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Abstract- In this paper the two issues we address in 
developing an architecture for  training are flexibility and 
ease of scenar io generation. Flexibility is the need to make 
the architecture domain independent by investigating 
how the logic (dictating the scenar io behaviour) is linked 
to the simulation environment (where the render ing, 
networking, etc., occurs). For  the second issue we 
consider  how to automatically generate training scenar ios 
from expert systems (ES).  

Our architecture shows how an intermediary “ events 
space”  can be used to achieve flexibility by separating the 
logic from the simulation environment. To show the 
training suitability of the architecture we have developed 
a scenar io on top of a prototype of the architecture to 
train new police recruits how to investigate vehicle 
accidents.  

I. INTRODUCTION 

A number of virtual environments (VEs) and 
collaborative virtual environments (CVEs) have been 
developed over the years, looking at such things as 
training firefighters [13], police officers [20] and navy 
personnel [10]. The main issue with such systems is 
that they are domain dependent, which makes it 
difficult to reuse their simulation systems on different 
domains without extensive work, which is expensive 
and time-consuming. As identified in [5] domain 
specificity in system development leads to highly 
inflexible applications. In this paper we propose an 
architecture that is domain independent. 

Many similarities exist between collaborative virtual 
environments and multiplayer games such as co-
existence of players, game state replication, 
communication protocols, etc. We investigate the 
similarities in architectural needs from the reusability 
point of view. More specifically we examine the 
reasons behind the lack of reusability in collaborative 
virtual environments architectures and the suitability of 
adopting some of the approaches from the games world 
to address them. Thus we have developed a prototype 
architecture which makes use of the successful games 
approach of embedding a high-level scripting 
language. 

Furthermore, to widen the use of the architecture for 

training we propose a technique for automatically generating 
scenarios, which uses ES and more specifically knowledge-
based systems (KB) which inherently promotes the 
separation of the logic from the simulation environment. 

In the next section we discuss related work drawing out 
some of the problems with current architectures. We then 
present our full architecture, before presenting some results 
of using a prototype version for traffic accident training for 
police officers in the Dubai police force. We conclude with 
some general comments about the potential of our 
architecture. 

II. RELATED WORK 

In this section we describe the architectures used to 
structure simulation environments and categorize them with 
regards to the relationship between them and the scenario 
logic. Our categorization examines the relationship in terms 
of the communication approaches employed to control the 
scenario logic and the flow of the scenario logic from its 
source to the simulation environment. We also describe the 
personnel involved along the flow path. By describing the 
personnel we try to relate what we have already 
implemented with the proposed architecture, since our initial 
prototype shows the trainer inserting and controlling the 
scenario logic to distributed virtual environments.  

With regards to the personnel involved in creating the 
scenario, we list four of them: domain experts, scenario 
creators/trainers, animators and developers. The domain 
experts provide the expertise of how the simulation should 
operate by describing the sequential and reactive events. 
This knowledge is then passed to the scenario creator, who is 
familiar with the capabilities of the simulation environments. 
The scenario creator either inserts the knowledge himself or 
passes it to the developer. The developer is the one 
responsible for programming the logic in the simulation 
environment. The less the developer is involved in the cycle 
of creating or modifying scenarios the more flexible the 
system is. The animator designs and animates the objects of 
the virtual environment. 

We can consider the following different categories based 
on the relationship between the scenario logic and the 
simulation environment: applications, virtual development 



environments, commercial software environments, and 
KB systems. 

Certain applications [13] tend to embed the scenario 
logic inside the simulation environment code and most 
likely changes to the logic require recompiling the 
simulation system. The personnel involved will always 
require the developers to change the scenario because 
of the application inflexibility. Other applications 
[1,9,20] attempt to give some ability to modify the 
logic without recompiling, thus eliminating the 
developers involvement in the scenario creation cycle. 
This is accomplished by providing ways for the domain 
experts or trainers to insert the logic into the simulation 
environment. However, these applications are usually 
very domain dependent. 

Some virtual development environments 
[4,11,14,18,19] are built specifically for the use of 
developers producing virtual environments. These 
environments normally ease the development lifecycle 
by abstracting the low level complexities such as 
interacting with VR devices. However, some of these 
development environments are no different than using 
a programming language in the sense that it places the 
creation of the link between the logic and the 
simulation environment in the hands of the developer. 
Nevertheless, some of these development environments 
[11,18] encourage flexibility by providing a high level 
scripting language, thus making it feasible to be used 
for separating and modifying the scenario logic. The 
personnel involved are the same as the ones described 
for applications above since the developers have 
control over how the applications, built using these 
development environments, operate. One tool [19] 
even provides a higher level of support in the form of a 
simple script file for creating environments. 

Commercial software environments (such as DI-
Guy™1 and Vega™2) address domain independence in 
a much better way by allowing the logic to be inserted 
using a graphical interface or a high-level scripting 
language. These succeed in achieving domain 
independence but usually the logic is in a proprietary 
format, thus lacking the simulation environment 
independence. One of the strengths of these tools is 
their ability to cater for a wide range of users by 
providing interaction methods of different levels of 
complexity. Such tools can be used by domain experts 
or scenario creators using the graphical interfaces 
provided. The developers also can make use of the API 
access provided. Games engines also cater for multiple 
scenarios and scenes, but again the logic is formatted in 

                                                 
1 http://www.bdi.com/ 
2 http://www.multigen-paradigm.com 

a proprietary format. 
KB systems [10,17] are geared towards separating the 

logic or knowledge from the system using it. They have an 
inference engine to deal with retrieving the appropriate 
results. Furthermore, the separation also allows the 
modification of the knowledge independently from the 
simulation environment and more frequently without 
developer involvement, which means there is no need for 
recompilation of the simulation. 

 
The drawbacks of some of the previous categories are:  

�
 The embedding of the logic in the simulation 

environment makes it inflexible to change. 
�

 The logic usually tends to be specific to the 
simulation environment and requires some work to 
be able to reuse it in a different simulation 
environment. This usually makes the logic created 
limited to a specific simulation environment. 

Some of the strengths of the previous categories are: 
�

 Interoperability between different simulation 
environments. 

�
 The separation of the logic from the simulation 

environment shown by the KB systems. 
�

 Providing a high-level scripting language makes the 
interaction with the simulation environment less 
complex. 

In comparison with the above categorization we propose a 
new category we call ‘simulation services’  (similar to web 
services). This category attempts to combine the best 
practices from the above categories and also avoid their 
drawbacks.  The main goal of this category is to make the 
simulation ‘brain’  run as a service by linking it with the 
logic from one side and the simulation environment from the 
other side, therefore advocating independence from both 
sides. The independence from the simulation environment 
means that the ‘brain’  can be reused to service other 
simulation environments, possibly built using different 
languages, as long as they conform to common 
communication protocols. 

III. ARCHITECUTRE 

The simulation environment architecture we pursue puts 
an intermediary between the scenario logic and the 
simulation environment in an attempt to be domain 
independent as shown in Fig.1.  

The distinguishing factor of the proposed intermediary 
lies in the way it is modularised and run as a separate service 
provider, used to automatically generate and service scenario 
behaviours to a simulation environment. The scenario 
behaviours are constructed from a knowledge base 
representing a specific domain. Participants in the simulation 
environment communicate their status to the intermediary 
and receive events to decide their course of action. The 



communication between the simulation and the 
intermediary is achieved through the use of an events 
service and more specifically the publish/subscribe 
mechanism. 

We suggest that using a KB system from one side 
and the publish/subscribe event mechanism on the 
other side will not only achieve the proposed 
separation goal but it will also contribute immensely to 
making the intermediary module, the events space, 
fully decoupled from the simulation environment side. 

In Fig.1. the directed arrows show the flow of 
information. The events space uses four inputs to link 
the KB to the simulation environments in the proposed 
architecture: 
�

 Entities and relationships: holds a description of 
how events can take place in the simulation 
environment (i.e. the capabilities of the simulation 
environment). These capabilities at low level 
reflect the functionality of the simulation engine 
that can be accessed by an outside party (the 
events space). 

�
 KB: holds the knowledge of the considered 

domain acquired from the domain expert by the 
knowledge engineer. In its natural language form, 
it can be represented using simple rules in the form 
of ‘ IF (condition) THEN (action)’ . 

�
 Simulation environment: from which the events 

space requires three types of information: the 
scene layout, the simulation time, and changes in 
the environment status. The information that the 
events space sends is an acknowledgement of the 
readiness of the scenario and messages describing 
what should happen next in the simulation 
environment based on the current time and 
environment status. 

�
 A Trainer: interacts with the events space in three 

ways: he can manually create and modify 
scenarios, he can filter automatically created 
scenarios, and he can monitor currently running 
scenarios to redirect the training course to guide 
the training along different tracks. 

IV. AUTOMATIC 

SCENARIO GENERATION 

The process of creating scenarios starts by creating 
single events from the knowledge stored in the KB. 
These events are filtered into plausible and implausible 
events based either on human intervention or set 
criteria (e.g. event duration). The filtered events are 
then sequenced to make up the scenario. These 
sequences are passed again through a filter to validate 
them. When the simulation environment passes its 
scene layout to the events space, a sequence of possible 
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events from the accepted scenarios is chosen. This 
sequence must conform to the content of the 
environment layout. For example, no animation of 
person in pain would be shown unless there was an 
injured person in the scene layout provided. Automatic 
scenario generation has not yet been implemented in 
the prototype described next. 

V. PROTOTYPE  

The main aim of the system presented here is to 
address the flexibility issue in multiplayer 
architectures. Three types of users are going to interact 
with the system: trainers, trainees, and actors to help 
with the scenario. Therefore, the system should allow 
participants to co-exist in a virtual environment and be 
able to communicate. The following sections describe 
the system and its implementation. 

 
A. System Overview  

Fig. 2 shows the developed prototype architecture 
which allows multiple players to co-exist and 
communicate using voice. The system permits the 
trainer to carry out the following tasks: 

�
 Create scenario behaviour: allows the trainer 

to create different scenarios by specifying the 
number of participants and their properties. 
The trainer can also add events, e.g. 
specifying paths for objects to follow or 
attaching sounds to objects. 

�
 Monitor scenario behaviour: permits the 

trainer to watch the scenario unfolding by 
joining the scenario as an invisible participant. 

�
 Control scenario behaviour: allows the trainer 

to stop or change the course of the simulation 
behaviour to fit the training requirements.  

�
 Insert a scene layout: permits the trainer to 

insert different scenes. 
The players are able to join the environment and 

communicate with other players using positional voice 

communication, which helps players locate each other. Text 
communication is not used because of the delay caused  

 (see the 'dead moment' described in [15]). Moreover, 
typing also  

means the player breaks his presence as he is required to 
achieve the communication task in an unnatural way (using 
the keyboard to type the message). 

The vehicle accident scenario implemented on the 
prototype aims to train new traffic officers on how to deal 
with the aftermath of vehicle accidents and how to 
investigate them. The officer is placed in a virtual 
environment where he uses an input device (joystick or 
mouse and keyboard) to move around and an audio headset 
to communicate with other participants in the same 
environment, but who might be in different geographical 
locations. His role is to collaborate with the participants to 
resolve the matter and find out how the accident occurred by 
questioning the participants and examining cues in the scene 
(e.g. damage to vehicles, skid marks, vehicle positions, etc). 
 
 

Behaviour Command 

Enable/Disable collision detection p.SetCollision(ID,flag) 

Enable/Disable object visibility p.SetVisiblity(ID,flag) 

Set object position and orientation p.SetPlayerPosition(ID,x,y,z,xRot,yRot,zRot) 

Play the animation attached to skinned mesh p.SetPlayerAnimation(ID,flag,name) 

Set a sound source and attach it to object in the scene p.Set3DSound(ID,file) 

Play a sound source p.PlaySound(ID) 

Stop a sound source p.StopSound(ID) 

Set the sound minimum and maximum distances p.SetSoundDistance(ID,min,max) 

Show/Hide object bounding box p.SetRenderingBoundingBox(ID,flag) 

Add animation route based on four points and give it name, 
duration and loop flag 

p.AddRouteAnimation(ID,p1x,p1y,p1z,p2x,p2y,p2z,p3x,p3
y,p3z,p4x,p4y,p4z,duration,loop,name) 

Play one of the animation routes attached to the object using the 
above function. 

p.SetRouteAnimation(ID,loop,playing,name) 

Behaviour Controller 

Python Simulation Environment 

Scene Objects Players 

Game Engine 

DirectX 9 

Windows OS 

Network Input Graphics Sound 

Fig.3. Simulation environment design 

Table 1: Scenario behaviour commands 



B. Implementation  
The system architecture is based on the client/server 

network topology. The role of the server is to host the 
session and forward communication between the 
participants. It also allows the trainer to carry out the 
tasks described earlier.  

Fig. 3 shows the simulation environment and how a 
high level scripting language is embedded across three 
architectural layers (DirectX 9.0, game engine, and 
simulation environment) to enable the manipulation of 
the scenario behaviour. The scripting language used is 
Python which allows easy replication of the game 
engine classes that are based on an object-oriented 
approach using C++. 

The other advantage scripting provides to this 
prototype is the ability to dynamically load code at run-
time which can be used to insert and control behaviour. 
A game engine has been built on top of DirectX to 
abstract all of its complexities. The layer above the 
game engine is the simulation environment, which 
holds the objects, the players, and the scene settings. 

The top layer is the behaviour controller which 
allows for simple run-time access to the environment to 
allow the trainer to broadcast events to insert or change 
the behaviour of any objects, players, or part of the 
environment. The different set of behaviours that are 
allowed to be inserted and manipulated during run-time 
are shown in Table 1. 

The client/server approach is used in this prototype, 
and it is achieved by using DirectPlay, a component of 
DirectX 9.0. DirectPlay allows a session to be initiated 
for players to join and communicate. Each player, after 
joining the session, gets a unique identification 
number. Players communicate with each other through 
the server holding the session by sending messages to 
specific players or broadcasting to all players. 

As players join or exit the session, the server sends 
special messages to all the other players notifying them 
of the player’s action. The same approach is used to 
allow players to interact and exchange information to 
comply with the co-presence requirement mentioned in 
[2].  

The voice session uses the same DirectPlay session 
to communicate voice packets between players and the 
server. The prototype developed uses the forwarding 
topology because of its support for 3D and the 
client/server approach. 

The management of the dynamic shared state of the 
simulation to enable the synchronization of game status 
among all participants is achieved by sharing the object 
model, which is comprised of scene object, player 
object, and environment settings object. The scene 
object and player object share common properties such 

as position, orientation, mesh, animation, sound, etc which 
they inherent from a parent object.  

Finally, the synchronization of the virtual environment 
between all participants is accomplished in two phases. The 
first phase sends the initial information to the participant at 
the time of joining the simulation session. This information 
includes current scene objects with their attributes such as 
position, orientation, mesh, visibility, etc. The second phase 
synchronizes the updates to the players and objects 
properties between all players. 

VI. EXPERIMENT  

We have developed an accident scenario experiment to 
measure police trainees’  performances while investigating a 
virtual accident scenario. The scenario involves a crash 
between two vehicles and one severely injured passenger as 
shown in Fig. 4 and 5. The roles of the two vehicle drivers 
are played by two actors who are given the same script for 
common questions and their answers. If any question is 
asked by a trainee for which there is no script the actor either 
replies that he can not remember or invents an answer and 
that answer is added to the script for the next trainee’s 
experiment sessions. To limit the number of required actors 

Fig . 4. 2D drawing of the accident scene 

Fig . 5. 3D accident scene 



we gave the role of the operation room to one of the 
drivers as well. His role was to handle any requests 
made by the trainee to resolve the incident such as: call 
an ambulance, request assistance, etc. All the 
experiments were video taped and analysed afterwards 
to measure performance. 

A trainer at the police academy selected six subjects 
with similar training backgrounds: four years of police 
academy and two specialized courses in vehicle 
investigation. The six subjects were divided into two 
groups. Group A ran a pen and paper experiment first 
followed by the computer experiment (each referred to 
as ‘parts’  of the pair of experiments). Group B did the 
opposite. In the pen and paper experiment a 2D 
drawing of the accident scene is used and the positions 
of the players are marked by small rectangular pieces 
of paper which can be moved around. The computer 
experiment used the prototype developed. The reason 
for conducting a pen and paper experiment along with 
the computer experiment is to compare the results to 
another practical training method. 

During each experiment session the subject is 
expected to go through five investigative stages: 
receiving incident call, arriving at the accident scene, 
initial investigation phase, data completion phase, and 
final investigation phase. In each of the stages the 
subject is expected to carry out a number of tasks. For 
example, after arriving at the accident scene the subject 
has to attend the injured, search for more injured, 
identify hazards, call the ambulance, call for assistance, 
etc. The evaluation is done by scoring the completion 
of successful tasks.  

For each subject two performances were measured, 
one after each experiment. The average performance 
among all subjects across both experiments (pen and 
paper, and computer) was at 41.9% (26 out of 62 
marks). The average performance result shows that the 
theoretical and supervised training (previously 
provided at the academy and police station 
respectively) on their own are not reaching an adequate 
performance measure. 

The results also show that Group A subjects 
improved their performances average on the second 
part by 12.4% compared to 8.1% for the subjects in 
Group B. In none of the five investigative stages did 
the pen and paper experiment manage to improve 
subject performance by more than what the computer 
experiment achieved. 

Another interesting result is the time taken to 
complete each experiment. We noticed that group B, 
which did computer experiment first, spent 54.2% less 
time when doing the following pen and paper 
experiment. Group A, which did the pen and paper 

experiment first, spent 36.2% less time when running the 
following computer experiment. Two initial reasons for this 
are suggested. Either the computer usage complexity added 
to the time used or the user started discovering more things 
in this experiment. The first possibility can be discarded 
when comparing the average time after the first part for both 
groups since the pen and paper experiment average time 
took 3.3 minutes longer than the computer experiment. 

Furthermore, during the computer experiments we noticed 
that all the subjects made good use of the navigation 
methods and managed to investigate the accident scene. 
They also made good use of the headset facility in 
identifying the drivers and communicating with the 
operation room operator. These two observations back the 
high rate of presence (76.8%) and co-presence (86.6%) 
reported by the subjects on a post-experiment questionnaire. 
Moreover, one of the trainers said that computer experiment 
training has shown him clearly the trainees’  weaknesses 
which were not obvious to him while conducting the 
theoretical training during the four year course or the 
specialized courses at the police academy.  During the 
discussion after the experiment one of the subjects said that 
this was his first ‘severe’  accident and that is why he thought 
he did not perform well.  He got the lowest mark of all the 
participants. His comments indicate that he is relating this 
experiment and comparing it to his experiences. This 
confirms the positive responses from all subjects when asked 
subjectively if this experiment will go into their collection of 
experiences. 

VII. DISCUSSION 

This section discusses two issues: the practicality of the 
prototype architecture and the indications this gives for the 
implementation of the next phase of the architecture shown 
in Fig.1.  

The prototype had two primary objectives with regards to 
flexibility: the separation of the domain knowledge and the 
ability to control it at run-time. The separation has been 
achieved by the use of a high-level language (Python) to 
create a layer on top of the simulation environment to act as 
an interface. This meant that behaviours can be inserted and 
controlled at run-time. The abstraction achieved by the 
scripting language made controlling the application 
behaviour much easier and dynamically loadable at run-
time.  

The abilities given to the trainer to create different 
scenarios by inserting the scene layout, deciding on the 
number of participants, and specifying the events that occur 
and allowing him to trigger them at any time have 
demonstrated the flexibility of the approach since it 
managed to detach the scenario knowledge from the 
simulation environment and allow its control at run-time.  

The prototype’s practicality can be measured on the 



following points: 
�

 Ability to accommodate different scenarios 
�

 Amount of simulation engine’s functionalities 
exposed to the trainer at the script level 

The accommodation of multiple scenarios is 
achieved by partially storing some data in the database 
such as: number of participants, meshes associated 
with each participant, visibility, scene layout, etc. The 
other part is done at run-time as the trainer is allowed 
to set an object’s behaviour and trigger events at any 
time during the session. This illustrates that multiple 
scenarios can be deployed on the architecture. 

The second point is shown in Table 1. It shows the 
behaviours exposed to the trainer via scripting. What 
has been exposed is a fraction of the engine’s 
capability resulting in the limited number of things the 
trainer can do for a scenario. This can be overcome by 
exposing more functionality.  

The developed architecture illustrates how domain-
independence can be achieved by following two simple 
pointers. One is to add a high-level scripting language 
on top of the simulation environment to allow the 
addition of scenario logic at any time thus achieving 
scenario independence. Second is to adopt a 
mechanism which permits different scenes to be 
deployed on the architecture without any coding. 
Furthermore, the suitability of the architecture for 
training has been demonstrated by the results which 
show that the environment has permitted trainees to 
attend and investigate a virtual accident. It also 
provided the trainer with an environment to evaluate 
trainees’  performances during their investigation. 
Moreover the high degree of presence and co-presence 
and the positive comments collected further enhance 
the training suitability of the architecture.  

The prototype has laid the ground work for the next 
phase of the architecture which investigates two main 
challenges. The first is embedding a publish/subscribe 
mechanism in the architecture to promote simulation 
environment independence (i.e. to service the logic in a 
generic format that is not limited to one simulation 
environment or game engine), something which is 
lacking from the categories described in the related 
work section. 

The second challenge is to build an expert system to 
take the role of the trainer in generating and controlling 
scenarios. A knowledge acquisition process has been 
conducted over a period of two months with experts 
from the traffic investigation division in Dubai Police 
and a set of rules have been elicited. The work is now 
underway to format the rules and build the inference 
engine which is part of the expert system. The expert 
system will then be interfaced with the architecture. 

VIII. CONCLUSIONS 

The work started with two main goals: to create an 
architecture which is domain-independent and to ease the 
scenario generation process by automating it. We have 
detailed the architecture components and how they fit 
together to achieve these two goals. Furthermore, the 
prototype developed has shown how the separation of the 
domain knowledge from the simulation environment can be 
accomplished. We have shown that such an architecture can 
handle running multiple scenarios since the sequences of 
events are placed in the hands of the trainer who can alter 
the sequences as he wishes. The next stage will replace the 
trainer by a KB system as illustrated by the architecture 
proposed in Fig. 1. 
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