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Introduction
•	Soft-tissue	modelling	and	simulation	is	a	challenging	area	of	
computational	biomechanics.

• Hypothesis:	A	physics-based	approach	enables	more	realistic	
and	accurate	simulations	to	be	created,	and	automatic	simula-
tion	of	complex	behaviour.

• Aim:	Simulate	soft	tissue,	including	skin	wrinkles,	using	a	bio-
mechanical	model.

Contribution
•	We	have	developed	a	physics-based	approach	for	efficiently	
simulating	both	large	areas	of	soft	tissue,	and	detail	such	as	
skin	layers	(necessary	to	produce	wrinkles),	focussing	on	the	
forehead.	This	includes:

	◦ Automatic	creation	of	simulation-ready	non-conforming	voxel-
based	FE	models	with	bound	surface	meshes

	◦ Simulation	using	a	GPU-based	non-linear	total	Lagrangian	ex-
plicit	dynamic	finite	element	(TLED	FE)	solver

Related Work
•	Physics-based	soft-tissue	systems	often	focus	on	either:
	◦ Producing	realistic-looking	animations	for	computer	graphics	
applications	using	the	mass	spring	(MS)	method	[1]

	◦ Simulating	detailed	models	of	small	areas	with	high	accuracy	
to	study	soft-tissue	behaviour	[2],	or	surgical	simulations	[3]	
using	the	finite	element	(FE)	method

•	Simulation	models	can	conform	to	a	surface	mesh	[4],	or	a	non-
conforming	model	(e.g.	a	voxel	representation)	can	be	used	[5]	
for	efficient	production	of	stable,	realistic-looking	animations.

•	Muscles	can	be	modelled	as	vectors	or	volumes.	For	contrac-
tion,	a	Hill-type	model	can	be	used	with	fibre	field	directions	[6],	
and	such	models	may	be	biologically	inspired	[7].

•	FE	facial	models	have	been	used	to	simulate	gross	facial	move-
ment	[4,	7],	and	multi-layered	FE	models	have	been	developed	
for	accurate	soft-tissue	and	skin	wrinkle	simulation	[2,	8],	al-
though	these	focus	on	small	areas	of	soft	tissue.

	◦ Large	speed	increases	can	be	achieved	using	the	GPU	[9].
•	Our	approach	simulates	fine	detail,	such	as	skin	wrinkles,	on	
large,	complex	areas	like	the	forehead.

Conclusion
•	Our	physics-based	soft-tissue	simulation	approach	includes:
	◦ Creation	of	simulation-ready	non-conforming	hexahedral	FE	
models	with	bound	surface	meshes

	◦ Model	simulation	using	a	GPU-based	TLED	FE	solver
•	Can	simulate	fine	details	like	skin	wrinkles.

•	Improvements	and	future	work	include:
	◦ Using	shell	elements	to	more	
accurately	model	the	thin	epi-
dermis.

	◦ Simulating	different	aged	
skin,	and	using	more	accu-
rate	material	models.

Simulation Process Overview

•	We	use	non-conforming	hexahedral	(voxel-based)	models	due	to	
model	creation,	performance	and	stability	advantages	[5].

•	Further	details	of	our	model	creation	system	(stage	2)	and	simula-
tion	system	(stage	3)	have	been	previously	presented	[10,	11,	12].

1. Surface Mesh Creation
•	The	surface	mesh	can	be	created	using	any	3D	modelling	tool.
•	It	can	contain	various	surfaces,	including	internal	surfaces.
•	Volumes	are	user-defined	as	closed	collections	of	surfaces.	
	◦ A	facial	mesh	may	have	a	skin	volume	(between	the	skin	and	
skull	surfaces),	and	a	volume	for	each	muscle.

•	Properties	(such	as	material	and	muscle	properties)	are	associ-
ated	with	each	volume.

•	Volume	overlap	represents	the	blend	between	materials,	such	as	
the	blend	between	muscle	fibres.

2. Automatic Simulation Model Creation
•	Surface	mesh	volumes	are	voxelised,	and	voxel	element	material	
and	muscle	properties	are	calculated	based	on	the	proportions	of	
overlap	between	the	voxels	and	mesh	volumes.

	◦ Voxelisation	uses	a	sampling	procedure.

	◦ Constant-thickness	skin	layers	are	created,	the	boundaries	of	
which	may	overlap.	As	the	epidermis	is	too	thin	for	sampling,	
epidermal	properties	are	combined	with	all	outer	skin	elements.

•	Gradients	of	NURBS	volume	muscle	approximations	are	used	as	
muscle	fibre	fields.

	◦ NURBS	volumes	are	created	by	shrinking	NURBS	surfaces.
•	Restricted	nodes,	with	rigid	(fixed)	or	sliding	constraints,	are	iden-
tified	to	approximate	a	collection	of	non-conforming	internal	and	
external	restricted	surfaces.

•	Surface	mesh	vertices	are	bound	to	elements,	and	updated	dur-
ing	simulations	using	trilinear	interpolation	and	extrapolation.

3. Model Simulation
•	We	have	developed	a	GPU-based	non-linear	TLED	FE	solver	that	
is	optimised	for	simulation	of	voxel-based	models.

	◦ Inherently	parallel,	and	highly	suitable	for	large	soft-tissue	defor-
mations	with	a	small	but	efficient	timestep.

	◦ The	elements	are	reduced-integration	8-node	hexahedra	(no	
volume	locking	when	simulating	incompressible	soft	tissue).

•	Uncoupled	equation	of	motion:

•	Element	nodal	force	contributions:

•	Stiffness-based	hourglass	control	is	used	to	surpress	zero-energy	
modes	that	occur	with	under-integrated	elements.

•	Active	and	transversely	isotrop-
ic	passive	stresses	are	generat-
ed	in	the	fibre	direction	for	each	
muscle	overlapping	an	element.

	◦ Weighted	by	element-muscle	
overlap.

	◦ Follow	muscle	tension-length	
properties.

•	Rigid	nodes	have	zero	displace-
ment,	for	example,	to	model	muscle	attachments.

•	Sliding	nodes	remain	fixed	from	a	non-conforming	surface,	for	ex-
ample,	to	model	the	sliding	of	superficial	facial	soft-tissue	layers	
over	the	stiff	deep	layers.

	◦ Facilitated	using	GPU-based	semi-brute-force	broad-phase	col-
lision	detection.

Results
•	Manually	created	forehead	model	with	anatomical	
structure	and	neo-Hookean	material	properties.

Layer Young’s Mod-
ulus (MPa) Depth (mm)

Stratum	Corneum 48 0.02
Dermis 0.0814 1.8
Hypodermis 0.034 Remains
Muscle 0.5 ~1
Tendon 24 ~1

	◦ Each	layer	had	a	mass	density	of	11,000	kg/m3	
(with	mass	scaling),	and	a	Poisson	ratio	of	0.49.

	◦ High	epidermal	stiffness	produces	desired	average	
element	stiffness	when	combined	with	the	dermis.

•	Muscles	had	5MPa	stress	references,	and	were	
contracted	linearly	to	75%,	with	time	scaling.

•	6.83ms	to	compute	a	5ms	timestep	(NVIDIA	GTX	680).
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