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ABSTRACT 
 
The increase of computing power and its wide availability has raised 
interest in the use of Collaborative Virtual Environments for training 
purposes. Nevertheless, many of the currently developed training 
simulations are inflexible and support only a limited number of 
scenarios, often limited to a single domain. This work aims to 
investigate the challenges of separating the domain logic from the 
system using it. The work presented in this paper proposes to achieve 
the above by separating the architecture into three parts: domain 
knowledge, simulation environment and events space which links the 
previous two. The domain knowledge holds the scenario logic or 
behaviour which dictates how the scenario should run. The simulation 
environment is where participants meet and interact. The events space 
links the two parts by using the domain knowledge to control the 
scenario running in the simulation environment. By formulating our 
system in this manner we attempt to achieve the flexibility pursued 
and identify and tackle the challenges involved. 
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INTRODUCTION 
 
A number of virtual environments (VEs) and collaborative virtual 
environments (CVEs) have been developed over the years, looking at 
such things as training firefighters (Romano 2001), police officers 
(Williams 1995) and navy personnel (Hamman et al 2001a), and the 
reconstruction of traffic accidents from textual reports (Akerberg et al 
2003). The main issue with such systems is that they are domain 
dependent, which makes it difficult to reuse their simulation systems 
on different domains without extensive work. However, this is an 
expensive and time-consuming process. As identified in (Dachselt 
2001) domain specificity in system development leads to highly 
inflexible applications.  

Our work investigates how the disciplines of distributed environments 
and expert systems can be combined in an attempt to achieve the 
separation required which we believe leads to a domain-independent 
architecture. From distributed environments we investigate the 
suitability of events as a communication mechanism between the 
simulation environment and the events space. From expert systems we 
examine the applicability of using knowledge-base systems (KB) to 
store and inference the domain knowledge which is used to control the 
scenario.  

One of the major contributions of this paper is introducing an events 
space which is an intermediary between the scenario logic and the 
simulation environment. Using such an intermediary should result in 
decoupling the scenario logic from the simulation environment which 
confers several advantages:  � The logic and the simulation environment can be modified 

entirely independently allowing iterative development cycles. � The decoupling encourages encapsulation and other good object-
oriented coding practices. 

� It enables interoperability between distinct simulation 
environments, a practice promoted by the High Level 
Architecture (HLA) (Smith 1998).  Although HLA promotes 
interoperability, its object management allows the subscription 
and discovering of remote objects thus violating the space 
decoupling1. Further concerns of the HLA are covered in (Davis 
and Moeller 1999) � The three different parts (KB, events space, and simulation 
environment) can be individually tailored to the expertise and 
computer literacy of their users (domain experts, trainer, and 
trainees).  

Furthermore, the events space attempts to achieve the following goals:  � Automatic generation and control of scenarios for training 
purposes. � Use the ability of KB systems to provide explanation of solutions 
to guide trainees during simulation sessions. 

The inherent distributed nature of a CVE and the existence of many 
different techniques for communication, such as the events mechanism 
with its decoupling ability (Drew et al, Eugster et al 2003), have 
encouraged us to attempt the separation on a collaborative virtual 
environment rather than on a VE.  

In this paper, we first describe the related work, followed by a detailed 
presentation of the proposed architecture where we show the different 
structures and how they communicate to achieve the independence 
sought. Finally, we illustrate the first prototype developed by showing 
its ability to run two distinct scenarios: investigating the aftermath of a 
vehicle accident situation and virtual lecturing.  

RELATED WORK 
 
In this section we describe the methods used to structure simulation 
environments and categorize them with regards to the relationship 
between them and the scenario logic. Such categorization examines 
this relationship in terms of the communication approaches employed 
to control the scenario logic and the flow of the scenario logic from its 
source to the simulation environment.  

We can consider the following different categories based on the 
relationship between the scenario logic and the simulation 
environment: applications, virtual development environments, 
commercial software environments, and KB systems. 

Certain applications (Romano 2001) tend to embed the scenario logic 
inside the simulation environment code and most likely changes to the 
logic require recompiling the simulation system. Other applications 
(Akerberg 2003, Hamman et al 2001a, Williams 1995) attempt to give 
some ability to modify the logic without recompiling, thus eliminating 
the developers involvement in the scenario creation cycle. This is 
accomplished by providing ways for the domain experts or trainers to 
insert the logic into the simulation environment. However, these 
applications are usually very domain dependent. 

                                                
1 Space decoupling (Davis and Moeller 1999) 



Some virtual development environments (Cruz-Neira et al 2002, 
Hawkes and Wray 1998, Shaw et al 1992, Tamberend 2003, Wang et 
al 1995) are built specifically for the use of developers producing 
virtual environments. These environments normally ease the 
development lifecycle by abstracting the low level complexities such 
as interacting with VR devices. However, some of these development 
environments are no different than using a programming language in 
the sense that it places the creation of the link between the logic and 
the simulation environment in the hands of the developer. 
Nevertheless, some of these development environments (Hawkes and 
Wray 1998, Tamberend 2003) encourage flexibility by providing a 
high level scripting language, thus making it feasible to be used for 
separating and modifying the scenario logic. One tool (Shaw et al 
1992) even provides a higher level of support in the form of a simple 
script file for creating environments. 

The commercial software environments (such as DI-Guy™ and 
Vega™) address the domain independence in a much better way by 
allowing the logic to be inserted using a graphical interface or a high-
level scripting language. These succeed in achieving domain 
independence but usually the logic gets formatted in a proprietary 
format to the specific environment, thus lacking the simulation 
environment independence. One of the strengths of these tools is their 
ability to cater for a wide range of users by providing interaction 
methods of different levels of complexity. Such tools can be used by 
domain experts or scenario creators using the graphical interfaces 
provided. The developers also can make use of the API access 
provided. 

KB systems (Hamman et al 2001b, Szarowicz et al 2002) are geared 
towards separating the logic or knowledge from the system using it. 
They have an inference engine to deal with retrieving the appropriate 
results. Furthermore, the separation also allows the modification of the 
knowledge independently from the simulation environment and more 
frequently without developer involvement, which means there is no 
need for recompilation of the simulation.  

The drawbacks of some of the previous categories are:  � The embedding of the logic in the simulation environment makes 
it inflexible to change. � The logic usually tends to be specific to the simulation 
environment and requires some work to be able to reuse it in a 
different simulation environment. This usually makes the logic 
created limited to a specific simulation environment. 

Some of the strengths of the previous categories are: � Interoperability between different simulation environments. � The separation of the logic from the simulation environment 
shown by the KB systems. � The decoupling accomplished using events mechanisms. � Providing a high-level scripting language makes the interaction 
with the simulation environment less complex. 

In comparison with the above categorization we propose a new 
category we call ‘simulation services’ (similar to web services). This 
category attempts to combine the best practices from the above 
categories and also avoid their drawbacks.  The main goal of this 
category is to make the simulation ‘brain’ run as a service by linking it 
with the logic from one side and the simulation environment from the 
other side, therefore advocating independence from both sides. The 
independence from the simulation environment means that the ‘brain’ 
can be reused to service other simulation environments, possibly built 
using different languages, as long as they conform to common 
communication protocols. 

OUR APPROACH  
 
The simulation environment architecture we pursue puts an 
intermediary between the scenario logic and the simulation 

environment in an attempt to be domain and simulation environment 
independent simultaneously.  

The distinguishing factor of the proposed intermediary lies in the way 
it is modularised and run as a separate service provider, used to 
automatically generate and service scenario behaviours to a simulation 
environment. The scenario behaviours are constructed from a 
knowledge base representing a specific domain. Participants in the 
simulation environment communicate their status to the intermediary 
and receive events to decide their course of action. The 
communication between the simulation and the intermediary in a 
second stage of development will be achieved through the use of an 
events service and more specifically the publish/subscribe mechanism. 

KB systems have an advantage over conventional algorithmic 
techniques when solving complex problems. Reasoning to solve 
complex issues using knowledge (e.g. rule-based systems) is much 
simpler than reasoning about algorithms which have loops and 
branches (Hook 2004).  

The architecture proposed is composed of three main parts: the KB, 
the events space, and the simulation environment. These need to 
communicate with each other in order to run the simulation 
environment. The role of the events mechanisms is to couple the 
intermediary events space to the simulation environment. There are 
many different events mechanisms such as publish/subscribe, message 
passing, remote procedure call (RPC), notifications, shared space and 
message queuing. We chose the publish/subscribe mechanism because 
it offers full decoupling, as explained in (Eugster et al 2003). 

We suggest that using a KB system from one side and 
publish/subscribe event mechanism on the other side will not only 
achieve the proposed separation goal but it will also contribute 
immensely to making the intermediary module, the events space, fully 
decoupled from the simulation environment side. 

EVENTS SPACE AS INTERMEDIARY  
 
The conceptual design for the events space is shown in Figure 1. The 
directed arrows show the flow of information amongst the events 
space and the three main entities: KB, entities and relationships, and 
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simulation environment/s. The process of creating a virtual 
environment will undergo the following steps. 

First, the KB is simply information elicited from domain expert/s and 
represented in a natural language. A Knowledge Engineer then formats 
such knowledge into a format that is specific to the events space. At 
this point the events space can access the knowledge and use it to 
create and control scenarios.  

Second, the simulation environment developer provides the entities 
and relationships that represent the simulation environment engine 
capabilities in the form of a class diagram showing the methods, 
variables, etc. The format that represents the entities and relationships 
is again specific to the events space. 

Third, the simulation environment sends the scene layout, time, and 
environment status and receives a message to state that the scenario is 
ready and receives events dictating what should happen next.  

Once the events space receives the KB and entities and relationships in 
its format, it can then start creating various scenarios. The process of 
creating these scenarios starts by creating single events, which are 
filtered into plausible and implausible events based either on human 
intervention or set criteria (e.g. event duration). The filtered events are 
then sequenced to make up the scenario. These sequences are passed 
again through a filter to validate them. On the other end when the 
simulation environment passes its scene layout to the events space, a 
sequence of possible events from the accepted scenarios is chosen. 
This sequence must conform to the content of the environment layout. 
For example, no animation of person in pain is shown unless there is 
an injured person in the scene layout provided.  

The scenario creation process described above can run offline and the 
results are stored for future use. To start the events space the 
simulation environment needs to send its simulation time and the 
simulation commences. The role of the events space switches to 
controlling the scenario based on the current time of the simulation 
and the environment status received from the various simulation 
environments. The events space generates events based on time and/or 
the occurrence of some behaviour (e.g. collision, user action, time 
increasing, etc) in one of the simulation environments. The generated 
events are then passed to the simulation environment. 

The trainer is provided with an interface to the events space to allow 
him to filter events, create scenarios, and control scenarios created by 
the events space. The first two are done offline whereas the controlling 
is done at run-time where the trainer can monitor the training progress 
and alter the scenario to guide it towards a specific training path. 

Inputs  
 
The following sections describe the entities that interact with the 
events space in more detail and provide samples of the format.  

Entities and relationships  
The entities and relationships module holds a description of how 
events can take place in the simulation environment (i.e. the 
capabilities of the simulation environment - these capabilities at low 
level reflect the functionality of the simulation engine). The events 
space uses this information to form the events that are then passed to 
the simulation environment to be interpreted and acted upon. The 
access to the simulation environment is provided by embedding a 
high-level scripting language that allows run-time access to the 
classes’ properties and methods. 

KB  
The knowledge base module holds the knowledge of the considered 
domain acquired from the domain expert by the knowledge engineer. 
In its natural language form it can be represented using simple rules in 
the form of ‘IF (condition) THEN (action)’. These rules are then 
translated into the specific format of the events space by a knowledge 
engineer who uses the entities and relationships format guidelines, 
which describe the different entities, their attributes, and how they are 
related to each other.  

Simulation Environment  
The events space requires three types of information from the 
simulation environment: the scene layout, the simulation time, and 
changes in the environment status. The information that the events 
space sends is an acknowledgement of the readiness of the scenario 
and messages describing what should happen next in the simulation 
environment based on the current time and environment status. 

The communication between the host machine that services the 
simulation environments and the events space is accomplished through 
the use of the publish/subscribe event mechanism. This is the only 
mechanism which offers full decoupling between the events space and 
the server that hosts the simulation environments. In the 
publish/subscribe mechanism, if two parties want to communicate then 
one party needs to advertise an event with the publish/subscribe 
service and the second party to subscribe to the advertised event.  

Trainer 
A trainer can interact with the events space in three ways: he can 
manually create and modify scenarios, he can filter automatically 
created scenarios and he can monitor currently running scenarios to 
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redirect the training course to guide the training along different tracks. 

Workflow 
 
Figure 2 shows a sequenced workflow of the architecture. The dotted 
box shows the boundaries of the events space. The workflow can be 
divided into two main phases. The first phase occurs offline before the 
simulation environment connects to the events space. The second 
phase occurs after the simulation environment makes the connection.  

The sequenced arrows 1 to 9 mark the first phase where the knowledge 
base rules are passed in machine language along with the entities and 
relationships to the generator component. The generator then creates 
events and stores them in the Epool. After that, these events are 
filtered by the filter and marked accepted or unaccepted. The accepted 
events get used by the generator to construct sequences that are placed 
in the SEpool. Similarly to the events, the filter again reviews these 
sequences and marks them acceptable or unacceptable. The next step, 
shown by sequenced arrows 10 to 18, occurs when the simulation 
sends its scene set-up to the generator to create events specific to the 
scene provided.  

The scene set-up is used to filter sequences, and sequences that match 
the provided scene are then passed to the Cpool. The Cpool is used by 
the controller component to service events to the simulation 
environment. 

The controller starts by receiving the synchronised event from the 
events service which the controller subscribed to. After synchronising 
the time, the controller starts monitoring the events in the Cpool to 
search for events consistent with the current time to be fired. The 
controller also checks if the preconditions of any of the events are 
satisfied by receiving status events from the event service. Moreover, 
the controller examines whether triggering an event requires other 
events to be triggered. To take advantage of the reasoning strength of 
KB systems, the controller can also be used to provide hints to the 
trainee by checking the Cpool, SEpool, Epool, and KB in machine 
language respectively for actions to the current situation. 

 A FIRST PROTOYPE 
 

In the first prototype of the proposed architecture a human trainer acts 
as substitute for the proposed events space. This prototype has been 
used to evaluate the architecture’s flexibility and suitability for 
collaborative virtual environments. The aim of this implementation is 
to simulate the behaviour of the events space proposed by having a 
domain expert doing its tasks (i.e. creating, monitoring, and 
controlling the simulation behaviour). Furthermore, the architecture 
should cater for inserting different scene layouts to make it scene 
independent as well. The trainer, acting as the events space, is able to 
monitor the simulation environment and trigger and control events as 
he sees appropriate to achieve the goals of the scenario that is running.  

The two main goals to be established at this stage to address the 
flexibility issue are: the ability to provide a method for inserting the 
behaviour desired into the system without reprogramming and 
recompiling the application, and the ability of the prototype to allow 
run-time control of the behaviour inserted.  � Creating scenario behaviour: allows the trainer to create different 

scenarios by adding events such as adding animation paths for 
objects or attaching sounds to objects. � Monitoring scenario behaviour: permits the trainer to watch the 
scenario unfolding by joining the scenario as an invisible 
participant. � Controlling scenario behaviour: allows the trainer to stop or 
change the course of the simulation behaviour.  

� Inserting a scene layout: permits the trainer to insert different 
scenes making the architecture scene independent. 

To enable the manipulation of the scenario behaviour, a high-level 
scripting language has been embedded in the architecture as shown in 
Figure 3. The language used in our prototype is Python, which allows 
for easy replication of the game engine classes that are based on an 
object-oriented approach using C++. Furthermore, the other advantage 
scripting provides to this prototype is the ability to dynamically load 
code (Hook 2004) which can be used to insert and control the 
behaviour. Figure 3 shows how the scripting language is embedded 
across three architectural layers (DirectX 9.0, simulation engine, and 
simulation environment), which allows it to access any of them. A 
game engine has been built on top of DirectX to abstract all of its 
complexities. The simulation environment lies above the game engine 
and holds the objects, the players, and the scene settings. The top layer 
is the behaviour controller which allows run-time access to the 
simulation environment and allows the trainer to broadcast events 
inserting or changing the behaviour of any objects, players, or part of 
the simulation environment.  

The scenario creation passes through the following steps: model 
creation, scene set-up, and scenario configuration. The models are 
created using a 3D drawing tool; we have used 3D Studio Max 6.0. 
Optimised models are then exported to the Microsoft DirectX file 
format, which is then used by the Scenario Creator. Subsequently, the 
scene layout is created by positioning and orienting the objects in the 
scene.  

The Scenario Creator inserts the objects’ information into a database 
contains five tables, three of which are specific to the scenario (games, 
players, and scene objects) and the other two hold reusable general 
data (meshes and groups). The scene tab allows the insertion and 
positioning of objects in the environment. Titles are assigned to each 
object to ease their identification. Each object created has also its own 
unique identification number which is stored in the SceneObjects 
table.  
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Figure 3. Simulation environment architecture 
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Two scenarios were deployed on the prototype architecture to show 
that the scenario logic is no longer embedded in the simulation 
environment and that it can be inserted and controlled by an outside 
component (the trainer using an interface). The first scenario aims at 
training new police officers on how to investigate and deal with the 
aftermath of a traffic accident.  The second scenario is a virtual 
classroom which allows participants to join a single environment and 
communicate using voice. Figure 4 shows the two scenarios. Figure 5 
shows one of the scenarios running on a Reflex set-up at the 
University of Sheffield. 

The vehicle accident scenario was run on six subjects from Dubai 
Police who all had the same training background which consists of 
four years of police academic college and two specialized training 
courses in vehicle accidents investigation. The six subjects where 
chosen by the trainer. During the run of the experiment we noticed that 
all the trainees made good use of the navigation methods and managed 
to investigate the accident scene. They also made good use of the 
headset facility in identifying the drivers and communicating with the 
operation room operator. One of the trainers said that practical training 
has shown him clearly the trainees’ weaknesses which were not 
obvious to him while conducting the theoretical training. 

CONCLUSIONS 
 
The separation of the domain knowledge and the ability to control it at 
run-time were the two primary objectives of the first prototype. The 
separation has been achieved by the use of a high-level language 
(Python) to create a layer on top of the simulation environment to act 
as an interface. This means that behaviours can be inserted and 
controlled at run-time. The abstraction achieved by the scripting 
language made controlling the application behaviour much easier and 
dynamically loadable at run-time. Moreover, using an existing 
language rather than building our own reduced the development time 
and eliminated the need to build a parser and evaluate it. The other 
advantage of this approach is that it allows easier commands to be 
added making the use of the simulation engine simpler.  

Creating and running two different scenarios on the prototype 
simulation environment has demonstrated the flexibility of the 
approach since it managed to detach the domain knowledge from the 
simulation environment and allow its control at run-time. These results 
are promising. Proving full flexibility would require more tests to be 
carried out involving scenarios from different domains. The 
observation that can be made about the flexibility of the prototype is 
that the more the simulation environment functionality is exposed 
through the scripting language the more flexibility is achieved. This 
means if the full simulation environment functionality is exposed, then 
the system can be labeled fully flexible according to our description of 
flexibility, i.e. the ability to insert and control behaviours at run-time. 

We have shown that our prototype architecture can handle the running 
of multiple environments while allowing a trainer to monitor the 
simulation and trigger events to create the desired scenario. The next 
stage will replace the trainer by the architecture proposed in Figure 1.  
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