quantities of fine detail
- Produce results that are comprehensible and provide traceability between the results and the original code.

As identified in §1.2, the target for this work is high integrity embedded systems where the engineering team can be expected to have more control over the low level system components than might be the case in a more general software system.

3.2 The analysis process

The hardware dependence will be countered with reference to supplied specifications of the hardware behaviour. Given that the target domain for this work is software elements that are designed to provide hardware control or interaction it is reasonable to make the interaction of the software with the hardware the core of the analysis and the produced behaviour model. For the reasons discussed in §1.2 the analysis will be performed on executable files.

Because executable files potentially contain millions of instructions even for relatively small software subsystems it is important that scalability and automation be highly prioritised in the design of the analysis methodology. This
is handled by presenting the specifications in machine-readable form and then creating an entirely automated analysis work-flow that requires no human interaction.

With the absence of human interaction in the analysis process it is important that the eventual results are not totally divorced from the input materials. Identifying property violations is only useful if it is combined with enough traceability information to allow the problem to be localised in the source code and corrected. Additionally, the presentation of the analysis results must be clear and reasonable enough to be understood by a developer of the source program, rather than exclusively by expert users of the analysis technique. These conditions seem competitive since the greatest hurdle for comprehensibility will be the sheer number of instructions, whilst traceability requires that exact information be kept about the source of a particular model element.

Most executable files — especially, but not exclusively, those compiled with debugging information — contain considerable symbol information with function names and other readable information derived from the high level language. This information will be retained in the formal model to allow easy and comprehensible linkage to the source. The programmatic structure will also be retained as the model will encapsulate program elements at the function level, which on most architectures is clearly defined and used by compilers to implement functions (or their equivalents) in the high level language. Finally the virtual address of the instructions that are modeled by a particular formal model component will be retained as a subscript to the name. After the simplification stage (described in detail in §5.4) these will be collected into address ranges but they will still identify small and programmatic self-contained sections of the source executable.

The sequential parts of the executable may contain long chains of instructions that are sequentially composed. To improve readability and to simplify subsequent application of verification techniques each of these sequential chains can be compressed into single operation schema that represents the entire chain’s effect in the system. There are likely to be many of these sequences so the efficiency of this compression is of considerable importance. The techniques presented in §4 can be used to identify operations whose behaviour will not be altered by simple, textual concatenation into a single operation schema. This drastically reduces the computational overhead required to compress these chains as no evaluation of the semantics of the Z is required.

3.3 Formal model

The system state is easily represented by a Z state schema. This may be impractically large but Z supports compositional definitions so it can be componentised to whatever degree suits its author. It is not necessary to specify the entire working of the system under analysis, only such details as are of interest for the properties being analysed. The analysis process makes no demands at all on the system specification other than it contains a state schema named `System`.
3.3. **FORMAL MODEL**

The behaviour of software instructions will be divided into two classes. As far as possible the model will separate the control flow of the program from its interaction with the system state. Those instructions that define the execution paths will be referred to as *branch instructions*, whilst those that alter the system state but not the control flow will be labeled *sequential instructions*. The sequential instructions are easily modeled by Z operation schema. The control flow is more elegantly modeled in CSP. Those branch instructions whose behaviour depends on or alters the system state will have components in both languages.

The CSP-OZ notation allows for the combination of both languages into an organised, object-oriented framework. Other languages such as Circus or B allow for similar combinations of state and control flow but have more tightly entwined semantics, as well as a larger body of syntactically implicit components. For simplicity of automated processing — especially with a view to parallel analysis of large-volume, simple components — it was decided that CSP-OZ offered the best notation.

Although the system state can be modeled as a Z state schema directly, the instructions in the program all need individual operation schemas. The format of CPU instruction sets is as a collection of instructions with identifying mnemonics and parameters. It is reasonable to formally specify the instruction set in the same pattern. §3.3.2 and §3.3.3 introduce notations for *template specifications*. These have identifiable names and parameter signatures that can be matched to each instruction in the program and instantiated by syntactic replacement of identifiers in the template to produce a formal representation of the instructions’ effect in the system.

3.3.1 System state specification

All the specifications in subsequent sections will describe operations that can be performed on the system state. Whilst the system state itself is not used directly as an input to the analysis process, its structure will influence the specification of the sequential and branch instructions. This section briefly discusses some design considerations for system state specifications and presents some simple examples that will be used for the remainder of this document.

The construction of the system state model will depend on the complexity and structure necessary to adequately represent each of the instructions in the instruction set. This work is deliberately ignorant of the exact system state model chosen. Different verification goals will require more or less detail specifications of certain aspects of a given platform. For any choice of specification it will always be possible to argue that it does not adequately represent some particular feature of the system’s behaviour, but the model should be chosen to emphasise those aspects of the behaviour over which some property will be analysed.

The example system models in this work are chosen with one objective: clarity and simplicity of the examples. As such they will be deliberately crude models of the systems in questions. They will use very basic models of system
memory access as a simple function from address to stored value, and they will encode processor registers as first class elements of the system state.

Figure 3.1 shows a simple representation of the address space and six 32bit registers of an Intel x86 system. The invariants encode the relationship between the extended registers eax, ebx, ecx, and edx, and their smaller, historic components ax, ah, al, etc. The zero flag and carry flag components of the status register are represented by zf, sf, and cf. The complete status register could be represented, including the necessary invariants to tie the values of zf, sf, and cf in with its 32-bit word interpretation but that would not add usefully to the examples that will appear here.

Figure 3.2 shows an even simpler representation of an Intel x86 system. This ignores the legacy registers and uses a function to model the contents of the registers. This is the system specification that will be used for the remainder of this thesis, principally because using the function model allows the use of the Z function overriding operator \oplus to change one register value whilst leaving the others unchanged. This will occur often in the instruction set specifications and the requirement to explicitly state the unchanged nature of all the other registers would vastly increase the textual size of the specifications. Once the analysis process is being run automatically this will be irrelevant since much of the repetition will be removed by the simplification stage, but the simplified version is used for the sake of readable examples whilst the details of the analysis are being described.

Figure 3.3 shows a simple definition of the state of a PowerPC system with its 32-bit memory address space and its 32 registers ($r0$ through $r31$ — each holding a 32-bit integer value). The PowerPC assembly code represents registers with integer values rather than names, so this function representation will make for clearer instruction set specifications that will be instantiated to statements like $\text{registers}(1) = \text{memory}(43)$.

All of these system specifications are inadequate to capture the behaviour of the entire instruction sets of the processors in question, but they are adequate to capture the behaviour of the small subset of the instruction sets that will appear in the examples in subsequent sections. The analysis process will have no direct involvement with the System schema. Users of the analysis process are free so specify as large or small as System schema as they need for their verification, but it is likely that they will similarly restrict themselves to only those components that are necessary to verify the properties of interest.

3.3.2 Sequential instruction specifications

The analysis process converts the instructions in a disassembled executable file into a formal model of their behaviour by referring to a specification of the behaviour of the CPU in response to its instruction set. The instruction set is separated into sequential and branch instructions. This section considers the first of these and presents a template specification format that allows the instruction set to be specified in a general way, such that it can be instantiated automatically for each instruction that is encountered.
3.3. FORMAL MODEL

\[
\begin{align*}
\text{INT32} &= \{ x : \mathbb{Z} \mid -2^{31} < x < 2^{31} \} \\
\text{INT16} &= \{ x : \mathbb{Z} \mid -2^{15} < x < 2^{15} \} \\
\text{INT8} &= \{ x : \mathbb{Z} \mid -2^7 < x < 2^7 \} \\
\text{WORD32} &= \{ x : \mathbb{N} \mid x < 2^{32} \} \\
\text{WORD16} &= \{ x : \mathbb{N} \mid x < 2^{16} \} \\
\text{WORD8} &= \{ x : \mathbb{N} \mid x < 2^8 \} \\
\text{BIT} &= \{ x : \mathbb{N} \mid x \leq 1 \}
\end{align*}
\]

System

\[
\begin{align*}
\text{memory} &: \text{INT32} \rightarrow \text{INT32} \\
\text{eax} &: \text{INT32} \\
\text{ax} &: \text{INT16} \\
\text{ah}, \text{al} &: \text{INT8} \\
\text{ebx} &: \text{INT32} \\
\text{bx} &: \text{INT16} \\
\text{bh}, \text{bl} &: \text{INT8} \\
\text{ecx} &: \text{INT32} \\
\text{cx} &: \text{INT16} \\
\text{ch}, \text{cl} &: \text{INT8} \\
\text{edx} &: \text{INT32} \\
\text{dx} &: \text{INT16} \\
\text{dh}, \text{dl} &: \text{INT8} \\
\text{esp} &: \text{INT32} \\
\text{ebp} &: \text{INT32} \\
\text{zf} &: \text{BIT} \\
\text{cf} &: \text{BIT} \\
\text{sf} &: \text{BIT}
\end{align*}
\]

\[
\begin{align*}
ax &= (ah \times 256) + al \\
\text{eax mod} 2^{16} &= ax \\
bx &= (bh \times 256) + bl \\
\text{ebx mod} 2^{16} &= bx \\
\text{cx} &= (ch \times 256) + cl \\
\text{ecx mod} 2^{16} &= cx \\
\text{dx} &= (ah \times 256) + dl \\
\text{edx mod} 2^{16} &= dx
\end{align*}
\]

Figure 3.1: A simple model of the state of an x86 system
CHAPTER 3. THE PROPOSED SOLUTION

\[\text{REGNAMES} = \{ \text{eax, ebx, ecx, edx, esp, ebp} \} \]

\begin{center}
\begin{tabular}{l}
\textbf{System} \\
\text{memory} : \text{INT32} \rightarrow \text{INT32} \\
\text{registers} : \text{REGNAMES} \rightarrow \text{INT32} \\
\text{ioports} : \text{INT32} \rightarrow \text{INT32} \\
\text{zf} : \text{BIT} \\
\text{cf} : \text{BIT} \\
\text{sf} : \text{BIT}
\end{tabular}
\end{center}

Figure 3.2: An even simpler model of the state of an x86 system

\begin{center}
\begin{tabular}{l}
\textbf{System} \\
\text{memory} : \text{WORD32} \rightarrow \text{INT32} \\
\text{registers} : \text{WORD32} \rightarrow \text{INT32} \\
\text{dom registers} = \{ x : \mathbb{N} \mid x < 32 \}
\end{tabular}
\end{center}

Figure 3.3: A simple model of the state of a PowerPC system

Having specified the state of the system in §3.3.1, it is now necessary to specify the operation of each of the instructions. An assembly language program consists of large numbers of instruction instances, each of which contains an op code mnemonic and some number of arguments. The mnemonic identifies the particular instruction from the instruction set. This work is not concerned with the binary encoding of these components (RISC vs CISC, little-endian bytes, big-endian words, etc.) as these details are handled by GNU objdump in the disassembly stage. Consequently, the instruction instances will have identifiable mnemonics and parseable argument values. The argument encoding varies between different platforms. In some cases there are multiple different encodings available for one platform\(^1\).

This analysis process separates the instruction set into two parts: those instructions that alter the control flow of the program, and those that do not. Branch instructions will be discussed in §3.3.3; this section deals with purely sequential instructions. The analysis will identify all the branch instructions in

\(^1\)Intel platforms can use the Intel assembly syntax, as used in the Intel instruction set specification documents, or the AT&T syntax, which is the default output format from objdump. The examples that follow expect the analysis input to be objdump output files, so use the AT&T syntax. The argument ordering is the significant difference between the two — \texttt{mov ebx, 0ffh} in Intel syntax becomes \texttt{movl $0xff, %ebx} in AT&T syntax. GNU objdump is capable of outputting Intel syntax, but the explicit typing of the AT&T syntax arguments is a useful aid to the parser.
3.3. FORMAL MODEL

the program in the Branch Identification stage (see §5.2) by identifying all the
mnemonics presented in the branch instruction set specification. Any remaining
instructions will be assumed to be sequential instructions.

Sequential instruction specifications

The structure of a processor’s Arithmetic Logic Unit (ALU) is such that the
op code defines the behaviour that will be performed. In order to specify the
behaviour of the instruction set, the analysis process user must supply one Z
operation schema for each op code. These will be identified by being named for
the assembly mnemonic, for example the leave mnemonic in Figure 3.4.

Sequential blocks

All instructions that alter the control flow of the program should be handled as
branch instructions, which are discussed in §3.3.3. Consequently those remain-
ing as sequential instructions can be represented by Z sequential composition of
the individual operation schema.

Figure 3.5 shows an example of a short block of sequential instructions. The
subscripts on the schema names are the hexadecimal addresses of the instruc-
tions in the disassembler output. The analysis process retains these addresses to
aid debugging during verification. If a problem is detected when the produced
model is compared to the design specification it will be possible to trace the
problem back to a small portion of the assembly code. It could be argued that
this is of only limited value if the executable has been compiled from a high level
language but modern compilers can include considerable debugging information
to aid traceability back to the higher level language. Additionally, this analysis
process is intended for use in specialist, hardware dependent software. In such
an environment the developers are likely to be more comfortable than most with
reading the assembly code.

The example in Figure 3.5 is relatively short but blocks of sequential instruc-
tions can be fairly long. The techniques presented in §4 were created specifically
to simplify these blocks. The mechanics of the simplification process are detailed
in §5.4.

All of these examples import the entire System schema and only operate
on part of it without specifying that the other elements are unchanged. In
mov_{42}

\[
\Delta \text{System} \\
eax' = 38
\]

mov_{47}

\[
\Delta \text{System} \\
eax' = \text{memory}(\text{eax}) \\
\text{memory}' = \text{memory}
\]

leave_{49}

\[
\Delta \text{System} \\
ebp' = \text{memory}(\text{ebp} + 4) \\
\text{esp}' = \text{memory}(\text{ebp}')
\]

Figure 3.5: A short block of sequential instructions

Z these operations do not automatically maintain the state of elements whose post-condition is not explicitly set, but this detail is omitted from these and all subsequent examples for brevity and clarity. This behaviour of the Z notation was one of the explicit choices in the selection of CSP-OZ as the language for this project since some processor instructions will not maintain the status of some components of the system that are used for temporary data storage in the execution of the instruction.

3.3.3 Branch instruction set specification

Template specifications for sequential instructions were introduced in §3.3.1, along with a machine readable template specification representation. This section takes a similar approach to branch instructions and expands the template representation to include such information as is necessary to capture the control flow information present in these instructions. This will be used in §5.5 (Program encapsulation) to produce the CSP component of the final model, but is also used in §5.2 (Branch identification) to break the assembly instructions up into sequential blocks.
3.3. FORMAL MODEL

The analysis process is as independent as possible from the model of the target system but program control flow was considered sufficiently important to be handled explicitly. Whilst the behaviour of the sequential components can be represented by Z operation schema, the control flow and branching behaviour is most elegantly modeled in CSP (see §2.4.4 and Hoare [36]). The CSP-OZ language (§2.4.6 and Fischer [30]) allows for the combination of the CSP control flow components with the Z state and sequential operation schema.

Once the sequential blocks have been identified and instantiated the CSP can be used to thread them together. For unconditional branching it is a simple matter of defining the CSP process. The assembly instruction:

\[
\text{e: } \text{eb 03 \ jmp 13 <max+0x13>}
\]

becomes:

\[
\text{Branch}_e = \text{Block}_{13} \rightarrow \text{Leave}
\]

In this case the sequential block at address 13 ends with a function return (which is discussed in detail in §3.3.3). The entire control flow within a function can be represented by a sequence of such CSP processes that execute the sequential operations and the evolve to the next branch.

Branch and no-branch prefixes

Most branch instructions are *conditional* — that is, control flow may branch to a different point or continue sequentially depending on some condition on the system state. The combination of CSP and Z also provides a way to represent conditional branching with the control flow modeled in CSP and the state-derived conditions modeled in Z. The CSP external choice operator can compose two processes and allow a systematic choice between the paths. By prefixing the two paths with a Z schema containing precondition invariants it is possible to make the choice in the formal model correspond with the choice made by the implementation.

The specification fragment Figure 3.6 represents the conditional branch instruction (\(b\) is the hexadecimal address of the instruction immediately following this one, used for the \(\text{NoBranch}\) condition):

\[
9: \text{76 05 \ jbe 10 <max+0x10>}
\]

Retaining the address of instructions in the names of sequential blocks serves a useful purpose here, as well as its use in debugging. So long as the target of the branch can be resolved to an instruction address it is simple to automatically produce the CSP representations. The analysis process assumes that such a resolution is possible and that it is performed by the disassembler. In the case of instructions with literal values this is simple. Instruction sets also contain branch instructions with more complex arguments — dynamic values from registers or memory addresses for example. In this case it will be more difficult
to evaluate the instruction. It should not be impossible; static evaluation of the program up to this point should yield either an exact value or a limited set of possibilities. This level of analysis is not considered further in this document. Given that the target for this analysis is sub-components of highly safety critical systems it is reasonable to require a restriction on this style of programming. Byzantine structures such as dynamic program branching can be excluded by coding standards in safety critical applications, without adversely affecting the development effort.

Function call instructions

In addition to short program jumps within a function, the analysis process considers function calls and function returns. Most instruction sets have explicit instructions for this behavior that differ from simple jump instructions. In principle the same behaviour can be performed with jump instructions and it is possible to represent this by specifying *long jump* instructions to be function call instructions, or specific patterns, such as jumps to the address at the stack base pointer, as function returns. In most cases — especially those derived from compiled C or other high level language programs — there will be a clear separation between local branching and function calls. Since GNU objdump is capable of interpreting executable file symbol tables with enough detail to identify original functions it is advantageous to retain this information in the structure of the produced model.

In any well-engineered program functions should represent self-contained blocks of program that perform some clear operation. It is here that the third
component of CSP-OZ is used: the Object Orientation. Representing functions as CSP-OZ classes suitably collects the sequential and branching behaviour into operational units. It only remains to represent the entry and return from these functions. The operation of imperative programs is for each function to alter the system state in some way defined on the parameters provided as part of the system state when the function is called.

Figure 3.7 presents the CSP-OZ class that all functions will extend. The System schema from §3.3.1 is included as the state for the class. The mechanism of function calls and returns makes use of schema promotion to pass the system state to the called function, allow it to alter the system state as designed, and then return the new system state, which is unified into the calling function’s local state before execution continues.

<table>
<thead>
<tr>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>System</td>
</tr>
<tr>
<td>Leave = Exit → Stop</td>
</tr>
<tr>
<td>Entry</td>
</tr>
<tr>
<td>call? : System</td>
</tr>
<tr>
<td>θSystem' = call?</td>
</tr>
<tr>
<td>Exit</td>
</tr>
<tr>
<td>return! : System</td>
</tr>
<tr>
<td>θSystem = return!</td>
</tr>
<tr>
<td>Call</td>
</tr>
<tr>
<td>call! : System</td>
</tr>
<tr>
<td>θSystem = call!</td>
</tr>
<tr>
<td>Return</td>
</tr>
<tr>
<td>return? : System</td>
</tr>
<tr>
<td>θSystem' = return?</td>
</tr>
</tbody>
</table>

An example of a function call is this instruction:

```
80483fd: e8 be ff ff ff  call 80483c0 <max>
```

This has been taken from a complete executable file so that the target address is fully resolved, and objdump has identified that 80483c0 is the start of the max
function. Assuming that the max function has been analysed into a suitable CSP-OZ class this instruction can be represented by the specification components shown in Figure 3.8. The CSP sequence (Call → Return → Block_{42} → Branch_{49}) is executed in parallel with the max class. This will synchronise on the call communication and pass the System state into the max function. Since the CSP sequence immediately executes the Return event, which synchronises on the return input, it will wait for the max function to return. When the max function executes the Leave event it will return the updated System to the calling function, which can then continue with the next Block event in its control flow.

```plaintext
max

```

```
inherit Function

[...]
main = Entry → Block_{0} → Branch_{1}

[...] 
Branch_{13} = Block_{13} → Leave

[...]
```

```plaintext
maxint

```

```
inherit Function

[...]
Branch_{3d} = (Call → Return → Block_{42} → Branch_{49}) | max

[...]
```

Figure 3.8: Function call example

3.4 Automated inference

The automatic analysis of a given executable to produce a model of the form described in §3.3 will be broken into discrete stages that allow for as much parallel processing as possible. This allows problems of pure scale to be tackled most efficiently by the available resources and allows for the greatest impact of increased resources.

The phases in the analysis workflow are:

- **Loading of 3 specification sets**
 - System specification
3.4. AUTOMATED INFERENCE

- Sequential instruction set
- Branch instruction set

- **Disassembly of executable and parsing of objdump output** The objdump information provides the functions and some symbol information.

- **Branch identification** Identifying branch instructions and their potential targets to separate the code into sequential blocks.

- **Formal instantiation** Each sequential instruction is matched to a template from the instruction set specification and that template instantiated for the individual instruction.

- **Simplification** The compression of sequential blocks into as few Z operation schemas as possible — ideally a single schema per block.

- **Program encapsulation** Collection of the sequential blocks and the instantiation of branch instructions into CSP-OZ representing the internal control flow and the external function call mechanisms.

The output of the final stage is a set of CSP-OZ classes that model the complete behaviour of the executable to a level of detail determined by the supplied specifications.
Chapter 4

Separation in Z

4.1 Overview

One of the critical difficulties with the analysis of executable files is the sheer number of instructions that must be analysed and whose behaviour must be incorporated into the produced model. The concept of *sequential blocks* is introduced in §3.3.2. These consist of chains of instructions that are sequentially composed as they do not influence the control flow of the program. It makes sense to compress these into one single Z operation schema that represents the effect in the system state of this chain of sequential operations. To correctly determine the effect of a chain of Z operation schema requires some reasoning about the semantics of each operation and its influence on the system state that forms the precondition of the following operation, but this level of reasoning requires considerable computing power and so impacts on the scalability of the process. To counter this problem this section presents a technique to determine whether the precondition of a Z operation is impacted by the preceding operation using only syntactic analysis. This can be implemented with a very limited Z parser and a series of string comparison operations that can be highly optimised. Where two schema do not interact they can be compressed into one by simply concatenating their state and invariant statements. Not all sequential compositions will be independent but if this method can remove a considerable percentage of the compositions — as seems likely with simple operations as might be expected in assembly instructions — then the remaining specification will have gained comprehensibility for a limited computation expense.

The contents of this section were presented as a short talk at ABZ 2008[55]

4.2 Introduction

When trying to reason about a long chain of sequentially composed operations (such as a program in a sequential, imperative language) it would be helpful to be able to group together sequences of instructions and consider their overall

41
effects. In order to determine the overall effect of a sequence it must first be
determined how the individual effects of the operations interact. The simplest
but most crucial question is whether they interact at all. Here we shall attempt
to develop a test for Z operations that will determine whether the effects of an
operation are altered by the effects of the preceding operation.

Where an operation is unaffected by the preceding operation we shall say
that they are *Separate* and shall use the symbol ‘&’ after Reynolds [50].

4.3 Basic case

For any Z operation we can require that every state variable referenced is
brought into scope explicitly. We can then collect these variables together into
two state schemas that we shall call State_Δ and State_Ξ. The second of these,State_Ξ, will contain all the variables that are unchanged by the operation. The
first schema, State_Δ, will contain all the others - i.e. all the variables that are
changed or whose resulting state is left unspecified.

This will allow us to rewrite an operation as follows:

<table>
<thead>
<tr>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x, x': N$</td>
</tr>
<tr>
<td>$y, y': N$</td>
</tr>
<tr>
<td>$x' = x + y$</td>
</tr>
<tr>
<td>$y' = y$</td>
</tr>
</tbody>
</table>

$\text{State}_\Delta \equiv [x : N]$
$\text{State}_\Xi \equiv [y : N]$

Rewriting P:

<table>
<thead>
<tr>
<th>P'</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Delta \text{ State}_\Delta$</td>
</tr>
<tr>
<td>$\Xi \text{ State}_\Xi$</td>
</tr>
<tr>
<td>$x' = x + y$</td>
</tr>
<tr>
<td>$y' = y$</td>
</tr>
</tbody>
</table>

From now on we shall treat any operation as possessing a State_Δ and State_Ξ
and shall use the notation $\text{Op}.\text{State}_\Delta$ and $\text{Op}.\text{State}_\Xi$ to refer to them. We shall
also use set notation on these schemas, so $\text{Op}_1.\text{State}_\Delta \cap \text{Op}_2.\text{State}_\Delta$ refers to
those variables that are changed by both Op_1 and Op_2.

Being able to refer to all the variables changed and unchanged by an operation
allows us to write the most general definition of our version of *Separation*.
The notation we shall use is $\text{Op}_1 \& \text{Op}_2$ if, in the sequential composition $\text{Op}_1 \circ \text{Op}_2$,
the effect of Op_2 is unaffected by the actions of Op_1. The important part of this
for our aim is that this should mean that the precondition of the whole composition is simply the conjunction of the preconditions of the two operations, and the post condition is simply the conjunction of the two post conditions.

The naively simple definition would be just:

\[\text{Op}_1.\text{State}_\Delta \cap \text{Op}_2.\text{State}_\Delta = \emptyset \]

That is: the two operations change entirely different variables and so are unaffected by each other. This is not adequate, however, as our \(P \) operation above demonstrates. If we introduce another operation, \(Q \), that alters only \(y \) we would expect to - and our naive rule would allow us to - be able to sequentially compose \(Q \) and \(P \) without problems:

\[
\begin{array}{c}
Q \\
y, y' : \mathbb{N} \\
y' = y + 1
\end{array}
\]

Now consider the composition \(Q \circ P \). Our naive rule is satisfied, since \(Q \) changes only \(y \) and \(P \) changes only \(x \) the intersection is empty. However the effect of \(P \) is altered by the composition with \(Q \) since it depends on the value of \(y \) when increasing \(x \). Consequently we need to check that the first operation does not change any variables that are used anywhere in the second operation.

This is easily done with our \textit{State} definitions since \(\text{Op}.\text{State}_\Delta \cup \text{Op}.\text{State}_\Xi \) will include all the variables in scope in the operation. Our new definition for separation is then:

\[\text{Op}_1.\text{State}_\Delta \cap (\text{Op}_2.\text{State}_\Delta \cup \text{Op}_2.\text{State}_\Xi) = \emptyset \] \textit{ (Total Separation)}

For our \(Q \circ P \) example this new rule will correctly fail to prove separation since \(\text{P}.\text{State}_\Delta \cup \text{P}.\text{State}_\Xi \) includes both \(x \) and \(y \), and \(\text{Q}.\text{State}_\Delta \) includes \(y \), so the intersection is non-empty \((y) \). However the opposite ordering, \(P \circ Q \), \textit{is} separate according to this new rule - and our natural language description above.

\[
\begin{align*}
\text{P}.\text{State}_\Delta &= \{x\} \\
\text{P}.\text{State}_\Xi &= \{y\} \\
\text{Q}.\text{State}_\Delta &= \{y\} \\
\text{Q}.\text{State}_\Xi &= \emptyset
\end{align*}
\]

The Total Separation definition is then instantiated:

\[
\begin{align*}
\{x\} \cap (\{y\} \cup \emptyset) &= \emptyset \\
&\equiv \langle \text{union with emptyset} \rangle \\
\{x\} \cap \{y\} &= \emptyset \\
&\equiv \langle \text{definition of intersection} \rangle \\
\emptyset &= \emptyset \\
&\equiv \langle \text{reflexivity of =} \rangle \\
\text{true}
\end{align*}
\]

QED
CHAPTER 4. SEPARATION IN Z

This also serves as an example of the difference between separation and commutativity. When first presented with the idea of separation used here many people suggest it is only the same as commutativity - that is if two operations don’t affect each other’s behaviour they can be sequentially composed in either order. Our $Q \parallel P$ example illustrates why this is not the case. In our study of separation here we are not interested in showing that two operations never interfere with each other, simply that in the presented usage their effects on the state of the system are independent. Our model of separation also requires that the precondition of the second operation is not modified by the first. In this case a failure to prove separation may be a positive thing for analysis since it suggests an interplay between the operations that could simplify the overall conditions - such as the post-condition of the first necessarily satisfying a precondition of the second, and so removing it from consideration elsewhere.

4.4 A relaxation of the basic case

Although the Total Separation definition presented above does satisfy our requirements for identifying independent operations it is too restrictive in some cases. Consider the following operations:

\[R \]
\[
\begin{array}{c}
x, x' : \mathbb{N} \\
x' = x + 1
\end{array}
\]

\[S \]
\[
\begin{array}{c}
x, x' : \mathbb{N} \\
y, y' : \mathbb{N} \\
x' = x \\
y' = y + 1
\end{array}
\]

Although the use of x in S seems foolishly Byzantine, it is a situation that occurs often in Z specifications since system state is often contained in reasonably sized state schemas and the entire schema is brought into scope when a change is made.

In this case our Total Separation rule will not allow us to prove $R \& S$, that is we can’t show that the operation of S is unaffected by R in the composition $R \parallel S$. This is clearly an over-restriction, since S doesn’t use the value of x in determining any of its effects. Also, since S leaves x unchanged it doesn’t affect our other requirement: if we want to consider the overall effect of the composition we need to know that any effects produced by R aren’t undone by S. With Total Separation this was implicit, since the second operation wasn’t allowed to even mention anything changed by the first. When relaxing
4.4. A RELAXATION OF THE BASIC CASE

the rule to allow situations such as $R & S$ we must be careful not to violate this requirement.

A naive approach would be to require that, if a variable is mentioned by both of the operations then one of them must leave it unchanged. Just as we created $State_{\Delta}$ and $State_{\Xi}$, we can imagine that a Z operation has a property called Propositions that is the set of propositions in the schema. We can continue to abuse set notation, so we can talk about a proposition being in this set, e.g. $p \in Op.Propositions$. We can use this for our relaxed definition:

$$\forall x \mid x \in (Op_1.State_{\Delta} \cap (Op_2.State_{\Delta} \cup Op_2.State_{\Xi})) \bullet ([x' = x] \in Op_1.Propositions) \lor ([x' = x] \in Op_2.Propositions)$$

This seems ok - and it will correctly prove $R & S$ - but it is now too weak. Although it requires x to be unchanged it no longer prevents the value of x being used in determining the value of another variable. The example of $Q & P$ from §4.3 would be proven using this rule, since P does contain the proposition $[y' = y]$. Unfortunately, since it relies on the value of y when modifying x, it should not be considered Separate.

We need to specify that one of the operations should only refer to the variable in the proposition that leaves it unchanged. So, if both operations refer to x one of them should only do so to state that it is unchanged; that is it should contain $[x' = x]$ and no other propositions that refer to x. The neatest way to identify this property is to say that, if we removed the statement $[x' = x]$ from one of the operations it would no longer refer to x in any way. This gives us the following new definition for separation:

$$\forall x \mid x \in (Op_1.State_{\Delta} \cap (Op_2.State_{\Delta} \cup Op_2.State_{\Xi})) \bullet \exists Op_2a \mid Op_2 == Op_2a \land [\exists x] \bullet Op_1 & Op_2a$$

(Effective Separation)

Clearly the separation requirement in these predicates can be satisfied either by the Total Separation definition from §4.3 or by recursive application of this definition if there are multiple variables to be considered.

We can now prove the separation $R & S$:
\[
\forall x \mid x \in (\text{Op}_1.\text{State}_\Delta \cap (\text{Op}_2.\text{State}_\Delta \cup \text{Op}_2.\text{State}_\Xi)) \bullet
\exists \text{Op}_2a \mid \text{Op}_2 == \text{Op}_2a \land [\exists x] \bullet \text{Op}_1 \& \text{Op}_2a
\]

\[
= \langle \text{Instantiating for } R \text{ and } S \rangle
\forall x \mid x \in (\{x\} \cap (\{y\} \cup \{x\})) \bullet
\exists S_a \mid S == S_a \land [\exists x] \bullet R \& S_a
\]

\[
= \langle \text{Set union and intersection} \rangle
\forall x \mid x \in \{x\} \bullet
\exists S_a \mid S == S_a \land [\exists x] \bullet R \& S_a
\]

\[
= \langle \text{Universal quantification over a single element set} \rangle
\exists S_a \mid S == S_a \land [\exists x] \bullet R \& S_a
\]

\[
= \langle \text{One point rule using } [y, y': \mathbb{N} \mid y' = y + 1] \text{ for } S_a \rangle
R \& [y, y': \mathbb{N} \mid y' = y + 1]
\]

Proof of \(R \& [y, y': \mathbb{N} \mid y' = y + 1]\) **by Total Separation**

\[
\text{Op}_1.\text{State}_\Delta \cap (\text{Op}_2.\text{State}_\Delta \cup \text{Op}_2.\text{State}_\Xi) = \emptyset
\]

\[
= \langle \text{Instantiating for } R \text{ and } [y, y': \mathbb{N} \mid y' = y + 1] \rangle
\[
\{x\} \cap (\{y\} \cup \emptyset) = \emptyset
\]

\[
= \langle \text{Union with empty set} \rangle
\{x\} \cap \{y\} = \emptyset
\]

\[
= \langle \text{Set intersection} \rangle
\emptyset = \emptyset
\]

\[
= \langle \text{Reflexivity of } = \rangle
true
\]

QED

4.5 A simple function case

We now have two rules for separation that give us the appropriate results for simple Z operations where we require that the variables modified and referred to are different between the operations. However, it is quite common for parts of a system to be specified as relations. First we will look at functions - which are only a restricted type of relation - then we will generalise this to relations in §4.6

\[
A == \{1, 2\}
\]

\[
\begin{array}{c}
T \\
\hline
f, f': A \rightarrow \mathbb{N} \\
f'(1) = 42 \\
f'(2) = f(2)
\end{array}
\]

\[
U \\
\hline
f, f': A \leftrightarrow \mathbb{N}
\]
If we try to prove \(T \& U \) using the separation rules from the previous sections we will fail, since the variable \(f \) is mentioned and modified by both operations. However, \(T \) modifies \(f(1) \) but leaves \(f(2) \) unaltered; \(U \) modifies \(f(2) \) (without reference to \(f(1) \)) and makes no change to \(R(1) \). If we consider each element of the domain of the relation to be a distinct variable it is clear that these operations should be considered separate - the changes wrought by \(T \) do not influence and are not undone by \(U \).

A naive solution would be to simply identify operations that referred to the same variable but the domain of their referral was disjoint. Unfortunately this would fail since leaving an after-state unspecified in Z allows the implementation to modify the value or not as it sees fit. We could not argue that the operation did not alter the value since an implementation could legitimately assign any value to the elements outside the specified range - they are “unspecified”!

Consequently we must construct a rule that requires that any elements of the function used by the second operation are left unchanged by the first and any changes that are made are by the first operation are not changed or referenced by the second operation. This is identical to the requirement we made about variables in previous sections. As we have said above, unless an element of the function is explicitly unchanged we have to assume it has changed. Using a similar style to §4.4 we shall define this using schema conjunction.

A simple solution to the functional case is to define a rule that, for each element of a function’s domain, requires that one or the other operation leaves the function unchanged.

\[
\forall f : A \rightarrow B \mid f \in (\text{Op}_1.\text{State}_\Delta \cap (\text{Op}_2.\text{State}_\Delta \cup \text{Op}_2.\text{State}_\Xi)) \cdot \\
\bigwedge_{a \in A} \left(\neg \exists \text{Op}_1' \cdot \text{Op}_1 == \text{Op}_1' \land [f : A \rightarrow B \mid f'(a) = f(a)] \Rightarrow \exists \text{Op}_2' \cdot \text{Op}_2 == \text{Op}_2' \land [f : A \rightarrow B \mid f'(a) = f(a)] \right)
\]

Although this rule requires the invention of an \(\text{Op}_1' \) or an \(\text{Op}_2' \) it should be easy to do this syntactically. A Z operation on a function will appear (or can be re-written) as a series of propositions on elements of the function. Simply removing the item that appears as \(f'(a) = f(a) \) from the text will leave the required operation.

Unfortunately, this rule isn’t complete. It correctly defines our separation rule for the functional element, but we need a recursive part to take care of any other (possibly non-functional) variables in the operations. If the operations have met the separation conditions for the functional variable \(f \) then we can simply require - recursively - that the operations meet some separation rule without the function \(f \) (i.e. for all their other variables). We produce the following rule:
We should now be able to prove $T \& U$.

\[
\forall f : A \rightarrow B \mid f \in (\text{Op}_1.\text{State}_\Delta \cap (\text{Op}_2.\text{State}_\Delta \cup \text{Op}_2.\text{State}_\Xi)) \bullet
\begin{align*}
\wedge_{a \in A} \\
& (\neg \exists \text{Op}_1 \bullet \text{Op}_1 == \\
& \quad \text{Op}_1' \wedge [f : A \rightarrow B \mid f'(a) = f(a)] \\
& \Rightarrow \exists \text{Op}_2 \bullet \text{Op}_2 == \\
& \quad \text{Op}_2' \wedge [f : A \rightarrow B \mid f'(a) = f(a)] \\
& (\text{Op}_1.\text{State}_\Delta \setminus \{f\} \cap (\text{Op}_2.\text{State}_\Delta \cup \text{Op}_2.\text{State}_\Xi)) \neq \emptyset
\end{align*}
\]

(Functional Separation)

\[
\begin{align*}
& (\text{Instantiate functional separation for } T \text{ and } U) \\
& \forall f : A \rightarrow B \mid f \in ((f) \cup \{\emptyset\}) \bullet
\begin{align*}
\wedge_{a \in A} \\
& (\neg \exists T' \bullet T == \\
& \quad T' \wedge [f : A \rightarrow B \mid f'(a) = f(a)] \\
& \Rightarrow \exists U' \bullet U == \\
& \quad U' \wedge [f : A \rightarrow B \mid f'(a) = f(a)] \\
& (T.\text{State}_\Delta \setminus \{f\} \cap (U.\text{State}_\Delta \cup U.\text{State}_\Xi)) \neq \emptyset
\end{align*}
\end{align*}
\]

(Set Union and intersection)

\[
\forall f : A \rightarrow B \mid f \in \{f\} \bullet
\]

[...]

We should now be able to prove $T \& U$.

\[
\begin{align*}
& (\text{Instantiate functional separation for } T \text{ and } U) \\
& \forall f : A \rightarrow B \mid f \in ((f) \cup \{\emptyset\}) \bullet
\begin{align*}
\wedge_{a \in A} \\
& (\neg \exists T' \bullet T == \\
& \quad T' \wedge [f : A \rightarrow B \mid f'(a) = f(a)] \\
& \Rightarrow \exists U' \bullet U == \\
& \quad U' \wedge [f : A \rightarrow B \mid f'(a) = f(a)] \\
& (T.\text{State}_\Delta \setminus \{f\} \cap (U.\text{State}_\Delta \cup U.\text{State}_\Xi)) \neq \emptyset
\end{align*}
\end{align*}
\]

(Set Union and intersection)
4.5. A SIMPLE FUNCTION CASE

\[
\begin{align*}
&= \langle \text{Universal quantification over a one-element set} \rangle \\
&\quad \land_{a \in A} \left(\begin{array}{c}
\neg \exists T' \cdot T == \\
T' \land [f : A \rightarrow N \mid f'(a) = f(a)] \\
\Rightarrow \left(\exists U' \cdot U == \\
U' \land [f : A \rightarrow N \mid f'(a) = f(a)] \right)
\end{array} \right)
\end{align*}
\]

\[
\begin{align*}
&\Rightarrow \exists T' \cdot \\
T'.State_\Delta = T'.State_\Delta \setminus \{ f \} \\
\land T'.State_\Xi = T'.State_\Xi \setminus \{ f \} \\
&\quad \left(\begin{array}{c}
\exists T_f \cdot \\
T_f.State_\Delta = \{ f \} \land T_f.State_\Xi = \emptyset \\
\land T == T' \land T_f
\end{array} \right)
\end{align*}
\]

\[
\begin{align*}
&= \langle \text{Expanding } \land_{a \in A} \rangle \\
&\quad \left(\begin{array}{c}
\neg \exists T' \cdot T == \\
T' \land [f : A \rightarrow N \mid f'(1) = f(1)] \\
\Rightarrow \left(\exists U' \cdot U == \\
U' \land [f : A \rightarrow N \mid f'(1) = f(1)] \right)
\end{array} \right)
\end{align*}
\]

\[
\begin{align*}
&\land \left(\begin{array}{c}
\neg \exists T' \cdot T == \\
T' \land [f : A \rightarrow N \mid f'(2) = f(2)] \\
\Rightarrow \left(\exists U' \cdot U == \\
U' \land [f : A \rightarrow N \mid f'(2) = f(2)] \right)
\end{array} \right)
\end{align*}
\]

\[
\begin{align*}
&\land (\cdots)
\end{align*}
\]

\[
\begin{align*}
&\langle \text{‘One point’ rule using } [f : A \rightarrow N \mid f'(1) = 42] \text{ as } T' \text{ in the second predicate} \rangle \\
&\quad \land (\cdots)
\end{align*}
\]

\[
\begin{align*}
&\langle \text{Defn. of } \neg \rangle \\
&\quad \land (\cdots)
\end{align*}
\]

\[
\begin{align*}
&\langle \text{Defn. of } \neg \rangle \\
&\quad \land (\cdots)
\end{align*}
\]

\[
\begin{align*}
&\langle \text{Defn. of } \neg \rangle \\
&\quad \land (\cdots)
\end{align*}
\]
\[= \langle \text{Defn. of } \Rightarrow \rangle\]
\[
\quad \land \true
\land (\text{[...]})
\]
\[= \langle \text{Defn. of } \land \rangle\]
\[
\quad \left(\neg \exists T' \cdot T ==
\quad \left(\begin{array}{c}
\rightarrow \exists U' \cdot U ==
\quad \left(\begin{array}{c}
U' \land [f : A \to \mathbb{N} \mid f'(1) = f(1)]
\end{array}\right)
\end{array}\right)
\land (\text{[...]})\right)
\]
\[= \langle \text{Nothing can be found to instantiate } T', \rangle\]
\[
\quad \left(\begin{array}{c}
\true \Rightarrow \exists U' \cdot U ==
\quad \left(\begin{array}{c}
U' \land [f : A \to \mathbb{N} \mid f'(1) = f(1)]
\end{array}\right)
\end{array}\right)
\land (\text{[...]})\right)
\]
\[= \langle \text{Defn. of } \Rightarrow \rangle\]
\[
\quad \exists U' \cdot U ==
\quad \left(\begin{array}{c}
U' \land [f : A \to \mathbb{N} \mid f'(1) = f(1)]
\end{array}\right)
\land (\text{[...]})\right)
\]
\[= \langle \text{'One-point' rule using } [f : A \to \mathbb{N} \mid f'(2) = 1] \text{ as } U'\rangle\]
\[
\quad (U == [f : A \to \mathbb{N} \mid f'(2) = 1] \land [f : A \to \mathbb{N} \mid f'(1) = f(1)])
\land (\text{[...]})\right)
\]
\[= \langle \text{Schema conjunction and schema equality} \rangle\]
\[
\quad \true
\land (\text{[...]})\right)
\]
\[= \langle \text{Defn. of } \land \rangle\]
\[
\quad \left(\begin{array}{c}
(T.\text{State}_\Delta \setminus \{f\} \cap (U.\text{State}_\Delta \cup U.\text{State}_{\vartriangle})) \neq \varnothing
\Rightarrow \exists T'' \cdot
\quad T''.\text{State}_\Delta = \{f\}\setminus\{f\}
\land T''.\text{State}_{\vartriangle} = \varnothing \setminus \{f\}
\land (\begin{array}{c}
\exists T_f \cdot
\quad T_f.\text{State}_\Delta = \{f\} \land T_f.\text{State}_{\vartriangle} = \varnothing
\land T == T' \land T_f
\land T' \land U
\end{array})
\end{array}\right)
\]
\]
4.6 A simple relational case

Extending our functional separation rule to cover all types of relation can be achieved simply by using the image of the relation instead of the function application. So, \[f : A \to B \mid f'(x) = f(x) \] becomes \[r : A \leftrightarrow B \mid r'(\{x\}) = r(\{x\}) \].

The functional separation rule then becomes the relational separation rule.

\[
\forall r : A \leftrightarrow B \mid r \in (Op_1.\text{State}_\Delta \cap (Op_2.\text{State}_\Delta \cup Op_2.\text{State}_\Xi)) \bullet
\wedge_{a \in A} \left(\begin{array}{l}
\neg \exists Op_1' \bullet Op_1 == \\
Op_1' \wedge [r : A \leftrightarrow B \mid r'(\{a\}) = r(\{a\})]
\end{array} \right)
\Rightarrow \exists Op_2' \bullet Op_2 == \\
(\exists Op_1' \bullet Op_1 == \\
Op_1'.\text{State}_\Delta = Op_1.\text{State}_\Delta \backslash \{r\}
\wedge Op_1'.\text{State}_\Xi = Op_1.\text{State}_\Xi \backslash \{r\}
\Rightarrow \exists Op_1' \bullet
\wedge \left(\begin{array}{l}
\neg \exists Op_1' \bullet \\
\exists Op_1'.\text{State}_\Delta = \{r\} \wedge Op_1'.\text{State}_\Xi = \{r\}
\wedge Op_1 == Op_1' \bullet Op_1' \bullet
\wedge Op_1 \& Op_2
\end{array} \right)
\end{array}
\right)
\Rightarrow \exists T' \bullet
\]

This rule has not been demonstrated for all of the relational types in the Z language. It may be that more subtle separation rules could be written for some types, in the same way as the functional rule. However, this general relational rule satisfies the original requirement that operations proven separate certainly do not interfere with each other.
4.7 Conclusion

The rules presented here provide a simple test for two sequentially composed operations to determine if the effects of the first modify the behaviour of the second, compared to its operation individually. Although this does not provide any means for analysing the nature of the interference, it is intended that this form part of a larger analysis. The intention is that the separation tests be used to eliminate from consideration the large number of sequentially composed operations whose behaviours need not be analysed together.

These rules are written in a pure Z form, using existential quantification to identify various arbitrary schemas that are used to decompose the original operations. Generating suitable instantiations for these schemas would be a difficult — if not intractable — problem for an automated theorem prover if the rules are considered in isolation. However, it is obvious to any human reader that the schemas are almost invariably formed from the original operation with some stated part removed. Future work on these rules will be directed at both representing the necessary rules in a format suitable for automated proving, and providing heuristics or proof tactics to allow the tools to perform the obvious, syntactic modifications to allow easy instantiation in these cases.
Chapter 5

Analysis

5.1 Disassembly

5.1.1 Overview

The source material for this analysis process will be compiled, assembled program files. This section discussed the methods used to convert this binary format into a stream of instruction representations and other structural information that can be used as input to the later stages of the analysis process.

5.1.2 Executable files, object code, and disassembly

The four stages between high-level source code and execution are compilation which produces assembly code, assembly which produces relocatable machine code object files, linking which collects object files into executable files and resolves the symbols in the function calls, and loading where the executable file is loaded into a virtual address space ready for execution.

For all the reasons discussed in §1, this process needs to operate on the level closest to execution, however capturing the image of the virtual address space after loading is impractical. Producing a formally-verified simulation of the loader in the target system would be ideal but the development of such a system is beyond the scope of this work. Consequently, it is the executable file that is as close as is practical and that will be the source material for this analysis.

Executable files contain various information as well as the program itself — specifically information about the layout of the virtual address space that the program requires. To retain complete formality of the process it would be ideal if the disassembly of the executable into a processable form was a formal, traceable process. The development of this system is beyond the scope of this work, so it is necessary to depend on existing technology. The GNU objdump[2] program includes a disassembler, which converts executable files into a more readable representation of their contents. It is capable of accepting input files in a wide
variety of forms and for a large range of platforms. An example of the output from objdump is shown below, along with the original C program that was compiled.

```c
int max(unsigned int x, unsigned int y) {
    if(x > y) {
        return x;
    } else {
        return y;
    }
}

int maxint(unsigned int *ints) {
    unsigned int result, *ptr;
    result = ints[0];
    ptr = (ints + 1);
    while(*ptr != 0) {
        result = max(*ptr, result);
        ptr++;
    }
    return result;
}
```

Disassembly of section .text:

```
080480d8 <max>:  
080480d8: 55 push %ebp
080480d9: 89 e5 mov %esp,%ebp
080480db: 8b 45 08 mov 0x8(%ebp),%eax
080480de: 3b 45 0c cmp 0xc(%ebp),%eax
080480e1: 76 05 jbe 80480e8 <max+0x10>
080480e3: 8b 45 08 mov 0x8(%ebp),%eax
080480e6: eb 03 jmp 80480eb <max+0x13>
080480e8: 8b 45 0c mov 0xc(%ebp),%eax
080480eb: 5d pop %ebp
080480ec: c3 ret

080480ed <maxint>:  
080480ed: 55 push %ebp
080480ee: 89 e5 mov %esp,%ebp
080480f0: 83 ec 18 sub $0x18,%esp
080480f3: 8b 45 08 mov 0x8(%ebp),%eax
080480f6: 8b 00 mov (%eax),%eax
```
This displays each instruction in the text1 segment of the executable file and the address in the virtual address space at which the instruction will be loaded. Objdump also processes the symbol table of the executable file to add useful labels to some of the addresses — notably, the function names from the original C source file are displayed. This file was not compiled with explicit debugging information included. Unless the symbol table is deliberately stripped from executable files this level of useful symbols is present in all gcc compiled executables.

Most significant for this analysis process is the action of disassembly that objdump performs on the instructions. Each instruction is represented by a line of text containing the mnemonic and the parameters that are applied to it. Objdump presents its output for Intel executables in AT&T syntax, so that will be the standard used for the examples in the remainder of this document.

It is significant that the disassembly output above was produced from a compiled and linked executable file. Compilers can perform the compilation and assembly steps but stop before linking to produce object files. These intermediate files are used in large systems where many modules may be compiled separately and then linked together to form the executable. References between functions cannot be resolved until linking. References to functions in other

1An executable file contains all of the information necessary for the loader to produce the virtual memory image in which the program will run. The text segment conventionally contains the program code. Other segments such as bss have historical names, but contain pre-initialised stack and heap space that may be filled with initial values that were defined as part of the high level language program. These values are not considered in the examples presented here, but if their content was important then objdump can create output files that include all sections
modules are impossible to determine, but references within the object file also
cannot be resolved as the load address of the target is not determined until the
entire executable is available and the linker determines the layout in the virtual
address space.

/home/ramsay/maxint.o: file format elf32-i386

Disassembly of section .text:

00000000 <max>:
 0: 55 push %ebp
 1: 89 e5 mov %esp,%ebp
 3: 8b 45 08 mov 0x8(%ebp),%eax
 6: 3b 45 0c cmp 0xc(%ebp),%eax
 9: 76 05 jbe 10 <max+0x10>
 b: 8b 45 08 mov 0x8(%ebp),%eax
e: eb 03 jmp 13 <max+0x13>
 10: 8b 45 0c mov 0xc(%ebp),%eax
 13: 5d pop %ebp
 14: c3 ret

00000015 <maxint>:
 15: 55 push %ebp
 16: 89 e5 mov %esp,%ebp
 18: 83 ec 18 sub $0x18,%esp
 1b: 8b 45 08 mov 0x8(%ebp),%eax
 1e: 8b 00 mov (%eax),%eax
 20: 89 45 f8 mov %eax,-0x8(%ebp)
 23: 8b 45 08 mov 0x8(%ebp),%eax
 26: 83 c0 04 add $0x4,%eax
 29: 89 45 fc mov %eax,-0x4(%ebp)
 2c: eb 1b jmp 49 <maxint+0x34>
 2e: 8b 45 fc mov -0x4(%ebp),%eax
 31: 8b 00 mov (%eax),%eax
 33: 8b 55 f8 mov -0x8(%ebp),%edx
 36: 89 54 24 04 mov %edx,0x4(%esp)
 3a: 89 04 24 mov %eax,(%esp)
 3d: e8 fc ff ff ff call 3e <maxint+0x29>
 42: 89 45 f8 mov %eax,-0x8(%ebp)
 45: 83 45 fc 04 addl $0x4,-0x4(%ebp)
 49: 8b 45 fc mov -0x4(%ebp),%eax
 4c: 8b 00 mov (%eax),%eax
 4e: 85 c0 test %eax,%eax
 50: 75 dc jne 2e <maxint+0x19>
 52: 8b 45 f8 mov -0x8(%ebp),%eax
5.1. DISASSEMBLY

55: c9 leave
56: c3 ret

This example shows the output of objdump if used to disassemble the max-int example compiled as an object file. Although the jmp instructions resolve correctly the call instruction at address 3d is erroneously disassembled to direct execution to address 3e. This value is actually an offset into the relocation table of the object file, which lists all the references that must be resolved once the linker has assigned locations in the virtual address space.

RELOCATION RECORDS FOR [.text]:
OFFSET TYPE VALUE
0000003e R_386_PC32 max

The consequence of this is that the analysis process must operate on complete, linked executable files if it is to work directly on the output of the objdump disassembler. The analysis could read the relocation table and resolve the references but this would require far more processing of the files and a far more complex understanding of the executable file format for the target architecture of each system, so this was not implemented as part of this work.

5.1.3 Parsing

If objdump is used to disassemble a linked executable then its output contains all the information necessary to produce a model of the software’s behaviour. Before the instructions can be instantiated in the formal model the output format must be parsed to extract the relevant information. The general layout of the output format is simple and well structured so producing a basic parser using a parser generator such as JavaCC[6] is straightforward, but some features of the instructions and their parameters deserve special consideration.

Objdump produces assembly language that is appropriate for the target architecture, including the language syntax. For Intel systems it uses the AT&T syntax, but for PowerPC it uses the standard PowerPC syntax, as in this example:

00000000 <max>:
 0: 94 21 ff e0 stwu r1,-32(r1)
 4: 93 e1 00 1c stw r31,28(r1)
 8: 7c 3f 0b 78 mr r31,r1
 c: 90 7f 00 08 stw r3,8(r31)
10: 90 9f 00 0c stw r4,12(r31)
14: 81 3f 00 08 lwz r9,8(r31)
18: 80 1f 00 0c lwz r0,12(r31)
1c: 7f 89 00 40 cmplw cr7,r9,r0
20: 40 9d 00 0c ble- cr7,2c <max+0x2c>
24: 80 1f 00 08 lwz r0,8(r31)
28: 48 00 00 08 b 30 <max+0x30>
The syntax for each architecture is sufficiently distinct that it requires a specific parser but the analysis process has been designed such that a suitable general semantic representation can be constructed that will be adequate for most mainstream processors. The parser attempts to retain not only information that is necessary to produce a semantically accurate formal model, but also information such as function names and instruction addresses that makes the formal model more readable and, critically, more traceable back to the original executable. Retaining function names will allow the inferred model to have a readable structure with model components retaining names appropriate to the component they represent in the original system. Retaining instruction addresses allows faults identified in the model to be traced back to particular sections of the original code, and so direct fault repair most efficiently.

Since the details of the operation of each instruction will be provided as an input to the analysis in the instruction set specification, it is sufficient to parse the disassembly output only far enough to provide values that can be textually substituted into the instruction set specification to produce the correct specification for an instruction instance. More detail on this substitution process is presented at §5.3.3, but the parameters that are given to most instructions on most modern processors fall into a small number of distinct categories, including:

- **literals** — exact values.
- **registers** — the identifier for a register whose contents should be used.
- **register indirect** — a combination of a register identifier and an offset, where the value to be used is found at the memory address produced by adding the offset value to the value contained in the register.

Both the Intel and PowerPC examples here show all of these classes of parameter. Intel registers have identifying names such as `eax` and `ecx`, while the registers in the PowerPC CPU are numbered from 0 to 31. The Intel AT&T syntax denotes register names with a prefix percent symbol, and literals with a prefix dollar symbol, as in this example:

```
18: 83 ec 18 sub $0x18,%esp
```

which subtracts the literal value 24 (hexadecimal 0x18) from the content of the `esp` register (the stack pointer). The PowerPC architecture prefixes registers with the letter `r` and has no prefix for literal values.

For indirect addressing both syntaxes wrap the register identifier (including prefix) in brackets and then prefix the brackets with the offset value (without an identifying prefix), as in these examples:
5.2. BRANCH IDENTIFICATION

The final parameter type of significance is branch targets. Branch instructions are analysed differently from sequential instructions, as is discussed further in §5.2. The objdump disassembler produces the virtual address location of the target of the branch instruction, along with a helpful description based on an offset from a function name from the symbol table. Both Intel and PowerPC syntaxes follow a similar convention:

```
e: eb 03      jmp  13 <max+0x13>
28: 48 00 00 08  b  30 <max+0x30>
```

Since the analysis process parsing will retain the virtual addresses of all instructions it is only this component that is necessary to produce a correct model of the branch behaviour.

5.1.4 Summary
This section has covered the process of disassembling an executable file into a structured set of instructions, and the process of parsing adequate information about each instruction to support the formal model inference. The parsed instruction representations will be used as input to the subsequent process stages where the branch points will be identified to produce a control flow graph, and the the instructions will be instantiated with formal models from the provided instruction set.

5.2 Branch Identification

5.2.1 Overview
The disassembly from §5.1 produced a set of instructions and some structural information such as function names and locations. This section presents the process by which the branch instructions are identified. Using the specifications of the branch instruction set the assembly language instructions are partitioned into sequential blocks with the branch instructions forming nodes in a control flow graph.

5.2.2 Branch instructions
The disassembly process described in §5.1 converted an executable file into a set of functions, each containing a sequence of instructions. At the most general level these instructions can be divided into two classes: sequential instructions, that affect the state of the system and then allow execution to proceed to the
next instruction in the function, and branch instructions, that direct execution to proceed from a different place in the program, possibly only when some condition is met. The analysis phase presented in this section will identify the branch instructions and their target locations in the program. This will allow the program to be segmented into sequential block — contiguous sequences of sequential instructions where execution is certain to proceed through the complete sequence.

The two inputs to this process are:

• A function from the assembly language output of the disassembler

• A set of branch instructions with enough information to identify the instruction instances and the potential targets of the branch.

5.2.3 Branch template format

For most branch instructions only two pieces of information are necessary: the mnemonic and identification of which parameter forms the target address of the jump. A \LaTeX-style representation of the jmp instruction, specifying the mnemonic and that the first argument contains the target of the branch, is written this way:

\begin{binst}{jmp}
Target: FIRST
\end{binst}

Since the jmp instruction is an unconditional branch this is all the information necessary to process instances in the assembly code. For conditional branch instructions it is necessary to specify the \texttt{OnBranch} and \texttt{NoBranch} prefix schema, as discussed in §3.3.3. The jne instruction from the x86 instruction set, which exhibits conditional branching behaviour, is specified in this form:

\begin{binst}{jne}
Target: FIRST
\end{binst}

\begin{schema}{branch}\Xi System
zf = 1\end{schema}

\begin{schema}{nobranch}\Xi System\end{schema}
This analysis of branch instructions has assumed that the branch target will be within the same function. Calls to other functions in the system are generally handled by different processor instructions, which this process will refer to as call instructions. These often have additional system effects such as pushing return addresses onto the stack. They transfer execution to the beginning of the target function, and are matched by return instructions that transfer execution back to the next instruction in the calling function. In principle it is possible to write assembly language programs which use the regular jump instructions to branch out of the function and into another — possibly at an arbitrary point in the other function — but it is unlikely that any compiler would compile a high level language to use this type of construction. The attitude that this work takes to such constructions mirrors the MISRA-C attitude: that the presence of such constructions in high-integrity code is itself hazardous. If such code must be analysed then it would have to be analysed as a single, large function, but it will be inherently difficult to comprehend and is best discouraged by the overarching software development management.

The call instruction shown above is unconditional, and the ret instruction takes no parameters, so this is enough information to process instances of these two instructions. This model of the ret instruction produces no effect in the system other than the return of execution. The correct operation of the ret instruction requires that the return address is at the top of the stack. This analysis process opts not to model this behaviour specifically as it would complicate the formal model of function calls and returns that is created in §5.5.3. For the model to be correct it is required that the return address is not overwritten during the operation of the function (the stack overflow attack). This requirement should be confirmed as part of the verification of requirements on the model.

5.2.4 Example

The maxint function from the example in §5.1 illustrates all of these features.
There are four branch instructions in this function (including the ret at the end). The following shows the function broken around the branch instructions.

080480ed <maxint>:

<table>
<thead>
<tr>
<th>Address</th>
<th>Instruction</th>
<th>Mnemonic</th>
<th>Arguments</th>
</tr>
</thead>
<tbody>
<tr>
<td>80480ed</td>
<td>push %ebp</td>
<td>push</td>
<td>%ebp</td>
</tr>
<tr>
<td>80480ee</td>
<td>89 e5</td>
<td>mov</td>
<td>%esp,%ebp</td>
</tr>
<tr>
<td>80480ef0</td>
<td>83 ec 18</td>
<td>sub</td>
<td>$0x18,%esp</td>
</tr>
<tr>
<td>80480f3</td>
<td>8b 45 08</td>
<td>mov</td>
<td>0x8(%ebp),%eax</td>
</tr>
<tr>
<td>80480f6</td>
<td>8b 00</td>
<td>mov</td>
<td>(%eax),%eax</td>
</tr>
<tr>
<td>80480f8</td>
<td>89 45 f8</td>
<td>mov</td>
<td>%eax,-0x8(%ebp)</td>
</tr>
<tr>
<td>80480fb</td>
<td>8b 45 08</td>
<td>mov</td>
<td>0x8(%ebp),%eax</td>
</tr>
<tr>
<td>80480fe</td>
<td>83 c0 04</td>
<td>add</td>
<td>$0x4,%eax</td>
</tr>
<tr>
<td>8048101</td>
<td>89 45 fc</td>
<td>mov</td>
<td>%eax,-0x4(%ebp)</td>
</tr>
<tr>
<td>8048104</td>
<td>eb 1b</td>
<td>jmp</td>
<td>8048121 <maxint+0x34></td>
</tr>
<tr>
<td>8048106</td>
<td>8b 45 fc</td>
<td>mov</td>
<td>-0x4(%ebp),%eax</td>
</tr>
<tr>
<td>8048109</td>
<td>8b 55 f8</td>
<td>mov</td>
<td>(%eax),%eax</td>
</tr>
<tr>
<td>804810b</td>
<td>8b 55 f8</td>
<td>mov</td>
<td>-0x8(%ebp),%edx</td>
</tr>
<tr>
<td>804810e</td>
<td>89 54 24 04</td>
<td>mov</td>
<td>%edx,0x4(%esp)</td>
</tr>
<tr>
<td>8048112</td>
<td>89 04 24</td>
<td>mov</td>
<td>%eax,%esp</td>
</tr>
<tr>
<td>8048115</td>
<td>e8 be ff ff ff ff</td>
<td>call</td>
<td>80480d8 <max></td>
</tr>
<tr>
<td>804811a</td>
<td>89 45 f8</td>
<td>mov</td>
<td>%eax,-0x8(%ebp)</td>
</tr>
<tr>
<td>804811d</td>
<td>89 45 fc 04</td>
<td>addl</td>
<td>$0x4,-0x4(%ebp)</td>
</tr>
<tr>
<td>8048121</td>
<td>8b 45 fc</td>
<td>mov</td>
<td>-0x4(%ebp),%eax</td>
</tr>
<tr>
<td>8048124</td>
<td>8b 00</td>
<td>mov</td>
<td>(%eax),%eax</td>
</tr>
<tr>
<td>8048126</td>
<td>85 c0</td>
<td>test</td>
<td>%eax,%eax</td>
</tr>
<tr>
<td>8048128</td>
<td>75 dc</td>
<td>jne</td>
<td>8048106 <maxint+0x19></td>
</tr>
<tr>
<td>804812a</td>
<td>8b 45 f8</td>
<td>mov</td>
<td>-0x8(%ebp),%eax</td>
</tr>
<tr>
<td>804812d</td>
<td>c9</td>
<td>leave</td>
<td></td>
</tr>
<tr>
<td>804812e</td>
<td>c3</td>
<td>ret</td>
<td></td>
</tr>
</tbody>
</table>

8048104: eb 1b jmp 8048121 <maxint+0x34>
5.2. BRANCH IDENTIFICATION

<table>
<thead>
<tr>
<th>Address</th>
<th>Instruction</th>
<th>Op1</th>
<th>Op2</th>
<th>Op3</th>
</tr>
</thead>
<tbody>
<tr>
<td>8048115:</td>
<td>e8 be ff ff ff</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>call 80480d8 <max></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>804811a:</td>
<td>89 45 f8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>mov %eax,-0x8(%ebp)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>804811d:</td>
<td>83 45 fc 04</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>addl $0x4,-0x4(%ebp)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8048121:</td>
<td>8b 45 fc</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>mov -0x4(%ebp),%eax</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8048124:</td>
<td>8b 00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>mov (%eax),%eax</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8048126:</td>
<td>85 c0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>test %eax,%eax</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8048128:</td>
<td>75 dc</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>jne 8048106 <maxint+0x19></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>804812a:</td>
<td>8b 45 f8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>mov -0x8(%ebp),%eax</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>804812d:</td>
<td>c9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>leave</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>804812e:</td>
<td>c3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ret</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This forms four sequential blocks. The call instruction targets the `max` function, which will be processed separately; the `ret` instruction is identified as a function return, so will invoke the standard function return mechanism (`Leave` from the `Function` class).

Of particular importance is the `jmp` instruction at address 8048104 that causes program execution to branch to address 8048121. This address is currently in the middle of a sequential block. This must be represented by splitting this block at this point, as shown here:

`08048195 <maxint>:`

```
[...]
```

<table>
<thead>
<tr>
<th>Address</th>
<th>Instruction</th>
<th>Op1</th>
<th>Op2</th>
<th>Op3</th>
</tr>
</thead>
<tbody>
<tr>
<td>8048104:</td>
<td>eb 1b</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>jmp 8048121 <maxint+0x34></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[...]</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

```
```

<table>
<thead>
<tr>
<th>Address</th>
<th>Instruction</th>
<th>Op1</th>
<th>Op2</th>
<th>Op3</th>
</tr>
</thead>
<tbody>
<tr>
<td>804811a:</td>
<td>89 45 f8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>mov %eax,-0x8(%ebp)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>804811d:</td>
<td>83 45 fc 04</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>addl $0x4,-0x4(%ebp)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

```

<entry point from 8048104>

```
```

<table>
<thead>
<tr>
<th>Address</th>
<th>Instruction</th>
<th>Op1</th>
<th>Op2</th>
<th>Op3</th>
</tr>
</thead>
<tbody>
<tr>
<td>8048121:</td>
<td>8b 45 fc</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>mov -0x4(%ebp),%eax</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8048124:</td>
<td>8b 00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>mov (%eax),%eax</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8048126:</td>
<td>85 c0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>test %eax,%eax</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[...]</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This produces a block from 804811a to 804811d that is not followed by an explicit branch instruction but that will continue on into the new block starting...
at 8048121. The analysis process inserts a trivial, unconditional *straight through* branch at this point.

The result of this is the control flow graph presented in Figure 5.1.

The branch identification process, like all the analysis phases that follow, is independent of the analysis of other functions. This allows all of the functions in a program to be processed concurrently in systems capable of making use of concurrent execution.

5.2.5 Summary

This section has detailed the process by which the sequences of instructions produced from the disassembler can be segmented into sequential blocks, and these blocks arranged into a control flow graph, with the branch instructions forming the nodes. The subsequent phases of the analysis process will operate on this graph and will begin to instantiate the formal model of the program’s behaviour.

5.3 Formal Instantiation

5.3.1 Overview

The sequential blocks produced by the branch identification stage can be converted into formal representations of the behaviour of their constituent instructions. This section presents the process by which the template specifications described in §3.3.2 are instantiated into Z operation schema. These are then sequentially composed to form a formal representation of the sequential block in Z.

5.3.2 Template specifications

To produce a formal representation of a block of assembly code it is necessary to convert each of the instructions into a Z operation schema. To do this the analysis process user must provide a template specification that defines the behaviour of each instruction in the instruction set. These template specifications are parameterised in the same way as the instruction set descriptions from the processor manufacturer. As an example, the `sub` instruction is described thus:

Subtracts the second operand (source operand) from the first operand (destination operand) and stores the result in the destination operand. The destination operand can be a register or a memory location; the source operand can be an immediate, register, or memory location. [...]

The SUB instruction performs integer subtraction. It evaluates the result for both signed and unsigned integer operands and sets the OF and CF flags to indicate an overflow in the signed or unsigned result, respectively. The SF flag
5.3. FORMAL INSTANTIATION

Figure 5.1: The control flow graph of the `maxint` function
indicates the sign of the signed result.

The supplied sequential instruction set specification should consist of a set of template schema — Z operation schema with names that match the instruction mnemonics. In some cases the same mnemonic can represent several different underlying op codes depending on the type of the arguments. The operation schema therefore require a type signature. This is provided as a subscript on the end of the schema name with the pattern \textit{TYPE}\#\textit{NAME}. The types currently supported are \textit{LIT} for literal values, \textit{REG} for register names, and \textit{REGIND} for register-indirect memory access (where a value in a register is offset by some literal amount before being dereferenced). The parser component will identify the type of the parameters present in the disassembly, and the analysis process will use this information to select the appropriate operation schema template. The name component of the signature should be a text string that will be replaced throughout the schema with the parsed value of a particular instance of the argument. This replacement is done as a naive string match, so it is important that the string does not appear elsewhere in the schema (even as a substring).

\begin{align*}
\text{\textit{subLIT#$VAL$\&\textit{REG}$#$TGT$}} \quad \Delta \text{ System} \\
\text{registers}' = \text{registers} \oplus \{ TGT \mapsto \text{registers}(TGT) - \text{VAL} \} \\
\text{memory}' = \text{memory} \\
(zflag' = 1) \iff (\text{registers}'(TGT) = 0)
\end{align*}

To allow for maximum scalability these template specifications should be instantiated with the minimum possible semantic knowledge. The parameter names will be simply textually substituted without any processing of the statements into which it is inserted. This requires some consideration when designing the system specification and the instruction set operations, but it does not need to be overly constrictive. It does create some interesting results in the instantiation: the \textit{sub} example could be given a negative literal, resulting in a double negation in the instantiated operation:

\begin{align*}
\text{registers}' = \text{registers} \oplus \{ eax \mapsto \text{registers}(esp) - (\text{10}) \}
\end{align*}

This is semantically correct but can cause problems with some automatic Z interpreters — including the Z2SAL system used in §7. It is easy to perform a text search and replace on the output if a correction is required.

The \textit{REGIND} type includes two components: a register and an offset. In the type signature the replacement names for these are separated with a comma:

\begin{align*}
\text{\textit{movREG#$SRC$\&\textit{REGIND}$#$TGT$;\textit{OFF}}}} \quad \Delta \text{ System} \\
\text{memory}' = \text{memory} \oplus \{(\text{registers}(TGT) + \text{OFF}) \mapsto \text{registers}(SRC)\}
\end{align*}
This can present another arithmetic problem if negative offset values are used, but this can again be corrected by text search and replace for those interpreters that fail to handle it correctly.

5.3.3 Instantiation

The maxint example from §5.2.4 contains an instance of the sub instruction in Block80480ed. This has the arguments ⟨literal⟩0x10, ⟨register⟩esp. The template schema for the sub instruction presented above matches both mnemonic and type signature, so can be instantiated to produce in this way:

80480ed <maxint>:
[...]
80480f0: 83 ec 18 sub $0x18,%esp <<-------
[...]

\[ \text{sub}_{80480f0} \]

\[ \begin{align*}
\text{registers}' &= \text{registers} \oplus \{ \text{esp} \mapsto \text{registers}(\text{esp}) - 24 \} \\
\text{memory}' &= \text{memory} \\
\text{zflag}' &= 1 \iff \text{registers}'(\text{esp}) = 0
\end{align*} \]

Since this process requires only text matching of the mnemonic and type signature, and then text substitution of the parameters it is easily scalable to large numbers of instructions. This process can be repeated for each instruction in the sequential block. Once instantiated the resultant \( \text{Z} \) operation schema can be sequentially composed to produce a valid (but not minimal) model of the behaviour of the sequential block.

When the instruction template is instantiated the subscript containing the type signature is replaced with a subscript that contains the virtual address of the instruction being instantiated. In this way the traceability between the formal model and the original executable file is maintained. Throughout the rest of the analysis process the formal model components will retain the virtual addresses of the instructions whose behaviour they model. The consequence is that a property violation identified in the formal model can be traced back to at least the sequential block that caused it. This traceability is a key objective of this work.

5.3.4 Summary

This section has described the process by which the sequential blocks of the control flow graph can be converted into formal models in \( \text{Z} \) that represent the
sequence of state changes that the sequential instructions produce in the system. These sequences are modeled by a chain of sequentially composed Z operation schema. The next chapter will discuss a process to compress these chains into a single Z operation schema, or at least a much shorter chain of operations to model the same sequential block. The branch instructions that form the control flow nodes will be considered in §5.5.

5.4 Simplification

5.4.1 Overview

This section presents the application of the theory from §4 to compress the long sequential compositions produced by the previous analysis stage. This should yield much more comprehensible Z representations of the behaviour of the sequential blocks without compromising either the scalability of the process, or the traceability afforded by the naming conventions in §5.3.

5.4.2 Sequential block compression

The result of the formal instantiation process described in §5.3 is a series of sequential blocks that are modeled as long chains of sequentially composed Z operation schema representing each instruction. The size of these chains can quickly become unmanageable. The nine line maxint.c program produced a 35 line assembly file with only 7 branch instructions, and a 54 line PowerPC assembly file with 7 branch instructions. The PowerPC file included a sequential block with 13 unbroken instructions, and this is a simple function. Some technique is needed to simplify these sequential blocks if the objective is readable formal models.

The balance of readability, accuracy, and automation has to be carefully managed. In principle, if program interruption is to be ignored, then the sequential blocks could be resolved to single Z operation schema but to do this requires some considerable formal analysis of the semantics of the operations which would be prohibitively difficult as the program size increased. This could be engineered if readability was the overriding objective. This may be the case if a stable, existing program is to be reverse engineered to determine its behaviour. In this case the long execution time of an analysis task would be acceptable for the end product, but if the analysis forms part of the feed-back workflow of a development process then timely verification analysis must take precedence. In the latter case a partial composition, where a sequential block of 13 instructions is reduced to perhaps 5 sequentially composed schema in a short time may be adequate. A CSP-OZ proof assistant tool should be able to process a 5 instruction sequential composition and still prove useful properties.
5.4. SIMPLIFICATION

5.4.3 Algorithm

This level of concatenation is possible for limited computation expense using the techniques outlined in §4. The process operates by comparing two sequentially composed schemas and determining whether their semantics is altered by simply textually concatenating their invariants into one single operation. Since this process is text-based with only minimal parsing of the Z semantics it can be performed very quickly on large blocks of instructions. Additionally, since the compression of one sequential block has no impact on the behaviour of another it is possible to perform the simplification process on all the sequential blocks in a function concurrently. With the approximate ratio of five sequential instructions to one branch instruction there is considerable scope for concurrent execution to be used efficiently on multi-processor or distributed systems.

Analysis begins with the first pair of operations in the sequence and attempts to compress them into one. Using the rules of separation in Z, the two operations are compared and a separation proof attempted. The separation rules were designed to be performed with limited semantic knowledge, and to be satisfied in those conditions where the two schema can be compressed by simply placing all the variable definitions and invariant statements in one Z operation schema. If the separation test is successful then the two schema are removed from the sequence and replaced with the new operation schema. The process continues with the new schema and the next schema in the sequence. If the separation test fails then the process attempts to merge the second and third schema, and so it continues through the entire sequential block, compressing as many schema as possible. The design of the separation test rules is such that a second pass of the compressed sequential composition is not necessary.

In cases where a sequence does not meet any of the criteria for separation, a human interpreter or a sufficiently well informed proof tool could resolve them into a single schema but they will remain sequentially composed in this implementation. There is a necessary choice between producing the most succinct model theoretically possible and producing a model entirely automatically. Since it will be possible to apply automatic tools to the analysis of the model (for example Z2SAL, see §7) it can be argued that the simplification does not need to be complete if that would require excessive human effort.

5.4.4 Summary

The simplification stage takes the Z formal model representing the sequential sections of the executable and compresses the long sequential compositions into shorter Z operation representations or the state effects. The balance of compression with computational speed can be varied to suit different analysis process goals, but the ideas from §4 allow for a moderate reduction in the number of composed operations for a limited computational effort.

The control flow graph is updated with the new, compressed sequential blocks. This will form the input to the final stage, where the control flow elements are rendered to CSP representations and the other structural and
debugging components used to form a complete CSP-OZ specification of the system.

5.5 Program Encapsulation

5.5.1 Overview

Having identified the branch instructions and sequential blocks, instantiated the formal specifications of the sequential components, and simplified the sequential blocks, the final element of the analysis process is to compose the sequential blocks into a CSP-OZ class that represents the function. The branch instructions and the straight through pseudo-instructions must be instantiated to form the CSP components. The OnBranch and NoBranch schema from the conditional branch instructions are instantiated as Z operation schema where necessary. Function calls and returns must be instantiated with suitable models, as must the entry and exit of the functions.

5.5.2 Internal branch instructions

Each unconditional branch instruction (including the straight through pseudo-instructions) has a defined target. Similarly, the analysis process records the branch that follows each sequential block as part of the internal model of the sequential block. With this information is is simple to convert unconditional branches and their target blocks into CSP statements. The branch instruction

```
8048104: eb 1b jmp 8048121 <maxint+0x34>
```

will always cause execution to transfer to virtual address 0x8048121. The control flow graph shows that the block beginning at 0x8048121 ends with the branch instruction at 0x8048128. The branch instructions will all be represented by CSP processes named Branch with a subscript containing the virtual address of the instruction they represent. Knowing that the branch at address 0x8048128 will be instantiated elsewhere and named consistently allows this instruction to be instantiated as the CSP process that simply executed the Z operation representing the block from address 0x8048121 and then evolves to Branch0x8048128

```
Branch0x8048104 = Block0x8048121 ⇒ Branch0x8048128
```

The jne instruction at address 0x8048128 is a conditional branch instruction. As is discussed in §3.3.3, this will be modeled by instantiating each possible target sequential block as a CSP arrow as before, then prefixing this arrow with a Z operation that serves to constrain the execution of the possible paths according to the conditions of the branch instruction. Finally, the two paths are conjoined with a CSP external choice operator — although the two preconditions should be mutually exclusive, which will collapse the choice for a particular program run to only the path whose prefix is satisfied by the current system state.
5.5. PROGRAM ENCAPSULATION

Example

\[
\begin{align*}
\text{Branch}_{8048128} &= (\text{OnBranch}_{8048128} \rightarrow \text{Block}_{8048106} \\
& \quad \rightarrow \text{Branch}_{8048109}) \quad (\text{NoBranch}_{8048128} \\
& \quad \rightarrow \text{Block}_{804812a} \rightarrow \text{Branch}_{804812d})
\end{align*}
\]

OnBranch_{8048128}

\[\Xi \text{System} \]
\[z\text{flag} = 1\]

NoBranch_{8048128}

\[\Xi \text{System} \]
\[z\text{flag} \neq 1\]

Ideally all of the sequential blocks will have been converted to single Z operation schema that represent the block’s behaviour. In the event that this hasn’t been possible it is necessary to encode their sequential behaviour. The simplest way to do this is with a series of straight through branch instructions. These are treated as unconditional branch instructions that execute the next sequential block. They are added to the CSP section in the same way as any unconditional branch, and named for the block that they prefix.

\[\text{Branch}_{8048121} = \text{Block}_{8048121} \rightarrow \text{Branch}_{8048124}\]

5.5.3 Function calls

As described in §3.3.3, function calls are modeled by executing the function in parallel, passing the system state using schema promotion, and then synchronising on the communication. The sequence Call \rightarrow Return is common to all function calls, from there the remainder of the process continues exactly as with unconditional branches: the next block is executed, and the process evolves to the next branch instruction.

\[8048115: \text{e8 be ff ff ff call 80480d8 <max>}\]

becomes

\[\text{Branch}_{8048115} = (\text{OnBranch}_{8048115} \rightarrow \text{Call} \rightarrow \text{Return} \\
\quad \rightarrow \text{Block}_{804811a} \rightarrow \text{Branch}_{804811d}) \parallel \text{max}\]
5.5.4 Class definition

CSP-OZ classes require a `main` process to begin execution. This will begin with the `Entry` operation that will receive the `System` state schema from a parallel call operation. Then the process continues with the first block and the first branch as any other branch.

All that remains is to collect these components into a CSP-OZ class, which is named according to the function name extracted by the disassembler. This produces a formal model where each function in the analysed system is contained in a CSP-OZ class.

5.5.5 Summary

This final stage of the analysis process completes the model inference with two components: the instantiation of the control flow structure in CSP, and the collection of components into Object Z classes. This produces a complete representation of the behaviour of the system as a series of CSP-OZ classes that represent the various functions from the source executable. This model can now be used for verification of system properties using any verification technique that is defined over CSP-OZ. Examples of property verification techniques are presented in §7 and §8.
Chapter 6

The Spurinna implementation

6.1 Overview

The analysis workflow described in the preceding sections has been implemented as a research prototype named Spurinna. This chapter describes the Spurinna implementation, giving a description of its structure and describing the implementation of the various components of the analysis process.

6.2 Input files

The Spurinna implementation includes several parsers for the different inputs. The parsers are all implemented using the JavaCC parser generator.

Both the sequential and branch instruction sets are parsed in a LaTeX style with some required structures. The sequential instructions are represented as LaTeX schema but with the requirement that their names are the mnemonics of the assembly language, and that the names contain a subscript that details their type signature. More discussion of instruction type signatures can be found in §3.3.

The input version of this sub template for a literal parameter and register target is written:

\begin{schema}{sub_{LIT#VAL,REG#TGT}}
\Delta~System \backslash\backslash
\where
\begin{verbatim}
registers' = registers \oplus \{TGT \mapsto \text{registers}(TGT) - VAL} \end{verbatim}
\end{schema}


1Titus Vestricius Spurinna is believed to be the name of the Roman haruspex who warned Caesar to “beware the ides of March”. Since the practice of an haruspex was to cut open animals and divine the future by inspecting their entrails this seemed an appropriate name for a disassembly analysis system.
memory' = memory
(zflag' = 1) \iff (registers'(TGT) = 0)
\end{schema}

The branch instruction input format is similar but collects the various branch prefix schema into a \LaTeX\ environment called \texttt{binst}. Detailed discussion of branch instruction specifications can be found in \S 3.3.3. The collection also contains a \texttt{Target} attribute that specifies which instruction parameter should contain the branch target address. In the Intel instruction set there is only ever one parameter and this is always the branch target, so they are all defined as \texttt{FIRST}. Currently the implementation only supports \texttt{FIRST}, \texttt{SECOND}, or \texttt{THIRD}. The branch prefix schema must be named \texttt{onbranch} and \texttt{nobranch}.

\begin{binst}{jbe}
Target: FIRST
\begin{schema}{onbranch}
\Xi~System
where
zflag = 1 \lor sflag = 1
\end{schema}
\begin{schema}{nobranch}
\Xi~System
where
zflag \neq 1 \land sflag \neq 1
\end{schema}
\end{binst}

The other source of input to the analysis process is the disassembled executable file. The Spurinna implementation expects to be provided with a text file containing the output of a GNU objdump disassembly. The system contains a parser switcher that reads the beginning of the file to determine the target architecture and to activate the appropriate assembly language parser. The top of the file should contain a line of this form:

\texttt{maxint: file format elf32-i386}

This is produced by objdump from the target information in the executable file header. Currently the Spurinna implementation contains a parser for i386, and an untested parser for PowerPC, but the Java class structure contains suitable superclasses to allow rapid development for any other formats.

The remainder of the file should be the output of the objdump disassembly of the text segment. This expects functions to begin with a line containing the start address and the function name.

080480d8 <max>:
6.3. ANALYSIS STAGES

As discussed in §3.2, these function name symbols exist even if debugging was not turned on in the compiler. They exist unless they have been explicitly stripped. Between function name lines should be a sequence of instructions with a pattern that depends on the target platform. Intel instruction lines contain a virtual address, the hexadecimal representation of the binary instruction, the instruction mnemonic, and the parameters.

80480f0: 83 ec 18 sub $0x18,%esp

This stage of the system makes no attempt to understand the semantics of the instructions. It parses the lines and created *ASMInstruction* objects that have an address and a mnemonic, and a collection of *Argument* objects for the parameters. The *Argument* class contains three subclasses: *IntLitArgument*, *RegArgument*, and *RegIndirectArgument* for the three classes of parameter that are modeled. The register identifiers are stored as strings and not interpreted further. It is required that the instruction specifications be written so that these strings can be substituted in without modification, hence the BNF type containing the register names as atoms that is used in §3.3.1. Literals other than integer are not considered in this implementation. Where floating point numbers are used they are generally split up into integers representing sign, exponent, and mantissa. String literals will handled by pointers, and characters by their numeric representation.

The collection of *ASMInstruction* objects is collected into an *ASMFunction* object, which contains the name, and start and end addresses of the function. These are then collected into an *ASMFile* object that also contains the name extracted from the first line of the file. This object is then the target of the subsequent analysis phases.

6.3 Analysis stages

6.3.1 Architecture

All of the analysis phases are child classes of the *ProcessStage* abstract class. This contains the structure needed to break the input down into several independent tasks, that can be represented by subclasses of *ProcessTask*. The subclasses of *ProcessStage* must implement the *makeNewComponent* method that can be given on of the *ProcessTask* objects and returns a subclass of *ProcessComponent*. This sets up a collection of worker objects, where *ProcessComponent* implements the Java interface *Runnable*. The *ProcessStage* class then contains the mechanics necessary to administer running many *ProcessComponent* threads in parallel. It refers to the *Configuration* singleton class to load the number of concurrent threads to execute and then begins to execute that many *ProcessComponent* objects. It monitors their progress and updates a public percentComplete value, along with a public done Boolean variable.

This collects all of the concurrent processing mechanics into these abstract classes. Each phase of the analysis process is then implemented by a set of
subclasses of these. The progress of the stages is controlled via the interface and some mechanics in the interface classes that prevents the phases being performed out of order and connects the output objects from one phase to the task lists of the next phase.

### 6.3.2 Branch identification

The branch identification phase is described in detail in §5.2. The implementation uses the `ASMFunction` objects contained in the parsed `ASMFile` object as the process tasks. Each `BranchIdentificationComponent` object operates on one function. Due to the way internal and external branch instructions are modeled there is nothing preventing different functions being analysed separately.

The collection of instructions is processed by searching for each instruction’s mnemonic in the list of mnemonics available from the `BranchInstructionSpec` object produced by parsing the branch instruction set specification file. Where an instruction matches a branch mnemonic it is removed from the instruction listing and its target identified using the information from the `ASMInstruction` object and the `BranchInst` object that represents the parsed component of the branch instruction set specification. In the case of local branches this may partition another sequential block, as described in §5.2.3.

The process creates a `FunctionGraph` object. This contains `CodeBlock` objects that contain the sequential blocks of `ASMInstruction` objects, and `BranchNode` objects representing the branch instructions. The latter retain the information from the branch instruction specification, including the prefix schema.
6.3.3 Formal instantiation

The formal instantiation stage has two layers. The FunctionGraph objects from the branch identification stage form the process tasks for the top layer. Since the instantiation of each code block in the graph is independent there is a further process stage created for each graph. In this child stage the process tasks are the CodeBlock objects from the graph. This allows each multiple blocks to be processed concurrently, as well as multiple graphs.

The process of instantiating a CodeBlock object requires iterating through the ASMInstruction objects and matching the mnemonics to elements of the sequential instruction set specification. Once a matching mnemonic is found a further check must be performed to match the type signature from the subscript of the specification to the types of the parameters in the ASMInstruction.

Once the matching template is found it is instantiated. A clone of the ZS-schema object is made and then the identifiers from the type signature subscript are textually replaced throughout the body of the schema with the values from the parameters in the ASMInstruction object. Finally the subscript is changed to the virtual address of the instruction.

Each schema is added to a SequentialBlock object. The higher layer process waits for completion of all of its children and then produces a FormalFunctionGraph object using the BranchNode objects from the FunctionGraph and these SequentialBlock objects.
6.3.4 Simplification

The simplification stage is layered in a similar way to the formal instantiation stage. Again, the design of the simplification process is such that each block can be considered independently, allowing for maximum use of concurrent processing resources.

Simplification proceeds by processing the ZSchema objects from a SequentialBlock object and attempting to combine them. Using the rules from §4 it seeks schema that can be simply concatenated. Where the condition is met the two schema are concatenated and the result renamed as Block with a subscript containing the first address.

The simplification stage is the least well implemented in the current version of Spurinna. The Total Separation and Effective Separation conditions from §4 are implemented, but the Functional Separation condition is not. As such it is not as effective as it could be on the examples presented in §7. The BlockSimplification class is also the place where additional simplification using external tools with an understanding of Z semantics could be added.

The product of this stage is the same FormalFunctionGraph but, hopefully, with shorter sequential block components.

6.3.5 Program encapsulation

The final stage implements program encapsulation as described in §5.5. This converts a FormalFunctionGraph object into a CSPOZClass object. It iterates through the BranchNode objects in the graph and performs the necessary instantiation into CSPProcess objects. Additionally, it clones the OnBranch and
NoBranch schema from the branch instruction specification and adds them to
the CSP-OZ class with a subscript containing the address of the branch instruc-
tion.

Finally, the Entry, Exit, Call, and Return schema are added as described in
§5.5.3. This CSPOZClass object is the final result of the analysis. One CSP-OZ
class is produced for each function. The collection of classes forms the formal
model of the executable file.

6.4 Output formats

Spurinna uses a basic, text based representation of the CSP-OZ schema for its
user interface. To aid the application of verification tools to the inferred model
it is capable of producing \LaTeX files for either CSP-OZ, of plain Z using the
flattening algorithm described in Appendix A.
CHAPTER 6. THE SPURINNA IMPLEMENTATION
6.5 Summary

This chapter has presented the Spurinna system, which implements the analysis process developed by in this thesis. The subsequent chapters use Spurinna in conjunction with other verification tools to demonstrate complete verifications of properties of software systems.

The Spurinna software described in this chapter is available from http://www.dcs.shef.ac.uk/ramsay/Spurinna/ along with the sample specifications developed during this work. As a research prototype, its immediate use in the verification of safety or security critical system cannot be supported.
Chapter 7

Model checking for verification

7.1 Overview

The aim of this work is to develop a process that can analyse software that interacts with hardware and support verification of specified system properties. The previous sections have provided the techniques necessary to analyse such software and infer formal models of its behaviour. This chapter presents the application of model checking techniques to verify properties about the system using the inferred model. Additionally, it demonstrates how errors can be identified in the model and traced back to the implementation to support corrections.

7.2 System, requirements, and analysis

To demonstrate a complete analysis and verification process this section will concentrate on the maxint example that has been used in §5.1-§5.5. The source code in C is presented in Figure 7.1. The maxint function should be given a pointer to a zero-terminated list of unsigned integers and should return the largest. It uses the max function to compare two integers and return the value of the largest. If they are equal it doesn’t matter which is used as the source of the return value.

The disassembly and analysis to this example is presented elsewhere, so this chapter will concentrate on verification of the behaviour of the inferred model. The complete CSP-OZ model is documented in Appendix B. The decision to produce CSP-OZ models of system behaviour was based on the large range of available analysis techniques that can be applied to CSP-OZ, and to its constituent languages. This chapter will use the Z2SAL[28] system to translate Z into the input language of the SAL model-checker suite. The system requirements
int max(unsigned int x, unsigned int y) {
  if(x > y) {
    return x;
  } else {
    return y;
  }
}

int maxint(unsigned int *ints) {
  unsigned int result, *ptr;

  result = ints[0];
  ptr = (ints + 1);
  while(*ptr != 0) {
    result = max(*ptr, result);
    ptr++;
  }
  return result;
}

Figure 7.1: maxint.c

will be represented as Linear Temporal Logic theorems that the SAL suite can
then verify or counter with examples.

The Z2SAL system does not support Z's Theta notation, so the function call
and return model cannot be converted. Consequently this analysis is limited
to a single function. The max function was chosen, as its behaviour is not
dependent on any other function. The requirements of the max function can be
defined in natural language as:

- **Termination** The function should always reach a return state, and it
  should not perform further operations from this state

- **Sensible return value** C functions pass arguments on the stack, along
  with the return value. For the Intel system modeled here the arguments
  are found at esp + 4 and esp + 8 on function entry. The max function
  should return one or other of these, and not some spurious value

- **Correctness of return value** The value returned should be the numer-
  ically higher of the two arguments. Since the return is by value it does not
  matter which of two equal values is used as the source of the assignment

7.3 Z2SAL

Z2SAL converts Z specifications into the input language of the SAL suite of
model checkers and related tools. SAL models are state machines and so SAL
input models consist of a state specification (with various data type definitions) and a series of operations. SAL machine operations have pre and post conditions with a primed syntax for postconditions that is not dissimilar to that of Z. The various SAL model checkers can then evaluate Linear Temporal Logic (LTL) theorems over these models. Due to the exhaustive behaviour of model checking, the range of datatypes has to be finite and must be constrained as far as possible, since entire state spaces are explored.

Z2SAL is capable of translating a range of Z specifications into SAL models completely automatically. There are some minor limitations to the input parser (such as not supporting subscripts in schema names) but very little needs to be changed from the output format of Spurinna to use Z2SAL immediately on the inferred models.

The most significant limitation is that Z2SAL only processes Z, and not CSP-OZ. Consequently the program branching behaviour that is modeled by the CSP component of the Spurinna models must be “flattened” into pure Z. SAL state machine models contain a set of operations with preconditions, so the natural way to perform this flattening is to add a suitable precondition and postcondition to each operation that will constrain the order of execution to the sequence prescribed by the CSP model. Performing this flattening automatically is possible, and has been implemented in the Spurinna system for the simple CSP cases that occur in the inferred models. The algorithm is discussed in detail in Appendix A. As an example the CSP-OZ combination:

\[
Branch_{80480d9} = Block_{80480d9} \rightarrow Branch_{80480db}
\]

\[
\begin{aligned}
\text{Block}_{80480d9} \\
\Delta \text{ System} \\
\text{registers}' &= \text{registers} \oplus \{ \text{ebp} \mapsto \text{registers(esp)} \} \\
\text{memory}' &= \text{memory}
\end{aligned}
\]

becomes:

\[
\begin{aligned}
\text{Block}_{80480d9} \\
\Delta \text{ System} \\
\text{cspstate} : \text{CSPSTATE} \\
\text{cspstate}' : \text{CSPSTATE} \\
\text{registers}' &= \text{registers} \oplus \{ \text{ebp} \mapsto \text{registers(esp)} \} \\
\text{memory}' &= \text{memory} \\
\text{cspstate} &= \text{Branch}_{80480d9} \\
\text{cspstate}' &= \text{Branch}_{80480db}
\end{aligned}
\]

The precondition on the cspstate variable ensures that this operation will only execute if the system has reached the state represented by the CSP Branch_{80480d9}
Some additional complexity occurs where several paths pass the same operation. Concurrency for the CSP parallel composition operator has not yet been implemented because it was not necessary for any of the examples presented here. It could be represented by the introduction of a separate cspstate variable for each parallel process, and a shared variable that constrains the execution of both paths until the CSP system enters the parallel section. The possible interleavings should then be explored automatically by the modelchecker, as all the possible interleaved sequences would be executable in the SAL representation.

The Z representation presented at Appendix C was automatically produced by Spurinna. Some minor syntactic modifications had to be performed manually because of limitations in the Z2SAL parser. The Init schema can only initialise variables from the System state schema, so the initialisation for the cspstate variable had to be added to the SAL file manually. Additionally, the Z2SAL system always includes an ELSE transition in its machine that can always execute and which doesn’t alter the system state. This produces a mathematically complete transition function but it confounds attempts to prove LTL theorems, since the machine can loop in the ELSE transition without ever completing the modeled operation. Removing the ELSE transition from the SAL file solved this problem, but then produced another: the end of any CSP process sequence is the STOP transition, which represents deadlock, but is modeling correct termination. The SAL suite correctly identified this deadlock condition, but its presence prevents the detection of other deadlock conditions, since it is easy to identify it will always be returned as the counterexample from the deadlock checker, possibly masking other deadlock conditions. To account for this the STOP operation was added, using the same operation code as the original ELSE transition (i.e. performing no action) but it has the precondition that cspstate variable must contain Leave, the value assigned to termination. Once the system has reached the Leave state this STOP operation can execute infinitely, but causes no changes to the system state. Since it is able to execute it does not show up as a deadlock state in the deadlock checker, allowing for an accurate analysis of the rest of the model.

Initial experiments identified an interesting additional limitation of the system as represented. The stack operations on Intel processors grow the stack downwards (that is, they decrement the stack pointer and place the next value at a numerically lower address), so it is conventional to compile programs to be loaded at the middle of the virtual address space and have the heap grow upwards and the stack grow downwards (hence the 80 prefixes on all of the instruction addresses in the small examples). However, the SAL model is using natural numbers and limits their range to as small a set as possible. Consequently, without additional guidance it became very easy for the stack pointer to be close to zero and then decremented. Since decrementing a natural number below zero is not possible it produced unpredictable results. This is an important insight into a possible failure mode of the program on a system with a much more limited address space, but it can be safely excluded if the address space will always be many orders of magnitude too big for it to occur. To represent
7.4 Model checking Linear Temporal Logic properties

The principle requirements for the \textit{max} function were defined as:

- **Termination** The function should always reach a return state, and it should not perform further operations from this state

- **Sensible return value** C functions pass arguments on the stack, along with the return value. For the Intel system modeled here the arguments are found at \texttt{esp + 4} and \texttt{esp + 8} on function entry. The \textit{max} function should return one or other of these, and not some spurious value

- **Correctness of return value** The value returned should be the numerically higher of the two arguments. Since the return is by value it does not matter which of two equal values is used as the source of the assignment

The termination condition was encoded in two SAL LTL theorems:

\begin{align*}
\text{alwaysTerminates} : \text{THEOREM State} \models \neg F(\text{cspstate} = \text{Leave}); \\
\text{neverRestarts} : \text{THEOREM State} \models \neg G((\text{cspstate} = \text{Leave}) \Rightarrow \neg F(\text{cspstate} \neq \text{Leave}));
\end{align*}

The first theorem states that the system should eventually reach the \textit{Leave} state of the \textit{cspstate} variable. The second theorem requires that this be a terminal state and the system cannot proceed once it reaches this state. Running the SAL symbolic model checker on the first theorem produces the following response:

bash-3.2$ sal-smc maxint alwaysTerminates
proved.
WARNING: Your property is only true if it is deadlock free.
You should run sal-deadlock-checker for that.

Following the advice and running the deadlock checker confirms that there are no deadlock states possible. This demonstrates the necessity of the \textit{STOP} operation to exclude the terminal deadlock and allow SAL to confirm that no other deadlock conditions occur.

bash-3.2$ sal-deadlock-checker maxint State
ok (module does NOT contain deadlock states).
The second theorem is completely proven for the state space.

bash-3.2$ sal-smc maxint neverRestarts
proved.

The definition of the ret instruction in §5.2.3 assumes that the return address on the stack has not been altered, so it is important to verify this property.

noStackOverflow : THEOREM State |- FORALL (VAL:NAT):
  ((cspstate = Anon2) AND ((memory(registers(esp)) = VAL))
  =>
  G((cspstate = Leave) => (memory(registers(esp)) = VAL)));

This takes a considerable time but is eventually proven.

bash-3.2$ sal-smc maxint noStackOverflow
proved.

The requirement that the function returns one of the two parameters on the stack is encoded with the third LTL theorem:

returnsSomethingSensible : THEOREM State |- G((cspstate = Leave) =>
  (registers(eax) = memory(registers(esp) + 4))
  OR
  (registers(eax) = memory(registers(esp) + 8)));

This states that once the system reaches the terminal Leave state then the value in the eax register should be one of the two parameters that are on the stack, and so present in memory at the indirect addresses of esp + 4 and esp + 8. It is proven by the symbolic model checker in a short time.

bash-3.2$ sal-smc maxint returnsSomethingSensible
proved.

Finally, the requirement that the function returns the maximum of the two values can be encoded thus:

returnsTheRightAnswer : THEOREM State |- G((cspstate = Leave) =>
  (registers(eax) = memory(registers(esp) + 4)) =>
  (registers(eax) = memory(registers(esp) + 8)) =>
  (cspstate = Leave) => (registers(eax) = max(memory(registers(esp) + 4), memory(registers(esp) + 8)))
  OR
  (cspstate = Leave) => (registers(eax) = max(memory(registers(esp) + 8), memory(registers(esp) + 4))));

This states that once the system reaches the terminal Leave state then the value in the eax register should be either equal to the maximum of the two parameters that are on the stack.
int max(unsigned int x, unsigned int y) {
    if(x < y) {
        return x;
    } else {
        return y;
    }
}

Figure 7.2: brokenmaxint.c

memory(registers(esp) + 4) >= memory(registers(esp) + 8)

AND

(memory(registers(esp) + 8) >= memory(registers(esp) + 4))

This is also proven in a reasonable time.

bash-3.2$ sal-smc maxint returnsTheRightAnswer
proved.

7.5  Model checking for fault detection

Presenting a series of LTL theorems that seem to represent the required properties and then presenting that the SAL suite returns “proved” is not a totally compelling demonstration of a verification system. Proving properties about a system is important, but the behaviour of the analysis technique when identifying defects (deviations from the required properties) provides a better demonstration of its usefulness in a software engineering workflow, and gives more confidence in the validity of the proven properties.

To demonstrate the fault identification abilities of these techniques the max function was modified to introduce a deliberate error. Figure 7.2 presents the max function with the > symbol replaced by <. This sort of typographic error occurs frequently and is easily overlooked in code reviews, especially in the middle of large blocks of complex code.

The resulting C file was saved as “broken-maxint.c” and underwent the same compilation, linking, disassembly, and analysis as was described for maxint. It is a reassuring demonstration of the structural compatibility between the CSP-OZ model and the underlying program that the only difference between the two inferred models is in the branch choice. A diff of the two \LaTeX{} files shows only two lines changed:
The conversion to SAL with the Z2SAL system proceeds easily, with the same small manual changes to the SAL file. Again, diff only highlights the difference that is expected in the branch precondition and the change of file name.

The same sequence of theorems can be evaluated for the broken program, since they are the requirements that would be expected of the final system. The change to the logic makes no difference to program termination, or to the program returning one of the two potential results:

```
bash-3.2$ sal-smc brokenmaxint alwaysTerminates
proved.
WARNING: Your property is only true if it is deadlock free. You should run sal-deadlock-checker for that.
bash-3.2$ sal-deadlock-checker brokenmaxint State ok (module does NOT contain deadlock states).
bash-3.2$ sal-smc brokenmaxint neverRestarts
proved.
bash-3.2$ sal-smc brokenmaxint returnsSomethingSensible
proved.
```

It is only the final theorem, representing the semantic condition of the result that identifies the failure. The complete counterexample is included at Appendix E. The last step of the counterexample is adequate to demonstrate that there is a flaw in the logic of this max implementation:
Transition Information:
(module instance at [Context: brokenmaxint, line(257), column(34)])
    (label Block80480eb
        transition at [Context: brokenmaxint, line(215), column(10)])
------------------------
Step 7:
--- System Variables (assignments) ---
registers(eax) = 12
[...]
registers(esp) = 4
registers(ebp) = 12
[...]
memory(8) = 13
[...]
memory(12) = 12
[...]
cspstate = Leave
invariant__ = true

With esp set to 4 the two parameters are found at memory addresses 8 and 12. In this example these contain the values 13 and 12, but the register eax contains 12. This seems a difficult to read, but the requirements of the style of low level code that this analysis targets are often written at this level. As such, the authors of such code are likely to be familiar with the low level system and can be expected to be used to reviewing similar register and stack “dumps” in the course of standard debugging. The complete counter example trace can be followed to identify the point at which the erroneous value is written to the eax register; in this case it is loaded in Step 5 (Block80480e8).

Step 5:
--- System Variables (assignments) ---
registers(eax) = 13
[...]
------------------------
Transition Information:
(module instance at [Context: brokenmaxint, line(257), column(34)])
    (label Block80480e8
        transition at [Context: brokenmaxint, line(199), column(10)])
------------------------
Step 6:
--- System Variables (assignments) ---
registers(eax) = 12
[...]

The importance of retaining the instruction addresses throughout the entire analysis process is now apparent, as this can be immediately connected back to the disassembly:
By directing the user’s attention to this line in a short sequence of assembly instructions a rapid understanding can be gained of the program component that is being considered. The instruction at 80480db loads the first parameter into eax, and the immediately following instruction compares this to the other parameter. By reading only a few more instructions the user can identify that the third instruction in the sequence makes a branching decision based on that comparison. The branch target loads the other parameter, whereas the block that would be executed if the branch was not followed skips the instruction at 80480e8, which was identified as the mistake in the SAL model. Clearly, the program should not have branched on the conditional at 80480e1, and yet it did, suggesting that the logic of that condition is wrong. This should direct the user to look at the choice logic in the original C file, whereupon they should identify the error.

This level of comprehension is only possible once the user has been directed to the critical three or four lines. In this example the entire assembly program can be reasonably comprehended, but in a system with a million or more instructions that is simply not possible. Additionally, this example depends on the operation of a relatively simple conditional branch. In a different example — perhaps where the error occurred in the application of a more complex instruction — the user could return to the SAL counter example and view the following sequence to appreciate the changes wrought in the system state by the subsequent instructions and so gain a better understanding of the interrelation between state components that was the source of the error.

7.6 Summary

The Z2SAL tool offers an easy and efficient way to allow the use of the SAL model checking suite on the model inferred by the analysis process. This chapter
has demonstrated the use of Z2SAL and the SAL suite to verify requirements of the system by encoding them as LTL theorems and applying the SAL tools. Additionally, this chapter has demonstrated the usefulness of the traceability information maintained in the model when requirement violations are identified. The only limitations to this verification process are the limitations of the Z2SAL parser, and the finite nature of the SAL state models. The next chapter will address the state limitations by applying symbolic proof techniques to evaluate properties over infinite domains.
Chapter 8

Verification by symbolic proof

8.1 Overview

In §7 various properties of the max example were confirmed with a model checker. In this section the same example and the same properties will be proven using the formal proof environment Isabelle (see §2.5.4). This requires rendering the model as an Isabelle theorem, using a lightweight Z representation that preserves the traceability data that has been maintained throughout the analysis process.

8.2 Symbolic proof in IsabelleHOL

Model checking is an effective way to assess properties of a system with a small state space, but as the state space grows the model checker becomes more time consuming, and quickly exhausts its memory. In the case of a large state space but a relatively straightforward operational model there are advantages to applying symbolic proof techniques. Whilst a model checker can demonstrate that a property holds for a finite range of values, a symbolic proof can show that the property is universally true. This has certain limitations in that not all properties can be proven, and the proof of even simple properties can require a large number of facts about the system. This limits the model complexity that can be realistically handled by formal proof, since more complex models may require intractably large numbers of facts, in the same way that the state space size is the limiting factor for model checkers. The choice between model checking and proof rests on the simplicity of automation. As shown by the Z2SAL tool and the work in §7 it is possible to achieve almost complete automation of the analysis of properties in a model checker, but the verification is limited to finite domains. Formal proof systems like Isabelle can make use of more subtle
approaches to verify properties over infinite domains, but this can require some level of human interaction to direct the proof.

A number of representations of Z exist for Isabelle, including HOLZ\cite{43} but these require higher-order features of Isabelle in order to properly represent the more advanced semantics of Z. A specific intention of this work is to prioritise readability and traceability for the semantically simple machine instructions found in assembly language. As such it was decided that a new, lightweight representation of Z in Isabelle would be constructed for this verification. By using a lightweight, first order model it becomes possible to apply the automated theorem provers that are included in the Isabelle system.

The representation used here models Z state schema as records (in a similar way to the Z schema promotion syntax). The current state of the system at a given point contains two elements: a record containing all of the state variables and their current values, and a Boolean value representing whether this state has been reached but in violation of the precondition of an operation. The Z theory file contains a generic definition of a system state that must be parameterised by the actual system state schema.

The representation of a Z operation schema then contains two propositions: a Boolean proposition that models the precondition of the operation, and a record function that uses the record assignment syntax to update the state in accordance with the postcondition of the Z operation.

\begin{verbatim}
record system =
  x :: int
  y :: int
definition S :: "system Op" where
  "S St ≡
  (\{ sys = \{ x = (x (sys St)) + 1, \ y = (y (sys St)) \},
  cond = x < y \})"
\end{verbatim}

This example defines a system state containing two integer variables and then defines an operation on that state that increments \(x\) and leaves \(y\) unchanged, but has the precondition that \(x\) is less than \(y\). The Op type is defined in the Z theory file to represent single Z operations.

The Z model also includes composition operators based on the Z and CSP-OZ operators. The semicolon operator models sequential composition and the external choice operator is included. To model the choice operator the operations are expanded with the \texttt{AllPos} function to apply across a list of states and produce a list of states. This maps the operation across all of the states in the argument, and then filters the results based on the precondition so that the resulting list is only those states that have not violated the precondition of the operation. The sequential operator then applies the second operation to all of the outputs of the first and performs similar precondition check.

\begin{verbatim}
definition doubleS :: "system AllPosOp" where
  "doubleS ≡ (AllPos S) ; (AllPos S)"
\end{verbatim}
The \texttt{AllPosOp} type is defined in the Z theory file to represent the mapped operation. It is equivalent to \texttt{'}a state list ⇒ 'a state list}, where \texttt{'a} is the Isabelle syntax for a type parameter.

The choice operator applies both operations to the argument list and produces the list that combines both the output lists, since this model is designed to verify properties of the system it is necessary that the properties hold on \textit{all possible} results.

\begin{verbatim}
definition maybeS :: "system state ⇒ system state" where "maybeS ≡ (AllPos S) □ (AllPos R)"
\end{verbatim}

This models the external choice between performing operation \texttt{S} and some other operation, \texttt{R}. In this model, however, the output will be the list containing the result of mapping both operations over the input set, so it will be the list of all possible states that could be reached from this list of initial states.

Both the sequential composition and choice operators’ definitions include rules to filter the output lists to only contain states where the precondition has not been violated. This is particularly important in the case of the choice operator. Since it models external choice if it composes two operations, only one of which has its preconditions satisfied, it will fill the output list with only the result state from the branch that is available and not the branch that is refused.

### 8.3 Converting Z to an Isabelle model

The \texttt{max} example was converted manually to the Isabelle representation to demonstrate the applicability of this verification technique. In the future it would be possible to automate this rendering process in a similar way to the Z2SAL process for the SAL input language.

Several helper functions are included to simplify access to registers and memory locations in the two-level record structure.

\begin{verbatim}
definition mem :: "system state ⇒ int ⇒ int" where "mem St ≡ (memory (sys St))"
declare mem_def [simp]
\end{verbatim}

This defines the \texttt{mem} operator as simply equivalent to requesting the \texttt{memory} element from the \texttt{sys} record element of the \texttt{St} record parameter. The last line explicitly identifies this as a simplification rule that the Isabelle simplifier is allowed to apply to all instances of the \texttt{mem} operator to make their behaviour more explicit.

\begin{verbatim}
definition reg :: "system state ⇒ Regname ⇒ int" where "reg St ≡ (registers (sys St))"
declare reg_def [simp]
\end{verbatim}
definition regind :: "system state ⇒ Regname ⇒ int ⇒ int" where
"regind St ≡ λr . λoff . ((mem St) ((reg St r) + off))"
declare regind_def [simp]

These rules produce similar operators for the register and register indirect
access mechanisms. The first block of the CSP-OZ model, Block80480d8, is
modeled thus:

\[
\begin{align*}
\text{Block80480d8} & \quad \Delta \quad \text{System} \\
\text{registers}' & = \text{registers} \oplus \{ \text{esp} \mapsto \text{registers}(\text{esp}) - 4 \} \\
\text{memory}' & = \text{memory} \oplus \{ \text{registers}'(\text{esp}) \mapsto \text{registers}(\text{ebp}) \}
\end{align*}
\]

deinition Block80480d8 :: "system Op" where
"Block80480d8 St ≡ /llparenthesis sys=(sys St)/llparenthesis
\text{registers} := (\text{registers} (\text{sys St}))(\text{esp} := ((\text{reg St esp}) - 4)),
\text{memory} := 
(\text{memory} (\text{sys St}))(((\text{reg St esp}) - 4) := (\text{reg St ebp})),
\text{cond}=\text{True}/rrparenthesis",
declare Block80480d8_def [simp]

This demonstrates the advantage of this lightweight notation over the more
semantically rich HOL Z notations in that it retains a large portion of the
syntactic structure of the original, making traceability easier. The lack of the
posterior variables forces the only substantial change: that \text{registers}'(\text{esp}) has
to be rendered with the expression used in the other assignment, \((\text{reg St esp}) - 4\). These operation definitions are also registered as simplification rules so
that the Isabelle simplifier can unravel the compositions that will be created
later and produce their behaviors explicitly.

The next few blocks can be written similarly. The complete Isabelle theory
file is included at Appendix G. The first three blocks of the program setup the
stack after the function call and load some registers from memory. This should
always work, there should be no precondition for this sequence. In this model
that is represented by the statement that for all possible argument states the
AllPos operation produces at least one state — that is, the precondition never
prevents the composition operator from producing a result state.

lemma firstThreeNoPrecond [simp] :
"\forall St :: (\text{system state}) .
\neg (((\text{AllPos Block80480d8})
 ; (\text{AllPos Block80480d9})
 ; (\text{AllPos Block80480db}) [St]) = [\_])"
by simp

The lemma is presented to Isabelle, which typechecks the statement and
builds an internal model of the proposition. The proof can be presented as a
sequence of applications of rules from the base logic or from previous parts of this theory file. In this case the simplifier is able to expand all of the proposition elements to a point that the Isabelle system can resolve trivially, so only the line by \texttt{simp} is necessary.

The \texttt{AllPos} function expands the singular operators to work on lists of states, and the sequential composition combines them as described previously. Since all the operation definitions are declared to be simplification definitions the Isabelle simplifier can apply them to the composition. In this case that is all that is needed to prove that the precondition is never violated. In this case they all have the precondition \texttt{true}, so this is not surprising, but it does demonstrate that all of the composition operators work correctly and that this approach to specification and verification is succinct.

The process of converting operations is not complex and a rendering system could be produced for most cases easily, but some Z postconditions are slightly more difficult. For example the block at address 80480\texttt{de} includes conditional postconditions:

\begin{verbatim}
Block80480dePartA :: "system Op" where
  "Block80480dePartA St ≡ (sys=(sys St)\{(zflag:=zero,sflag:=one)\},
  cond=((((reg St) eax) - (regind St ebp 12)) < 0)"\n
declare Block80480dePartA_def [simp]
\end{verbatim}

\begin{verbatim}
Block80480dePartB :: "system Op" where
  "Block80480dePartB St ≡ (sys=(sys St)\{(zflag:=one,sflag:=zero)\},
  cond=((((reg St) eax) - (regind St ebp 12)) = 0)"\n
This is easily modeled using the choice operator. Since the guards are mutually exclusive it can be modeled by representing each line as an operation that uses the left hand site of the implication as the precondition and the right hand side as the postcondition. The model for the complete block is then built as the external choice between them, which will then resolve to apply the postcondition from the one operation whose precondition is satisfied.

\begin{verbatim}
definition Block80480dePartA :: "system Op" where
  "Block80480dePartA St ≡ (sys=(sys St)\{(zflag:=zero,sflag:=one)\},
  cond=((((reg St) eax) - (regind St ebp 12)) < 0)"\n
declare Block80480dePartA_def [simp]
\end{verbatim}

\begin{verbatim}
definition Block80480dePartB :: "system Op" where
  "Block80480dePartB St ≡ (sys=(sys St)\{(zflag:=one,sflag:=zero)\},
  cond=((((reg St) eax) - (regind St ebp 12)) = 0)"\n\end{verbatim}
CHAPTER 8. VERIFICATION BY SYMBOLIC PROOF

declare Block\text{80480dePartB\_def} [simp]

definition Block\text{80480dePartC} :: "system Op" where
"Block\text{80480dePartC St} \equiv \{\text{sys=(sys St)}\}\
  \text{zflag:=zero,sflag:=zero}\
  , \text{cond=((}}(\text{reg St eax}) - (\text{regind St ebp 12})) > 0)\}"
declare Block\text{80480dePartC\_def} [simp]

definition Block\text{80480de} :: "system AllPosOp" where
"Block\text{80480de St} \equiv (((\text{AllPos Block\text{80480dePartA}})\boxempty\text{AllPos Block\text{80480dePartB}})\boxempty\text{AllPos Block\text{80480dePartC}}) St"
declare Block\text{80480de\_def} [simp]

However, this interpretation requires a fairly deep semantic understanding of the CSP-OZ model, so is more than a simple textual conversion. The remainder of the \(Z\) operations can be represented in a similar way. The full \(Z\) theory file is presented in Appendix F.

The operations are then combined into sets of sequential compositions, and finally composed with choice operators to form the complete model:

\(*\text{ The first sequential blocks with no branches *}\)
definition Entry :: "system AllPosOp" where
"Entry \equiv \lambda St .\n  ((\text{AllPos Block\text{80480d8}})\newline\text{;AllPos Block\text{80480d9}})\newline\text{;AllPos Block\text{80480db}}\newline\text{;Block\text{80480de} St})"
declare Entry_def [simp]

\(*\text{ The two choices at 189 *}\)
definition Left :: "system AllPosOp" where
"Left \equiv \lambda St .\n  ((\text{AllPos OnBranch\text{80480e1}})\newline\text{;AllPos Block\text{80480e8}})\newline\text{;AllPos Block\text{80480eb}}) St"
declare Left_def [simp]

definition Right :: "system AllPosOp" where
"Right \equiv \lambda St .\n  ((\text{AllPos NoBranch\text{80480e1}})\newline\text{;AllPos Block\text{80480e3}})\newline\text{;AllPos OnBranch\text{80480e6}}\newline\text{;AllPos Block\text{80480eb}}) St"
declare Right_def [simp]
8.4. PROOFS OF PROPERTIES

(* The complete spec for the Max function *)
definition MaxOp :: "system AllPosOp" where
"MaxOp St = (Entry;(Left □ Right)) St"
declare MaxOp_def [simp]

8.4 Proofs of properties

The significant properties required of the system were:

- **Termination** The function should always reach a return state, and it should not perform further operations from this state.

- **Sensible return value** C functions pass arguments on the stack, along with the return value. For the Intel system modeled here the arguments are found at esp + 4 and esp + 8 on function entry. The max function should return one or other of these, and not some spurious value.

- **Correctness of return value** The value returned should be the numerically higher of the two arguments. Since the return is by value it does not matter which of two equal values is used as the source of the assignment.

Additionally, the definition of the ret instruction required a check that there was no stack overflow possible. These properties can be written and proven as follows:

theorem MaxTerminates : "∀St::system state .
  MaxOp [St] ≠ []"
by simp

theorem NoStackOverflow :
  "∀St::system state . ∀ASt::system state .
  cont ASt (MaxOp [St]) → (regind St esp 0 = regind ASt esp 0)"
by simp

For the last two properties the simplifier requires a few hints before it is able to completely discharge the proof requirements, but these can be supplied in the form of lemmas. The simplifier has a limit to the depth to which it will simplify in one call, so these lemmas simply guide it and allow it to take a number of shorter steps.

lemma functionsAreSane [simp] : "∀St . ∀n . (mem St) n = (mem St) n"
by simp

lemma intCommute [simp] : "∀n::int . ∀m::int . (n + m) = (m + n)"
by simp

theorem MaxGetsSomethingSensible [simp] :
∀St::system state . ∀ASt::system state . cont ASt (MaxOp [St]) \implies
( let n = (regind St esp 4); m = (regind St esp 8) in
((reg ASt eax) = n) \lor ((reg ASt eax) = m)
)
" by simp

theorem MaxReturnsMax :
"∀St::system state . ∀ASt::system state . cont ASt (MaxOp [St]) \implies
( let n = (regind St esp 4); m = (regind St esp 8) in
(n \geq m \iff (reg ASt eax = n))
)
" by simp

8.5 Proof assistant counterexamples for fault detection and tracing

Unlike the model checking example, these proofs are not limited to finite ranges of values and should apply universally. Nonetheless, the ability to detect defects and the level and style of feedback provided is still a more useful measure of a verification process. The same brokenmax implementation that was used in the modelchecking example in §7.5, with the same defect, can be rendered in the Isabelle representation. The only significant changes to the correct implementation are the branch prefixes at address 80480e1:

(* Changes in the broken version... *)
definition WrongOnBranch80480e1 :: "system Op" where
"WrongOnBranch80480e1 St = (\llparenthesis sys=(sys St),
\quad cond=(sflag (sys St) = zero)\rrparenthesis)"
declare WrongOnBranch80480e1_def [simp]
definition WrongNoBranch80480e1 :: "system Op" where
"WrongNoBranch80480e1 St = (\llparenthesis sys=(sys St),
\quad cond=(sflag (sys St) \neq zero)\rrparenthesis)"
declare WrongNoBranch80480e1_def [simp]

As with the model checking, this does not alter the first verification conditions.

(* The two wrong choices at 189 *)
definition WrongLeft :: "system AllPosOp" where
"WrongLeft ≡ \lambda St .
((AllPos WrongOnBranch80480e1)
 ; (AllPos Block80480e8)
 ; (AllPos Block80480eb)) St"
declare WrongLeft_def [simp]

definition WrongRight :: "system AllPosOp" where
"WrongRight ≡ λ St .
((AllPos WrongNoBranch80480e1)
 ; (AllPos Block80480e3)
 ; (AllPos OnBranch80480e6)
 ; (AllPos Block80480eb)) St"
declare WrongRight_def [simp]

definition WrongMaxOp :: "system AllPosOp" where
"WrongMaxOp St = (Entry; (WrongLeft \ Join\ WrongRight)) St"
declare WrongMaxOp_def [simp]

(* It should still get an answer *)
lemma WrongMaxTerminates :
"∀ St::system state .
WrongMaxOp [St] ≠ []"
by simp

(* We should still get one of the two arguments. *)
lemma WrongMaxGetsSomethingSensible [simp] :
"∀ St::system state .
∀ ASt::system state .
cont ASt (WrongMaxOp [St]) −→
(let n = (regind St esp 4); m = (regind St esp 8) in
(((reg ASt eax) = n) ∨ ((reg ASt eax) = m))
)"
by simp

These are all discharged in the same way as the correct versions. Any attempts to prove the correctness theorem, however, will not succeed. The refute and nitpick tools can be used to find counter examples.

theorem WrongMaxReturnsMax :
"∀ St::system state .
∀ ASt::system state .
(
(cont ASt (WrongMaxOp [St])) −→
(let n = (regind St esp 4); m = (regind St esp 8) in
(n ≥ m) −→ (reg ASt eax = n)
)"
nitpick
apply(simp)
nitpick [verbose=true,show_all=true]

8.6 Summary

This chapter has demonstrated the feasibility of converting the formal model inferred by the analysis process into a lightweight IsabelleHOL representation. Once converted, it was shown that formal proofs can be constructed that verify the system requirements. The symbolic nature of these proofs makes them applicable over infinite variable domains, unlike the model checking results in §7. However, they require more human interaction than is necessary with the Z2SAL and SAL suite and the language conversion process is not yet automated.
Chapter 9

Verifying a hardware usage requirement

9.1 Overview

The previous two chapters have demonstrated the use of the analysis process to verify properties of software systems, but these properties have been abstract properties. This chapter presents the verification of a hardware usage property of the kind that cannot be analysed in safe language subsets.

9.2 A hardware interaction example

The example used in this chapter is a fictional hardware system. The natural language description of the requirements for the function are:

The system has an Intel i386 based processor. The device to be controlled has two ports: a control port and a data port. The control port is accessible at the processor’s IO port\(^1\) address 0. The data port is accessed at IO port address 4. To request data the driver must write a 1 to the control port, then wait 10ms before the data on the data port is valid. To facilitate the timing there is a clock device available at IO port 8, which presents an integer representing time on an arbitrary scale that increments once per ms.

The designed operation of the device driver function is to write a 1 to the control port, read the clock port and store the value read as the start time, loop reading from the clock port until the value has increased by at least 10 from

\(^1\)Intel processors separate IO port operations from memory accesses and have different instructions for each. The in and out instructions are used to read from and write to IO ports.
the start time, read the data port and return the value read. The C program to implement this is presented below.

```c
#define out(port, value) asm("out %1,%0" : : "dN" (port), "a" (value))
#define in(port, result) asm("in %1,%0" : "=a" (result) : "dN" (port))

#define CONTROL_REG 0
#define DATA_REG 4
#define CLOCK_REG 8

int exdev() {
 int starttime;
 int endtime;
 int now;
 int result;

 // Output a request
 out(CONTROL_REG, 1);
 // read the clock to get the start time.
 in(CLOCK_REG, starttime);
 // Wait 100ms
 endtime = starttime + 10;
 do {
 in(CLOCK_REG, now);
 } while(now < endtime);

 // Return the response register;
 in(DATA_REG, result);
 return result;
}
```

The use of IO port operations is sufficiently target specific that it is not even possible with pure C, additional inline assembler code must be included. The literal addresses of the IO ports are contained in the preprocessor definitions to ease readability.

The process of compilation to an executable, disassembly, analysis with Spurinna, and conversion to a SAL model with the Z2SAL tool is identical to the process used for the `maxint` example in §7, so it is not described here. The only change to the system specification is to add the `ports` function that is defined from natural numbers to natural numbers in the same way as the `memory` function. Unlike the memory function, the instruction operations do not contain any postconditions that ensure that the values present at particular ports are unchanged between operations. Since the posterior state of the `ports` function is undefined the modelchecker and any other verification tool must assume that the ports could assume any value at each step. This neatly represents
the volatile nature of data on IO devices, and demonstrates the reason for the choice of the Z language — which allows variables to be left unspecified — over more incremental state based modeling languages.

\[
\begin{array}{l}
System \\
\text{registers} : \text{REGNAME} \rightarrow \mathbb{N} \\
\text{memory} : \mathbb{N} \rightarrow \mathbb{N} \\
\text{ports} : \mathbb{N} \rightarrow \mathbb{N} \\
\text{zflag} : \{0, 1\} \\
\text{cflag} : \{0, 1\} \\
\text{oflag} : \{0, 1\} \\
\text{sflag} : \{0, 1\}
\end{array}
\]

The C function has four local variables. The GCC compiler creates space for these variables on the stack when the function is entered. Since this is a 32bit system the four integers require 16 bytes, and the 4 byte stack base pointer that is also pushed on function entry totals 20 bytes required for stack space. To simplify the model and optimise the size of the \text{NAT} type in the SAL representation the system is initialised with the stack pointer at address 20.

\[
\begin{array}{l}
\text{Init} \\
\text{System}' \\
\text{registers}'(\text{esp}) = 20 \\
\text{registers}'(\text{ebp}) = 20
\end{array}
\]

\subsection*{9.3 SAL verification}

The SAL model that is produced has 20 transitions and uses a set of natural numbers that runs from 0 to 21, with 22 as the unused bottom element required by the Z2SAL models of functions\textsuperscript{2}. It is included at Appendix H.

Unfortunately, using natural numbers up to 22, and the introduction of the \text{ports} function that is also defined over them, produces a state space that is too large for the symbolic model checker. In principle, this model could be simplified by creating smaller types for the port addresses, containing only those values that are used — 0, 4, and 8 — but this would only solve the problem for a borderline case such as this. Instead, the SAL suite contains a \textit{bounded model checker} that produces all possible traces to some specified depth and then applies a SAT solver to evaluate the required LTL property over the trace set. This has several limitations that are discussed by the SAL FAQ page[5]. Specifically, it is not possible to evaluate the \textit{F} (future) and \textit{U} (until) operators correctly. For properties that must be true in the future the suite is searching for a counter example, if it does not find the required property in the traces presented it assumes that it may be present if the traces were extended, and so

\textsuperscript{2}The SAL modeling of Z functions is fully described in Derrick et al. [28]
does not present this as a counter example. The only violation it can detect is a
deterministic cycle that do not contain the property. The strict until operator
requires that the property is eventually true, and this has the same difficulties
as the future operator. The $G$ (globally) and $W$ (weak until) operators can be
evaluated over finite traces, although their evaluation is not technically accurate
since they could be violated if the traces were extended.

These limitation prevent the application of the termination properties that
were verified in the maxint example. The alwaysTerminates property can be
evaluated on finite traces but its evaluation demonstrates nothing since a trace
not ending in the terminal state would result in SAL assuming it would if the trace
were extended. This is an incorrect assumption given the arbitrarily volatile
specification of the ports function. Since the formal specification does not
require the values in the clock port to increment it is a legitimate instantiation
for the delay loop to never terminate if the clock port never presents a value
that is 10 greater than its initial value. The LTL properties could all be prefixed
by the requirement that the clock port increments:

\[
\text{FORALL (VAL:NAT): } G((\text{ports}(8) = VAL) \Rightarrow X(\text{ports}(8) > VAL)) \Rightarrow \ldots
\]

This would require the properties to only hold on those traces that can be
expected to exist in the real system. Since termination is difficult to determine
using the bounded model checker, and the other properties can be evaluated
without this requirement, it is not explored further.

The neverRestarts property can be evaluated meaningfully but its evalu-
ation only demonstrates that none of the finite traces ever left the terminal state
within the bounded number of steps. Since only the Stop transition is valid in
the terminal Leave state it is a reasonable assumption that this property will
continue to hold.

That the system ever terminates can be demonstrated by evaluating the
inverse property and finding a counter example.

\[
\text{neverTerminates : THEOREM State } \vdash G(\text{cspstate } \neq \text{Leave});
\]

A counter example is quickly identified that shows a trace which reaches the
terminal state.

Due to the volatile nature of the IO port contents the system properties
regarding the hardware usage must use quantified variables that capture the
state of the ports at the moment they are read or written by the software.
A simple text search can identify the transition in the model that operate on
a specific port. This ability to identify the parts of a system that interact
with particular state is known as slicing[56] when performed in a formal way,
and its applicability to CSP-OZ models — which includes the development of
automated tools such as developed by Syspect [54] — was another consideration
in the choice of CSP-OZ as an output language.

The accesses to the ports are identified as:

- **Control port - ports(0)** written to in Block80480c3, which is activated
  by cspstate Branch80480c3
9.3. SAL VERIFICATION

- **Data port** - ports(4) read in Block0480e0, which is activated by csp-state Anon0

- **Clock port** - ports(8) read in Block0480c3 (cspstate Branch0480c3), and again in Block0480d3 (cspstate Branch0480d3)

Since these are the only uses of the control ports, and it can be textually verified that these are the only ports ever used, the system usage requirements can be formulated as LTLs based on the sequence of activation of these transitions.

\[
\text{writeBeforeRead} : \text{THEOREM State} |- \\
W((\text{cspstate} /= \text{Anon0}), (\text{cspstate} = \text{Branch0480c3}));
\]

The `writeBeforeRead` property guarantees that the control port is written at some point before the data port is read. The SAL syntax uses prefix notation for the weak until operator, so this states that the system does not activate the data port read transition — preconditioned to require `cspstate = Anon0` — until the system has activated the control port write transition, which is preconditioned to require `cspstate = Branch0480c3`.

\[
\text{delayIsCorrect} : \text{THEOREM State} |- \forall \text{START} : \text{NAT} : \\
G((\text{cspstate} = \text{Branch0480c3}) \text{ AND (ports(8) = START)}) \rightarrow \\
\forall \text{FINISH} : \text{NAT} : \\
G(((\text{cspstate} = \text{Branch0480d3}) \text{ AND (ports(8) = FINISH)}) \rightarrow \\
G(((\text{cspstate} = \text{Anon0}) \text{ AND (registers(eax) = FINISH)}) \rightarrow \\
(\text{FINISH} \geq (\text{START} + 10)) \\
)
\]

In the `delayIsCorrect` property, the clock values at the point of the write to the control register is bound to the variable `START`. The value of the clock register in the loop guard is bound to `FINISH`. The condition that the loop ends (the system reaches state `Anon0` after using this value in `eax` for the `cmp` instruction) requires that the `FINISH` values is at least 10 greater than the `START` value.

Having verified that the read only happens after the control register write, and that the delay is of sufficient magnitude, it only remains to verify that the delay occurs between the write and the read.

\[
\text{delayBetweenWriteAndRead} : \text{THEOREM State} |- \\
W((\text{cspstate} /= \text{Anon0}), (\text{cspstate} = \text{Branch0480d3}));
\]

The `delayBetweenWriteAndRead` property uses the weak until operator to verify that the delay happens before the data port read. An additional statement would be added to enforce that the control port write occurred before the initial clock port read, but the Spurinna simplifier has merged the two operations.
to happen simultaneously. This is a good example of the simplifier merging operations to the limit of correct simultaneous representation, and not beyond, since to merge any further operations from the loop would have altered the properties.

9.4 Summary

This chapter has demonstrated that the analysis process can be applied to hardware usage conditions. Some of the limitations in applying the SAL model checking suite to realistic examples were discussed, along with some mitigating approaches.
Chapter 10

Conclusions

10.1 Software analysis

In the introduction to this thesis it was stated that the principle difficulties that current techniques face when verifying hardware-dependent software are:

- They have no way to statically determine the behaviour of code that interacts directly with the hardware.
- Current techniques are necessarily detached from the hardware (for instance language subsets, discussed in §2.3) or treat hardware in an abstract, general way (such as the heap model in Separation Logic §2.5.3).
- Verification must fit into an industrial workflow and not be overly dependent on expert skills, and must be applicable to large scale systems in reasonable time.

Each of these items has been addressed in this work. The analysis process is entirely static and produces a formal model documenting the behaviour of the executable, so is independent of the high-level language concerns that prevent analysis of hardware interaction. The CSP-OZ model is developed at the level of registers and memory addresses, allowing meaningful representation of the hardware interaction likely to be of interest when verifying requirements on hardware usage.

Finally, the process has been automated in the Spurinna prototype, demonstrating that this technique can be performed without human interaction, and so on large scale projects and without excessive requirements for highly skilled users. When developing the model checking example described in §7, the complete process — from compiling the C code, disassembling the executable, inferring a formal model with Spurinna, creating a SAL model with Z2SAL, and checking the LTL properties — was performed several times. After a brief period of familiarisation with the minor file changes required this entire process could be performed in under 10 minutes. This ability to identify faults, correct
the faults, and confirm the corrections within a reasonable time is vital if a
technique is to be usable in an industrial development process.

The Z2SAL demonstration, the IsabelleHOL demonstration, and the hard-
ware usage demonstration show that the inferred model is not only readable
and complete, but also practically useful for verifying properties of the system.
The properties verified by the three examples were not limited to arbitrary
model properties, but show the encoding of useful correctness properties on the
behaviour of the software.

10.2 Future work

Processor and instruction set specification repository

The most significant factor limiting the application of the prototype imple-
mentation to larger and more complex examples was the size of the instruction
set model available. The model produced for the Intel platform was adequate
to demonstrate all of the features necessary to specify instructions for a real
processor system, but was limited to only 18 sequential instructions, and 10
branch instructions. The development of more instructions is not difficult or,
individually, very time consuming but it had limited research value, so was not
performed during this work. To develop more complete specifications would
require a commitment of time, but the results could then be shared amongst
the entire community of potential users. A valuable future achievement would
be a repository of specifications for common processors — possibly multiple
specifications for each processor that emphasise analysis of different classes of
properties. All interested parties could contribute more instruction specifica-
tions to the repository, and could highlight and correct errors in those present.
This would spread the time consumption and provide at least a starting point
for anyone wishing to begin applying this analysis technique.

Automatic conversion of Z to the lightweight Isabelle rendering

The example verification presented in §8 demonstrates the value of the Isa-
belle proof techniques for verification of system properties. Unfortunately, the
creation of the Isabelle model had to be performed manually. A tool similar
to Z2SAL could be created to parse Z specifications and render the model in
the Isabelle form. This would allow an automated workflow similar to the one
present when using Spurinna with Z2SAL.

Automatic backwards traceability

A key design objective of the analysis process was to allow traceability of faults
from the verification stage back to the original code. The examples in §7 and
§8 demonstrate the power and applicability of this technique. This process
could be automated, at least as far as the assembly code. The block addresses
provide enough information, combined with Spurinna’s internal graph model
of the segmented code, to allow for syntax highlighting to be applied to the assembly code. This could be performed with a user directed interface where clicking on the block names in the SAL output, the Isabelle output, or the CSP-OZ model, could activate highlighting of the related area. Ideally, if the cause of a requirement violation could be identified automatically, then the code could be automatically annotated where a particular section is the cause of a violation. The range and style of requirements for which this would be applicable is limited, but it has been shown to be possible and useful in other verification systems[3].
Bibliography


Appendix A

Flattening CSP-OZ to pure Z

The models produced by this analysis process are written in the CSP-OZ specification language. CSP-OZ classes can be considered as a state transition system with the state modeled by the Z state schema, the transition effects modeled by the Z operation schema, and the transition matrix — essentially, which transition is allowed when — modeled by the CSP component. Some verification processes are only defined over Z and not over CSP-OZ it is helpful to be able to convert a CSP-OZ model into a pure Z model that encodes the same state transition system.

The Object Z components exist principally to collect schema together and ease readability. This can be accomplished adequately with naming conventions so that operation schema from a particular class all have the class name as a prefix. That was not implemented for these examples since all of the verification is performed on single functions but implementation would be easy. The CSP component encodes the transition acceptance and refusal information. To encode this in Z it is necessary to add an additional variable to the operation schema that tracks the current position in the CSP model. Preconditions can be added to the operations that are defined over this variable to allow an operation to be performed only if the system is at the appropriate point in the transition model. Postconditions update the variable to reflect the movement along edges of the transition graph.

This conversion can be achieved entirely automatically. The process requires walking the CSP process system and modifying the Z operations accordingly. Only three of the CSP operators are used in the models produced by this process so these are the only operators handled here.

The simplest CSP operator is the arrow operator that represents action prefixing.

\[ P = Op \rightarrow Q \]
Process $P$ allows the Z operation $Op$ to execute and then evolves to become process $Q$. Z operation $Op$ must be enhanced to require that the system is behaving as process $P$ before it will execute. This pattern of using the process name to permit operation will be repeated for all other operations, so the postcondition of $Op$ can be enhanced to set the $cspstate$ variable to $Q$. This will allow any operations that are allowed in the $Q$ process to execute.

\[
\begin{align*}
  Op & \quad \text{...} \\
  \quad & cspstate : CSPSTATE \\
  \quad & cspstate' : CSPSTATE \\
  \quad & \text{...} \\
  & cspstate = P \\
  & cspstate' = Q 
\end{align*}
\]

This assumes that the variable $cspstate$ is unused elsewhere in the Z specification, but any other unused name could be used instead. If process $Q$ is defined thus:

\[
Q = Op_2 \rightarrow R
\]

then $Op_2$ can be expanded similarly.

\[
\begin{align*}
  Op_2 & \quad \text{...} \\
  \quad & cspstate : CSPSTATE \\
  \quad & cspstate' : CSPSTATE \\
  \quad & \text{...} \\
  & cspstate = Q \\
  & cspstate' = R 
\end{align*}
\]

The $CSPSTATE$ type can be automatically defined as a BNF type with the various process names as atomic components. These two schema now encode the same transition acceptance information as the CSP-OZ model, but in pure Z. $Op_2$ cannot execute until the $cspstate$ variable has been set to $Q$, and that is performed as the postcondition of $Op$. This reflects exactly the allowed trace in the CSP model, where $Op$ occurs as an event in $P$, before the system evolves to $Q$ and allows $Op_2$ to occur.

Since the prefix operator defines a process it can be used in a chain. This pattern is common in CSP models:

\[
A = b \rightarrow c \rightarrow D
\]

where $A$ and $D$ are processes, $b$ and $c$ are events. In this case, the right hand side — $c \rightarrow D$ — is not explicitly named. To handle this the flattening process
must assign it a name and include the name in the \textit{CSPSTATE} type. The Spurinna implementation uses the string \textit{Anon} with a natural number prefix drawn from an internal, incrementing list.

\begin{align*}
  & b \\
  & \ldots \\
  & \text{cspstate} = A \\
  & \text{cspstate}' = \text{Anon}1 \\
  \end{align*}

\begin{align*}
  & c \\
  & \ldots \\
  & \text{cspstate} = \text{Anon}1 \\
  & \text{cspstate}' = D \\
  \end{align*}

External choice is the second operator that is used. This should allow either of the branches to occur, the decision being made by the environment. Since the external choice operator is defined to conjoin two CSP processes, it is necessary to look at the contents of each of the branches to find the first event.

\[ R = P \boxdot Q \]

Using the definitions of \( P \) and \( Q \) from above this identifies the first \( Z \) operation schema in the branches as \( Op \) and \( Op_2 \). If these are both preconditioned to allow execution when the system is behaving as \( R \), then they can have post-conditions to evolve as defined by the branch processes.

\begin{align*}
  & Op \\
  & \ldots \\
  & \ldots \\
  & \text{cspstate} = R \\
  & \text{cspstate}' = Q \\
  \end{align*}

\begin{align*}
  & Op_2 \\
  & \ldots \\
  & \ldots \\
  & \text{cspstate} = R \\
  & \text{cspstate}' = R \\
  \end{align*}

This encodes the behaviour of the \( R \) process, but it removes the path to \( Op_2 \) via process \( P \), since \( Op_2 \) no longer responds when the system behaves as \( Q \). Additionally, any other processes that evolve to process \( P \) cannot activate \( Op \).
To complicate things even further, $P$ may not be the only process that uses $Op$ as an event. This combines to require a more subtle set of pre- and postconditions. The flattening process builds an internal model of all the references in and out of an operation and then, if the situation is not trivial, creates a suitable set of implication statements and a precondition disjunction.

\[
\begin{align*}
\text{Op} \\
\phantom{\text{Op}} & \vdots \\
\text{cspstate} &= P \lor Q \\
\text{cspstate} &= P \Rightarrow \text{cspstate}' = Q \\
\text{cspstate} &= R \Rightarrow \text{cspstate}' = Q
\end{align*}
\]

\[
\begin{align*}
\text{Op}_2 \\
\phantom{\text{Op}_2} & \vdots \\
\text{cspstate} &= Q \lor R \\
\text{cspstate} &= Q \Rightarrow \text{cspstate}' = R \\
\text{cspstate} &= R \Rightarrow \text{cspstate}' = R
\end{align*}
\]

If an additional process used one of these operations then that could be included as an additional implication.

\[
Z = Op \rightarrow A
\]

\[
\begin{align*}
\text{Op} \\
\phantom{\text{Op}} & \vdots \\
\text{cspstate} &= P \lor R \lor Z \\
\text{cspstate} &= P \Rightarrow \text{cspstate}' = Q \\
\text{cspstate} &= R \Rightarrow \text{cspstate}' = Q \\
\text{cspstate} &= Z \Rightarrow \text{cspstate}' = A
\end{align*}
\]

The final operator used in the inferred models is the parallel composition. This is not used in any of the examples in this thesis, so it is not yet implemented by the Spurinna system. In principle it could be modeled by assigning separate $\text{cspstate}$ style variables to each component of the composition, and then adding a shared variable that activates both sets of transitions once the system enters the parallel process. The added complexity is that CSP processes must synchronise on communications. The elements of each process could be scanned for communications and then the acceptance variables updated to only allow a transition if one of the corresponding operations — i.e. one with a partner output for each of this operations inputs, and partner input for each output — is ready to execute. The detail of connecting the inputs and outputs together is more complex and would require the use of suitable Z pipe notation. This complexity, and the fact that parallel composition is only used with the schema promotion notation, which is not supported by Z2SAL, is the reason it has not yet been implemented.
Appendix B

Derived MaxInt CSP-OZ model

\[
\begin{align*}
\text{max} & \quad \text{System} \\
\text{Branch}_{80480} e_1 & = (\text{OnBranch}_{80480} e_1 \rightarrow \text{Block}_{80480} e_8 \rightarrow \text{Branch}_{80480} e_b) \\
\text{Branch}_{80480} e_6 & = (\text{NoBranch}_{80480} e_1 \rightarrow \text{Block}_{80480} e_3 \rightarrow \text{Branch}_{80480} e_6) \\
\text{Branch}_{80480} e_b & = \text{OnBranch}_{80480} e_6 \rightarrow \text{Block}_{80480} e_b \rightarrow \text{Leave} \\
\text{Branch}_{80480} e_{6b} & = \text{Block}_{80480} e_8 \rightarrow \text{Branch}_{80480} e_{6b} \\
\text{Branch}_{80480} e_{6d} & = \text{Block}_{80480} e_6 \rightarrow \text{Branch}_{80480} e_{6d} \\
\text{Main} & = \text{Entry} \rightarrow \text{Block}_{80480} d_8 \rightarrow \text{Branch}_{80480} e_9 \\
\text{Leave} & = \text{Exit} \rightarrow \text{Stop} \\
\text{Entry} & \quad \text{call} : \text{System} \\
\Theta \text{System} = \text{call} \\
\text{Exit} & \quad \text{return}! : \text{System} \\
\Theta \text{System} = \text{return!} \\
\text{Call} & \quad \text{call}! : \text{System} \\
\Theta \text{System} = \text{call!}
\end{align*}
\]
Return
\[\text{return? : System}\]

\[\Theta \text{System}^\prime = \text{return?}\]

**Blocks 80480:8**

\[\Delta \text{System}\]

\[\text{registers}^\prime = \text{registers} \oplus \{\text{esp} \mapsto \text{registers}(\text{esp}) - 4\}\]
\[\text{memory}^\prime = \text{memory} \oplus \{\text{registers}'(\text{esp}) \mapsto \text{registers}(\text{ebp})\}\]

**Blocks 80480:49**

\[\Delta \text{System}\]

\[\text{registers}^\prime = \text{registers} \oplus \{\text{ebp} \mapsto \text{registers}(\text{esp})\}\]
\[\text{memory}^\prime = \text{memory}\]

**Blocks 80480:46**

\[\Delta \text{System}\]

\[\text{registers}^\prime = \text{registers} \oplus \{\text{eax} \mapsto \text{memory}(\text{registers}(\text{ebp}) + 8)\}\]
\[\text{memory}^\prime = \text{memory}\]

**Blocks 80480:4c**

\[\Delta \text{System}\]

\[\text{registers}(\text{eax}) - \text{memory}(\text{registers}(\text{ebp}) + 12) < 0\]
\[\Rightarrow \text{sflag}' = 1 \land \text{zflag}' = 0\]
\[\text{registers}(\text{eax}) - \text{memory}(\text{registers}(\text{ebp}) + 12) = 0\]
\[\Rightarrow \text{zflag}' = 1 \land \text{sflag}' = 0\]
\[\text{registers}(\text{eax}) - \text{memory}(\text{registers}(\text{ebp}) + 12) > 0\]
\[\Rightarrow \text{zflag}' = 0 \land \text{sflag}' = 0\]
\[\text{memory}^\prime = \text{memory}\]
\[\text{registers}^\prime = \text{registers}\]

**OnBranch 80480:e1**

\[\Xi \text{System}\]

\[\text{zflag} = 1 \lor \text{sflag} = 1\]

**NoBranch 80480:e1**

\[\Xi \text{System}\]

\[\text{zflag} \neq 1 \land \text{sflag} \neq 1\]
Block_{80480\text{e3}}
\begin{align*}
\Delta \text{System} \\
\text{registers}' &= \text{registers} \oplus \{\text{eax} \mapsto \text{memory}(\text{registers}(\text{ebp}) + 8)\} \\
\text{memory}' &= \text{memory}
\end{align*}

OnBranch_{80480\text{e6}}
\begin{align*}
\equiv \text{System} \\
\text{true}
\end{align*}

Block_{80480\text{e8}}
\begin{align*}
\Delta \text{System} \\
\text{registers}' &= \text{registers} \oplus \{\text{eax} \mapsto \text{memory}(\text{registers}(\text{ebp}) + 12)\} \\
\text{memory}' &= \text{memory}
\end{align*}

Block_{80480\text{eb}}
\begin{align*}
\Delta \text{System} \\
\text{registers}' &= \text{registers} \oplus \{\text{ebp} \mapsto \text{memory}(\text{registers}(\text{esp}))\} \\
\text{esp}' &= \text{registers}(\text{esp}) + 4 \\
\text{memory}' &= \text{memory}
\end{align*}

\text{maxint}
\begin{align*}
\text{System}
\end{align*}
APPENDIX B. DERIVED MAXINT CSP-OZ MODEL

\[
\begin{align*}
\text{Branch}_{8048104} &= \text{OnBranch}_{8048104} \rightarrow \text{Block}_{8048121} \rightarrow \text{Branch}_{8048124} \\
\text{Branch}_{8048121} &= \text{Block}_{8048121} \rightarrow \text{Branch}_{8048124} \\
\text{Branch}_{8048115} &= \text{OnBranch}_{8048115} \rightarrow \text{Call} \rightarrow \text{Return} \\
&\rightarrow \text{Block}_{804811a} \rightarrow \text{Branch}_{804811d} \lor \text{max} \\
\text{Branch}_{8048128} &= (\text{OnBranch}_{8048128} \rightarrow \text{Block}_{8048106} \rightarrow \text{Branch}_{8048109}) \\
&\lor (\text{NoBranch}_{8048128} \rightarrow \text{Block}_{804812a} \rightarrow \text{Branch}_{804812d}) \\
\text{Branch}_{80480} &= \text{Block}_{80480} \rightarrow \text{Branch}_{80480f0} \\
\text{Branch}_{80480f0} &= \text{Block}_{80480f0} \rightarrow \text{Branch}_{80480f3} \\
\text{Branch}_{80480f3} &= \text{Block}_{80480f3} \rightarrow \text{Branch}_{80480f6} \\
\text{Branch}_{80480f6} &= \text{Block}_{80480f6} \rightarrow \text{Branch}_{80480f8} \\
\text{Branch}_{80480f8} &= \text{Block}_{80480f8} \rightarrow \text{Branch}_{80480f6} \\
\text{Branch}_{80480f6} &= \text{Block}_{80480f6} \rightarrow \text{Branch}_{80480f3} \\
\text{Branch}_{8048109} &= \text{Block}_{8048109} \rightarrow \text{Block}_{804810b} \\
\text{Branch}_{804810b} &= \text{Block}_{804810b} \rightarrow \text{Block}_{804810c} \\
\text{Branch}_{804810c} &= \text{Block}_{804810c} \rightarrow \text{Block}_{8048112} \\
\text{Branch}_{8048112} &= \text{Block}_{8048112} \rightarrow \text{Block}_{8048115} \\
\text{Branch}_{8048115} &= \text{Block}_{8048114} \rightarrow \text{Block}_{8048121} \\
\text{Branch}_{8048124} &= \text{Block}_{8048124} \rightarrow \text{Branch}_{8048128} \\
\text{Branch}_{8048128} &= \text{Block}_{804812d} \rightarrow \text{Leave} \\
\text{Main} &= \text{Entry} \rightarrow \text{Block}_{80480ed} \rightarrow \text{Branch}_{80480ee} \\
\text{Leave} &= \text{Exit} \rightarrow \text{Stop}
\end{align*}
\]

\[
\begin{align*}
\text{Entry} &\quad \text{call?} : \text{System} \\
&\quad \Theta \text{System'} = \text{call?} \\
\text{Exit} &\quad \text{return!} : \text{System} \\
&\quad \Theta \text{System} = \text{return!} \\
\text{Call} &\quad \text{call!} : \text{System} \\
&\quad \Theta \text{System} = \text{call!} \\
\text{Return} &\quad \text{return?} : \text{System} \\
&\quad \Theta \text{System'} = \text{return?} \\
\text{Block}_{80480ed} &\quad \Delta \text{System} \\
&\quad \text{registers'} = \text{registers} \oplus \{ \text{esp} \mapsto \text{registers}(\text{esp}) - 4\} \\
&\quad \text{memory'} = \text{memory} \oplus \{ \text{registers'}(\text{esp}) \mapsto \text{registers}(\text{ebp})\}
\end{align*}
\]
| Block 80480ee | \( \Delta \text{System} \) |
|--------------------------------------------------|
| \( \text{registers}' = \text{registers} \oplus \{\text{ebp} \mapsto \text{registers}(\text{esp})\} \) |
| \( \text{memory}' = \text{memory} \) |

| Block 80480f0 | \( \Delta \text{System} \) |
|--------------------------------------------------|
| \( \text{registers}' = \text{registers} \oplus \{\text{esp} \mapsto \text{registers}(\text{esp}) - 24\} \) |
| \( \text{memory}' = \text{memory} \) |
| \( \text{zflag}' = 1 \iff \text{registers}'(\text{esp}) = 0 \) |

| Block 80480f3 | \( \Delta \text{System} \) |
|--------------------------------------------------|
| \( \text{registers}' = \text{registers} \oplus \{\text{eax} \mapsto \text{memory}(\text{registers}(\text{ebp}) + 8)\} \) |
| \( \text{memory}' = \text{memory} \) |

| Block 80480f6 | \( \Delta \text{System} \) |
|--------------------------------------------------|
| \( \text{registers}' = \text{registers} \oplus \{\text{eax} \mapsto \text{memory}(\text{registers}(\text{eax}) + 0)\} \) |
| \( \text{memory}' = \text{memory} \) |

| Block 80480f8 | \( \Delta \text{System} \) |
|--------------------------------------------------|
| \( \text{memory}' = \text{memory} \oplus \{\text{ebp} - 8 \mapsto \text{registers}(\text{eax})\} \) |
| \( \text{registers}' = \text{registers} \) |

| Block 80480fb | \( \Delta \text{System} \) |
|--------------------------------------------------|
| \( \text{registers}' = \text{registers} \oplus \{\text{eax} \mapsto \text{memory}(\text{registers}(\text{ebp}) + 8)\} \) |
| \( \text{memory}' = \text{memory} \) |

| Block 80480fe | \( \Delta \text{System} \) |
|--------------------------------------------------|
| \( \text{memory}' = \text{memory} \oplus \{4 \mapsto \text{registers}(\text{eax})\} \) |
| \( \text{registers}' = \text{registers} \) |

| Block 8048101 | \( \Delta \text{System} \) |
|--------------------------------------------------|
| \( \text{memory}' = \text{memory} \oplus \{\text{ebp} - 4 \mapsto \text{registers}(\text{eax})\} \) |
| \( \text{registers}' = \text{registers} \) |
\begin{align*}
\textit{OnBranch}_{8048101} & \equiv \textit{System} \\
\text{true} & \\
\textit{Block}_{8048106} & \Delta \textit{System} \\
\text{registers}' = \text{registers} \oplus \{ \text{eax} \mapsto \text{memory}(\text{registers}(\text{ebp}) + 4) \} \\
\text{memory}' = \text{memory} & \\
\textit{Block}_{8048109} & \Delta \textit{System} \\
\text{registers}' = \text{registers} \oplus \{ \text{eax} \mapsto \text{memory}(\text{registers}(\text{eax}) + 0) \} \\
\text{memory}' = \text{memory} & \\
\textit{Block}_{804810b} & \Delta \textit{System} \\
\text{registers}' = \text{registers} \oplus \{ \text{edx} \mapsto \text{memory}(\text{registers}(\text{ebp}) + 8) \} \\
\text{memory}' = \text{memory} & \\
\textit{Block}_{804810c} & \Delta \textit{System} \\
\text{memory}' = \text{memory} \oplus \{ \text{esp} + 4 \mapsto \text{registers}(\text{edx}) \} \\
\text{registers}' = \text{registers} & \\
\textit{Block}_{8048112} & \Delta \textit{System} \\
\text{memory}' = \text{memory} \oplus \{ \text{esp} \mapsto \text{registers}(\text{eax}) \} \\
\text{registers}' = \text{registers} & \\
\textit{OnBranch}_{8048115} & \Delta \textit{System} \\
\text{registers}' = \text{registers} \oplus \{ \text{esp} \mapsto \text{registers}(\text{esp}) - 4 \} \\
\text{memory}' = \text{memory} \oplus \{ \text{registers}'(\text{esp}) \mapsto \text{registers}(\text{ip}) \} & \\
\textit{Block}_{804811a} & \Delta \textit{System} \\
\text{memory}' = \text{memory} \oplus \{ \text{ebp} - 8 \mapsto \text{registers}(\text{eax}) \} \\
\text{registers}' = \text{registers} & 
\end{align*}
\[
\begin{align*}
\text{Block}_804811d & \quad \Delta \text{ System} \\
\text{memory}' = \text{memory} \oplus \{ \text{ebp} \mapsto \text{memory}(\text{registers}(\text{ebp}) + -4) + 4 \} \\
\text{registers}' = \text{registers} \\
\text{Block}_8048121 & \quad \Delta \text{ System} \\
\text{registers}' = \text{registers} \oplus \{ \text{eax} \mapsto \text{memory}(\text{registers}(\text{ebp}) + -4) \} \\
\text{memory}' = \text{memory} \\
\text{Block}_8048124 & \quad \Delta \text{ System} \\
\text{registers}' = \text{registers} \oplus \{ \text{eax} \mapsto \text{memory}(\text{registers}(\text{eax}) + 0) \} \\
\text{memory}' = \text{memory} \\
\text{BITAND}(\text{eax}, \text{eax}) = 0 \Rightarrow \text{zflag}' = 1 \\
\text{BITAND}(\text{eax}, \text{eax}) \neq 0 \Rightarrow \text{zflag}' = 0 \\
\text{cflag}' = 0 \\
\text{oflag}' = 0 \\
\text{OnBranch}_8048128 & \quad \Xi \text{ System} \\
\text{zflag} = 1 \\
\text{NoBranch}_8048128 & \quad \Xi \text{ System} \\
\text{zflag} \neq 1 \\
\text{Block}_8048129 & \quad \Delta \text{ System} \\
\text{registers}' = \text{registers} \oplus \{ \text{eax} \mapsto \text{memory}(\text{registers}(\text{ebp}) + -8) \} \\
\text{memory}' = \text{memory} \\
\text{Block}_804812d & \quad \Delta \text{ System} \\
\text{registers}' = \text{registers} \oplus \{ \text{esp} \mapsto \text{registers}(\text{ebp}) + 4, \text{ebp} \mapsto \text{memory}(\text{registers}(\text{ebp})) \} \\
\text{memory}' = \text{memory}
\end{align*}
\]
APPENDIX B. DERIVED MAXINT CSP-OZ MODEL
Appendix C

MaxInt for import to Z2SAL

\[
[CSPSTATE ::= \begin{align*}
&\text{Branch}80480e1 \mid \text{Anon2} \mid \text{Branch}80480d9 \mid \text{Branch}80480db \mid \\
&\text{Branch}80480de \mid \text{Anon1} \mid \text{Anon0} \mid \text{Branch}80480eb \mid \text{Main} \mid \\
&\text{Leave} \mid \text{Branch}80480e6 \mid \text{Stop} \end{align*}]
\]

\[
\begin{array}{l}
[\text{REGNAME} ::= \text{eax} \mid \text{ebx} \mid \text{ecx} \mid \text{edx} \mid \text{esp} \mid \text{ebp} \mid \text{ip}] \\
\end{array}
\]

System

- registers : \text{REGNAME} → \mathbb{N}
- memory : \mathbb{N} → \mathbb{N}
- zflag : \{0, 1\}
- cflag : \{0, 1\}
- oflag : \{0, 1\}
- sflag : \{0, 1\}

Init

System′

- registers'(esp) = 4
- registers'(ebp) = 12

Block80480d8

\[\Delta \text{ System}
\]

- cspstate : CSPSTATE
- cspstate′ : CSPSTATE

\[\text{registers}' = \text{registers} \oplus \{ \text{esp} \mapsto \text{registers}(\text{esp}) - 4 \} \]
\[
\begin{align*}
\text{memory}' &= \text{memory} \oplus \{\text{registers}'(\text{esp}) \mapsto \text{registers}(\text{ebp})\} \\
c\text{spstate} &= \text{Anon2} \\
c\text{spstate}' &= \text{Branch80480d9}
\end{align*}
\]

\text{Block80480d9}  
\begin{align*}
\Delta \text{ System} \\
c\text{spstate} : \text{CSPSTATE} \\
c\text{spstate}' : \text{CSPSTATE}
\end{align*}
\begin{align*}
\text{registers}' &= \text{registers} \oplus \{\text{ebp} \mapsto \text{registers}(\text{esp})\} \\
\text{memory}' &= \text{memory} \\
c\text{spstate} &= \text{Branch80480d9} \\
c\text{spstate}' &= \text{Branch80480db}
\end{align*}

\text{Block80480db}  
\begin{align*}
\Delta \text{ System} \\
c\text{spstate} : \text{CSPSTATE} \\
c\text{spstate}' : \text{CSPSTATE}
\end{align*}
\begin{align*}
\text{registers}' &= \text{registers} \oplus \{\text{eax} \mapsto \text{memory}(\text{registers}(\text{ebp}) + 8)\} \\
\text{memory}' &= \text{memory} \\
c\text{spstate} &= \text{Branch80480db} \\
c\text{spstate}' &= \text{Branch80480de}
\end{align*}

\text{Block80480de}  
\begin{align*}
\Delta \text{ System} \\
c\text{spstate} : \text{CSPSTATE} \\
c\text{spstate}' : \text{CSPSTATE}
\end{align*}
\begin{align*}
\text{registers}(\text{eax}) - \text{memory}(\text{registers}(\text{ebp}) + 12) < 0 \\
\Rightarrow s\text{flag}' &= 1 \land z\text{flag}' = 0 \\
\text{registers}(\text{eax}) - \text{memory}(\text{registers}(\text{ebp}) + 12) &= 0 \\
\Rightarrow z\text{flag}' &= 1 \land s\text{flag}' = 0 \\
\text{registers}(\text{eax}) - \text{memory}(\text{registers}(\text{ebp}) + 12) > 0 \\
\Rightarrow z\text{flag}' &= 0 \land s\text{flag}' = 0 \\
\text{memory}' &= \text{memory} \\
\text{registers}' &= \text{registers} \\
c\text{spstate} &= \text{Branch80480de} \\
c\text{spstate}' &= \text{Branch80480e1}
\end{align*}

\text{OnBranch80480e1}  
\begin{align*}
\Xi \text{ System} \\
c\text{spstate} : \text{CSPSTATE}
\end{align*}
\[
\text{cspstate}': \text{CSPSTATE} \\
zflag = 1 \lor sflag = 1 \\
cspstate = \text{Branch}80480e1 \\
cspstate' = \text{Anon}0
\]

\[
\text{NoBranch}80480e1 \\
\Xi \text{System} \\
cspstate : \text{CSPSTATE} \\
cspstate' : \text{CSPSTATE} \\
zflag \neq 1 \land sflag \neq 1 \\
cspstate = \text{Branch}80480e1 \\
cspstate' = \text{Anon}1
\]

\[
\text{Block}80480e3 \\
\Delta \text{System} \\
cspstate : \text{CSPSTATE} \\
cspstate' : \text{CSPSTATE} \\
\text{registers}' = \text{registers} \oplus \{\text{eax} \mapsto \text{memory}(\text{registers}(\text{ebp}) + 8)\} \\
\text{memory}' = \text{memory} \\
cspstate = \text{Anon}1 \\
cspstate' = \text{Branch}80480e6
\]

\[
\text{OnBranch}80480e6 \\
\Xi \text{System} \\
cspstate : \text{CSPSTATE} \\
cspstate' : \text{CSPSTATE} \\
\text{true} \\
cspstate = \text{Branch}80480e6 \\
cspstate' = \text{Branch}80480eb
\]

\[
\text{Block}80480e8 \\
\Delta \text{System} \\
cspstate : \text{CSPSTATE} \\
cspstate' : \text{CSPSTATE} \\
\text{registers}' = \text{registers} \oplus \{\text{eax} \mapsto \text{memory}(\text{registers}(\text{ebp}) + 12)\} \\
\text{memory}' = \text{memory} \\
cspstate = \text{Anon}0 \\
cspstate' = \text{Branch}80480eb
\]
\[ \text{Block} 80480eb \]

\[ \Delta \ \text{System} \]

\[ \text{cspstate} : \text{CSPSTATE} \]

\[ \text{cspstate}' : \text{CSPSTATE} \]

\[ \text{registers}' = \text{registers} \oplus \{ \text{ebp} \mapsto \text{memory}(\text{registers}(\text{esp})), \text{esp} \mapsto \text{registers}(\text{esp}) + 4 \} \]

\[ \text{memory}' = \text{memory} \]

\[ \text{cspstate} = \text{Branch} 80480eb \]

\[ \text{cspstate}' = \text{Leave} \]
Appendix D

MaxInt SAL file

maxint : CONTEXT = BEGIN
NAT : TYPE = [0..14];
CSPSTATE : TYPE = DATATYPE
  Branch80480e1,
  Anon2,
  Branch80480d9,
  Branch80480db,
  Branch80480de,
  Anon1,
  Anon0,
  Branch80480eb,
  Main,
  Leave,
  Branch80480e6,
  Stop
END;

REGNAME : TYPE = DATATYPE
  eax,
  ebx,
  ecx,
  edx,
  esp,
  ebp,
  ip,
  REGNAME__B
END;

State : MODULE =
BEGIN
LOCAL registers : [REGNAME -> NAT]
LOCAL memory : [NAT -> NAT]
LOCAL zflag : [0..1]
LOCAL cflag : [0..1]
LOCAL oflag : [0..1]
LOCAL sflag : [0..1]
LOCAL cspstate : CSPSTATE
LOCAL invariant__ : BOOLEAN
DEFINITION
invariant__ = (function {REGNAME, NAT; REGNAME__B, 14} ! total?(registers) AND function {NAT, NAT; 14, 14} ! total?(memory))
INITIALIZATION
registers(esp) = 4 AND
registers(ebp) = 12 AND
cspstate = Anon2 AND
invariant__
-->]
TRANSITION[
Block80480d8 :
registers' = function {REGNAME, NAT; REGNAME__B, 14} !
insert(registers, (esp, registers(esp) - 4)) AND
memory' = function {NAT, NAT; 14, 14} !
ininsert(memory, (registers'(esp), registers(ebp))) AND
cspstate = Anon2 AND
cspstate' = Branch80480d9 AND
invariant__'
--> registers' IN {x : [REGNAME -> NAT] | TRUE};
memory' IN {x : [NAT -> NAT] | TRUE};
zflag' IN {x : [0..1] | TRUE};
cflag' IN {x : [0..1] | TRUE};
oflag' IN {x : [0..1] | TRUE};
sflag' IN {x : [0..1] | TRUE};
cspstate' IN {x : CSPSTATE | TRUE}
]
Block80480d9 :
registers' = function {REGNAME, NAT; REGNAME__B, 14} !
insert(registers, (ebp, registers(esp))) AND
memory' = memory AND
cspstate = Branch80480d9 AND
cspstate' = Branch80480db AND
invariant__'
-->
registers' IN {x : [REGNAME -> NAT] | TRUE};
memory' IN {x : [NAT -> NAT] | TRUE};
zflag' IN {x : [0..1] | TRUE};
cflag' IN {x : [0..1] | TRUE};
oflag' IN {x : [0..1] | TRUE};
sflag' IN {x : [0..1] | TRUE};
cspstate' IN {x : CSPSTATE | TRUE}

Block80480db :
    registers' = function {REGNAME, NAT; REGNAME__B, 14} !
        insert(registers, (eax, memory(registers(ebp) + 8))) AND
    memory' = memory AND
    cspstate = Branch80480db AND
    cspstate' = Branch80480de AND
    invariant__'
-->  
    registers' IN {x : [REGNAME -> NAT] | TRUE};
    memory' IN {x : [NAT -> NAT] | TRUE};
    zflag' IN {x : [0..1] | TRUE};
    cflag' IN {x : [0..1] | TRUE};
    oflag' IN {x : [0..1] | TRUE};
    sflag' IN {x : [0..1] | TRUE};
    cspstate' IN {x : CSPSTATE | TRUE}

Block80480de :
    (registers(eax) - memory(registers(ebp) + 12) < 0 => (sflag' = 1 AND
        zflag' = 0)) AND
    (registers(eax) - memory(registers(ebp) + 12) = 0 => (zflag' = 1 AND
        sflag' = 0)) AND
    (registers(eax) - memory(registers(ebp) + 12) > 0 => (zflag' = 0 AND
        sflag' = 0)) AND
    memory' = memory AND
    registers' = registers AND
    cspstate = Branch80480de AND
    cspstate' = Branch80480e1 AND
    invariant__'
-->  
    registers' IN {x : [REGNAME -> NAT] | TRUE};
    memory' IN {x : [NAT -> NAT] | TRUE};
    zflag' IN {x : [0..1] | TRUE};
    cflag' IN {x : [0..1] | TRUE};
    oflag' IN {x : [0..1] | TRUE};
    sflag' IN {x : [0..1] | TRUE};
    cspstate' IN {x : CSPSTATE | TRUE}

OnBranch80480e1 :

(zflag = 1 OR sflag = 1) AND

cspstate = Branch80480e1 AND

cspstate' = Anon0 AND

registers' = registers AND

memory' = memory AND

zflag' = zflag AND

cflag' = cflag AND

oflag' = oflag AND

sflag' = sflag AND

invariant__'

--> registers' IN {x : [REGNAME -> NAT] | TRUE};

memory' IN {x : [NAT -> NAT] | TRUE};

zflag' IN {x : [0..1] | TRUE};

cflag' IN {x : [0..1] | TRUE};

oflag' IN {x : [0..1] | TRUE};

sflag' IN {x : [0..1] | TRUE};

cspstate' IN {x : CSPSTATE | TRUE}

[]

NoBranch80480e1:

zflag /= 1 AND

sflag /= 1 AND

cspstate = Branch80480e1 AND

cspstate' = Anon1 AND

registers' = registers AND

memory' = memory AND

zflag' = zflag AND

cflag' = cflag AND

oflag' = oflag AND

sflag' = sflag AND

invariant__'

--> registers' IN {x : [REGNAME -> NAT] | TRUE};

memory' IN {x : [NAT -> NAT] | TRUE};

zflag' IN {x : [0..1] | TRUE};

cflag' IN {x : [0..1] | TRUE};

oflag' IN {x : [0..1] | TRUE};

sflag' IN {x : [0..1] | TRUE};

cspstate' IN {x : CSPSTATE | TRUE}

[]

Block80480e3:

registers' = function {REGNAME, NAT; REGNAME__B, 14} !

insert(registers, (eax, memory(registers(ebp) + 8))) AND

memory' = memory AND

cspstate = Anon1 AND

cspstate' = Branch80480e6 AND
invariant\_\_\_'
-->
registers' IN {x : [\text{REGNAME} \rightarrow \text{NAT}] | TRUE};
memory' IN {x : [\text{NAT} \rightarrow \text{NAT}] | TRUE};
zflag' IN {x : [\text{0..1}] | TRUE};
cflag' IN {x : [\text{0..1}] | TRUE};
oflag' IN {x : [\text{0..1}] | TRUE};
sflag' IN {x : [\text{0..1}] | TRUE};
cspstate' IN {x : \text{CSPSTATE | TRUE}}

OnBranch80480e6:
cspstate = Branch80480e6 AND

cspstate' = Branch80480eb AND

registers' = registers AND

memory' = memory AND

zflag' = zflag AND

cflag' = cflag AND

oflag' = oflag AND

sflag' = sflag AND

invariant\_\_\_'
-->
registers' IN {x : [\text{REGNAME} \rightarrow \text{NAT}] | TRUE};
memory' IN {x : [\text{NAT} \rightarrow \text{NAT}] | TRUE};
zflag' IN {x : [\text{0..1}] | TRUE};
cflag' IN {x : [\text{0..1}] | TRUE};
oflag' IN {x : [\text{0..1}] | TRUE};
sflag' IN {x : [\text{0..1}] | TRUE};
cspstate' IN {x : \text{CSPSTATE | TRUE}}

Block80480e8:

registers' = function {\text{REGNAME}, \text{NAT}; \text{REGNAME\_\_B}, 14} !

insert(registers, (eax, memory(registers(ebp) + 12))) AND

memory' = memory AND

cspstate = Anon0 AND

cspstate' = Branch80480eb AND

invariant\_\_\_'
-->
registers' IN {x : [\text{REGNAME} \rightarrow \text{NAT}] | TRUE};
memory' IN {x : [\text{NAT} \rightarrow \text{NAT}] | TRUE};
zflag' IN {x : [\text{0..1}] | TRUE};
cflag' IN {x : [\text{0..1}] | TRUE};
oflag' IN {x : [\text{0..1}] | TRUE};
sflag' IN {x : [\text{0..1}] | TRUE};
cspstate' IN {x : \text{CSPSTATE | TRUE}}

Block80480eb:
\[\text{registers'} = \text{function } \{\text{REGNAME, NAT; REGNAME}_B, 14\} \}
\text{insert} (\text{function } \{\text{REGNAME, NAT; REGNAME}_B, 14\} \}
\text{insert} (\text{registers, (ebp, memory(registers(esp)))}, (\text{esp, registers(esp) + 4})) \text{ AND}
\text{memory'} = \text{memory AND}
\text{cspstate} = \text{Branch80480eb AND}
\text{cspstate'} = \text{Leave AND}
\text{invariant'}
\rightarrow
\text{registers'} \text{ IN } \{x : [\text{REGNAME} \rightarrow \text{NAT}] | \text{TRUE}\};
\text{memory'} \text{ IN } \{x : [\text{NAT} \rightarrow \text{NAT}] | \text{TRUE}\};
\text{zflag'} \text{ IN } \{x : [0..1] | \text{TRUE}\};
\text{cflag'} \text{ IN } \{x : [0..1] | \text{TRUE}\};
\text{oflag'} \text{ IN } \{x : [0..1] | \text{TRUE}\};
\text{sflag'} \text{ IN } \{x : [0..1] | \text{TRUE}\};
\text{cspstate'} \text{ IN } \{x : \text{CSPSTATE} | \text{TRUE}\}
\]
\text{Stop :}
\text{cspstate} = \text{Leave AND}
cspstate' = \text{Leave AND}
invariant'
\rightarrow
\text{registers'} = \text{registers};
\text{memory'} = \text{memory};
\text{zflag'} = \text{zflag};
\text{cflag'} = \text{cflag};
\text{oflag'} = \text{oflag};
\text{sflag'} = \text{sflag}
\]
\text{END;}

\text{alwaysTerminates : THEOREM State |- F(cspstate = Leave)};
\text{neverRestarts : THEOREM State |-}
\text{G((cspstate = Leave) => NOT F(cspstate /= Leave));}

\text{returnsSomethingSensible : THEOREM State |-}
\text{G((cspstate = Leave) =>
  \text{NOT F(cspstate /=}

\text{returnsTheRightAnswer : THEOREM State |-}
\[ G((csp\text{state} = \text{Leave}) => \]
\[ (\]
\[ (\text{registers(eax)} = \text{memory(registers(esp) + 4)}) => \]
\[ \text{memory(registers(esp) + 4)} >= \text{memory(registers(esp) + 8)} \]
\[ ) \]
\[ \text{AND} \]
\[ (\]
\[ (\text{registers(eax)} = \text{memory(registers(esp) + 8)})=> \]
\[ \text{memory(registers(esp) + 8)} >= \text{memory(registers(esp) + 4)} \]
\[ ) \]
\[ ) ;\]

\textbf{END}

\textbf{Notes:} The \textit{cmp} instruction that is represented in \textit{Block80480de} performs a subtraction with two natural number variables and then checks if the result is negative, zero, or positive. Clearly, there is a potential problem with this, since the negative results are not natural numbers. However, since \textit{NAT} is defined as a set of numbers, and the result of the subtraction is never stored in a variable \textit{SAL} is happy to retain the full numeric value of the expression and evaluate the rest of the statement properly.
Appendix E

SAL suite counter example for brokenmaxint

Counterexample:
==================================
Path
==================================
Step 0:
--- System Variables (assignments) ---
  registers(eax) = 4
  registers(ebx) = 13
  registers(ecx) = 6
  registers(edx) = 11
  registers(esp) = 4
  registers(ebp) = 12
  registers(ip) = 10
  registers(REGNAME__B) = 14
  memory(0) = 6
  memory(1) = 10
  memory(2) = 7
  memory(3) = 13
  memory(4) = 10
  memory(5) = 9
  memory(6) = 8
  memory(7) = 11
  memory(8) = 13
  memory(9) = 1
  memory(10) = 0
  memory(11) = 0
  memory(12) = 12
  memory(13) = 2
memory(14) = 14
zflag = 0
cflag = 1
oflag = 0
sflag = 1
cspstate = Anon2
invariant__ = true
------------------------
Transition Information:
(module instance at [Context: brokenmaxint, line(257), column(34)]
  (label Block80480d8
    transition at [Context: brokenmaxint, line(54), column(10)]))
------------------------
Step 1:
--- System Variables (assignments) ---
registers(eax) = 4
registers(ebx) = 13
registers(ecx) = 6
registers(edx) = 11
registers(esp) = 0
registers(ebp) = 12
registers(ip) = 10
registers(REGNAME__B) = 14
memory(0) = 12
memory(1) = 10
memory(2) = 7
memory(3) = 13
memory(4) = 10
memory(5) = 9
memory(6) = 8
memory(7) = 11
memory(8) = 13
memory(9) = 1
memory(10) = 0
memory(11) = 0
memory(12) = 12
memory(13) = 2
memory(14) = 14
zflag = 1
cflag = 0
oflag = 1
sflag = 1
cspstate = Branch80480d9
invariant__ = true
------------------------
Transition Information:
Step 2:
--- System Variables (assignments) ---
registers(eax) = 4
registers(ebx) = 13
registers(ecx) = 6
registers(edx) = 11
registers(esp) = 0
registers(ebp) = 0
registers(ip) = 10
registers(REGNAME__B) = 14
memory(0) = 12
memory(1) = 10
memory(2) = 7
memory(3) = 13
memory(4) = 10
memory(5) = 9
memory(6) = 8
memory(7) = 11
memory(8) = 13
memory(9) = 1
memory(10) = 0
memory(11) = 0
memory(12) = 12
memory(13) = 2
memory(14) = 14
zflag = 1
cflag = 0
oflag = 1
sflag = 0
cspstate = Branch80480db
invariant__ = true
------------------------
Transition Information:
--- System Variables (assignments) ---
registers(eax) = 13
registers(ebx) = 13
registers(ecx) = 6
APPENDIX E. SAL SUITE COUNTER EXAMPLE FOR BROKENMAXINT

registers(edx) = 11
registers(esp) = 0
registers(ebp) = 0
registers(ip) = 10
registers(REGNAME__B) = 14
memory(0) = 12
memory(1) = 10
memory(2) = 7
memory(3) = 13
memory(4) = 10
memory(5) = 9
memory(6) = 8
memory(7) = 11
memory(8) = 13
memory(9) = 1
memory(10) = 0
memory(11) = 0
memory(12) = 12
memory(13) = 2
memory(14) = 14
zflag = 0
cflag = 1
oflag = 1
sflag = 0
cspstate = Branch80480de
invariant__ = true

------------------------
Transition Information:
(module instance at [Context: brokenmaxint, line(257), column(34)]
(label Block80480de
  transition at [Context: brokenmaxint, line(103), column(11)]))
------------------------

Step 4:
--- System Variables (assignments) ---
registers(eax) = 13
registers(ebx) = 13
registers(ecx) = 6
registers(edx) = 11
registers(esp) = 0
registers(ebp) = 0
registers(ip) = 10
registers(REGNAME__B) = 14
memory(0) = 12
memory(1) = 10
memory(2) = 7
memory(3) = 13
memory(4) = 10
memory(5) = 9
memory(6) = 8
memory(7) = 11
memory(8) = 13
memory(9) = 1
memory(10) = 0
memory(11) = 0
memory(12) = 12
memory(13) = 2
memory(14) = 14
zflag = 0
cflag = 0
oflag = 0
sflag = 0
cspstate = Branch80480e1
invariant__ = true
------------------------
Transition Information:
(module instance at [Context: brokenmaxint, line(257), column(34)]
    (label OnBranch80480e1
        transition at [Context: brokenmaxint, line(124), column(10)])
)------------------------
Step 5:
--- System Variables (assignments) ---
registers(eax) = 13
registers(ebx) = 13
registers(ecx) = 6
registers(edx) = 11
registers(esp) = 0
registers(ebp) = 0
registers(ip) = 10
registers(REGNAME__B) = 14
memory(0) = 12
memory(1) = 10
memory(2) = 7
memory(3) = 13
memory(4) = 10
memory(5) = 9
memory(6) = 8
memory(7) = 11
memory(8) = 13
memory(9) = 1
memory(10) = 0
memory(11) = 0
memory(12) = 12
memory(13) = 2
memory(14) = 14
zflag = 0
cflag = 0
oflag = 0
sflag = 0
cspstate = Anon0
invariant__ = true
------------------------
Transition Information:
(module instance at [Context: brokenmaxint, line(257), column(34)]
  (label Block80480e8
   transition at [Context: brokenmaxint, line(199), column(10)]))
------------------------
Step 6:
--- System Variables (assignments) ---
registers(eax) = 12
registers(ebx) = 13
registers(ecx) = 6
registers(edx) = 11
registers(esp) = 0
registers(ebp) = 0
registers(ip) = 10
registers(REGNAME__B) = 14
memory(0) = 12
memory(1) = 10
memory(2) = 7
memory(3) = 13
memory(4) = 10
memory(5) = 9
memory(6) = 8
memory(7) = 11
memory(8) = 13
memory(9) = 1
memory(10) = 0
memory(11) = 0
memory(12) = 12
memory(13) = 2
memory(14) = 14
zflag = 1
cflag = 0
oflag = 0
sflag = 0
cspstate = Branch80480eb
invariant__ = true
------------------------
Transition Information:
(module instance at [Context: brokenmaxint, line(257), column(34)]
  (label Block80480eb
    transition at [Context: brokenmaxint, line(215), column(10)]))
------------------------
Step 7:
--- System Variables (assignments) ---
  registers(eax) = 12
  registers(ebx) = 13
  registers(ecx) = 6
  registers(edx) = 11
  registers(esp) = 4
  registers(ebp) = 12
  registers(ip) = 10
  registers(REGNAME__B) = 14
  memory(0) = 12
  memory(1) = 10
  memory(2) = 7
  memory(3) = 13
  memory(4) = 10
  memory(5) = 9
  memory(6) = 8
  memory(7) = 11
  memory(8) = 13
  memory(9) = 1
  memory(10) = 0
  memory(11) = 0
  memory(12) = 12
  memory(13) = 2
  memory(14) = 14
  zflag = 0
  cflag = 1
  oflag = 0
  sflag = 0
  cspstate = Leave
  invariant__ = true
Appendix F

Isabelle Z theory file

theory Z
imports Main
begin

record 'a state =
  sys :: 'a
  cond :: bool

type_synonym 'a Op = "'a state ⇒ 'a state"
type_synonym 'a Poss = "'a state list"
type_synonym 'a PossOp = "'a state ⇒ 'a Poss"
type_synonym 'a AllPosOp = "'a Poss ⇒ 'a Poss"

(* Some verification shortcuts *)
fun Good :: "'a state ⇒ bool" where
  "Good S = cond S"

fun Bad :: "'a state ⇒ bool" where
  "Bad S = (¬ (cond S))"

(* Convert plain Ops to AllPosOp *)
definition AllPos :: "'a Op ⇒ 'a AllPosOp" where
  "AllPos a ≡ λS::'a state list . filter Good (map a S)"
declare AllPos_def [simp]

definition Semi :: "[a AllPosOp,'a AllPosOp] ⇒ 'a AllPosOp" (infixl ";'" 85) where
  "a;b ≡ λS::'a state list . b (a S)"
declare Semi_def [simp]

definition Alt :: "[a AllPosOp,'a AllPosOp] ⇒ 'a AllPosOp" (infixl "\[\]" 95) where
"a □ b ≡ λS . concat [(a S),(b S)]"
declare Alt_def [simp]

lemma goodChoice [simp]:
(\cond (op2 S)) → (((AllPos op1) □ (AllPos op2)) [S]) = filter Good [op1 S]"
by simp

lemma goodComp [simp]:
(\cond (op1 S)) → (((AllPos op1);(AllPos op2)) [S]) = []"
by simp

lemma veryGoodComp :
(\cond (op1 S)) → (((((AllPos op1);(AllPos op2)) [S]) = [op2 (op1 S)])
→ \cond (op2 (op1 S)))"
by simp

lemma goodCompA [simp]:
(\cond (op1 S)) → (((AllPos op1);(AllPos op2)) [S]) = []"
by simp

lemma associativityOfSemi [simp]:
((AllPos op1);(AllPos op2);(AllPos op3)) St = (((AllPos op1);(AllPos op2));(AllPos op3)) St"
by simp

lemma AllPosRequiresGood [simp]: "∀St . ∀op1::'a Op .
((AllPos op1) St) = filter Good ((AllPos op1) St)"
by (simp del: Good.simps)

end
Appendix G

Max example Isabelle theory file

theory Max
imports Z
begin

declare [[[ smt Solver = remote_z3]]]
declare [[[ smt timeout = 60 ]]]
declare [[[ z3 options = "-memory:500" ]]]

datatype Regname = eax | ebx | ecx | edx | esp | ebp | ip

datatype bit = zero | one

record system =
  cflag :: bit
  zflag :: bit
  sflag :: bit
  memory :: "int ⇒ int"
  registers :: "Regname ⇒ int"

(* Some helpful shortcuts for ASM programs... *)

definition mem :: "system state ⇒ int ⇒ int" where
  "mem St = (memory (sys St))"
declare mem_def [simp]

definition reg :: "system state ⇒ Regname ⇒ int" where
  "reg St = (registers (sys St))"
declare reg_def [simp]

definition regind :: "system state ⇒ Regname ⇒ int ⇒ int" where "regind St ≡ λr . λoff . ((mem St) ((reg St r) + off))"
declare regind_def [simp]

(* Z Operation schema converted from the Max example *)
definition Block80480d8 :: "system Op" where "Block80480d8 St =
    {sys=(sys St)@
    registers := (registers (sys St))(esp := ((reg St esp) - 4)),
    memory := (memory (sys St))(((reg St esp) - 4) := (reg St ebp))
    , cond=True}" declare Block80480d8_def [simp]
definition Block80480d9 :: "system Op" where "Block80480d9 St =
    {sys=(sys St)@
    registers := (registers (sys St))(ebp := reg St esp),
    memory := (memory (sys St))
    , cond=True}" declare Block80480d9_def [simp]
definition Block80480db :: "system Op" where "Block80480db St =
    {sys=(sys St)@
    registers := ((registers (sys St))(eax :=
    (memory (sys St)) (((registers (sys St)) ebp) + 8)))
    , cond=True}" declare Block80480db_def [simp]

lemma firstThreeNoPrecond [simp] : "∀St::(system state) .
    ¬ (((AllPos Block80480d8)
        ;(AllPos Block80480d9)
        ;(AllPos Block80480db)) [St]) = []"
by simp
definition Block80480dePartA :: "system Op" where "Block80480dePartA St = {sys=(sys St)(zflag:=zero,sflag:=one)@
    , cond=(((reg St) eax) - (regind St ebp 12)) < 0)"
declare Block80480dePartA_def [simp]
definition Block80480dePartB :: "system Op" where "Block80480dePartB St = {sys=(sys St)(zflag:=one,sflag:=zero)@
    , cond=(((reg St) eax) - (regind St ebp 12)) = 0)"
declare Block80480dePartB_def [simp]

definition Block80480dePartC :: "system Op" where
"Block80480dePartC St = (\(\begin{array}{l}
\text{sys} = (\text{sys}\ St), \\
\text{zflag} = \text{zero}, \text{sflag} = \text{zero} \\
\text{cond} = (((\text{reg}\ \text{eax}) - (\text{regind}\ \text{ebp}\ 12)) > 0))\end{array}\))" 
declare Block80480dePartC_def [simp]

definition Block80480de :: "system AllPosOp" where
"Block80480de St = (\(\begin{array}{l}
(\text{AllPos}\ \text{Block80480dePartA}) \\
\text{boxempty}\ (\text{AllPos}\ \text{Block80480dePartB}) \\
\text{boxempty}\ (\text{AllPos}\ \text{Block80480dePartC})\end{array}\)) St" 
declare Block80480de_def [simp]

definition OnBranch80480e1 :: "system Op" where
"OnBranch80480e1 St = (\(\begin{array}{l}
\text{sys} = (\text{sys}\ St), \\
\text{cond} = ((\text{zflag}\ (\text{sys}\ St) = \text{one}) \lor (\text{sflag}\ (\text{sys}\ St) = \text{one}))\end{array}\))" 
declare OnBranch80480e1_def [simp]

definition NoBranch80480e1 :: "system Op" where
"NoBranch80480e1 St = (\(\begin{array}{l}
\text{sys} = (\text{sys}\ St), \\
\text{cond} = ((\text{zflag}\ (\text{sys}\ St) \neq \text{one}) \land (\text{sflag}\ (\text{sys}\ St) \neq \text{one}))\end{array}\))" 
declare NoBranch80480e1_def [simp]

(* Choices should be total - i.e. there should be at least one right answer, 
and in this model there should be exactly one right answer *)

lemma TotalBranch80480e1 : "\(\forall\ St . \exists\ S . \)
\(\begin{array}{l}
\text{hd}\ ((\text{AllPos}\ \text{OnBranch80480e1}) \\
\text{boxempty}\ (\text{AllPos}\ \text{NoBranch80480e1})) [St]) = S\end{array}\)
by simp

lemma OnlyOneBranch80480e1 :
"\(\forall\ St . (\text{cond}\ \text{OnBranch80480e1}\ St) \leftrightarrow \\
\neg\ \text{cond}\ \text{NoBranch80480e1}\ St)\)" 
by simp

definition Block80480e3 :: "system Op" where
"Block80480e3 St = (\(\begin{array}{l}
\text{sys} = (\text{sys}\ St)\|
\text{registers} = (\text{registers}\ (\text{sys}\ St))\text{eax} = \\
(\text{memory}\ (\text{sys}\ St))(\text{registers}\ (\text{sys}\ St)\text{ebp} + 8)), \\
\text{cond} = \text{True}\end{array}\))" 
declare Block80480e3_def [simp]

definition OnBranch80480e6 :: "system Op" where
"OnBranch80480e6 St = (\(\begin{array}{l}
\text{sys} = \text{sys}\ St, \text{cond} = \text{True}\end{array}\))" 
declare OnBranch80480e6_def [simp]
(* OnBranch80480e6 always occurs and does nothing to the system state (its a JMP command...) *)

lemma OnBranch80480e6Simple : "∀ St . Good St −→ OnBranch80480e6 St = St"
by simp

definition Block80480e8 :: "system Op" where
"Block80480e8 St = (sys = (sys St))(registers:=((registers (sys St)) (eax:=memory (sys St))((registers (sys St)) ebp) + 12)), cond = True"
declare Block80480e8_def [simp]

definition Block80480eb :: "system Op" where
"Block80480eb St = (sys = (sys St))(registers:=((registers (sys St)) (esp:=reg St esp) + 4, ebp:=regind St esp 0)), cond = True"
declare Block80480eb_def [simp]

(* The first sequential blocks with no branches *)
definition Entry :: "system AllPosOp" where
"Entry ≡ λ St . ((AllPos Block80480d8) ; (AllPos Block80480d9) ; (AllPos Block80480db) ; Block80480de) St"
declare Entry_def [simp]

(* The two choices at 189 *)
definition Left :: "system AllPosOp" where
"Left ≡ λ St . ((AllPos OnBranch80480e1) ; (AllPos Block80480e8) ; (AllPos Block80480eb)) St"
declare Left_def [simp]

definition Right :: "system AllPosOp" where
"Right ≡ λ St . ((AllPos NoBranch80480e1) ; (AllPos Block80480e3) ; (AllPos OnBranch80480e6) ; (AllPos Block80480eb)) St"
declare Right_def [simp]

(* The complete spec for the Max function *)
definition MaxOp :: "system AllPosOp" where "MaxOp St = (Entry;(Left □ Right)) St"
declare MaxOp_def [simp]

(* There is a right answer... *)
lemma EntryTermiintes : "∀ St::system state . Good St −→ Entry [St] ≠ []"
by simp

lemma MaxTermiintes : "∀ St::system state . MaxOp [St] ≠ []"
by simp

(* I can't find the Isabelle List version of this... *)
fun cont :: "'a ⇒ 'a list ⇒ bool" where "cont val [] = False" |
"cont val list = ((val = (hd list)) ∨ (cont val (tl list)))"

lemma NoStackOverflow :
  "∀ St::system state . ∀ ASt::system state . cont ASt (MaxOp [St]) −→ (regind St esp 0 = regind ASt esp 0)"
by simp

(* Helpful, if obvious lemma *)
lemma functionsAreSane [simp] : "∀ St . ∀ n . ((mem St) n = (mem St) n)"
by simp

(* This must be a int rule somewhere... *)
lemma intCommute [simp] : "∀ n::int . ∀ m::int . (n + m) = (m + n)"
by simp

lemma MaxGetsSomethingSensible [simp] :
  "∀ St::system state . ∀ ASt::system state . cont ASt (MaxOp [St]) −→
  (let n = (regind St esp 4); m = (regind St esp 8) in
   (reg ASt eax = n) ∨ (reg ASt eax = m))"
by simp

(* We should get the right answer - i.e. the value returned should be the greater of the two. Since the previous lemma shows that it is either the value at esp+4 or esp+8 we can just say that it is esp+4 iff that is the larger (or they are equal) *)

lemma MaxReturnsMax : "∀ St::system state . ∀ ASt::system state . cont ASt (MaxOp [St]) −→

(let n = (regind St esp 4); m = (regind St esp 8) in

(n ≥ m −→ (reg ASt eax = n))")

by simp

(* Changes in the broken version... *)
definition WrongOnBranch80480e1 :: "system Op" where
"WrongOnBranch80480e1 St = llparenthesis

sys=(sys St),

cond=(sflag (sys St) = zero)\rrparenthesis"
declare WrongOnBranch80480e1_def [simp]
definition WrongNoBranch80480e1 :: "system Op" where
"WrongNoBranch80480e1 St = llparenthesis

sys=(sys St),

cond=(sflag (sys St) ̸= zero)\rrparenthesis"
declare WrongNoBranch80480e1_def [simp]

lemma TotalWrongBranch80480e1 : "∀ St . ∃ S .

hd (((AllPos WrongOnBranch80480e1)

Boxempty (AllPos WrongNoBranch80480e1)) [St]) = S"

by simp

lemma OnlyOneWrongBranch80480e1 : "∀ St .

(cond (WrongOnBranch80480e1 St) −→

¬ cond (WrongNoBranch80480e1 St))"

by simp

(* The two wrong choices at 189 *)
definition WrongLeft :: "system AllPosOp" where
"WrongLeft ≡ ∀ St .

((AllPos WrongOnBranch80480e1)

; (AllPos Block80480e8)

; (AllPos Block80480eb)) St"
declare WrongLeft_def [simp]
definition WrongRight :: "system AllPosOp" where
"WrongRight ≡ ∀ St .
((AllPos WrongNoBranch80480e1)
;(AllPos Block80480e3)
;(AllPos OnBranch80480e6)
;(AllPos Block80480eb)) St"
declare WrongRight_def [simp]

(* The complete spec for the Max function *)
definition WrongMaxOp :: "system AllPosOp" where
"WrongMaxOp St = (Entry;(WrongLeft □WrongRight)) St"
declare WrongMaxOp_def [simp]

(* It should still get an answer *)
lemma WrongMaxTermiintes : "\∀ St::system state . WrongMaxOp [St] \neq []"
by simp

(* We should still get one of the two arguments... *)
lemma WrongMaxGetsSomethingSensible [simp] :
"\∀ St::system state . \∀ ASt::system state .
(cont ASt (WrongMaxOp [St]) \rightarrow
(let n = (regind St esp 4); m = (regind St esp 8) in
(((reg ASt eax) = n) \lor ((reg ASt eax) = m))
)"
by simp

(* We should not get the right answer - i.e. the value returned
should not be the greater of the two - so this should fail to
prove and the counter example should be an informative description
of the problem. *)

theorem WrongMaxReturnsMax : "\∀ St::system state . \∀ ASt::system state .
( (cont ASt (WrongMaxOp [St])) \rightarrow
(let n = (regind St esp 4); m = (regind St esp 8) in
(n \geq m) \leftrightarrow (reg ASt eax = n)
) )
"
nitpick
apply(simp)
nitpick [verbose=true, show_all=true]
end
Appendix H

Exdev SAL file

exdev : CONTEXT = BEGIN

NAT : TYPE = [0..22];

CSPSTATE : TYPE = DATATYPE
Branch80480de,
Anon1,
Branch80480b9,
Branch80480bb,
Branch80480be,
Branch80480c3,
Branch80480c7,
Branch80480ca,
Branch80480cd,
Branch80480d0,
Branch80480d3,
Branch80480d5,
Branch80480d8,
Branch80480db,
Anon0,
Branch80480e2,
Branch80480e5,
Branch80480e8,
Main,
Leave,
Stop
END;

REGNAME : TYPE = DATATYPE
eax,
ebx,
ecx,
edx,
esp,
ebp,
ip,
REGNAME__B
END;

State : MODULE =
BEGIN
LOCAL registers : [REGNAME -> NAT]
LOCAL memory : [NAT -> NAT]
LOCAL ports : [NAT -> NAT]
LOCAL zflag : [0..1]
LOCAL cflag : [0..1]
LOCAL oflag : [0..1]
LOCAL sflag : [0..1]
LOCAL cspstate : CSPSTATE
LOCAL invariant__ : BOOLEAN

DEFINITION
invariant__ = (
  function {REGNAME, NAT; REGNAME__B, 22} ! total?(registers) AND
  function {NAT, NAT; 22, 22} ! total?(memory) AND
  function {NAT, NAT; 22, 22} ! total?(ports))

INITIALIZATION [
  cspstate = Anon1 AND
  registers(esp) = 20 AND
  registers(ebp) = 20 AND
  invariant__
  -->
]

TRANSITION [
  Block80480b8 :
    registers' = function {REGNAME, NAT; REGNAME__B, 22} !
    insert(registers, (esp, registers(esp) - 4)) AND
    memory' = function {NAT, NAT; 22, 22} !
    insert(memory, (registers'(esp), registers(ebp))) AND
    cspstate = Anon1 AND
    cspstate' = Branch80480b9 AND
    invariant__'
    -->
    registers' IN {x : [REGNAME -> NAT] | TRUE};
    memory' IN {x : [NAT -> NAT] | TRUE};
    ports' IN {x : [NAT -> NAT] | TRUE};
    zflag' IN {x : [0..1] | TRUE};
    cflag' IN {x : [0..1] | TRUE};
oflag' IN {x : [0..1] | TRUE};
sflag' IN {x : [0..1] | TRUE};
cspstate' IN {x : CSPSTATE | TRUE}

Block80480b9 :

   registers' = function {REGNAME, NAT; REGNAME__B, 22} !
     insert(registers, (ebp, registers(esp))) AND
   memory' = memory AND
   cspstate = Branch80480b9 AND
   cspstate' = Branch80480bb AND
   invariant__'

   -->

   registers' IN {x : [REGNAME -> NAT] | TRUE};
   memory' IN {x : [NAT -> NAT] | TRUE};
   ports' IN {x : [NAT -> NAT] | TRUE};
   zflag' IN {x : [0..1] | TRUE};
   cflag' IN {x : [0..1] | TRUE};
   oflag' IN {x : [0..1] | TRUE};
   sflag' IN {x : [0..1] | TRUE};
   cspstate' IN {x : CSPSTATE | TRUE}

Block80480bb :

   registers' = function {REGNAME, NAT; REGNAME__B, 22} !
     insert(registers, (esp, registers(esp) - 16)) AND
   memory' = memory AND
   (zflag' = 1) = (registers'(esp) = 0) AND
   cspstate = Branch80480bb AND
   cspstate' = Branch80480be AND
   invariant__'

   -->

   registers' IN {x : [REGNAME -> NAT] | TRUE};
   memory' IN {x : [NAT -> NAT] | TRUE};
   ports' IN {x : [NAT -> NAT] | TRUE};
   zflag' IN {x : [0..1] | TRUE};
   cflag' IN {x : [0..1] | TRUE};
   oflag' IN {x : [0..1] | TRUE};
   sflag' IN {x : [0..1] | TRUE};
   cspstate' IN {x : CSPSTATE | TRUE}

Block80480be :

   registers' = function {REGNAME, NAT; REGNAME__B, 22} !
     insert(registers, (eax, 1)) AND
   memory' = memory AND
   cspstate = Branch80480be AND
   cspstate' = Branch80480c3 AND
   invariant__'
registers' IN \{ x : [\text{REGNAME} \rightarrow \text{NAT}] | \text{TRUE} \};
memory' IN \{ x : [\text{NAT} \rightarrow \text{NAT}] | \text{TRUE} \};
ports' IN \{ x : [\text{NAT} \rightarrow \text{NAT}] | \text{TRUE} \};
zflag' IN \{ x : [0..1] | \text{TRUE} \};
cflag' IN \{ x : [0..1] | \text{TRUE} \};
oflag' IN \{ x : [0..1] | \text{TRUE} \};
sflag' IN \{ x : [0..1] | \text{TRUE} \};
cspstate' IN \{ x : \text{CSPSTATE} | \text{TRUE} \}
registers' = function {REGNAME, NAT; REGNAME__B, 22}!
        insert(registers, (eax, memory(registers(ebp) - 16))) AND
memory' = memory AND
cspstate = Branch80480ca AND
cspstate' = Branch80480cd AND
invariant__'
-->
registers' IN {x : [REGNAME -> NAT] | TRUE};
memory' IN {x : [NAT -> NAT] | TRUE};
ports' IN {x : [NAT -> NAT] | TRUE};
zflag' IN {x : [0..1] | TRUE};
cflag' IN {x : [0..1] | TRUE};
oflag' IN {x : [0..1] | TRUE};
sflag' IN {x : [0..1] | TRUE};
cspstate' IN {x : CSPSTATE | TRUE}
[]
Block80480cd :
registers' = function {REGNAME, NAT; REGNAME__B, 22}!
        insert(registers, (eax, registers(eax) + 10)) AND
memory' = memory AND
cspstate = Branch80480cd AND
cspstate' = Branch80480d0 AND
invariant__'
-->
registers' IN {x : [REGNAME -> NAT] | TRUE};
memory' IN {x : [NAT -> NAT] | TRUE};
ports' IN {x : [NAT -> NAT] | TRUE};
zflag' IN {x : [0..1] | TRUE};
cflag' IN {x : [0..1] | TRUE};
oflag' IN {x : [0..1] | TRUE};
sflag' IN {x : [0..1] | TRUE};
cspstate' IN {x : CSPSTATE | TRUE}
[]
Block80480d0 :
memory' = function {NAT, NAT; 22, 22}!
        insert(memory, (registers(ebp) - 12, registers(eax))) AND
registers' = registers AND
cspstate = Branch80480d0 AND
cspstate' = Branch80480d3 AND
invariant__'
-->
registers' IN {x : [REGNAME -> NAT] | TRUE};
memory' IN {x : [NAT -> NAT] | TRUE};
ports' IN {x : [NAT -> NAT] | TRUE};
zflag' IN {x : [0..1] | TRUE};
cflag' IN {x : [0..1] | TRUE};
oflag' IN {x : [0..1] | TRUE};
sflag' IN {x : [0..1] | TRUE};
cspstate' IN {x : CSPSTATE | TRUE}

Block80480d3 :
  memory' = memory AND
  registers' = function {REGNAME, NAT; REGNAME__B, 22} !
      insert(registers, (eax, ports(8))) AND
  cspstate = Branch80480d3 AND
  cspstate' = Branch80480d5 AND
  invariant__'
    -->
    registers' IN {x : [REGNAME -> NAT] | TRUE};
    memory' IN {x : [NAT -> NAT] | TRUE};
    ports' IN {x : [NAT -> NAT] | TRUE};
    zflag' IN {x : [0..1] | TRUE};
    cflag' IN {x : [0..1] | TRUE};
    oflag' IN {x : [0..1] | TRUE};
    sflag' IN {x : [0..1] | TRUE};
    cspstate' IN {x : CSPSTATE | TRUE}

Block80480d5 :
  memory' = function {NAT, NAT; 22, 22} !
      insert(memory, (registers(ebp) - 8, registers(eax))) AND
  registers' = registers AND
  cspstate = Branch80480d5 AND
  cspstate' = Branch80480d8 AND
  invariant__'
    -->
    registers' IN {x : [REGNAME -> NAT] | TRUE};
    memory' IN {x : [NAT -> NAT] | TRUE};
    ports' IN {x : [NAT -> NAT] | TRUE};
    zflag' IN {x : [0..1] | TRUE};
    cflag' IN {x : [0..1] | TRUE};
    oflag' IN {x : [0..1] | TRUE};
    sflag' IN {x : [0..1] | TRUE};
    cspstate' IN {x : CSPSTATE | TRUE}

Block80480d8 :
  registers' = function {REGNAME, NAT; REGNAME__B, 22} !
      insert(registers, (eax, memory(registers(ebp) - 8))) AND
  memory' = memory AND
  cspstate = Branch80480d8 AND
  cspstate' = Branch80480db AND
  invariant__'
    -->

Block80480db:

\[
\begin{align*}
& (\text{registers}(\text{eax}) - \text{memory}(\text{registers}(\text{ebp}) - 12) < 0 \Rightarrow (\text{sflag}' = 1 \text{ AND } \\
& \quad \text{zflag}' = 0)) \text{ AND } \\
& (\text{registers}(\text{eax}) - \text{memory}(\text{registers}(\text{ebp}) - 12) = 0 \Rightarrow (\text{zflag}' = 1 \text{ AND } \\
& \quad \text{sflag}' = 0)) \text{ AND } \\
& (\text{registers}(\text{eax}) - \text{memory}(\text{registers}(\text{ebp}) - 12) > 0 \Rightarrow (\text{zflag}' = 0 \text{ AND } \\
& \quad \text{sflag}' = 0)) \text{ AND } \\
& \text{memory}' = \text{memory} \text{ AND } \\
& \text{registers}' = \text{registers} \text{ AND } \\
& \text{cspstate} = \text{Branch80480db} \text{ AND } \\
& \text{cspstate}' = \text{Branch80480de} \text{ AND } \\
& \text{invariant__}'
\end{align*}
\]

\[->\]

OnBranch80480de:

\[
\begin{align*}
& \text{sflag} = 1 \text{ AND } \\
& \text{cspstate} = \text{Branch80480de} \text{ AND } \\
& \text{cspstate}' = \text{Branch80480d3} \text{ AND } \\
& \text{registers}' = \text{registers} \text{ AND } \\
& \text{memory}' = \text{memory} \text{ AND } \\
& \text{ports}' = \text{ports} \text{ AND } \\
& \text{zflag}' = \text{zflag} \text{ AND } \\
& \text{cflag}' = \text{cflag} \text{ AND } \\
& \text{oflag}' = \text{oflag} \text{ AND } \\
& \text{sflag}' = \text{sflag} \text{ AND } \\
& \text{invariant__}'
\end{align*}
\]

\[->\]
ports' IN {x : [NAT -> NAT] | TRUE};
zflag' IN {x : [0..1] | TRUE};
cflag' IN {x : [0..1] | TRUE};
oflag' IN {x : [0..1] | TRUE};
sflag' IN {x : [0..1] | TRUE};
cspstate' IN {x : CSPSTATE | TRUE}

[]

NoBranch80480de :
sflag /= 1 AND
cspstate = Branch80480de AND
cspstate' = Anon0 AND
registers' = registers AND
memory' = memory AND
ports' = ports AND
zflag' = zflag AND
cflag' = cflag AND
oflag' = oflag AND
sflag' = sflag AND
invariant__' -->

registers' IN {x : [REGNAME -> NAT] | TRUE};
memory' IN {x : [NAT -> NAT] | TRUE};
ports' IN {x : [NAT -> NAT] | TRUE};
zflag' IN {x : [0..1] | TRUE};
cflag' IN {x : [0..1] | TRUE};
oflag' IN {x : [0..1] | TRUE};
sflag' IN {x : [0..1] | TRUE};
cspstate' IN {x : CSPSTATE | TRUE}

[]

Block80480e0 :
memory' = memory AND
registers' = function {REGNAME, NAT; REGNAME__B, 22} !
insert(registers, (eax, ports(4))) AND
cspstate = Anon0 AND
cspstate' = Branch80480e2 AND
invariant__' -->

registers' IN {x : [REGNAME -> NAT] | TRUE};
memory' IN {x : [NAT -> NAT] | TRUE};
ports' IN {x : [NAT -> NAT] | TRUE};
zflag' IN {x : [0..1] | TRUE};
cflag' IN {x : [0..1] | TRUE};
oflag' IN {x : [0..1] | TRUE};
sflag' IN {x : [0..1] | TRUE};
cspstate' IN {x : CSPSTATE | TRUE}

[]
Block80480e2 :
  memory’ = function {NAT, NAT; 22, 22} !
    insert(memory, (registers(ebp) - 4, registers(eax))) AND
  registers’ = registers AND
  cspstate = Branch80480e2 AND
  cspstate’ = Branch80480e5 AND
  invariant__'
-->  registers’ IN {x : [REGNAME -> NAT] | TRUE};
    memory’ IN {x : [NAT -> NAT] | TRUE};
    ports’ IN {x : [NAT -> NAT] | TRUE};
    zflag’ IN {x : [0..1] | TRUE};
    cflag’ IN {x : [0..1] | TRUE};
    oflag’ IN {x : [0..1] | TRUE};
    sflag’ IN {x : [0..1] | TRUE};
    cspstate’ IN {x : CSPSTATE | TRUE}
[]
Block80480e5 :
  registers’ = function {REGNAME, NAT; REGNAME__B, 22} !
    insert(registers, (eax, memory(registers(ebp) - 4))) AND
  memory’ = memory AND
  cspstate = Branch80480e5 AND
  cspstate’ = Branch80480e8 AND
  invariant__'
-->  registers’ IN {x : [REGNAME -> NAT] | TRUE};
    memory’ IN {x : [NAT -> NAT] | TRUE};
    ports’ IN {x : [NAT -> NAT] | TRUE};
    zflag’ IN {x : [0..1] | TRUE};
    cflag’ IN {x : [0..1] | TRUE};
    oflag’ IN {x : [0..1] | TRUE};
    sflag’ IN {x : [0..1] | TRUE};
    cspstate’ IN {x : CSPSTATE | TRUE}
[]
Block80480e8 :
  registers’ = function {REGNAME, NAT; REGNAME__B, 22} !
    insert(function {REGNAME, NAT; REGNAME__B, 22} !
      insert(registers, (esp, registers(ebp) + 4)), (ebp,
        memory(registers(ebp)))) AND
  memory’ = memory AND
  cspstate = Branch80480e8 AND
  cspstate’ = Leave AND
  invariant__'
-->  registers’ IN {x : [REGNAME -> NAT] | TRUE};
    memory’ IN {x : [NAT -> NAT] | TRUE};
ports' IN {x : [NAT -> NAT] | TRUE};
zflag' IN {x : [0..1] | TRUE};
cflag' IN {x : [0..1] | TRUE};
oflag' IN {x : [0..1] | TRUE};
sflag' IN {x : [0..1] | TRUE};
cspstate' IN {x : CSPSTATE | TRUE}

[]
Stop :
cspstate = Leave AND
cspstate' = Leave AND
invariant_'
--> registers' = registers;
memory' = memory;
ports' = ports;
zflag' = zflag;
cflag' = cflag;
oflag' = oflag;
sflag' = sflag

[]
END;

neverTerminates : THEOREM State |- G(cspstate /= Leave);
neverRestarts : THEOREM State |- G((cspstate = Leave) => NOT F(cspstate /= Leave));
writeBeforeRead : THEOREM State |- W((cspstate /= Anon0), (cspstate = Branch80480c3));
delayIsCorrect : THEOREM State |- FORALL (START:NAT): G((cspstate = Branch80480c3) AND (ports(8) = START)) =>
FORALL (FINISH:NAT):
G((cspstate = Branch80480d3) AND (ports(8) = FINISH)) =>
G((cspstate = Anon0) AND (registers(eax) = FINISH)) =>
(FINISH >= (START + 10))
);

delayBetweenWriteAndRead : THEOREM State |- W((cspstate /= Anon0), (cspstate = Branch80480d3));