
An Architecture For Domain-Independent Collaborative
Virtual Environments

Ahmed BinSubaih
Steve Maddock

Daniela Romano
Department of Computer Science

Regent Court, 211 Portobello Street
Sheffield, S1 4DP, UK

Email: a.binsubaih, s.maddock, d.romano@sheff.ac.uk

ABSTRACT

The increase of computing power and its wide availability has raised
interest in the use of Collaborative Virtual Environments for training
purposes. Nevertheless, many of the currently developed training
simulations are inflexible and support only a limited number of
scenarios, often limited to a single domain. This work aims to
investigate the challenges of separating the domain logic from the
system using it. The work presented in this paper proposes to achieve
the above by separating the architecture into three parts: domain
knowledge, simulation environment and events space which links the
previous two. The domain knowledge holds the scenario logic or
behaviour which dictates how the scenario should run. The simulation
environment is where participants meet and interact. The events space
links the two parts by using the domain knowledge to control the
scenario running in the simulation environment. By formulating our
system in this manner we attempt to achieve the flexibility pursued
and identify and tackle the challenges involved.

Keywords
Collaborative virtual environment (CVE), knowledge-base systems
(KB), architecture, events

INTRODUCTION

A number of virtual environments (VEs) and collaborative virtual
environments (CVEs) have been developed over the years, looking at
such things as training firefighters (Romano 2001), police officers
(Williams 1995) and navy personnel (Hamman et al 2001a), and the
reconstruction of traffic accidents from textual reports (Akerberg et al
2003). The main issue with such systems is that they are domain
dependent, which makes it difficult to reuse their simulation systems
on different domains without extensive work. However, this is an
expensive and time-consuming process. As identified in (Dachselt
2001) domain specificity in system development leads to highly
inflexible applications.

Our work investigates how the disciplines of distributed environments
and expert systems can be combined in an attempt to achieve the
separation required which we believe leads to a domain-independent
architecture. From distributed environments we investigate the
suitability of events as a communication mechanism between the
simulation environment and the events space. From expert systems we
examine the applicability of using knowledge-base systems (KB) to
store and inference the domain knowledge which is used to control the
scenario.

One of the major contributions of this paper is introducing an events
space which is an intermediary between the scenario logic and the
simulation environment. Using such an intermediary should result in
decoupling the scenario logic from the simulation environment which
confers several advantages: � The logic and the simulation environment can be modified

entirely independently allowing iterative development cycles. � The decoupling encourages encapsulation and other good object-
oriented coding practices.

� It enables interoperability between distinct simulation
environments, a practice promoted by the High Level
Architecture (HLA) (Smith 1998). Although HLA promotes
interoperability, its object management allows the subscription
and discovering of remote objects thus violating the space
decoupling1. Further concerns of the HLA are covered in (Davis
and Moeller 1999) � The three different parts (KB, events space, and simulation
environment) can be individually tailored to the expertise and
computer literacy of their users (domain experts, trainer, and
trainees).

Furthermore, the events space attempts to achieve the following goals: � Automatic generation and control of scenarios for training
purposes. � Use the ability of KB systems to provide explanation of solutions
to guide trainees during simulation sessions.

The inherent distributed nature of a CVE and the existence of many
different techniques for communication, such as the events mechanism
with its decoupling ability (Drew et al, Eugster et al 2003), have
encouraged us to attempt the separation on a collaborative virtual
environment rather than on a VE.

In this paper, we first describe the related work, followed by a detailed
presentation of the proposed architecture where we show the different
structures and how they communicate to achieve the independence
sought. Finally, we illustrate the first prototype developed by showing
its ability to run two distinct scenarios: investigating the aftermath of a
vehicle accident situation and virtual lecturing.

RELATED WORK

In this section we describe the methods used to structure simulation
environments and categorize them with regards to the relationship
between them and the scenario logic. Such categorization examines
this relationship in terms of the communication approaches employed
to control the scenario logic and the flow of the scenario logic from its
source to the simulation environment.

We can consider the following different categories based on the
relationship between the scenario logic and the simulation
environment: applications, virtual development environments,
commercial software environments, and KB systems.

Certain applications (Romano 2001) tend to embed the scenario logic
inside the simulation environment code and most likely changes to the
logic require recompiling the simulation system. Other applications
(Akerberg 2003, Hamman et al 2001a, Williams 1995) attempt to give
some ability to modify the logic without recompiling, thus eliminating
the developers involvement in the scenario creation cycle. This is
accomplished by providing ways for the domain experts or trainers to
insert the logic into the simulation environment. However, these
applications are usually very domain dependent.

1 Space decoupling (Davis and Moeller 1999)

Some virtual development environments (Cruz-Neira et al 2002,
Hawkes and Wray 1998, Shaw et al 1992, Tamberend 2003, Wang et
al 1995) are built specifically for the use of developers producing
virtual environments. These environments normally ease the
development lifecycle by abstracting the low level complexities such
as interacting with VR devices. However, some of these development
environments are no different than using a programming language in
the sense that it places the creation of the link between the logic and
the simulation environment in the hands of the developer.
Nevertheless, some of these development environments (Hawkes and
Wray 1998, Tamberend 2003) encourage flexibility by providing a
high level scripting language, thus making it feasible to be used for
separating and modifying the scenario logic. One tool (Shaw et al
1992) even provides a higher level of support in the form of a simple
script file for creating environments.

The commercial software environments (such as DI-Guy™ and
Vega™) address the domain independence in a much better way by
allowing the logic to be inserted using a graphical interface or a high-
level scripting language. These succeed in achieving domain
independence but usually the logic gets formatted in a proprietary
format to the specific environment, thus lacking the simulation
environment independence. One of the strengths of these tools is their
ability to cater for a wide range of users by providing interaction
methods of different levels of complexity. Such tools can be used by
domain experts or scenario creators using the graphical interfaces
provided. The developers also can make use of the API access
provided.

KB systems (Hamman et al 2001b, Szarowicz et al 2002) are geared
towards separating the logic or knowledge from the system using it.
They have an inference engine to deal with retrieving the appropriate
results. Furthermore, the separation also allows the modification of the
knowledge independently from the simulation environment and more
frequently without developer involvement, which means there is no
need for recompilation of the simulation.

The drawbacks of some of the previous categories are: � The embedding of the logic in the simulation environment makes
it inflexible to change. � The logic usually tends to be specific to the simulation
environment and requires some work to be able to reuse it in a
different simulation environment. This usually makes the logic
created limited to a specific simulation environment.

Some of the strengths of the previous categories are: � Interoperability between different simulation environments. � The separation of the logic from the simulation environment
shown by the KB systems. � The decoupling accomplished using events mechanisms. � Providing a high-level scripting language makes the interaction
with the simulation environment less complex.

In comparison with the above categorization we propose a new
category we call ‘simulation services’ (similar to web services). This
category attempts to combine the best practices from the above
categories and also avoid their drawbacks. The main goal of this
category is to make the simulation ‘brain’ run as a service by linking it
with the logic from one side and the simulation environment from the
other side, therefore advocating independence from both sides. The
independence from the simulation environment means that the ‘brain’
can be reused to service other simulation environments, possibly built
using different languages, as long as they conform to common
communication protocols.

OUR APPROACH

The simulation environment architecture we pursue puts an
intermediary between the scenario logic and the simulation

environment in an attempt to be domain and simulation environment
independent simultaneously.

The distinguishing factor of the proposed intermediary lies in the way
it is modularised and run as a separate service provider, used to
automatically generate and service scenario behaviours to a simulation
environment. The scenario behaviours are constructed from a
knowledge base representing a specific domain. Participants in the
simulation environment communicate their status to the intermediary
and receive events to decide their course of action. The
communication between the simulation and the intermediary in a
second stage of development will be achieved through the use of an
events service and more specifically the publish/subscribe mechanism.

KB systems have an advantage over conventional algorithmic
techniques when solving complex problems. Reasoning to solve
complex issues using knowledge (e.g. rule-based systems) is much
simpler than reasoning about algorithms which have loops and
branches (Hook 2004).

The architecture proposed is composed of three main parts: the KB,
the events space, and the simulation environment. These need to
communicate with each other in order to run the simulation
environment. The role of the events mechanisms is to couple the
intermediary events space to the simulation environment. There are
many different events mechanisms such as publish/subscribe, message
passing, remote procedure call (RPC), notifications, shared space and
message queuing. We chose the publish/subscribe mechanism because
it offers full decoupling, as explained in (Eugster et al 2003).

We suggest that using a KB system from one side and
publish/subscribe event mechanism on the other side will not only
achieve the proposed separation goal but it will also contribute
immensely to making the intermediary module, the events space, fully
decoupled from the simulation environment side.

EVENTS SPACE AS INTERMEDIARY

The conceptual design for the events space is shown in Figure 1. The
directed arrows show the flow of information amongst the events
space and the three main entities: KB, entities and relationships, and

Tra iner

K B in natu ra l
language

E ven ts S p ace

1 . G en erate E ven ts
2 . S equence E ven ts
3 . F ilte r E ven ts
4 . C on trol E ven ts

F igure 1 . E ven ts space as a link b etw een know ledge base and
sim u lation en viron m ents

E nt ities &
R ela tionsh ips

K now ledge
E ng ineer

K B in M ach ine
la ngu age

D eveloper

S im u lat ion
E nv ironm ent

P ub lish /Su bscribe

S cene
Layou t

S cenario
R ea dy

T im e
setu

En vironm en t
Sta tus U pdate

A ct ion

D om ain E xpert

S erver/H ost

S im u la tion
E nv ironm ent

S im u lation
E nv iron m ent

simulation environment/s. The process of creating a virtual
environment will undergo the following steps.

First, the KB is simply information elicited from domain expert/s and
represented in a natural language. A Knowledge Engineer then formats
such knowledge into a format that is specific to the events space. At
this point the events space can access the knowledge and use it to
create and control scenarios.

Second, the simulation environment developer provides the entities
and relationships that represent the simulation environment engine
capabilities in the form of a class diagram showing the methods,
variables, etc. The format that represents the entities and relationships
is again specific to the events space.

Third, the simulation environment sends the scene layout, time, and
environment status and receives a message to state that the scenario is
ready and receives events dictating what should happen next.

Once the events space receives the KB and entities and relationships in
its format, it can then start creating various scenarios. The process of
creating these scenarios starts by creating single events, which are
filtered into plausible and implausible events based either on human
intervention or set criteria (e.g. event duration). The filtered events are
then sequenced to make up the scenario. These sequences are passed
again through a filter to validate them. On the other end when the
simulation environment passes its scene layout to the events space, a
sequence of possible events from the accepted scenarios is chosen.
This sequence must conform to the content of the environment layout.
For example, no animation of person in pain is shown unless there is
an injured person in the scene layout provided.

The scenario creation process described above can run offline and the
results are stored for future use. To start the events space the
simulation environment needs to send its simulation time and the
simulation commences. The role of the events space switches to
controlling the scenario based on the current time of the simulation
and the environment status received from the various simulation
environments. The events space generates events based on time and/or
the occurrence of some behaviour (e.g. collision, user action, time
increasing, etc) in one of the simulation environments. The generated
events are then passed to the simulation environment.

The trainer is provided with an interface to the events space to allow
him to filter events, create scenarios, and control scenarios created by
the events space. The first two are done offline whereas the controlling
is done at run-time where the trainer can monitor the training progress
and alter the scenario to guide it towards a specific training path.

Inputs

The following sections describe the entities that interact with the
events space in more detail and provide samples of the format.

Entities and relationships
The entities and relationships module holds a description of how
events can take place in the simulation environment (i.e. the
capabilities of the simulation environment - these capabilities at low
level reflect the functionality of the simulation engine). The events
space uses this information to form the events that are then passed to
the simulation environment to be interpreted and acted upon. The
access to the simulation environment is provided by embedding a
high-level scripting language that allows run-time access to the
classes’ properties and methods.

KB
The knowledge base module holds the knowledge of the considered
domain acquired from the domain expert by the knowledge engineer.
In its natural language form it can be represented using simple rules in
the form of ‘IF (condition) THEN (action)’. These rules are then
translated into the specific format of the events space by a knowledge
engineer who uses the entities and relationships format guidelines,
which describe the different entities, their attributes, and how they are
related to each other.

Simulation Environment
The events space requires three types of information from the
simulation environment: the scene layout, the simulation time, and
changes in the environment status. The information that the events
space sends is an acknowledgement of the readiness of the scenario
and messages describing what should happen next in the simulation
environment based on the current time and environment status.

The communication between the host machine that services the
simulation environments and the events space is accomplished through
the use of the publish/subscribe event mechanism. This is the only
mechanism which offers full decoupling between the events space and
the server that hosts the simulation environments. In the
publish/subscribe mechanism, if two parties want to communicate then
one party needs to advertise an event with the publish/subscribe
service and the second party to subscribe to the advertised event.

Trainer
A trainer can interact with the events space in three ways: he can
manually create and modify scenarios, he can filter automatically
created scenarios and he can monitor currently running scenarios to

Controller

Filter Generator Epool

Cpool

SEpool

Events Service

Entities &
Relationships

KB in
Machine
language

Scene Setup

Filtered Event

Unfiltered Event

Filtered Event

Unfiltered Event

Unfiltered Sequence

Unfiltered Sequence

Filtered Sequence

Filtered Sequence

Filtered Sequence

Trigger Event

Monitor

Advertise

Publish

Subscribe

Notify

Events Space

1

2

10

4

5

3

6

7
8

9

11

12

13
16

15

17

18

Figure 2: The internal workflow of the events space

14

redirect the training course to guide the training along different tracks.

Workflow

Figure 2 shows a sequenced workflow of the architecture. The dotted
box shows the boundaries of the events space. The workflow can be
divided into two main phases. The first phase occurs offline before the
simulation environment connects to the events space. The second
phase occurs after the simulation environment makes the connection.

The sequenced arrows 1 to 9 mark the first phase where the knowledge
base rules are passed in machine language along with the entities and
relationships to the generator component. The generator then creates
events and stores them in the Epool. After that, these events are
filtered by the filter and marked accepted or unaccepted. The accepted
events get used by the generator to construct sequences that are placed
in the SEpool. Similarly to the events, the filter again reviews these
sequences and marks them acceptable or unacceptable. The next step,
shown by sequenced arrows 10 to 18, occurs when the simulation
sends its scene set-up to the generator to create events specific to the
scene provided.

The scene set-up is used to filter sequences, and sequences that match
the provided scene are then passed to the Cpool. The Cpool is used by
the controller component to service events to the simulation
environment.

The controller starts by receiving the synchronised event from the
events service which the controller subscribed to. After synchronising
the time, the controller starts monitoring the events in the Cpool to
search for events consistent with the current time to be fired. The
controller also checks if the preconditions of any of the events are
satisfied by receiving status events from the event service. Moreover,
the controller examines whether triggering an event requires other
events to be triggered. To take advantage of the reasoning strength of
KB systems, the controller can also be used to provide hints to the
trainee by checking the Cpool, SEpool, Epool, and KB in machine
language respectively for actions to the current situation.

 A FIRST PROTOYPE

In the first prototype of the proposed architecture a human trainer acts
as substitute for the proposed events space. This prototype has been
used to evaluate the architecture’s flexibility and suitability for
collaborative virtual environments. The aim of this implementation is
to simulate the behaviour of the events space proposed by having a
domain expert doing its tasks (i.e. creating, monitoring, and
controlling the simulation behaviour). Furthermore, the architecture
should cater for inserting different scene layouts to make it scene
independent as well. The trainer, acting as the events space, is able to
monitor the simulation environment and trigger and control events as
he sees appropriate to achieve the goals of the scenario that is running.

The two main goals to be established at this stage to address the
flexibility issue are: the ability to provide a method for inserting the
behaviour desired into the system without reprogramming and
recompiling the application, and the ability of the prototype to allow
run-time control of the behaviour inserted. � Creating scenario behaviour: allows the trainer to create different

scenarios by adding events such as adding animation paths for
objects or attaching sounds to objects. � Monitoring scenario behaviour: permits the trainer to watch the
scenario unfolding by joining the scenario as an invisible
participant. � Controlling scenario behaviour: allows the trainer to stop or
change the course of the simulation behaviour.

� Inserting a scene layout: permits the trainer to insert different
scenes making the architecture scene independent.

To enable the manipulation of the scenario behaviour, a high-level
scripting language has been embedded in the architecture as shown in
Figure 3. The language used in our prototype is Python, which allows
for easy replication of the game engine classes that are based on an
object-oriented approach using C++. Furthermore, the other advantage
scripting provides to this prototype is the ability to dynamically load
code (Hook 2004) which can be used to insert and control the
behaviour. Figure 3 shows how the scripting language is embedded
across three architectural layers (DirectX 9.0, simulation engine, and
simulation environment), which allows it to access any of them. A
game engine has been built on top of DirectX to abstract all of its
complexities. The simulation environment lies above the game engine
and holds the objects, the players, and the scene settings. The top layer
is the behaviour controller which allows run-time access to the
simulation environment and allows the trainer to broadcast events
inserting or changing the behaviour of any objects, players, or part of
the simulation environment.

The scenario creation passes through the following steps: model
creation, scene set-up, and scenario configuration. The models are
created using a 3D drawing tool; we have used 3D Studio Max 6.0.
Optimised models are then exported to the Microsoft DirectX file
format, which is then used by the Scenario Creator. Subsequently, the
scene layout is created by positioning and orienting the objects in the
scene.

The Scenario Creator inserts the objects’ information into a database
contains five tables, three of which are specific to the scenario (games,
players, and scene objects) and the other two hold reusable general
data (meshes and groups). The scene tab allows the insertion and
positioning of objects in the environment. Titles are assigned to each
object to ease their identification. Each object created has also its own
unique identification number which is stored in the SceneObjects
table.

Behaviour Controller

Python Simulation Environment

Scene Objects Players

Game Engine

DirectX 9

Windows OS

Network Input Graphics Sound

Figure 3. Simulation environment architecture

Figure 4. Vehicle accident investigation (a), virtual lecturing (b)
(a) (b)

Two scenarios were deployed on the prototype architecture to show
that the scenario logic is no longer embedded in the simulation
environment and that it can be inserted and controlled by an outside
component (the trainer using an interface). The first scenario aims at
training new police officers on how to investigate and deal with the
aftermath of a traffic accident. The second scenario is a virtual
classroom which allows participants to join a single environment and
communicate using voice. Figure 4 shows the two scenarios. Figure 5
shows one of the scenarios running on a Reflex set-up at the
University of Sheffield.

The vehicle accident scenario was run on six subjects from Dubai
Police who all had the same training background which consists of
four years of police academic college and two specialized training
courses in vehicle accidents investigation. The six subjects where
chosen by the trainer. During the run of the experiment we noticed that
all the trainees made good use of the navigation methods and managed
to investigate the accident scene. They also made good use of the
headset facility in identifying the drivers and communicating with the
operation room operator. One of the trainers said that practical training
has shown him clearly the trainees’ weaknesses which were not
obvious to him while conducting the theoretical training.

CONCLUSIONS

The separation of the domain knowledge and the ability to control it at
run-time were the two primary objectives of the first prototype. The
separation has been achieved by the use of a high-level language
(Python) to create a layer on top of the simulation environment to act
as an interface. This means that behaviours can be inserted and
controlled at run-time. The abstraction achieved by the scripting
language made controlling the application behaviour much easier and
dynamically loadable at run-time. Moreover, using an existing
language rather than building our own reduced the development time
and eliminated the need to build a parser and evaluate it. The other
advantage of this approach is that it allows easier commands to be
added making the use of the simulation engine simpler.

Creating and running two different scenarios on the prototype
simulation environment has demonstrated the flexibility of the
approach since it managed to detach the domain knowledge from the
simulation environment and allow its control at run-time. These results
are promising. Proving full flexibility would require more tests to be
carried out involving scenarios from different domains. The
observation that can be made about the flexibility of the prototype is
that the more the simulation environment functionality is exposed
through the scripting language the more flexibility is achieved. This
means if the full simulation environment functionality is exposed, then
the system can be labeled fully flexible according to our description of
flexibility, i.e. the ability to insert and control behaviours at run-time.

We have shown that our prototype architecture can handle the running
of multiple environments while allowing a trainer to monitor the
simulation and trigger events to create the desired scenario. The next
stage will replace the trainer by the architecture proposed in Figure 1.

REFERENCES
Akerberg, O., Svensson, H., Schulz, B., Nugues, P. CarSim: An
Automatic 3D Text-to-Scene Conversion System Applied to Road
Accident Reports. Research Notes and Demonstrations Conference
Companion, 10th Conference of the European Chapter of the
Association of Computational Linguistics, 2003.
http://citeseer.nj.nec.com/563862.html

Cruz-Neira, C., Bierbaum, A., Hartling, P., Meinert, K., Just, C. VR
Juggler – An Open Source Platform for Virtual Reality Applications.
AIAA 2002 Aerospace Science Conference, Reno, NV, January 2002.

Dachselt, R. CONTIGRA Towards a Document-based Approach to 3D
Components. Workshop 'Structured Design of Virtual Environments
and 3D-Components' at the ACM Web3D 2001 Symposium.

Davis, W., Moeller, G. The High Level Architecture: is there a better
way. In Proceeding of the 1999 Winter Simulation Conference

Drew, R., Morris, D., Dew, P., Leigh, C.A System Architecture For
Supporting Event Based Interaction And Information
Access.http://citeseer.nj.nec.com/370116.html

Eugster, P., Felber, P., Guerraoui, R., Kermarrec, A. The many faces of
publish/subscribe. In ACM Computing Surveys (CSUR), volume 35,
issue 2 (June 2003), pages: 114 - 131

Hamman, M., Wilkins, D. C., Carbonari, R., Mueller, C. DC-Train 4.0
Instructor’s Manual. Knowledge Systems Lab Report UIUC-BI-KBS-
2001-0040. Beckman Institute, University of Illinois, Urbana-
Champaign. November, 2001.

Hamman, M., LeMentec, J. C., Wilkins, D. C., Design Requirements
for DC-Train 4.0. Knowledge Systems Lab Report UIUC-BI-KBS-
2001-0029. Beckman Institute, University of Illinois, Urbana-
Champaign. February 2001.

Hawkes, R., Wray, M. “LivingSpace: A Living Worlds Implementation
using an Event-based Architecture”. HPL-98-181, Extended
Enterprise Laboratory, 1998.

Hook, B. The Secret Life Of Game Scripting. Feb, 2004
http://bookofhook.com/Article/GameDevelopment/TheSecretLifeofGa
meScript.html

Romano, D.M. Features that Enhance the Learning of Collaborative
Decision Making Skills under Stress in Virtual Dynamic
Environments. Ph.D.thesis, Computer Based Learning, University of
Leeds, UK, August 2001.

Shaw, C. Liang, J, Green, M. Sun, Y. The Decoupled Simulation
Model for Virtual Reality Systems. In Human Factors in Computing
Systems CHI'92 Conference Proceedings, pages 321-328, Monterey,
California, May 1992. ACM SIGCHI.

Smith, R. Essential techniques for military modeling and simulation.
Proceedings of the 30th conference on winter simulation, 1998, pages:
805 - 812 ISBN:0-7803-5134-7

Szarowicz, A., Forte, P., Amiguet-Vercher, J., Gelepithis, P.
Application of Autonomous Agents for Crowd Scene Generation. 2nd
Hellenic Conference on AI SETN-02, vol. 2 April 11-12, Thessaloniki,
Greece, 2002

Tamberend, H. Avocado: A Distributed Virtual Environment
Framework. Ph.D.thesis, University of Bielefeld, 2003.

Wang, Q. Green, M, Shaw, C. EM – An Environment Manager for
Building Networked Virtual Environments. IEEE Virtual Reality
Annual International Symposium (VRAIS 95), pages 11-18, Research
Triangle Park, North Carolina, March 11-15, 1995, IEEE.

Williams, R, J. A Simulation Environment to Support Training for
Large Scale Command and Control Tasks. Ph.D. thesis, School of
Computer Studies, University of Leeds, UK, December 1995.

Wright, I. P., Marshall, J. A. R. RC++: a rule-based language for
game AI. In: Proceedings of the First International Conference on
Intelligent Games and Simulation (GAME-ON 2000). SCS Europe
BVBA

Figure 5. Accident scenario running on Reflex Studio set-up.

