
A COLLABORATIVE VIRTUAL TRAINING ARCHITECTURE FOR
INVESTIGATING THE AFTERMATH OF VEHICLE ACCIDENTS

Ahmed BinSubaih

Steve Maddock
Daniela Romano

Department of Computer Science
Regent Court, 211 Portobello Street

Sheffield, S1 4DP, UK
Email: a.binsubaih, s.maddock, d.romano@dcs.shef.ac.uk

KEYWORDS
Collaborative virtual training environments, architectures.

ABSTRACT

Recently technologies have improved training practices
tremendously, especially practices that require
visualization and collaboration to enhance the
understanding of any situation and to deploy strategies to
solve these problems. Visualization of problems enhances a
trainee’s understanding of it in a more natural way that
mimics everyday practice in the real world. Once a mental
picture of the situation has been constructed, the trainee
can then try different approaches to remedy it and therefore
learn by experience. This paper investigates the use of
collaborative virtual environment (CVE) technology for
training purposes. We present an architecture for CVEs
developed with the purpose of being domain independent
by separating scenario logic from the simulation
environment. We believe that such separation leads to a
flexible environment that can easily be modified into new
scenarios. To demonstrate this we have built two scenarios
to show how the logic can be separated and controlled from
outside the environment. The first scenario allows new
police recruits to be embedded in a collaborative virtual
environment with other participants (witnesses, operation
room operators, etc) with the purpose of investigating and
dealing with the aftermath of vehicle accidents. The second
scenario allows participants to attend a virtual lecture. In
both environments we show how a trainer can monitor the
environment and trigger events that unfold the scenario.
Placing the logic in the hands of the trainer is our goal to
show how a collaborative virtual environment can be made
flexible. It also lays the basic ground for a proposed
domain-independent architecture.

INTRODUCTION

The main aim of training is to transform the knowledge
acquired during the training session into the trainee’s
collection of recallable experiences. Various technological
approaches have been used to enhance this transformation
such as: electronic publishing, television and video,

teleconferencing, virtual reality, etc. This paper focuses on
the use of collaborative virtual environments as a training
tool. Virtual Environments (VE) are particularly
appropriate for training collaborative emergency skills, as
demonstrated by the many successful examples of its use in
training; e.g. flight simulators, which have provided
invaluable training for pilots. The advantages of virtual
environments over other technologies become obvious
when examining their main attributes: visualization
(Rohrer 2000), presence (Nunez and Blake 2000; Slater
and Steed 2000), co-presence (Witmer 1998), and
immersion (Casanueva and Blake 2001). These attributes
allow a recallable experience to be formed in the trainee’s
mind (Romano and Brna 2000).

One of the major contributions of this paper is presenting
an architecture where the scenario logic is separated from
the simulation environment. The aim is to develop a
flexible architecture which caters for different scenarios.
Moreover, we believe such flexibility confers the following
advantages:

� The scenario logic and the simulation
environment can be modified independently
allowing iterative development cycles and easy
substitution of elements in the environment.

� The decoupling of the scenario logic from the
simulation environment encourages encapsulation
and other good object-oriented coding practices
thus easing the generation of CVEs.

The work presented in this paper is both a proof of concept
for a domain-independent architecture and the ground
work for the generation of the related easy-modifiable
collaborative virtual environment. We propose to achieve
the domain-independence by introducing an intermediary -
called Events Space- between the scenario logic (stored in
knowledge base (KB) systems format) and the simulation
environment. The advantages of such an intermediary are:

� It enables interoperability between distinct
simulation environments, a practice promoted by
the High Level Architecture (HLA) (Smith 1998).

� The three different parts (KB, events space, and
simulation environment) can be individually

tailored to the expertise and computer literacy of
their users (domain experts, trainer, and trainees).

� Automatic generation and control of scenarios for
training purposes.

� KB systems can be used to guide trainees during
simulation sessions by exploiting their ability to
provide explanation of how solutions are derived.

The groundwork in this paper focuses on examining the
separation sought on a CVE rather than a VE because of
the inherited distributed nature of a CVE and the existence
of many different techniques for communication, such as
the events mechanisms with its decoupling ability (Eugster
et al 2003; Hamman et al 2001).

In order to test our system we have created a scenario to
train new police recruits on how to investigate the
aftermath of vehicle accidents. The main factor that
assisted in choosing this scenario was the accessibility of
such information since the project is sponsored by the
Dubai Police. Furthermore, the existence of training
courses to deal specifically with vehicle accidents allows a
comparison between the use of CVE and traditional
training courses. The target audience of the training
environment is the new police recruits studying at the
Dubai Police College and recent graduates working for the
Dubai Police Traffic Department and undergoing
specialised training.

In this paper, we first describe the related work, followed
by a detailed presentation of the proposed architecture. A
walkthrough of the scenario creation process is then
described. Finally, we illustrate the flexibility of the
architecture by deploying a second scenario on it.

BACKGROUND

A number of virtual environments and collaborative virtual
environments have been developed over the years with
different features examining a wide range of research
interests. These environments can be placed in three main
categories based on the relationship between the scenario
logic and the simulation environment. The three categories
are: applications, virtual development environments, and
KB systems.

The ACTIVE project (Romano 2001) is an application
which is used to train fire fighters. It uses a special
technique called ‘super powers’, which give trainees
capabilities in a virtual environment that are not available
for them in a real life situation, such as rewind, replay or
forward the incident to view a demonstration of the
solution. CACTUS (Williams 1995) trains police officers
to control crowds in domestic incidents. It uses an AI
technique to model crowd behaviour so that the crowd can
behave autonomously in an environment. Furthermore, it
allows the trainer to influence the crowd behaviour and
guide the training. The DC-Train (Hamman et al 2001a)
system trains Navy personnel on how to control ship
damage. This system allows the trainee to receive the
status of the ship and send commands to different stations

to control and repair the damage before it escalates. All the
messages communicated are stored for evaluation and
retraining purposes. Finally, CarSim (Akerberg et al 2003)
is another system which automatically reconstructs a traffic
accident from a textual report. The reconstruction is output
in the form of 3D animation.

Reviewing the above applications, we have identified the
tight coupling of the scenario logic to the environment
simulation as the most restrictive factor that prevents the
adaptation of VEs. This inflexibility has a negative impact
on the use of the virtual environment for training purposes
since it leads to simulation memorization where the trainee
starts to memorize the events sequence and understands
how to ‘beat’ the simulation. The other symptom shown by
many current environments, which can be attributed again
to the inflexibility issue, is that they tend to be domain
dependent. This makes it impossible to transfer the
training feature of a system from one application to
another without substantial work.

The second category contains virtual development
environments (Hawkes and Wray 1998; Tamberend 2003;
Cruz-Neira et al 2002; Singhal and Zyda 1999; Shaw et al
1992; Wang et al 1995) that are built specifically for the
use of developers producing virtual environments. These
environments normally ease the development lifecycle by
abstracting the low level complexities such as interacting
with VR devices. However, some of these development
environments are no different than using a programming
language in the sense that it places the creation of the link
between the logic and the simulation environment in the
hands of the developer. Nevertheless, some of these
development environments (Hawkes and Wray 1998;
Tamberend 2003) encourage flexibility by providing a high
level scripting language, thus making it feasible to separate
and modify the scenario logic. The Environment Manager
(EM) tool (Wang et al 1995) even provides a higher level
of support in the form of a simple script file for creating
environments.

Finally, KB systems (Tecuci 1998; Szarowicz et al 2002;
Gonzalez and Douglas 1993) are geared towards
separating the logic or knowledge from the system using it.
They use an inference engine to deal with retrieving the
appropriate results. The other advantage described in
(Gonzalez and Douglas 1993) is the ability to make the
knowledge domain-specific, which means that it can
accommodate different domains by simply changing the
knowledge. Furthermore, the separation of the logic from
the system also allows the modification of the knowledge
independently from the simulation environment and more
frequently without the developer involvement, which
means there is no need for recompiling the simulation.

Summarising, the drawbacks of some of the previous
categories are:

� Embedding the logic in the simulation
environment makes it inflexible to change.

� Even in KB systems the logic usually tends to be
specific to the simulation environment considered
and requires some work to be able to reuse it in a

different simulation environment. This usually
makes the logic created limited to a specific
simulation environment.

Some of the strengths of the previous categories are:

� Interoperability between different simulation
environments.

� The separation of the logic from the simulation
environment shown by the KB systems.

� The decoupling accomplished using events
mechanisms.

� Providing a high-level scripting language makes
the interaction with the simulation environment
less complex.

Our work proposes a twofold solution to develop an
architecture for domain-independent collaborative virtual
environment. The first phase, illustrated in this paper,
focuses on investigating the feasibility of developing an
architecture that targets the separation of the scenario logic
from the simulation environment using it. The second
phase examines the challenges of adopting a domain-
independent approach by introducing an intermediary
between the domain knowledge and the simulation
environment. The role of the intermediary is to
automatically generate and control scenarios using domain
knowledge elicited from experts.

THE SYSTEM

The main aim of the system presented here is to address
the flexibility issue in collaborative virtual environments.
Two types of users are going to interact with the system:
trainers and trainees. Therefore, the system should allow
participants to co-exist in a virtual environment and be
able to communicate. The following sections describe the
requirements and the implementation of the system.

Requirements

System requirements are divided into three sections:
trainer requirements, the requirements of the players, and
scenario requirements. The trainer should be able to carry
out the following tasks:

� Create scenario behaviour: allows the trainer to
create different scenarios by adding events, e.g.
specifying paths for objects to follow or attaching
sounds to objects.

� Monitor scenario behaviour: permits the trainer to
watch the scenario unfolding by joining the
scenario as an invisible participant.

� Control scenario behaviour: allows the trainer to
stop or change the course of the simulation
behaviour to fit the training requirements.

� Insert a scene layout: permits the trainer to insert
different scenes making the architecture scene
independent.

The players should be able to join the environment and
communicate with other players using voice
communication. In addition , to enable a better perception
of the location of other players in the environment, a
positional sound feature should be added to the voice to
allow players to locate each other. Text communication is
not used because the delay caused (see the 'dead moment'
described in (Slater and Steed 2000)). Moreover, typing
also means the player breaks his presence as he is required
to achieve the communication task in an unnatural way
(using the keyboard to type the message).

The vehicle accident scenario aims to train new traffic
officers on how to deal with the aftermath of vehicle
accidents and how to investigate them. The officer is
placed in a virtual environment where he uses an input
device move around and a headphone/microphone to
communicate with other participants in the same
environment, but who might be in different geographical
locations. His role is to collaborate with the participants to
resolve the matter and find out how the accident occurred
by questioning the participants and examining cues in the
scene (e.g. damages to vehicles, skid marks, etc). The
trainer should also be able to join the same environment, as
an invisible participant, monitor the scenario unfolding
and trigger events (e.g. ambulance animation, siren, etc).

Implementation

This section details the system architecture, simulation
environment design, network topology, events model, and
object model.

Conceptual System Architecture
Figure 1 shows the system architecture. It is based on the
client/server network topology. The role of the server is to
host the session and forward the communication between
the participants. It also allows the trainer to carry out the
tasks described earlier.

 Trainer

Figure 1. System architecture

Server/Host

Interface

Simulation
Environment

Simulation
Environment

Simulation
Environment

Actor 2

Actor 1

Trainee

Simulation Environment Design
Figure 2 shows the simulation environment and how a
high level scripting language is embedded across three
architectural layers (DirectX 9.0, game engine, and
simulation environment) to enable the manipulation of the
scenario behaviour. The scripting language used is Python
which allows easy replication of the game engine classes
that are based on an object-oriented approach using C++.

Furthermore, the other advantage scripting provides to this
prototype is the ability to dynamically load code at run-
time which can be used to insert and control the behaviour.
Figure 2 shows how a game engine has been built on top of
DirectX to abstract all of its complexities. The layer above
the game engine is the simulation environment, which
holds the objects, the players, and the scene settings. The
top layer is the behaviour controller which allows for
simple run-time access to the environment to allow the
trainer to broadcast events to insert or change the
behaviour of any objects, players, or part of the
environment. The different set of behaviours that are
allowed to be inserted and manipulated during run-time
are shown in Table 1.

Network Topology
The client/server approach is used in this prototype, and it
is achieved by using DirectPlay, a component of DirectX
9.0. DirectPlay allows a session to be initiated for players

to join and communicate. Each player, after joining the
session, gets a unique identification number. Players
communicate with each other through the server holding
the session by sending messages to specific players or
broadcasting to all players.

The list of all available players can be queried from the
server. As players join or exit the session, the server sends
special messages to all the other players notifying them of
the player’s action. The same approach is used to allow
players to interact and exchange information to comply
with the co-presence requirement mentioned earlier.

The voice session uses the same DirectPlay session to
communicate voice packets between players and the server.
Voice has three different communication topologies:
forwarding server, mixing server, and peer-to-peer. The
forwarding server forwards the voice packets to the clients
who decompress the packets and process them to emulate,
for instance, positional voice. The mixing server, on the
other hand, mixes the voice packets coming for all players
and then forwards them to the players. This approach does
not allow for positional support because the players only
receive the mixed packets of the voice. The third type
supports positional voice but cannot be used with the
client/server approach adopted in the prototype described
in this paper. The prototype developed uses the forwarding
topology because of its support for 3D and the client/server
approach.

Object Model
The next element in addressing the system design is the
management of the dynamic shared state of the simulation
to enable the synchronization of game status among all
participants. This is achieved by sharing the object model,
which comprised of the scene object, the player object, and
the environment settings. The scene object and player
object share common properties such as position,
orientation, mesh, animation, sound, etc. A parent object

Behaviour Command
Enable/Disable collision detection SetCollision(ID,flag)

Enable/Disable object visibility SetVisiblity(ID,flag)
Set object position and orientation SetPlayerPosition(ID,x,y,z,xRot,yRot,zRot)

Play the animation attached to skinned mesh SetPlayerAnimation(ID,flag,name)
Set a sound source and attach it to object in the scene Set3DSound(ID,file)

Play a sound source PlaySound(ID)
Set the sound minimum and maximum distances SetSoundDistance(ID,min,max)

Show/Hide object bounding box SetRenderingBoundingBox(ID,flag)
Add animation route based on four points and give it

name, duration and loop flag
AddRouteAnimation(ID,p1x,p1y,p1z,p2x,p2y,p2z,p3x,p3y,p3z,

p4x,p4y,p4z,duration,loop,name)
Play one of the animation routes attached to the object SetRouteAnimation(ID,loop,playing,name)

Behaviour Controller

Python Simulation Environment

Scene Objects Players

Game Engine

DirectX 9

Windows OS

Network Input Graphics Sound

Figure 2. Simulation environment design

Table 1. Scenario behaviour commands

cObject

cObjectPlayer cObjectScene

Figure 3: Object Model

cGameSettings
0,1,

has been created to hold all the common attributes
(cObject). The player object (cObjectPlayer) and the scene
object (cObjectScene) inherit the class properties from
‘cObject’ as shown in Figure 3. The scene settings are
stored in the cGameSettings class. The way these are
synchronized across the participants is described in the
next section.

Event Model (State synchronization)
The synchronization of the virtual environment between all
participants is accomplished in two phases. The first phase
sends the initial information to the participant at the time
of joining the simulation session. This information
includes current scene objects with their attributes such as
position, orientation, mesh, visibility, etc. The players
information, however, is sent as they join the game along
with their attributes, except for those players who are
currently in the session whose information gets sent after
the initial information.

Table 2 shows the player initialization messages sent
between the client joining the simulation, the server, and
the other clients who are already in the game. It also shows
the direction, and the message format used. DirectPlay
triggers the first message on the server after receiving a
request by a client to join using the
IDirectPlay8Client::Connect method. This call triggers the
following message on the server:
DPN_MSGID_CREATE_PLAYER. The message contains
a unique identifier (dpnidPlayer) variable assigned to a
player after joining.

Once the connection attempt is completed, a second
message is created by DirectPlay and sent to the client -
DPN_MSGID_CONNECT_COMPLETE. The message
contains the unique identifier (dpnidLocal) given to the
player which is used to identify him during any future
communication. Players can be organized in groups that
describe common features such as a different type of user
interface. For example, an operation room operator might
not require a 3D interface to see the environment as he
communicates using voice only. The messages are
identified by a manually created identifier. The client then
chooses a player from the unallocated players and sends a
message to the server and the allocation result is sent back
to the client. This continues until a player is allocated to
the client. Then the client is allowed to enter the
simulation.

After the client has joined the game, he communicates
with the server and other clients using the messages shown
in Table 3. These messages allow clients to synchronize
positions, orientation, animation, etc. For example, a
message with ID 4 sends the position and orientation
accompanied by the dpnidPlayer which uniquely identify
each player and allow the clients receiving the message to
update the appropriate avatar.

Finally, the player can exit the session by requesting it
from the server or by the server terminating the session
without request using IDirectPlay8Client::Close() and
sending a DPN_MSGID_TERMINATE_SESSION
message respectively. When the player leaves the
simulation other players are informed by receiving a
DPN_MSGID_DESTROY_PLAYER message which has
the dpnidPlayer number.

SCENARIO IMPLEMENTATION

This section details the vehicle accidents scenario
implemented on the environment. The scenario has been
developed specifically to show how the logic can be
separated from the simulation environment and how it can
be manipulated offline and online during the simulation
run. The scenario creation process is also described along
with how the environment allows the trainer to act as the
‘brain’ of the simulation by monitoring the environment
and deciding the course of actions.

Vehicle Accidents Scenario

The scenario chosen allows five participants to join the
simulation: traffic officer, two drivers, operation room
operator, and trainer. The officer and the two drivers are
represented by avatars in the virtual environment, whereas,
the operator has a voice communication only and no
physical representation in the environment (i.e. no avatar).
Each avatar has some behaviours attached to it such as
movement and orientation to allow the avatar to traverse
the environment. The trainer can also join the environment
as an invisible participant to monitor and control the
scenario.

The vehicle accident scene contains two vehicles involved
in an accident, and one injured passenger. The scene also

Seq Direction Message Format

1 Server Player joined DPNMSG_CREATE_PLAYER

2 Client Joining process complete DPN_MSGID_CONNECT_COMPLETE

3 Server-to-Client Groups 100@dpnidplayerID@ID@bMonitor@bModeratio
n@bInvisible@bForcelookAt@bDriver@bCRWnd
@bCRRadio@bChatWnd@bAvatar@title@tasks

4 Server-to-Client Meshes 101@dpnidplayerID@ID@Name@Desc@File@Pi
cture

5 Server-to-Client Players 102@dpnidplayerID@m_iPlayerID@m_iGroupId
@m_iMeshID@m_iVehicleBeforeID@m_iVehicle
AfterID@m_iMotionID@takenStatus@m_strTitle

Table 2: The messages flow between the client and server for joining and initializing a player (@ is a separator)

has other objects such as roads, buildings, fences, other
vehicles, etc. The injured passenger behaviour can be in
the form of a screaming sound which is triggered at certain
time by the trainer and possibly stopped when the
ambulance takes him away from the scene.

The simulation starts with a call from the police operation
room informing the trainee of an accident and requesting
him to attend. The trainee then finds himself at the scene
of the accident where he can navigate the environment.
The trainee’s objectives are to bring the situation under
control, investigate the incident, and produce an accident
report. He can navigate around the scene and communicate
with the operation room to request additional resources as
needed.

Once the resources are deployed (simulated or played by
other actors) and the injured passenger is then taken to the
hospital, the trainee can start investigating what happens
by examining the scene’s clues and by interviewing the two
drivers and any witnesses. The interview is conducted
using positional voice communication between the
participants.

A sample script of a possible scenario is shown in Figure 4.
Such a script is usually designed by the scenario creator
and hard-coded into the simulation environment or
scripted in some way. In our current implementation of the
architecture, rather than hard-coding this logic it is left to
the trainer to trigger the appropriate events at appropriate
times. For example, the trainer might start the injured
person screaming sound at the third minute during the
simulation. This might be followed by the pain animation
at the fifth minute, and then the trainer will wait for the
trainee’s actions to decide on what to do next. For
example, if the trainee calls an ambulance by contacting
the operation room by voice, the trainer can then launch
the ambulance animations.

Scenario Creation Lifecycle

The scenario creation passes through the following steps:
the creation of the models of the objects to be used in the
environment, the scene layout setup, and scenario logic
creation.

The models creation is carried out using a modeling tool,
e.g. 3D Studio Max 6.0. Once a model is created and
optimized it is exported to the X file format which is then
used by the Scenario Creator, as shown in Figure 5, to
store the objects in the database to make them reusable for
different scenes. The database contains five tables, three of

which are specific to the scenario (games, players and
scene objects) and the other two hold reusable information
(meshes and groups).

The second step sets the scene layout by positioning and
orienting the scene objects. The Scenario Creator allows
the insertion and positioning of the objects in the
environment. It also allows assigning a title to the object to
ease its identification. Each object created has its own
unique identification number. The number of players
allowed in the environment and the avatars attached to
them is set in the scenario configuration step using the
players tab in the Scenario Creator tool. The scene creation
process is shown in Figure 6.

Once the scene layout is ready the next step is to create the
scenario logic, an example of which is shown Figure 4.
This involves deciding on the path of animations and the
timing of events. This is achieved by directly manipulating
the functionality of the simulation environment through
the embedded high level scripting language (Python)
which allows run-time loading of behavioural scripts.
Table 1 shows samples of the behaviours available to the
trainer. For instance, the screaming behaviour is added
using the 3D sound insertion method. The method takes an
object id and a sound source file and attaches the sound to
that object using the following method:
‘Set3DSound(ID,file)’. The scenario controller can then
play the sound at any time using ‘PlaySound(ID)’ which
takes an id of the object on which the sound has been
attached. He can also stop it by using ‘StopSound(ID)’.
Furthermore, he can set the distance at which the sound
can be heard using ‘SetSoundDistance(ID,min,max)’

ID Direction Message Format

4 Client-to-Server-to-All Clients Position and orientation 4@dpnidPlayer@ID@x@y@z@xRot@yRot@zRot

444 Client-to-Server-to-All Clients X Animations statuse 444@dpnidPlayer@GameID@Count@AnimationsTex
t

5 Client-to-Server-to-All Clients Chat message 5@dpnidPlayer@ID@chatText

900 Client-to-Server-to-All Clients Set 3D Sound 900@dpnidPlayer

901 Client-to-Server-to-All Clients Python script 901@script

Figure 4. Sample scenario

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

Injured person pain animation
Injured person screaming

Ambulance Called

Ambulance arrived

Injured taken away

Ambulance Left Start investigation

Time

Table 3. The messages flow between the clients and the server during the simulation session (@ is a separator)

which takes the object id and the minimum and maximum
distances. The minimum distance is the distance at which
the sound is uniform, whereas the maximum is the
distance after which the sound cannot be heard. The sound
decreases when moving from the minimum to the
maximum distances. The scripting language demonstrated
in this example could be easily hidden in a final
application by implementing a graphical interface to hide
the methods. This would allow the logic to of the
environments to be designed by computer users at any
level.

Running the Scenario

Table 4 shows the steps taken by the trainer in running and
controlling the scenario. Once all the players have joined
the scenario the trainer can start broadcasting the scenario
behaviours. To run the scenario shown in Figure 4, a
trainer joins the simulation and acts, for example, as the
operation room controller. The purpose of him joining the
simulation is to trigger events based on the conversation
between the players. For instance, if the trainee calls an
ambulance the trainer triggers the ambulance event. The
trainer also monitors the virtual environment and carries
out all the manual tasks (e.g. take injured passenger away).
Currently all actions are broadcasted as Python scripts,
which are interpreted and acted on by each simulation
environment.

RESULTS

During the initial informal experimental run of the
scenario, the architecture was tested by allowing four
players to join the environment (traffic officer, two drivers
and the operation room operator). The trainee played the
role of the traffic officer. The drivers were played by two
actors who were given different scripts of their details, and
a short description of how the accident occurred from their
point of view. The operator was played by the trainer who
also controlled the scenario by broadcasting events. The
trainer used the scenario script shown in Figure 4 to
broadcast the appropriate events at the specified time.
Figure 7 shows the scenario running on a wide-screen
Reflex setup (some of the models have been downloaded
freely from turposquid.com and 3dcafe.com). Figure 8a
displays the scene from the perspective of one of the
player.

The second scenario run on th system (virtual lecturing) is
shown in Figure 8b. This scenario was created to
demonstrate the flexibility of the proposed approach and
the strengths of the architecture. In the virtual lecturing
scenario, four participants join the same environment to
attend a lecture given by a fifth participant. The same
process of creating the scenario was undertaken but with a
reduced time as the architecture allows reusability of the
general data.

Order Task

1 Choose a scenario from the drop down list

2 Choose the network card for the server session

3 Start the voice communication server

4 Wait for players to join

5 Start broadcasting behaviours

Figure 5. Scenario Creator

General
Data

3D Max X model

3DS model

Scenario
Creator Scene

Setup

Figure 6. Scene creation process
Scene
Creator

Table 4: Scenario controller or trainer tasks

Figure 7. Accident scenario running on Reflex Studio
set-up.

Figure 8. Vehicle accidents (a), virtual lecturing (b)

(a)

(b)

CONCLUSIONS

The separation of the domain knowledge and the ability to
control it at run-time were the two primary objectives of
the current prototype. The separation has been achieved by
the use of a high level language to create a layer on top of
the simulation environment to act as an interface. This
meant that behaviours could be inserted and controlled at
run-time. The abstraction achieved by the scripting
language made controlling the application behaviour much
easier and dynamically loadable at run-time. Moreover,
using an existing language (Python) rather than building
our own reduced the development time as it eliminated the
need to build a parser and evaluate it. The other advantage
of this approach is that it allows commands to be tailored
to suite the user’s computer literacy, as another
simplification layer can be added such as graphical user
interface.

By creating and running two different scenarios on the
prototype simulation environment we have demonstrated
the flexibility of the approach since it managed to detach
the domain knowledge from the simulation environment
and allow its control at run-time. These are promising
results. However, to prove the architecture flexibility more
tests will be carried out involving scenarios from different
domains. The observation that can be made about the
flexibility of the prototype is that the more the simulation
environment functionality is exposed through the scripting
language the more flexibility is achieved. This means that
if the full simulation environment functionality is exposed,
then the system can be labeled fully flexible. We define
flexibility as the ability to insert and control behaviours at
run-time.

Also we have shown that the current system can handle
running multiple environments while allowing a trainer to
monitor the simulation and trigger events to create the
desired scenario.

In the next stage of development we aim to replace the
trainer by the architecture proposed in Figure 9. This
should be compared with Figure 1 to see that a human
trainer with expert knowledge will be replaced by a KB
and an events space. In this proposed architecture we place
an intermediary between the scenario logic and the
simulation environment in an attempt to be domain and
simulation environment independent simultaneously.

ACKNOWLEDGMENTS
This project is sponsored by Dubai Police. Thanks to James
Edge for his review of the paper. Also thanks to Michael
Meredith (who administers the Reflex Studio) for his
support and suggestions that enabled the tool to run on the
studio set-up.

REFERENCES
Akerberg, O., Svensson, H., Schulz, B., Nugues, P.
“CarSim: An Automatic 3D Text-to-Scene Conversion
System Applied to Road Accident Reports”. Research

Notes and Demonstrations Conference Companion, EACL
2003: 191-194.

Casanueva, J. and Blake, E. "The Effects of Avatars on Co-
presence in a Collaborative Virtual Environment". Annual
Conference of the South African Institute of Computer
Scientists and Information Technologists (SAICSIT2001).
Pretoria, South Africa. September 2001.

Cruz-Neira, C., Bierbaum, A., Hartling, P., Meinert, K.,
Just, C. “VR Juggler – An Open Source Platform for
Virtual Reality Applications”. AIAA 2002 Aerospace
Science Conference, Reno, NV, January 2002.

Eugster, P., Felber, P., Guerraoui, R., Kermarrec, A. “The
many faces of publish/subscribe”. In ACM Computing
Surveys (CSUR), volume 35, issue 2 (June 2003), pages:
114 - 131

Gonzalez, A., J., Douglas, D., D. “The Engineering of
Knowledge-Based Systems, Theory And Practice”. ISBN
0-13-334293-X, Prentice Hall International Editions, 1993.

Hamman, M., LeMentec, J. C., Wilkins, D. C., “Design
Requirements for DC-Train 4.0”. Knowledge Systems Lab
Report UIUC-BI-KBS-2001-0029. Beckman Institute,
University of Illinois, Urbana-Champaign. February 2001.

Hamman, M., Wilkins, D. C., Carbonari, R., Mueller, C.
“DC-Train 4.0 Instructor’s Manual”. Knowledge Systems
Lab Report UIUC-BI-KBS-2001-0040. Beckman Institute,
University of Illinois, Urbana-Champaign. November,
2001.

Trainer

KB in natural
language

Events Space

1. Generate Events
2. Sequence Events
3. Filter Events
4. Control Events

Figure 9. Events space as a link between
knowledge base and simulation environments

Entities &
Relationships

Knowledge
Engineer

KB in Machine
language

Developer

Simulation
Environment

Publish/Subscribe

Scene
Layout

Scenario
Ready

Time
setu

Environment
Status Update

Action

Domain Expert

Server/Host

Simulation
Environment

Simulation
Environment

Hawkes, R., Wray, M. “LivingSpace: A Living Worlds
Implementation using an Event-based Architecture”. HPL-
98-181, Extended Enterprise Laboratory, 1998.

Nunez, D and Blake, E.H.. “Cognitive Presence as a
unified concept of virtual reality effectiveness”. UCT
Technical Report CS01-11-00.

Rohrer, M. W. “Seeing Is Believing: The Importance of
Visualization In Manufacturing Simulation”. Proceedings
of the 32nd conference on Winter simulation Orlando,
Florida, pages: 1211 – 1216, 2000, ISBN:1-23456-789-0

Romano, D. “Features that Enhance the Learning of
Collaborative Decision Making Skills under Stress in
Virtual Dynamic Environments”. Ph.D.thesis, Computer
Based Learning, University of Leeds, UK, August 2001.

Romano, D.M and Brna, P “Presence and Reflectioning
Training: Support for learning to Improve Quality
Decision Making Skills under Time Limitations”.
CyberPsychology & Behaviou Mary Ann Liebert Inc., 4:2,
pp265-277

Shaw, C. Liang, J, Green, M. Sun, Y. “The Decoupled
Simulation Model for Virtual Reality Systems”. In Human
Factors in Computing Systems CHI'92 Conference
Proceedings, pages 321-328, Monterey, California, May
1992. ACM SIGCHI.

Singhal, S., Zyda, M. “Networked Virtual Environments
Design and Implementation”. ISBN 0-201-32557-8. ACM
Press, 1999.

Slater, M. and Steed, A. “A Virtual Presence Counter”.
Presence: Teleoperators and Virtual Environments 9(5),
413-434, 2000.

Smith, R. “Essential techniques for military modeling and
simulation”. Proceedings of the 30th conference on winter
simulation, 1998, pages: 805 - 812 ISBN:0-7803-5134-7

Szarowicz, A., Forte, P., Amiguet-Vercher, J., Gelepithis,
P. “Application of Autonomous Agents for Crowd Scene
Generation”. 2nd Hellenic Conference on AI SETN-02,
vol. 2 April 11-12, Thessaloniki, Greece, 2002

Tamberend, H. “Avocado: A Distributed Virtual
Environment Framework”. Ph.D.thesis, University of
Bielefeld, 2003.

Tecuci, G. “Building Intelligent Agents”. Academic Press,
1998, ISBN: 0-12-685125-5.

Wang, Q. Green, M, Shaw, C. “EM – An Environment
Manager for Building Networked Virtual Environments”.
IEEE Virtual Reality Annual International Symposium
(VRAIS 95), pages 11-18, Research Triangle Park, North
Carolina, March 11-15, 1995, IEEE.

Williams, R, J. “A Simulation Environment to Support
Training for Large Scale Command and Control Tasks”.
Ph.D. thesis, School of Computer Studies, University of
Leeds, UK, December 1995.

Wright, I. P. and Marshall, J. A. R. “RC++: a rule-based
language for game AI”. In: Proceedings of the First
International Conference on Intelligent Games and
Simulation (GAME-ON 2000). SCS Europe BVBA

Witmer, B. G. and Singer, M. J. “Measuring presence in
virtual environments: A presence questionnaire”. Presence:
Teleoperators and Virtual Environments, 7(3), 225-24

