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ABSTRACT 

 
Recently technologies have improved training practices 
tremendously, especially practices that require 
visualization and collaboration to enhance the 
understanding of any situation and to deploy strategies to 
solve these problems. Visualization of problems enhances a 
trainee’s understanding of it in a more natural way that 
mimics everyday practice in the real world.  Once a mental 
picture of the situation has been constructed, the trainee 
can then try different approaches to remedy it and therefore 
learn by experience. This paper investigates the use of 
collaborative virtual environment (CVE) technology for 
training purposes. We present an architecture for CVEs 
developed with the purpose of being domain independent 
by separating scenario logic from the simulation 
environment. We believe that such separation leads to a 
flexible environment that can easily be modified into new 
scenarios. To demonstrate this we have built two scenarios 
to show how the logic can be separated and controlled from 
outside the environment. The first scenario allows new 
police recruits to be embedded in a collaborative virtual 
environment with other participants (witnesses, operation 
room operators, etc) with the purpose of investigating and 
dealing with the aftermath of vehicle accidents. The second 
scenario allows participants to attend a virtual lecture. In 
both environments we show how a trainer can monitor the 
environment and trigger events that unfold the scenario. 
Placing the logic in the hands of the trainer is our goal to 
show how a collaborative virtual environment can be made 
flexible. It also lays the basic ground for a proposed 
domain-independent architecture. 

 
INTRODUCTION 
 
The main aim of training is to transform the knowledge 
acquired during the training session into the trainee’s 
collection of recallable experiences. Various technological 
approaches have been used to enhance this transformation 
such as: electronic publishing, television and video, 

teleconferencing, virtual reality, etc. This paper focuses on 
the use of collaborative virtual environments as a training 
tool. Virtual Environments (VE) are particularly 
appropriate for training collaborative emergency skills, as 
demonstrated by the many successful examples of its use in 
training; e.g. flight simulators, which have provided 
invaluable training for pilots. The advantages of virtual 
environments over other technologies become obvious 
when examining their main attributes: visualization 
(Rohrer 2000), presence (Nunez and Blake 2000; Slater 
and Steed 2000), co-presence (Witmer 1998), and 
immersion (Casanueva and Blake 2001). These attributes 
allow a recallable experience to be formed in the trainee’s 
mind (Romano and Brna 2000).   

One of the major contributions of this paper is presenting 
an architecture where the scenario logic is separated from 
the simulation environment. The aim is to develop a 
flexible architecture which caters for different scenarios. 
Moreover, we believe such flexibility confers the following 
advantages:  

� The scenario logic and the simulation 
environment can be modified independently 
allowing iterative development cycles and easy 
substitution of elements in the environment. 

� The decoupling of the scenario logic from the 
simulation environment encourages encapsulation 
and other good object-oriented coding practices 
thus easing the generation of CVEs. 

The work presented in this paper is both a proof of concept 
for  a domain-independent architecture and the ground 
work for the generation of the related easy-modifiable 
collaborative virtual environment.  We propose to achieve 
the domain-independence by introducing an intermediary - 
called Events Space- between the scenario logic (stored in 
knowledge base (KB) systems format) and the simulation 
environment. The advantages of such an intermediary are: 

� It enables interoperability between distinct 
simulation environments, a practice promoted by 
the High Level Architecture (HLA) (Smith 1998).  

� The three different parts (KB, events space, and 
simulation environment) can be individually 



tailored to the expertise and computer literacy of 
their users (domain experts, trainer, and trainees).  

� Automatic generation and control of scenarios for 
training purposes. 

� KB systems can be used to guide trainees during 
simulation sessions by exploiting their ability to 
provide explanation of how solutions are derived. 

The groundwork in this paper focuses on examining the 
separation sought on a CVE rather than a VE because of 
the inherited distributed nature of a CVE and the existence 
of many different techniques for communication, such as 
the events mechanisms with its decoupling ability (Eugster 
et al 2003; Hamman et al 2001). 

In order to test our system we have created a scenario to 
train new police recruits on how to investigate the 
aftermath of vehicle accidents. The main factor that 
assisted in choosing this scenario was the accessibility of 
such information since the project is sponsored by the 
Dubai Police. Furthermore, the existence of training 
courses to deal specifically with vehicle accidents allows a 
comparison between the use of CVE and traditional 
training courses. The target audience of the training 
environment is the new police recruits studying at the 
Dubai Police College and recent graduates working for the 
Dubai Police Traffic Department and undergoing 
specialised training. 

In this paper, we first describe the related work, followed 
by a detailed presentation of the proposed architecture. A 
walkthrough of the scenario creation process is then 
described. Finally, we illustrate the flexibility of the 
architecture by deploying a second scenario on it. 

 
BACKGROUND 
 
A number of virtual environments and collaborative virtual 
environments have been developed over the years with 
different features examining a wide range of research 
interests. These environments can be placed in three main 
categories based on the relationship between the scenario 
logic and the simulation environment. The three categories 
are: applications, virtual development environments, and 
KB systems. 

The ACTIVE project (Romano 2001) is an application 
which is used to train fire fighters. It uses a special 
technique called ‘super powers’, which give trainees 
capabilities in a virtual environment that are not available 
for them in a real life situation, such as rewind, replay or 
forward the incident to view a demonstration of the 
solution. CACTUS (Williams 1995) trains police officers 
to control crowds in domestic incidents. It uses an AI 
technique to model crowd behaviour so that the crowd can 
behave autonomously in an environment. Furthermore, it 
allows the trainer to influence the crowd behaviour and 
guide the training. The DC-Train (Hamman et al 2001a) 
system trains Navy personnel on how to control ship 
damage. This system allows the trainee to receive the 
status of the ship and send commands to different stations 

to control and repair the damage before it escalates. All the 
messages communicated are stored for evaluation and 
retraining purposes. Finally, CarSim (Akerberg et al 2003) 
is another system which automatically reconstructs a traffic 
accident from a textual report. The reconstruction is output 
in the form of 3D animation. 

Reviewing the above applications, we have identified the 
tight coupling of the scenario logic to the environment 
simulation as the most restrictive factor that prevents the 
adaptation of VEs. This inflexibility has a negative impact 
on the use of the virtual environment for training purposes 
since it leads to simulation memorization where the trainee 
starts to memorize the events sequence and understands 
how to ‘beat’ the simulation. The other symptom shown by 
many current environments, which can be attributed again 
to the inflexibility issue, is that they tend to be domain 
dependent. This makes it impossible to transfer the 
training feature of a system from one application to 
another without substantial work. 

The second category contains virtual development 
environments (Hawkes and Wray 1998; Tamberend 2003; 
Cruz-Neira et al 2002; Singhal and Zyda 1999; Shaw et al 
1992; Wang et al 1995) that are built specifically for the 
use of developers producing virtual environments. These 
environments normally ease the development lifecycle by 
abstracting the low level complexities such as interacting 
with VR devices. However, some of these development 
environments are no different than using a programming 
language in the sense that it places the creation of the link 
between the logic and the simulation environment in the 
hands of the developer. Nevertheless, some of these 
development environments (Hawkes and Wray 1998; 
Tamberend 2003) encourage flexibility by providing a high 
level scripting language, thus making it feasible to separate 
and modify the scenario logic. The Environment Manager 
(EM) tool (Wang et al 1995) even provides a higher level 
of support in the form of a simple script file for creating 
environments. 

Finally, KB systems (Tecuci 1998; Szarowicz et al 2002; 
Gonzalez and Douglas 1993) are geared towards 
separating the logic or knowledge from the system using it. 
They use an inference engine to deal with retrieving the 
appropriate results. The other advantage described in 
(Gonzalez and Douglas 1993) is the ability to make the 
knowledge domain-specific, which means that it can 
accommodate different domains by simply changing the 
knowledge. Furthermore, the separation of the logic from 
the system also allows the modification of the knowledge 
independently from the simulation environment and more 
frequently without the developer involvement, which 
means there is no need for recompiling the simulation. 

Summarising, the drawbacks of some of the previous 
categories are:  

� Embedding the logic in the simulation 
environment makes it inflexible to change. 

� Even in KB systems the logic usually tends to be 
specific to the simulation environment considered 
and requires some work to be able to reuse it in a 



different simulation environment. This usually 
makes the logic created limited to a specific 
simulation environment. 

Some of the strengths of the previous categories are: 

� Interoperability between different simulation 
environments. 

� The separation of the logic from the simulation 
environment shown by the KB systems. 

� The decoupling accomplished using events 
mechanisms. 

� Providing a high-level scripting language makes 
the interaction with the simulation environment 
less complex. 

Our work proposes a twofold solution to develop an 
architecture for domain-independent collaborative virtual 
environment. The first phase, illustrated in this paper, 
focuses on investigating the feasibility of developing an 
architecture that targets the separation of the scenario logic 
from the simulation environment using it. The second 
phase examines the challenges of adopting a domain-
independent approach by introducing an intermediary 
between the domain knowledge and the simulation 
environment. The role of the intermediary is to 
automatically generate and control scenarios using domain 
knowledge elicited from experts.  

 
THE SYSTEM  

 
The main aim of the system presented here is to address 
the flexibility issue in collaborative virtual environments. 
Two types of users are going to interact with the system: 
trainers and trainees. Therefore, the system should allow 
participants to co-exist in a virtual environment and be 
able to communicate. The following sections describe the 
requirements and the implementation of the system. 

 
Requirements  
 
System requirements are divided into three sections: 
trainer requirements, the requirements of the players, and 
scenario requirements. The trainer should be able to carry 
out the following tasks:  

� Create scenario behaviour: allows the trainer to 
create different scenarios by adding events, e.g. 
specifying paths for objects to follow or attaching 
sounds to objects. 

� Monitor scenario behaviour: permits the trainer to 
watch the scenario unfolding by joining the 
scenario as an invisible participant. 

� Control scenario behaviour: allows the trainer to 
stop or change the course of the simulation 
behaviour to fit the training requirements.  

� Insert a scene layout: permits the trainer to insert 
different scenes making the architecture scene 
independent. 

The players should be able to join the environment and 
communicate with other players using voice 
communication. In addition , to enable a better perception 
of the location of other players in the environment, a 
positional sound feature should be added to the voice to 
allow players to locate each other. Text communication is 
not used because the delay caused (see the 'dead moment' 
described in (Slater and Steed 2000)). Moreover, typing 
also means the player breaks his presence as he is required 
to achieve the communication task in an unnatural way 
(using the keyboard to type the message). 

The vehicle accident scenario aims to train new traffic 
officers on how to deal with the aftermath of vehicle 
accidents and how to investigate them. The officer is 
placed in a virtual environment where he uses an input 
device move around and a headphone/microphone to 
communicate with other participants in the same 
environment, but who might be in different geographical 
locations. His role is to collaborate with the participants to 
resolve the matter and find out how the accident occurred 
by questioning the participants and examining cues in the 
scene (e.g. damages to vehicles, skid marks, etc). The  
trainer should also be able to join the same environment, as 
an invisible participant, monitor the scenario unfolding 
and trigger events (e.g. ambulance animation, siren, etc). 

 
Implementation 
 
This section details the system architecture, simulation 
environment design, network topology, events model, and 
object model. 

 
Conceptual System Architecture 
Figure 1 shows the system architecture. It is based on the 
client/server network topology. The role of the server is to 
host the session and forward the communication between 
the participants. It also allows the trainer to carry out the 
tasks described earlier.  
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Figure 1. System architecture 
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Simulation Environment Design 
Figure 2 shows the simulation environment and how a 
high level scripting language is embedded across three 
architectural layers (DirectX 9.0, game engine, and 
simulation environment) to enable the manipulation of the 
scenario behaviour. The scripting language used is Python 
which allows easy replication of the game engine classes 
that are based on an object-oriented approach using C++. 

Furthermore, the other advantage scripting provides to this 
prototype is the ability to dynamically load code at run-
time which can be used to insert and control the behaviour. 
Figure 2 shows how a game engine has been built on top of 
DirectX to abstract all of its complexities. The layer above 
the game engine is the simulation environment, which 
holds the objects, the players, and the scene settings. The 
top layer is the behaviour controller which allows for 
simple run-time access to the environment to allow the 
trainer to broadcast events to insert or change the 
behaviour of any objects, players, or part of the 
environment. The different set of behaviours that are 
allowed to be inserted and manipulated during run-time 
are shown in Table 1. 

 
Network Topology  
The client/server approach is used in this prototype, and it 
is achieved by using DirectPlay, a component of DirectX 
9.0. DirectPlay allows a session to be initiated for players 

to join and communicate. Each player, after joining the 
session, gets a unique identification number. Players 
communicate with each other through the server holding 
the session by sending messages to specific players or 
broadcasting to all players.  

The list of all available players can be queried from the 
server. As players join or exit the session, the server sends 
special messages to all the other players notifying them of 
the player’s action. The same approach is used to allow 
players to interact and exchange information to comply 
with the co-presence requirement mentioned earlier. 

The voice session uses the same DirectPlay session to 
communicate voice packets between players and the server. 
Voice has three different communication topologies: 
forwarding server, mixing server, and peer-to-peer. The 
forwarding server forwards the voice packets to the clients 
who decompress the packets and process them to emulate, 
for instance, positional voice. The mixing server, on the 
other hand, mixes the voice packets coming for all players 
and then forwards them to the players. This approach does 
not allow for positional support because the players only 
receive the mixed packets of the voice. The third type 
supports positional voice but cannot be used with the 
client/server approach adopted in the prototype described 
in this paper. The prototype developed uses the forwarding 
topology because of its support for 3D and the client/server 
approach. 

 
Object Model  
The next element in addressing the system design is the 
management of the dynamic shared state of the simulation 
to enable the synchronization of game status among all 
participants. This is achieved by sharing the object model, 
which comprised of the scene object, the player object, and 
the environment settings. The scene object and player 
object share common properties such as position, 
orientation, mesh, animation, sound, etc. A parent object 

Behaviour Command 
Enable/Disable collision detection SetCollision(ID,flag) 

Enable/Disable object visibility SetVisiblity(ID,flag) 
Set object position and orientation SetPlayerPosition(ID,x,y,z,xRot,yRot,zRot) 

Play the animation attached to skinned mesh SetPlayerAnimation(ID,flag,name) 
Set a sound source and attach it to object in the scene Set3DSound(ID,file) 

Play a sound source PlaySound(ID) 
Set the sound minimum and maximum distances SetSoundDistance(ID,min,max) 

Show/Hide object bounding box SetRenderingBoundingBox(ID,flag) 
Add animation route based on four points and give it 

name, duration and loop flag 
AddRouteAnimation(ID,p1x,p1y,p1z,p2x,p2y,p2z,p3x,p3y,p3z,

p4x,p4y,p4z,duration,loop,name) 
Play one of the animation routes attached to the object  SetRouteAnimation(ID,loop,playing,name) 

Behaviour Controller 

Python Simulation Environment 

Scene Objects Players 

Game Engine 

DirectX 9 

Windows OS 

Network Input Graphics Sound 

Figure 2. Simulation environment design 

Table 1. Scenario behaviour commands 
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has been created to hold all the common attributes 
(cObject). The player object (cObjectPlayer) and the scene 
object (cObjectScene) inherit the class properties from 
‘cObject’ as shown in Figure 3. The scene settings are 
stored in the cGameSettings class. The way these are 
synchronized across the participants is described in the 
next section. 

Event Model (State synchronization) 
The synchronization of the virtual environment between all 
participants is accomplished in two phases. The first phase 
sends the initial information to the participant at the time 
of joining the simulation session. This information 
includes current scene objects with their attributes such as 
position, orientation, mesh, visibility, etc. The players 
information, however, is sent as they join the game along 
with their attributes, except for those players who are 
currently in the session whose information gets sent after 
the initial  information.  

Table 2 shows the player initialization messages sent 
between the client joining the simulation, the server, and 
the other clients who are already in the game. It also shows 
the direction, and the message format used. DirectPlay 
triggers the first message on the server after receiving a 
request by a client to join using the 
IDirectPlay8Client::Connect method. This call triggers the 
following message on the server: 
DPN_MSGID_CREATE_PLAYER. The message contains 
a unique identifier (dpnidPlayer) variable assigned to a 
player after joining.  

Once the connection attempt is completed, a second 
message is created by DirectPlay and sent to the client - 
DPN_MSGID_CONNECT_COMPLETE. The message 
contains the unique identifier (dpnidLocal) given to the 
player which is used to identify him during any future 
communication. Players can be organized in groups that 
describe common features such as a different type of user 
interface. For example, an operation room operator might 
not require a 3D interface to see the environment as he 
communicates using voice only. The messages are 
identified by a manually created identifier. The client then 
chooses a player from the unallocated players and sends a 
message to the server and the allocation result is sent back 
to the client. This continues until a player is allocated to 
the client. Then the client is allowed to enter the 
simulation. 

After the client has joined the game, he communicates 
with the server and other clients using the messages shown 
in Table 3. These messages allow clients to synchronize 
positions, orientation, animation, etc. For example, a 
message with ID 4 sends the position and orientation 
accompanied by the dpnidPlayer which uniquely identify 
each player and allow the clients receiving the message to 
update the appropriate avatar.  

Finally, the player can exit the session by requesting it 
from the server or by the server terminating the session 
without request using IDirectPlay8Client::Close() and 
sending  a DPN_MSGID_TERMINATE_SESSION 
message respectively. When the player leaves the 
simulation other players are informed by receiving a 
DPN_MSGID_DESTROY_PLAYER message which has 
the dpnidPlayer number. 

 
SCENARIO IMPLEMENTATION 
 
This section details the vehicle accidents scenario 
implemented on the environment. The scenario has been 
developed specifically to show how the logic can be 
separated from the simulation environment and how it can 
be manipulated offline and online during the simulation 
run. The scenario creation process is also described along 
with how the environment allows the trainer to act as the 
‘brain’ of the simulation by monitoring the environment 
and deciding the course of actions. 

 
Vehicle Accidents Scenario  

 
The scenario chosen allows five participants to join the 
simulation: traffic officer, two drivers, operation room 
operator, and trainer. The officer and the two drivers are 
represented by avatars in the virtual environment, whereas, 
the operator has a voice communication only and no 
physical representation in the environment (i.e. no avatar). 
Each avatar has some behaviours attached to it such as 
movement and orientation to allow the avatar to traverse 
the environment. The trainer can also join the environment 
as an invisible participant to monitor and control the 
scenario. 

The vehicle accident scene contains two vehicles involved 
in an accident, and one injured passenger. The scene also 

Seq Direction Message Format 

1 Server Player joined  DPNMSG_CREATE_PLAYER 

2 Client Joining process complete DPN_MSGID_CONNECT_COMPLETE 

3 Server-to-Client Groups  100@dpnidplayerID@ID@bMonitor@bModeratio
n@bInvisible@bForcelookAt@bDriver@bCRWnd
@bCRRadio@bChatWnd@bAvatar@title@tasks 

4 Server-to-Client Meshes  101@dpnidplayerID@ID@Name@Desc@File@Pi
cture 

5 Server-to-Client Players  102@dpnidplayerID@m_iPlayerID@m_iGroupId
@m_iMeshID@m_iVehicleBeforeID@m_iVehicle
AfterID@m_iMotionID@takenStatus@m_strTitle 

Table 2: The messages flow between the client and server for joining and initializing a player (@ is a separator) 



has other objects such as roads, buildings, fences, other 
vehicles, etc. The injured passenger behaviour can be in 
the form of a screaming sound which is triggered at certain 
time by the trainer and possibly stopped when the 
ambulance takes him away from the scene. 

The simulation starts with a call from the police operation 
room informing the trainee of an accident and requesting 
him to attend. The trainee then finds himself at the scene 
of the accident where he can navigate the environment. 
The trainee’s objectives are to bring the situation under 
control, investigate the incident, and produce an accident 
report. He can navigate around the scene and communicate 
with the operation room to request additional resources as 
needed. 

Once the resources are deployed (simulated or played by 
other actors) and the injured passenger is then taken to the 
hospital, the trainee can start investigating what happens 
by examining the scene’s clues and by interviewing the two 
drivers and any witnesses. The interview is conducted 
using positional voice communication between the 
participants. 

A sample script of a possible scenario is shown in Figure 4. 
Such a script is usually designed by the scenario creator 
and hard-coded into the simulation environment or 
scripted in some way. In our current implementation of the 
architecture, rather than hard-coding this logic it is left to 
the trainer to trigger the appropriate events at appropriate 
times. For example, the trainer might start the injured 
person screaming sound at the third minute during the 
simulation. This might be followed by the pain animation 
at the fifth minute, and then the trainer will wait for the 
trainee’s actions to decide on what to do next. For 
example, if the trainee calls an ambulance by contacting 
the operation room by voice, the trainer can then launch 
the ambulance animations. 

 
Scenario Creation Lifecycle  

 
The scenario creation passes through the following steps: 
the creation of the models of the objects to be used in the 
environment, the scene layout setup, and scenario logic 
creation. 

The models creation is carried out using a modeling tool, 
e.g. 3D Studio Max 6.0. Once a model is created and 
optimized it is exported to the X file format which is then 
used by the Scenario Creator, as shown in Figure 5, to 
store the objects in the database to make them reusable for 
different scenes. The database contains five tables, three of 

which are specific to the scenario (games, players and 
scene objects) and the other two hold reusable information 
(meshes and groups). 

The second step sets the scene layout by positioning and 
orienting the scene objects. The Scenario Creator allows 
the insertion and positioning of the objects in the 
environment. It also allows assigning a title to the object to 
ease its identification. Each object created has its own 
unique identification number. The number of players 
allowed in the environment and the avatars attached to 
them is set in the scenario configuration step using the 
players tab in the Scenario Creator tool. The scene creation 
process is shown in Figure 6. 

Once the scene layout is ready the next step is to create the 
scenario logic, an example of which is shown Figure 4. 
This involves deciding on the path of animations and the 
timing of events. This is achieved by directly manipulating 
the functionality of the simulation environment through 
the embedded high level scripting language (Python) 
which allows run-time loading of behavioural scripts.  
Table 1 shows samples of the behaviours available to the 
trainer. For instance, the screaming behaviour is added 
using the 3D sound insertion method. The method takes an 
object id and a sound source file and attaches the sound to 
that object using the following method: 
‘Set3DSound(ID,file)’. The scenario controller can then 
play the sound at any time using ‘PlaySound(ID)’ which 
takes an id of the object on which the sound has been 
attached. He can also stop it by using ‘StopSound(ID)’. 
Furthermore, he can set the distance at which the sound 
can be heard using ‘SetSoundDistance(ID,min,max)’ 

ID Direction Message Format 

4 Client-to-Server-to-All Clients Position and orientation 4@dpnidPlayer@ID@x@y@z@xRot@yRot@zRot 

444 Client-to-Server-to-All Clients X Animations statuse 444@dpnidPlayer@GameID@Count@AnimationsTex
t 

5 Client-to-Server-to-All Clients Chat message 5@dpnidPlayer@ID@chatText 

900 Client-to-Server-to-All Clients Set 3D Sound 900@dpnidPlayer 

901 Client-to-Server-to-All Clients Python script 901@script  

Figure 4. Sample scenario 

 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 

Injured person pain animation 
Injured person screaming 

Ambulance Called 

Ambulance arrived 

Injured taken away 

Ambulance Left Start investigation 

Time 

Table 3. The messages flow between the clients and the server during the simulation session (@ is a separator) 



which takes the object id and the minimum and maximum 
distances. The minimum distance is the distance at which 
the sound is uniform, whereas the maximum is the 
distance after which the sound cannot be heard. The sound 
decreases when moving from the minimum to the 
maximum distances. The scripting language demonstrated 
in this example could be easily hidden in a final 
application by implementing a graphical interface to hide 
the methods. This would allow the logic to of the 
environments to be designed by computer users at any 
level. 

 
Running the Scenario 
 
Table 4 shows the steps taken by the trainer in running and 
controlling the scenario. Once all the players have joined 
the scenario the trainer can start broadcasting the scenario 
behaviours. To run the scenario shown in Figure 4, a 
trainer joins the simulation and acts, for example, as the 
operation room controller. The purpose of him joining the 
simulation is to trigger events based on the conversation 
between the players. For instance, if the trainee calls an 
ambulance the trainer triggers the ambulance event. The 
trainer also monitors the virtual environment and carries 
out all the manual tasks (e.g. take injured passenger away). 
Currently all actions are broadcasted as Python scripts, 
which are interpreted and acted on by each simulation 
environment. 

 
RESULTS 
 
During the initial informal experimental run of the 
scenario, the architecture was tested by allowing four 
players to join the environment (traffic officer, two drivers 
and the operation room operator). The trainee played the 
role of the traffic officer. The drivers were played by two 
actors who were given different scripts of their details, and 
a short description of how the accident occurred from their 
point of view. The operator was played by the trainer who 
also controlled the scenario by broadcasting events. The 
trainer used the scenario script shown in Figure 4 to 
broadcast the appropriate events at the specified time. 
Figure 7 shows the scenario running on a wide-screen 
Reflex setup (some of the models have been downloaded 
freely from turposquid.com and 3dcafe.com). Figure 8a 
displays the scene from the perspective of one of the 
player.  

The second scenario run on th system (virtual lecturing) is 
shown in Figure 8b. This scenario was created to 
demonstrate the flexibility of the proposed approach and 
the strengths of the architecture.  In the virtual lecturing 
scenario, four participants join the same environment to 
attend a lecture given by a fifth participant. The same 
process of creating the scenario was undertaken but with a 
reduced time as the architecture allows reusability of the 
general data. 
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CONCLUSIONS 
 
The separation of the domain knowledge and the ability to 
control it at run-time were the two primary objectives of 
the current prototype. The separation has been achieved by 
the use of a high level language to create a layer on top of 
the simulation environment to act as an interface. This 
meant that behaviours could be inserted and controlled at 
run-time. The abstraction achieved by the scripting 
language made controlling the application behaviour much 
easier and dynamically loadable at run-time. Moreover, 
using an existing language (Python) rather than building 
our own reduced the development time as it eliminated the 
need to build a parser and evaluate it. The other advantage 
of this approach is that it allows commands to be tailored 
to suite the user’s computer literacy, as another 
simplification layer can be added such as graphical user 
interface.  

By creating and running two different scenarios on the 
prototype simulation environment we have demonstrated 
the flexibility of the approach since it managed to detach 
the domain knowledge from the simulation environment 
and allow its control at run-time. These are promising 
results. However, to prove the architecture flexibility more 
tests will be carried out involving scenarios from different 
domains. The observation that can be made about the 
flexibility of the prototype is that the more the simulation 
environment functionality is exposed through the scripting 
language the more flexibility is achieved. This means that 
if the full simulation environment functionality is exposed, 
then the system can be labeled fully flexible. We define 
flexibility as the ability to insert and control behaviours at 
run-time.  

Also we have shown that the current system can handle 
running multiple environments while allowing a trainer to 
monitor the simulation and trigger events to create the 
desired scenario.  

In the next stage of development we aim to replace the 
trainer by the architecture proposed in Figure 9. This 
should be compared with Figure 1 to see that a human 
trainer with expert knowledge will be replaced by a KB 
and an events space. In this proposed architecture we place 
an intermediary between the scenario logic and the 
simulation environment in an attempt to be domain and 
simulation environment independent simultaneously.  
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