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Introduction
•	Soft-tissue modelling and simulation is a challenging area of 
computational biomechanics.

•	Hypothesis: A physics-based approach enables more realistic 
and accurate simulations to be created, and automatic simula-
tion of complex behaviour.

•	Aim: Simulate soft tissue, including skin wrinkles, using a bio-
mechanical model.

Contribution
•	We have developed a physics-based approach for efficiently 
simulating both large areas of soft tissue, and detail such as 
skin layers (necessary to produce wrinkles), focussing on the 
forehead. This includes:

◦◦ Automatic creation of simulation-ready non-conforming voxel-
based FE models with bound surface meshes

◦◦ Simulation using a GPU-based non-linear total Lagrangian ex-
plicit dynamic finite element (TLED FE) solver

Related Work
•	Physics-based soft-tissue systems often focus on either:
◦◦ Producing realistic-looking animations for computer graphics 
applications using the mass spring (MS) method [1]

◦◦ Simulating detailed models of small areas with high accuracy 
to study soft-tissue behaviour [2], or surgical simulations [3] 
using the finite element (FE) method

•	Simulation models can conform to a surface mesh [4], or a non-
conforming model (e.g. a voxel representation) can be used [5] 
for efficient production of stable, realistic-looking animations.

•	Muscles can be modelled as vectors or volumes. For contrac-
tion, a Hill-type model can be used with fibre field directions [6], 
and such models may be biologically inspired [7].

•	FE facial models have been used to simulate gross facial move-
ment [4, 7], and multi-layered FE models have been developed 
for accurate soft-tissue and skin wrinkle simulation [2, 8], al-
though these focus on small areas of soft tissue.

◦◦ Large speed increases can be achieved using the GPU [9].
•	Our approach simulates fine detail, such as skin wrinkles, on 
large, complex areas like the forehead.

Conclusion
•	Our physics-based soft-tissue simulation approach includes:
◦◦ Creation of simulation-ready non-conforming hexahedral FE 
models with bound surface meshes

◦◦ Model simulation using a GPU-based TLED FE solver
•	Can simulate fine details like skin wrinkles.

•	Improvements and future work include:
◦◦ Using shell elements to more 
accurately model the thin epi-
dermis.

◦◦ Simulating different aged 
skin, and using more accu-
rate material models.

Simulation Process Overview

•	We use non-conforming hexahedral (voxel-based) models due to 
model creation, performance and stability advantages [5].

•	Further details of our model creation system (stage 2) and simula-
tion system (stage 3) have been previously presented [10, 11, 12].

1. Surface Mesh Creation
•	The surface mesh can be created using any 3D modelling tool.
•	It can contain various surfaces, including internal surfaces.
•	Volumes are user-defined as closed collections of surfaces. 
◦◦ A facial mesh may have a skin volume (between the skin and 
skull surfaces), and a volume for each muscle.

•	Properties (such as material and muscle properties) are associ-
ated with each volume.

•	Volume overlap represents the blend between materials, such as 
the blend between muscle fibres.

2. Automatic Simulation Model Creation
•	Surface mesh volumes are voxelised, and voxel element material 
and muscle properties are calculated based on the proportions of 
overlap between the voxels and mesh volumes.

◦◦ Voxelisation uses a sampling procedure.

◦◦ Constant-thickness skin layers are created, the boundaries of 
which may overlap. As the epidermis is too thin for sampling, 
epidermal properties are combined with all outer skin elements.

•	Gradients of NURBS volume muscle approximations are used as 
muscle fibre fields.

◦◦ NURBS volumes are created by shrinking NURBS surfaces.
•	Restricted nodes, with rigid (fixed) or sliding constraints, are iden-
tified to approximate a collection of non-conforming internal and 
external restricted surfaces.

•	Surface mesh vertices are bound to elements, and updated dur-
ing simulations using trilinear interpolation and extrapolation.

3. Model Simulation
•	We have developed a GPU-based non-linear TLED FE solver that 
is optimised for simulation of voxel-based models.

◦◦ Inherently parallel, and highly suitable for large soft-tissue defor-
mations with a small but efficient timestep.

◦◦ The elements are reduced-integration 8-node hexahedra (no 
volume locking when simulating incompressible soft tissue).

•	Uncoupled equation of motion:

•	Element nodal force contributions:

•	Stiffness-based hourglass control is used to surpress zero-energy 
modes that occur with under-integrated elements.

•	Active and transversely isotrop-
ic passive stresses are generat-
ed in the fibre direction for each 
muscle overlapping an element.

◦◦ Weighted by element-muscle 
overlap.

◦◦ Follow muscle tension-length 
properties.

•	Rigid nodes have zero displace-
ment, for example, to model muscle attachments.

•	Sliding nodes remain fixed from a non-conforming surface, for ex-
ample, to model the sliding of superficial facial soft-tissue layers 
over the stiff deep layers.

◦◦ Facilitated using GPU-based semi-brute-force broad-phase col-
lision detection.

Results
•	Manually created forehead model with anatomical 
structure and neo-Hookean material properties.

Layer Young’s Mod-
ulus (MPa) Depth (mm)

Stratum Corneum 48 0.02
Dermis 0.0814 1.8
Hypodermis 0.034 Remains
Muscle 0.5 ~1
Tendon 24 ~1

◦◦ Each layer had a mass density of 11,000 kg/m3 
(with mass scaling), and a Poisson ratio of 0.49.

◦◦ High epidermal stiffness produces desired average 
element stiffness when combined with the dermis.

•	Muscles had 5MPa stress references, and were 
contracted linearly to 75%, with time scaling.

•	6.83ms to compute a 5ms timestep (NVIDIA GTX 680).
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