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Introduction

* Soft-tissue modelling and simulation is a challenging area of
computational biomechanics.

®* Hypothesis: A physics-based approach enables more realistic
and accurate simulations to be created, and automatic simula-
tion of complex behaviour.

®* Aim: Simulate soft tissue, including skin wrinkles, using a bio-
mechanical model.
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Results

* Manually created forehead model with anatomical
structure and neo-Hookean material properties.

Young’s Mod-

Stratum Corneum 48 0.02
Dermis 0.0814 1.8
Hypodermis 0.034 Remains
Muscle 0.5 =1
Tendon 24 =1

o Each layer had a mass density of 11,000 kg/m?
(with mass scaling), and a Poisson ratio of 0.49.

° High epidermal stiffness produces desired average
element stiffness when combined with the dermis.

* Muscles had 5MPa stress references, and were
contracted linearly to 75%, with time scaling.

* 6.83ms to compute a Sus timestep (NVIDIA GTX 680).

Simulation Process Overview
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2. Simulation Model Creation 3. Model Simulation and Visualisation

Muscle Fibre Directions 0.125 >0.25

* We use non-conforming hexahedral (voxel-based) models due to
model creation, performance and stability advantages [9].

* Further details of our model creation system (stage 2) and simula-
tion system (stage 3) have been previously presented [10, 11, 12].

1. Surface Mesh Creation

* The surface mesh can be created using any 3D modelling tool.
* |t can contain various surfaces, including internal surfaces.
* Volumes are user-defined as closed collections of surfaces.

o A facial mesh may have a skin volume (between the skin and
skull surfaces), and a volume for each muscle.

* Properties (such as material and muscle properties) are associ-
ated with each volume.

* VVolume overlap represents the blend between materials, such as
the blend between muscle fibres.

Conclusion

* Our physics-based soft-tissue simulation approach includes:

o Creation of simulation-ready non-conforming hexahedral FE
models with bound surface meshes

o> Model simulation using a GPU-based TLED FE solver

* Can simulate fine details like skin wrinkles.
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* We have developed a physics-based approach for efficiently
simulating both large areas of soft tissue, and detail such as
skin layers (necessary to produce wrinkles), focussing on the
forehead. This includes:

o Automatic creation of simulation-ready non-conforming voxel-
based FE models with bound surface meshes

o Simulation using a GPU-based non-linear total Lagrangian ex-
plicit dynamic finite element (TLED FE) solver

Related Work

* Physics-based soft-tissue systems often focus on either:

° Producing realistic-looking animations for computer graphics
applications using the mass spring (MS) method [1]
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2. Automatic Simulation Model Creation

* Surface mesh volumes are voxelised, and voxel element material
and muscle properties are calculated based on the proportions of
overlap between the voxels and mesh volumes.

o Voxelisation uses a sampling procedure.
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o Constant-thickness skin layers are created, the boundaries of
which may overlap. As the epidermis is too thin for sampling,
epidermal properties are combined with all outer skin elements.

* Gradients of NURBS volume muscle approximations are used as
muscle fibre fields.

oV (V~1(x))

_ da
) = oV (V-1(x))
da

/_\a

> NURBS volumes are created by shrinking NURBS surfaces.

* Restricted nodes, with rigid (fixed) or sliding constraints, are iden-
tified to approximate a collection of non-conforming internal and
external restricted surfaces.
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* Surface mesh vertices are bound to elements, and updated dur-
Ing simulations using trilinear interpolation and extrapolation.

* Improvements and future work include:

o Using shell elements to more
accurately model the thin epi-
dermis.

o Simulating different aged
skin, and using more accu-
rate material models.
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o Simulating detailed models of small areas with high accuracy
to study soft-tissue behaviour [2], or surgical simulations [3]
using the finite element (FE) method

* Simulation models can conform to a surface mesh [4], or a non-
conforming model (e.g. a voxel representation) can be used [9]
for efficient production of stable, realistic-looking animations.

* Muscles can be modelled as vectors or volumes. For contrac-
tion, a Hill-type model can be used with fibre field directions [0],
and such models may be biologically inspired [7].

* FE facial models have been used to simulate gross facial move-
ment [4, 7], and multi-layered FE models have been developed
for accurate soft-tissue and skin wrinkle simulation [2, 8], al-
though these focus on small areas of soft tissue.

o Large speed increases can be achieved using the GPU [9].

* Our approach simulates fine detail, such as skin wrinkles, on
large, complex areas like the forehead.
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3. Model Simulation

* We have developed a GPU-based non-linear TLED FE solver that
Is optimised for simulation of voxel-based models.

° Inherently parallel, and highly suitable for large soft-tissue defor-
mations with a small but efficient timestep.

° The elements are reduced-integration 8-node hexahedra (no
volume locking when simulating incompressible soft tissue).

Uncoupled equation of motion:
Mt + Ctu+ k(fw)tu = tr
Element nodal force contributions:
b =k(tu)tu = f IBT s dOV
oy
Stiffness-based hourglass control is used to surpress zero-energy
modes that occur with under-integrated elements.

* Active and transversely isotrop- 1.6 - _
ic passive stresses are generat- 14 | _pove
ed in the fibre direction for each 1.2 —Total
muscle overlapping an element. 1

o Weighted by element-muscle
overlap.

Normalised Tension

° Follow muscle tension-length

properties. T
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Rigid nodes have zero displace-

ment, for example, to model muscle attachments.

Sliding nodes remain fixed from a non-conforming surface, for ex-
ample, to model the sliding of superficial facial soft-tissue layers
over the stiff deep layers.

o Facilitated using GPU-based semi-brute-force broad-phase col-

lision detection.
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