
A Domain-Independent Multiplayer Architecture for Training

Ahmed BinSubaih
 Steve Maddock

 Daniela Romano
Department of Computer Science

Regent Court, 211 Portobello Street
Sheffield, S1 4DP, UK

Email: a.binsubaih, s.maddock, d.romano@dcs.shef.ac.uk

Abstract- In this paper the two issues we address in
developing an architecture for training are flexibility and
ease of scenar io generation. Flexibility is the need to make
the architecture domain independent by investigating
how the logic (dictating the scenar io behaviour) is linked
to the simulation environment (where the render ing,
networking, etc., occurs). For the second issue we
consider how to automatically generate training scenar ios
from expert systems (ES).

Our architecture shows how an intermediary “ events
space” can be used to achieve flexibility by separating the
logic from the simulation environment. To show the
training suitability of the architecture we have developed
a scenar io on top of a prototype of the architecture to
train new police recruits how to investigate vehicle
accidents.

I. INTRODUCTION

A number of virtual environments (VEs) and
collaborative virtual environments (CVEs) have been
developed over the years, looking at such things as
training firefighters [13], police officers [20] and navy
personnel [10]. The main issue with such systems is
that they are domain dependent, which makes it
difficult to reuse their simulation systems on different
domains without extensive work, which is expensive
and time-consuming. As identified in [5] domain
specificity in system development leads to highly
inflexible applications. In this paper we propose an
architecture that is domain independent.

Many similarities exist between collaborative virtual
environments and multiplayer games such as co-
existence of players, game state replication,
communication protocols, etc. We investigate the
similarities in architectural needs from the reusability
point of view. More specifically we examine the
reasons behind the lack of reusability in collaborative
virtual environments architectures and the suitability of
adopting some of the approaches from the games world
to address them. Thus we have developed a prototype
architecture which makes use of the successful games
approach of embedding a high-level scripting
language.

Furthermore, to widen the use of the architecture for

training we propose a technique for automatically generating
scenarios, which uses ES and more specifically knowledge-
based systems (KB) which inherently promotes the
separation of the logic from the simulation environment.

In the next section we discuss related work drawing out
some of the problems with current architectures. We then
present our full architecture, before presenting some results
of using a prototype version for traffic accident training for
police officers in the Dubai police force. We conclude with
some general comments about the potential of our
architecture.

II. RELATED WORK

In this section we describe the architectures used to
structure simulation environments and categorize them with
regards to the relationship between them and the scenario
logic. Our categorization examines the relationship in terms
of the communication approaches employed to control the
scenario logic and the flow of the scenario logic from its
source to the simulation environment. We also describe the
personnel involved along the flow path. By describing the
personnel we try to relate what we have already
implemented with the proposed architecture, since our initial
prototype shows the trainer inserting and controlling the
scenario logic to distributed virtual environments.

With regards to the personnel involved in creating the
scenario, we list four of them: domain experts, scenario
creators/trainers, animators and developers. The domain
experts provide the expertise of how the simulation should
operate by describing the sequential and reactive events.
This knowledge is then passed to the scenario creator, who is
familiar with the capabilities of the simulation environments.
The scenario creator either inserts the knowledge himself or
passes it to the developer. The developer is the one
responsible for programming the logic in the simulation
environment. The less the developer is involved in the cycle
of creating or modifying scenarios the more flexible the
system is. The animator designs and animates the objects of
the virtual environment.

We can consider the following different categories based
on the relationship between the scenario logic and the
simulation environment: applications, virtual development

environments, commercial software environments, and
KB systems.

Certain applications [13] tend to embed the scenario
logic inside the simulation environment code and most
likely changes to the logic require recompiling the
simulation system. The personnel involved will always
require the developers to change the scenario because
of the application inflexibility. Other applications
[1,9,20] attempt to give some ability to modify the
logic without recompiling, thus eliminating the
developers involvement in the scenario creation cycle.
This is accomplished by providing ways for the domain
experts or trainers to insert the logic into the simulation
environment. However, these applications are usually
very domain dependent.

Some virtual development environments
[4,11,14,18,19] are built specifically for the use of
developers producing virtual environments. These
environments normally ease the development lifecycle
by abstracting the low level complexities such as
interacting with VR devices. However, some of these
development environments are no different than using
a programming language in the sense that it places the
creation of the link between the logic and the
simulation environment in the hands of the developer.
Nevertheless, some of these development environments
[11,18] encourage flexibility by providing a high level
scripting language, thus making it feasible to be used
for separating and modifying the scenario logic. The
personnel involved are the same as the ones described
for applications above since the developers have
control over how the applications, built using these
development environments, operate. One tool [19]
even provides a higher level of support in the form of a
simple script file for creating environments.

Commercial software environments (such as DI-
Guy™1 and Vega™2) address domain independence in
a much better way by allowing the logic to be inserted
using a graphical interface or a high-level scripting
language. These succeed in achieving domain
independence but usually the logic is in a proprietary
format, thus lacking the simulation environment
independence. One of the strengths of these tools is
their ability to cater for a wide range of users by
providing interaction methods of different levels of
complexity. Such tools can be used by domain experts
or scenario creators using the graphical interfaces
provided. The developers also can make use of the API
access provided. Games engines also cater for multiple
scenarios and scenes, but again the logic is formatted in

1 http://www.bdi.com/
2 http://www.multigen-paradigm.com

a proprietary format.
KB systems [10,17] are geared towards separating the

logic or knowledge from the system using it. They have an
inference engine to deal with retrieving the appropriate
results. Furthermore, the separation also allows the
modification of the knowledge independently from the
simulation environment and more frequently without
developer involvement, which means there is no need for
recompilation of the simulation.

The drawbacks of some of the previous categories are:

�
 The embedding of the logic in the simulation

environment makes it inflexible to change.
�

 The logic usually tends to be specific to the
simulation environment and requires some work to
be able to reuse it in a different simulation
environment. This usually makes the logic created
limited to a specific simulation environment.

Some of the strengths of the previous categories are:
�

 Interoperability between different simulation
environments.

�
 The separation of the logic from the simulation

environment shown by the KB systems.
�

 Providing a high-level scripting language makes the
interaction with the simulation environment less
complex.

In comparison with the above categorization we propose a
new category we call ‘simulation services’ (similar to web
services). This category attempts to combine the best
practices from the above categories and also avoid their
drawbacks. The main goal of this category is to make the
simulation ‘brain’ run as a service by linking it with the
logic from one side and the simulation environment from the
other side, therefore advocating independence from both
sides. The independence from the simulation environment
means that the ‘brain’ can be reused to service other
simulation environments, possibly built using different
languages, as long as they conform to common
communication protocols.

III. ARCHITECUTRE

The simulation environment architecture we pursue puts
an intermediary between the scenario logic and the
simulation environment in an attempt to be domain
independent as shown in Fig.1.

The distinguishing factor of the proposed intermediary
lies in the way it is modularised and run as a separate service
provider, used to automatically generate and service scenario
behaviours to a simulation environment. The scenario
behaviours are constructed from a knowledge base
representing a specific domain. Participants in the simulation
environment communicate their status to the intermediary
and receive events to decide their course of action. The

communication between the simulation and the
intermediary is achieved through the use of an events
service and more specifically the publish/subscribe
mechanism.

We suggest that using a KB system from one side
and the publish/subscribe event mechanism on the
other side will not only achieve the proposed
separation goal but it will also contribute immensely to
making the intermediary module, the events space,
fully decoupled from the simulation environment side.

In Fig.1. the directed arrows show the flow of
information. The events space uses four inputs to link
the KB to the simulation environments in the proposed
architecture:
�

 Entities and relationships: holds a description of
how events can take place in the simulation
environment (i.e. the capabilities of the simulation
environment). These capabilities at low level
reflect the functionality of the simulation engine
that can be accessed by an outside party (the
events space).

�
 KB: holds the knowledge of the considered

domain acquired from the domain expert by the
knowledge engineer. In its natural language form,
it can be represented using simple rules in the form
of ‘ IF (condition) THEN (action)’ .

�
 Simulation environment: from which the events

space requires three types of information: the
scene layout, the simulation time, and changes in
the environment status. The information that the
events space sends is an acknowledgement of the
readiness of the scenario and messages describing
what should happen next in the simulation
environment based on the current time and
environment status.

�
 A Trainer: interacts with the events space in three

ways: he can manually create and modify
scenarios, he can filter automatically created
scenarios, and he can monitor currently running
scenarios to redirect the training course to guide
the training along different tracks.

IV. AUTOMATIC

SCENARIO GENERATION

The process of creating scenarios starts by creating
single events from the knowledge stored in the KB.
These events are filtered into plausible and implausible
events based either on human intervention or set
criteria (e.g. event duration). The filtered events are
then sequenced to make up the scenario. These
sequences are passed again through a filter to validate
them. When the simulation environment passes its
scene layout to the events space, a sequence of possible

Trainer

Fig.2. Prototype archi tecture

Server/H ost

Interface

Simulation
Envi ronment

Simulation
Envi ronment

Simulation
Envi ronment

A ctor 1

Trainee A ctor 2

Trainer

KB in natural
language

Events Space

1. Generate Events
2. Sequence Events
3. Filter Events
4. Control Events

Fig.1. Events space as a link between knowledge base and simulation
environments

Entities &
Relationships

Knowledge
Engineer

KB in Machine
language

Developer

Simulation
Environment

Publish/Subscribe

Scene
Layout

Scenario
Ready

Time
setu

Environment
Status Update

Action

Domain Expert

Server/Host

Simulation
Environment

Simulation
Environment

events from the accepted scenarios is chosen. This
sequence must conform to the content of the
environment layout. For example, no animation of
person in pain would be shown unless there was an
injured person in the scene layout provided. Automatic
scenario generation has not yet been implemented in
the prototype described next.

V. PROTOTYPE

The main aim of the system presented here is to
address the flexibility issue in multiplayer
architectures. Three types of users are going to interact
with the system: trainers, trainees, and actors to help
with the scenario. Therefore, the system should allow
participants to co-exist in a virtual environment and be
able to communicate. The following sections describe
the system and its implementation.

A. System Overview

Fig. 2 shows the developed prototype architecture
which allows multiple players to co-exist and
communicate using voice. The system permits the
trainer to carry out the following tasks:

�
 Create scenario behaviour: allows the trainer

to create different scenarios by specifying the
number of participants and their properties.
The trainer can also add events, e.g.
specifying paths for objects to follow or
attaching sounds to objects.

�
 Monitor scenario behaviour: permits the

trainer to watch the scenario unfolding by
joining the scenario as an invisible participant.

�
 Control scenario behaviour: allows the trainer

to stop or change the course of the simulation
behaviour to fit the training requirements.

�
 Insert a scene layout: permits the trainer to

insert different scenes.
The players are able to join the environment and

communicate with other players using positional voice

communication, which helps players locate each other. Text
communication is not used because of the delay caused

 (see the 'dead moment' described in [15]). Moreover,
typing also

means the player breaks his presence as he is required to
achieve the communication task in an unnatural way (using
the keyboard to type the message).

The vehicle accident scenario implemented on the
prototype aims to train new traffic officers on how to deal
with the aftermath of vehicle accidents and how to
investigate them. The officer is placed in a virtual
environment where he uses an input device (joystick or
mouse and keyboard) to move around and an audio headset
to communicate with other participants in the same
environment, but who might be in different geographical
locations. His role is to collaborate with the participants to
resolve the matter and find out how the accident occurred by
questioning the participants and examining cues in the scene
(e.g. damage to vehicles, skid marks, vehicle positions, etc).

Behaviour Command

Enable/Disable collision detection p.SetCollision(ID,flag)

Enable/Disable object visibility p.SetVisiblity(ID,flag)

Set object position and orientation p.SetPlayerPosition(ID,x,y,z,xRot,yRot,zRot)

Play the animation attached to skinned mesh p.SetPlayerAnimation(ID,flag,name)

Set a sound source and attach it to object in the scene p.Set3DSound(ID,file)

Play a sound source p.PlaySound(ID)

Stop a sound source p.StopSound(ID)

Set the sound minimum and maximum distances p.SetSoundDistance(ID,min,max)

Show/Hide object bounding box p.SetRenderingBoundingBox(ID,flag)

Add animation route based on four points and give it name,
duration and loop flag

p.AddRouteAnimation(ID,p1x,p1y,p1z,p2x,p2y,p2z,p3x,p3
y,p3z,p4x,p4y,p4z,duration,loop,name)

Play one of the animation routes attached to the object using the
above function.

p.SetRouteAnimation(ID,loop,playing,name)

Behaviour Controller

Python Simulation Environment

Scene Objects Players

Game Engine

DirectX 9

Windows OS

Network Input Graphics Sound

Fig.3. Simulation environment design

Table 1: Scenario behaviour commands

B. Implementation
The system architecture is based on the client/server

network topology. The role of the server is to host the
session and forward communication between the
participants. It also allows the trainer to carry out the
tasks described earlier.

Fig. 3 shows the simulation environment and how a
high level scripting language is embedded across three
architectural layers (DirectX 9.0, game engine, and
simulation environment) to enable the manipulation of
the scenario behaviour. The scripting language used is
Python which allows easy replication of the game
engine classes that are based on an object-oriented
approach using C++.

The other advantage scripting provides to this
prototype is the ability to dynamically load code at run-
time which can be used to insert and control behaviour.
A game engine has been built on top of DirectX to
abstract all of its complexities. The layer above the
game engine is the simulation environment, which
holds the objects, the players, and the scene settings.

The top layer is the behaviour controller which
allows for simple run-time access to the environment to
allow the trainer to broadcast events to insert or change
the behaviour of any objects, players, or part of the
environment. The different set of behaviours that are
allowed to be inserted and manipulated during run-time
are shown in Table 1.

The client/server approach is used in this prototype,
and it is achieved by using DirectPlay, a component of
DirectX 9.0. DirectPlay allows a session to be initiated
for players to join and communicate. Each player, after
joining the session, gets a unique identification
number. Players communicate with each other through
the server holding the session by sending messages to
specific players or broadcasting to all players.

As players join or exit the session, the server sends
special messages to all the other players notifying them
of the player’s action. The same approach is used to
allow players to interact and exchange information to
comply with the co-presence requirement mentioned in
[2].

The voice session uses the same DirectPlay session
to communicate voice packets between players and the
server. The prototype developed uses the forwarding
topology because of its support for 3D and the
client/server approach.

The management of the dynamic shared state of the
simulation to enable the synchronization of game status
among all participants is achieved by sharing the object
model, which is comprised of scene object, player
object, and environment settings object. The scene
object and player object share common properties such

as position, orientation, mesh, animation, sound, etc which
they inherent from a parent object.

Finally, the synchronization of the virtual environment
between all participants is accomplished in two phases. The
first phase sends the initial information to the participant at
the time of joining the simulation session. This information
includes current scene objects with their attributes such as
position, orientation, mesh, visibility, etc. The second phase
synchronizes the updates to the players and objects
properties between all players.

VI. EXPERIMENT

We have developed an accident scenario experiment to
measure police trainees’ performances while investigating a
virtual accident scenario. The scenario involves a crash
between two vehicles and one severely injured passenger as
shown in Fig. 4 and 5. The roles of the two vehicle drivers
are played by two actors who are given the same script for
common questions and their answers. If any question is
asked by a trainee for which there is no script the actor either
replies that he can not remember or invents an answer and
that answer is added to the script for the next trainee’s
experiment sessions. To limit the number of required actors

Fig . 4. 2D drawing of the accident scene

Fig . 5. 3D accident scene

we gave the role of the operation room to one of the
drivers as well. His role was to handle any requests
made by the trainee to resolve the incident such as: call
an ambulance, request assistance, etc. All the
experiments were video taped and analysed afterwards
to measure performance.

A trainer at the police academy selected six subjects
with similar training backgrounds: four years of police
academy and two specialized courses in vehicle
investigation. The six subjects were divided into two
groups. Group A ran a pen and paper experiment first
followed by the computer experiment (each referred to
as ‘parts’ of the pair of experiments). Group B did the
opposite. In the pen and paper experiment a 2D
drawing of the accident scene is used and the positions
of the players are marked by small rectangular pieces
of paper which can be moved around. The computer
experiment used the prototype developed. The reason
for conducting a pen and paper experiment along with
the computer experiment is to compare the results to
another practical training method.

During each experiment session the subject is
expected to go through five investigative stages:
receiving incident call, arriving at the accident scene,
initial investigation phase, data completion phase, and
final investigation phase. In each of the stages the
subject is expected to carry out a number of tasks. For
example, after arriving at the accident scene the subject
has to attend the injured, search for more injured,
identify hazards, call the ambulance, call for assistance,
etc. The evaluation is done by scoring the completion
of successful tasks.

For each subject two performances were measured,
one after each experiment. The average performance
among all subjects across both experiments (pen and
paper, and computer) was at 41.9% (26 out of 62
marks). The average performance result shows that the
theoretical and supervised training (previously
provided at the academy and police station
respectively) on their own are not reaching an adequate
performance measure.

The results also show that Group A subjects
improved their performances average on the second
part by 12.4% compared to 8.1% for the subjects in
Group B. In none of the five investigative stages did
the pen and paper experiment manage to improve
subject performance by more than what the computer
experiment achieved.

Another interesting result is the time taken to
complete each experiment. We noticed that group B,
which did computer experiment first, spent 54.2% less
time when doing the following pen and paper
experiment. Group A, which did the pen and paper

experiment first, spent 36.2% less time when running the
following computer experiment. Two initial reasons for this
are suggested. Either the computer usage complexity added
to the time used or the user started discovering more things
in this experiment. The first possibility can be discarded
when comparing the average time after the first part for both
groups since the pen and paper experiment average time
took 3.3 minutes longer than the computer experiment.

Furthermore, during the computer experiments we noticed
that all the subjects made good use of the navigation
methods and managed to investigate the accident scene.
They also made good use of the headset facility in
identifying the drivers and communicating with the
operation room operator. These two observations back the
high rate of presence (76.8%) and co-presence (86.6%)
reported by the subjects on a post-experiment questionnaire.
Moreover, one of the trainers said that computer experiment
training has shown him clearly the trainees’ weaknesses
which were not obvious to him while conducting the
theoretical training during the four year course or the
specialized courses at the police academy. During the
discussion after the experiment one of the subjects said that
this was his first ‘severe’ accident and that is why he thought
he did not perform well. He got the lowest mark of all the
participants. His comments indicate that he is relating this
experiment and comparing it to his experiences. This
confirms the positive responses from all subjects when asked
subjectively if this experiment will go into their collection of
experiences.

VII. DISCUSSION

This section discusses two issues: the practicality of the
prototype architecture and the indications this gives for the
implementation of the next phase of the architecture shown
in Fig.1.

The prototype had two primary objectives with regards to
flexibility: the separation of the domain knowledge and the
ability to control it at run-time. The separation has been
achieved by the use of a high-level language (Python) to
create a layer on top of the simulation environment to act as
an interface. This meant that behaviours can be inserted and
controlled at run-time. The abstraction achieved by the
scripting language made controlling the application
behaviour much easier and dynamically loadable at run-
time.

The abilities given to the trainer to create different
scenarios by inserting the scene layout, deciding on the
number of participants, and specifying the events that occur
and allowing him to trigger them at any time have
demonstrated the flexibility of the approach since it
managed to detach the scenario knowledge from the
simulation environment and allow its control at run-time.

The prototype’s practicality can be measured on the

following points:
�

 Ability to accommodate different scenarios
�

 Amount of simulation engine’s functionalities
exposed to the trainer at the script level

The accommodation of multiple scenarios is
achieved by partially storing some data in the database
such as: number of participants, meshes associated
with each participant, visibility, scene layout, etc. The
other part is done at run-time as the trainer is allowed
to set an object’s behaviour and trigger events at any
time during the session. This illustrates that multiple
scenarios can be deployed on the architecture.

The second point is shown in Table 1. It shows the
behaviours exposed to the trainer via scripting. What
has been exposed is a fraction of the engine’s
capability resulting in the limited number of things the
trainer can do for a scenario. This can be overcome by
exposing more functionality.

The developed architecture illustrates how domain-
independence can be achieved by following two simple
pointers. One is to add a high-level scripting language
on top of the simulation environment to allow the
addition of scenario logic at any time thus achieving
scenario independence. Second is to adopt a
mechanism which permits different scenes to be
deployed on the architecture without any coding.
Furthermore, the suitability of the architecture for
training has been demonstrated by the results which
show that the environment has permitted trainees to
attend and investigate a virtual accident. It also
provided the trainer with an environment to evaluate
trainees’ performances during their investigation.
Moreover the high degree of presence and co-presence
and the positive comments collected further enhance
the training suitability of the architecture.

The prototype has laid the ground work for the next
phase of the architecture which investigates two main
challenges. The first is embedding a publish/subscribe
mechanism in the architecture to promote simulation
environment independence (i.e. to service the logic in a
generic format that is not limited to one simulation
environment or game engine), something which is
lacking from the categories described in the related
work section.

The second challenge is to build an expert system to
take the role of the trainer in generating and controlling
scenarios. A knowledge acquisition process has been
conducted over a period of two months with experts
from the traffic investigation division in Dubai Police
and a set of rules have been elicited. The work is now
underway to format the rules and build the inference
engine which is part of the expert system. The expert
system will then be interfaced with the architecture.

VIII. CONCLUSIONS

The work started with two main goals: to create an
architecture which is domain-independent and to ease the
scenario generation process by automating it. We have
detailed the architecture components and how they fit
together to achieve these two goals. Furthermore, the
prototype developed has shown how the separation of the
domain knowledge from the simulation environment can be
accomplished. We have shown that such an architecture can
handle running multiple scenarios since the sequences of
events are placed in the hands of the trainer who can alter
the sequences as he wishes. The next stage will replace the
trainer by a KB system as illustrated by the architecture
proposed in Fig. 1.

ACKNOLWEDGEMENT
This work is sponsored by a grant from Dubai Police.

Thanks are due to all personnel from Dubai Police for
assisting in the knowledge acquisition phase and taking part
in the experiment. Thanks also to Michael Meredith for his
support and suggestions that enabled the software to run on
the Sheffield VR studio.

REFERENCES

[1] Akerberg, O., Svensson, H., Schulz, B., Nugues, P. CarSim: An
Automatic 3D Text-to-Scene Conversion System Applied to Road
Accident Reports. Research Notes and Demonstrations Conference
Companion, 10th Conference of the European Chapter of the
Association of Computational Linguistics, 2003.
http://citeseer.nj.nec.com/563862.html

[2] Casanueva, J., Blake, E. The Effects of Avatars on Co-presence in a
Collaborative Virtual Environment. Annual Conference of the South
African Institute of Computer Scientists and Information
Technologists (SAICSIT2001). Pretoria, South Africa. September
2001.

[3] Chi, D., Clarke, J., Webber, B., Badler, N. Casualty Modeling for
Real-Time Medical Training. PRESENCE: Teleoperators and Virtual
Environments Special Issue on The Human Figure in Virtual
Environment Systems, Volume 5, Number 4, pp. 359-366, December
1996.

[4] Cruz-Neira, C., Bierbaum, A., Hartling, P., Meinert, K., Just, C. VR
Juggler – An Open Source Platform for Virtual Reality Applications.
AIAA 2002 Aerospace Science Conference, Reno, NV, January 2002.

[5] Dachselt, R. CONTIGRA Towards a Document-based Approach to 3D
Components. Workshop 'Structured Design of Virtual Environments
and 3D-Components' at the ACM Web3D 2001 Symposium.

[6] Davis, W., Moeller, G. The High Level Architecture: is there a
better way. In Proceeding of the 1999 Winter Simulation
Conference.

[7] Drew, R., Morris, D., Dew, P., Leigh, C.A System Architecture For
Supporting Event Based Interaction And Information
Access.http://citeseer.nj.nec.com/370116.html

[8] Eugster, P., Felber, P., Guerraoui, R., Kermarrec, A. The many faces
of publish/subscribe. In ACM Computing Surveys (CSUR), volume
35, issue 2 (June 2003), pages: 114 - 131

[9] Hamman, M., LeMentec, J. C., Wilkins, D. C., Design Requirements
for DC-Train 4.0. Knowledge Systems Lab Report UIUC-BI-KBS-
2001-0029. Beckman Institute, University of Illinois, Urbana-
Champaign. February 2001.

[10] Hamman, M., Wilkins, D. C., Carbonari, R., Mueller, C. DC-
Train 4.0 Instructor’s Manual. Knowledge Systems Lab Report
UIUC-BI-KBS-2001-0040. Beckman Institute, University of
Illinois, Urbana-Champaign. November, 2001.

[11] Hawkes, R., Wray, M. “LivingSpace: A Living Worlds
Implementation using an Event-based Architecture” . HPL-98-
181, Extended Enterprise Laboratory, 1998.

[12] Hook, B. The Secret Life Of Game Scripting. Feb, 2004
http://bookofhook.com/Article/GameDevelopment/TheSecretLi
feofGameScript.html

[13] Romano, D. Features that Enhance the Learning of
Collaborative Decision Making Skills under Stress in Virtual
Dynamic Environments. Ph.D.thesis, Computer Based
Learning, University of Leeds, UK, August 2001.

[14] Shaw, C. Liang, J, Green, M. Sun, Y. The Decoupled
Simulation Model for Virtual Reality Systems. In Human
Factors in Computing Systems CHI'92 Conference
Proceedings, pages 321-328, Monterey, California, May 1992.
ACM SIGCHI.

[15] Slater, M. and Steed, A. A Virtual Presence Counter. Presence:
Teleoperators and Virtual Environments 9(5), 413-434, 2000.

[16] Smith, R. Essential techniques for military modeling and simulation.
Proceedings of the 30th conference on winter simulation, 1998, pages:
805 - 812 ISBN:0-7803-5134-7.

[17] Szarowicz, A., Forte, P., Amiguet-Vercher, J., Gelepithis, P.
Application of Autonomous Agents for Crowd Scene Generation. 2nd
Hellenic Conference on AI SETN-02, vol. 2 April 11-12,
Thessaloniki, Greece, 2002

[18] Tamberend, H. Avocado: A Distributed Virtual Environment
Framework. Ph.D.thesis, University of Bielefeld, 2003.

[19] Wang, Q. Green, M, Shaw, C. EM – An Environment Manager for
Building Networked Virtual Environments. IEEE Virtual Reality
Annual International Symposium (VRAIS 95), pages 11-18, Research
Triangle Park, North Carolina, March 11-15, 1995, IEEE.

[20] Williams, R, J. A Simulation Environment to Support Training for
Large Scale Command and Control Tasks. Ph.D. thesis, School of
Computer Studies, University of Leeds, UK, December 1995.

[21] Wright, I. P., Marshall, J. A. R. RC++: a rule-based language for
game AI. In: Proceedings of the First International Conference on
Intelligent Games and Simulation (GAME-ON 2000). SCS Europe
BVBA.

