Game Logic Portability

Ahmed BinSubaih, Steve Maddock, Daniela Romano
Department of Computer Science
University of Sheffield
Regent Court, 211 Portobello Street, Sheffield, U.K.
+44(0) 114 2221800
{a.binsubaih, s.maddock, d.romano}@dcs.shef.ac.uk

ABSTRACT

Many game engines integrate the game logic withgtaphics
engine. In this paper we separate the two, thusingake logic
portable between game engines. In our architedheelogic is
represented as an ontology and a set of rules fparticular
application domain. A mediator with an embeddeaséngine
links the logic to a suitable game engine.

We demonstrate our architecture in two ways. Firgt,show a
traffic accident scenario running on two differg@me engines,
with a separate mediator for each engine. The ltygie is smart-
terrain logic, with participants triggering eventsased on
interaction and proximity tests. In the second destration (a
simple first-person shooting game) we show theresxbdity and

performance of the architecture to control non-ptagharacters
quickly manoeuvring using proximity tests and wayps

Categories and Subject Descriptors
1.3.6 [Computer Graphics]: Three-Dimensional Graphics and
Realism.

General Terms
Design, Experimentation.

Keywords

Logic, Ontologies, Rules.

1. INTRODUCTION

Game engines have been used widely in supportiagleadic
research. For example, [9] developed a search eswlie project
in less than three months using the Unreal end#tleused the
Quake 3 Arena game engine for real-time geo-spatith
visualisation, and other projects have focussed Abn [6],

architecture (the VRND Notre Dame project [3]) aomd military
applications [10]. There are also examples of ptejdoing initial
tests with game engines. For example, Romano usedirst
versions of Quake to test some of the hypothesast were
adopted in the development of the ACTIVE system [7]

One issue with many of these game engines (e.gedllnQuake,
Never Winter Nights) is that they require the logide formatted
in their proprietary format (usually some form ofipt language).
This is unfortunate considering that the logiche tore of the

Permission to make digital or hard copies of alpart of this work for
personal or classroom use is granted without feeiged that copies are
not made or distributed for profit or commercialvadtage and that
copies bear this notice and the full citation om finst page. To copy
otherwise, or republish, to post on servers oredistribute to lists,
requires prior specific permission and/or a fee.

ACE’'05, June 15-17, 2005, Valencia, Spain.

Copyright 2004 ACM 1-59593-110-4/00/0004...$5.00.

game and where much time is spent during the dpredat

lifecycle. It would be more practical if the logias separate from
the rest of the system and could be easily migr&eenother
system. The benefits of this are:

e It could encourage more researchers to make usgawoie
engines, since a particular game engine’s futupalwdity (or
potential discontinuation) would not be a worryaadifferent
game engine could easily be substituted.

e It would increase logic reusability amongst pragecas a
person could migrate it to a familiar engine anastavoid the
time required learning a new engine.

e It would increase the scalability possibilities ftre logic,

depending on the future development of game engine

capabilities.

* The logic format could be standardised (or thedators for
different logic formats could be standardised).

The main contribution of our work is to demonstratee
feasibility of separating out the logic by represem it using
ontologies and rules, and by introducing middlew@e events
space) between the logic and the game engine.

Section 2 gives an overview of our architecture describes the
types of logic to be used in the system, the evesmace
components, and the simulation engines used. 3e8tjoresents
the results of using our architecture for two diéfet domains,
each showing a different type of logic being sezdic and
discusses issues of portability, extensibility, argystem
performance. Section 4 presents conclusions.

2. ARCHITECTURE

Our architecture is designed to allow both logid a@asoning to
be separate from the game engine. Figure 1 givesnaeptual
overview of the architecture. It shows how theiddg separated
from the engines by using an events space medidimh has a
rules-engine, an adapter, and a loader.

2.1 Gamelogic

In ontological engineering [2] entities or objeatsth similar

attributes are grouped together by a ‘concept’, rethattributes
form ‘slots’ to be filled in. Concepts can be fugttstructured in a
hierarchical format similar to classes in objedgented design. In
the following two subsections, we will describe the kinds of

logic that we have tested so far in our architextiach is

Events Space

Rules-engine Game Logic
- S —
. Loade
Ontology
—
Adapte Adapte . I

Game Engine Bespoke Engine

Figure 1: Conceptual overview of the architecture

employed in a different domain for which a sepa@i®logy is
outlined.

2.1.1 Smart Terrain Logic

We use smart terrain logic [8] in a traffic accitldomain, which
is used to train police officers in how to attendl anvestigate a
virtual traffic accident (running in a collaboradiv virtual

environment). Our earlier work on this [1] used mmn
observation and input to service logic. In the entrpaper, the
events space automatically makes use of the lMyie.use an
ontology to store the following information:

1. The virtual environment content such as the edagout
which includes the position of objects.
2. Details about each person involved in the actidech as
name, age, injury type, etc.
3. Answers to questions put to virtual actors.
4. Hints on tasks a trainee needs to perform oh ebject.
5. Specific zones in the virtual environment zoeesh as the
complete accident scene zone and danger zones.
Example entities from our domain include: drivepgssengers,
witnesses, investigators, vehicles, skid-markskdmoglass, road,
etc. The rules for the smart terrain logic storeo ttypes of
behaviours: reactive and time-based. Reactive hetnavis
triggered by the trainee’s actions in the environtner could also
be triggered by a trainer who has direct accesthéoworking
memory of the simulation and the rules-engine aad modify
certain properties to guide the trainee down ardeéspath. An
example of reactive behaviour is when the traineers a zone
placed around danger sources in the environmemtaeburning
car. In contrast, time-based behaviour is triggetepre-set points
in time. Examples of such behaviour include a Vehaatching
fire or an injured person starting to scream of. yel

2.1.2 NPC Movements Using Waypoints

The second demonstration of our architecture ismple first-

person shooting game. The aim of this demonstrasiom show a
more complex logic process that needs to be used fast-
changing environment. Essentially, the NPC mustdewwhuman
predator by navigating amongst known waypoints.

The ontology here includes player, human, NPC, wep and
movement. The human and NPC entities inherit from gilayer
attributes and include human in sight, human irgearNPC in
sight, NPC in range, reached destination, name, idndrhe

Rule 1. IF NPC in human sight AND NPC in human ra
AND waypoint NOT in human sight AND waypoint NOT
human range AND waypoint in NPC sight AND NPC
destination not this waypoint THEN Move to that waint.

Rule 2: IF NPC in human sight AND NPC in human ra
AND NPC last destination not this waypoint THEN Motc
that waypoint.

Figure 2: Rules governing NPC behaviour

waypoint entity also shares these same attributes fast
waypoint visited. The movement entity holds playdstination,
id and name attributes.

The rules are used to manoeuvre any NPC who isuget from
a human player. Being in the line of sight and eanfia human
player indicates danger. Figure 2 shows the rutegming this
behaviour.

2.2 Events space (middleware)

The events space is composed of three main comfometes-
engine, adapter, and loader. The rules-engine asnthe game
behaviour and the adapter synchronises the garhes diatween
the game engine (or bespoke simulation engine)thadrules-
engine. The loader initialises the rules-enginehvwé@mplates to
describe object attributes, rules to govern behasiand facts to
represent objects in the game such as player (rumaNPCs)
and waypoints for the movement logic of the NPG= (section
2.1.2). The following sections describe these campts in more
detail.

2.2.1 Rules-engine (JESS)

The advantages of using rules are well documeriftked. IGDA
working group on rule-based systems has discusded t
importance for games in its 2004 repoithe main two reasons
why we choose rules to store our knowledge aretapiity and
domain-independence.

The portability reason enables logic migration hestw different
game engines. This should remove the restrictioposad by
many of the current approaches used for formattiegogic to a
specific game engine. We combine a rules-enginle arnitadapter
(see section 2.2.2) to achieve this. The secorgbre to achieve
a domain-independent engine where the logic isragpérom the
game engine thus supporting the deployment of réiffegames
by changing the logic in the rules-engine withowving to

reprogram the game engine.

The role of the rules-engine is to reason aboutawehr. It
achieves that by storing facts in its working meyrtbat represent
the game world objects used in the game engine. offjects
chosen for representation and replication are thes dhat have
some rules governing their behaviours. For instanfor
controlling an NPC’s movement in a game therenged to store
the NPC in the working memory of the rules-engind when the
game engine reports that the NPC player is initteedf sight of a
human player the events space then updates treentgne and
listens for any instructions on how to react.

! http://www.igda.org/ai/report-2004/rbs.html

2.2.2 Adapter
The adapter plays the role of the mediator whichwsihow to
communicate with all parties (game engine, bespoigine and

rules-engine). This means that the adapter shailable to speak

the language understood by each engine. The rofise
understands JessScript, Torque speaks in TorqueSord our
own bespoke simulation engine speaks in Python.abapter is
also responsible for communicating game status dextwthem.
We have so far only run one game engine at a tumé¢here is no
reason why two game engines cannot be run conglytren

The adapter's communication task is achieved bydihgl a
translation or mapping protocol which maps betwéessScript
and the other two languages. It works by mappirggame and
bespoke engine data structures to the ontology ditecture
stored as templates in the rules-engine. This mappiotocol is
the mechanism that permits the logic portabilitg. Satisfy logic
portability the logic should stay unchanged whemkitig the
events space with another game engine. The onlyificettbns
allowed are at the mapping protocol level whichuddaesult in a
unique mapping protocol for each game engine tads. The
creation of the mapping protocol for each engina isne-time
process.

The mapping protocol relies on the ability of thgi@e to have a

scripting language through which the translatedipsciis
communicated. It is also important that the engieemits on-the-

fly scripting rather than pre-compiled scripts tias¢ changed at

run-time. Few game engines currently satisfy thimstraint.
Torque is one.

The translation between the languages is achiewedtdring
scripts (or sentences) with placeholders that epéaced at run-
time by the appropriate values. Figure 3 showsxamele of the
scripts and their placeholders used in communicabetween
Jess and Torque (i.e. between JessScript and T®cqp8: The
top script communicates a decision made in thesrefgine to
instruct a specific NPC to move to a specific wagpowvhereas
the bottom script updates the rules-engine with terent
situation in the game engine with regards to th&€NRtus. The

2.3 GameEngine

Either the Torque game engine or our bespoke straolangine
can be plugged in the architecture. The Torque gamgine is a
commercial multiplayer game engine developed byaGaiGames
(garagegames.com). It is written in C++ and hasli&eCscripting

language (TorqueScript). The bespoke engine is Hiplayer

engine developed by the authors and coded in C++topnof

DirectX. The scripting language used for this eegmPython.

3. RESULTSAND DISCUSSION

We now present the results of two separate denaditsis
showing two separate Al techniques in action onasahitecture.
The first demonstration is an accident scenarioclvhitilises
smart terrain logic, and the second is a simplet-fierson
shooting game which includes evasive movements royNBC
using waypoints.

In this section the results of running the two é¢hiniques (smart
terrain and evasive movements by an NPC) are destriThe

smart terrain logic supports a scenario used to tmaw traffic

recruits on accident investigation. This demonsgrahe ability to
run the same set of logic on more than one engihe. second
demonstration showing evasive movements by an Ne@sthat

the architecture is extensible and caters for wffe game
techniques.

The aim of the accident scenario is to train potiffecers how to
deal with traffic incidents. The particular scenawe have used
concerns two drivers involved in an accident thesufts in one
severely injured passenger and no injuries to theeisd. In
addition, both vehicles have leaked hazardous mhtat the
scene. A trainee enters the virtual environment mgt decide
how to carry out the necessary investigation. Timars terrain
logic guides the trainee through the training sasbly giving him
hints of what he should do next if he gets studksTs achieved
by the trainee querying the ‘smart’ objects in goene. These
objects hold the information necessary to provigerapriate
guidance. For example, if the trainee clicks on ofhthe vehicles
involved in the accident it informs him of the ogons he can

placeholders are marked by variables between twd @
characters. These are replaced at run-time by ppeopriate
values. For instance, @NPCID@ in the top scripeaced
by the NPC id who is the subject of the move ingtan
issued.

2.2.3 Logic Loader Interface
This module loads the ontology and converts it in
‘deftemplates’, which is representation in Jessldb allows a
user to enter the facts corresponding to the abjecthe game
world. Each instance created would represent aacolij the

targeted game world. The way each instance knowishwh

to

for(fo=0;3c=MissionClearuap. getlount () ;Fott) |

FNPC = MissionClearup. getlObject ifo);
if ($MPC.getIdi) == @ENPCIDA@)
{ break;: }

}
for (fw=0;3w<WMaypointGroup . getCount () ;swtt) |

iwaypoint = WaypointGroup. getObject (Fur) ;2
if (fwaypoint. getId() == HwaypointID@)
{ break: 1}

b

sNPC. setMovelestination (fwavboint . getTransformi)

object it represents is through the value setsrli@’ slot by

whoever created the instance e.g. the designer. riites-

engine gives each instance a unique id (differiean tthe slot
ID the designer manually specifies) when loaded memory.

These two ids allow access to an object in workivggnory at
each end (rules-engine and adapter) and messagegose
replication between them make use of these idsawipnlate
the corresponding objects.

(modify (fact-id @factID@)
(Human=sInPange BHumanhsInPRange@d)
(Human=sITnSight BHumanhsInSight@)
(NPC=InPange ANPCsInPange@)
(NPC=InSight ANPCsInSight@)

Figure 3: Top: TorqueScript; Bottom: JessScript

Figure4: The accident scenario running on (a) the Torque engine; (b) our

bespoke simulation engine

carry out on it, i.e. photographing it, measurirge tdistance
between its rest position and the accident poitat, eigures 4a
and b show illustrations of running this scenariotbe Torque
engine and our bespoke engine respectively.

For this scenario the logic was created as pamrofxtensive
knowledge gathering exercise with police personiiis logic

was formatted for our architecture and then theestogic was
serviced to each of the game engines, thus deradingtriogic

portability. The two elements of the architectunattmake this
possible are the rules-based approach and mappatacpl. The
rules-based approach helps to separate the implatizenfrom

the behaviour. The mapping protocol is then writfen the

particular game engine. A new (capable) game erjgsteneeds a
new mapping protocol to be supplied, and the logiains the
same.

In the second demonstration of the architectureN®C must
evade a predator (controlled by the user) who &sicty it around
a landscape. Figure 5 illustrates an NPC charactening for
cover after a human has approached him (i.e. int sigd range).
This is achieved by logic that is based on manaegwhe NPC
using waypoints. This scenario demonstrates battexktensibility
and performance of our architecture.

Extensibility is illustrated in two ways. First thknowledge
mechanism (ontology and rules) is easily configudold the
scenario information. Essentially, the ontologydshspproach is
similar to object-oriented programming. Second, theapping
protocol which uses scripts mapping with placehaldean be
extended to map any part of the data structureoag &s it is
exposed through a scripting language.

The shooting game also demonstrates the performahamr

architecture. Since the game is fast-paced and NRE is

continually manoeuvring and moving in and out afga of the
predator and the waypoints, a lot of traffic is geted back and
forth between the game engine and the rules-engimis. traffic

had no appreciable effect on the workings of oehiéecture or
the game play. Although this cannot be considecettiasive and
further more tests need to be conducted, it sesmgea positive
indicator for the practicality of the architecture.

4. CONCLUSIONS

We have presented an architecture that enables Igayiceto be
portable. The logic is separated from the game renddy
providing middleware that translates game engimagustto the
rules-engine and services the game engine withafipgopriate

Figure5: Torque enginerunning a scenario
in which an NPC must run for cover.

behaviour. We deployed two common Al techniques tbe

architecture. A traffic accident scenario employitige smart
terrain technique showed that the same logic carubeon two
different engines (bespoke and commercial). TheorscAl

technique was to control an NPC in a game. Thischsitnated
the extensibility and flexibility of the architects Future work
will continue to extend the range of Al techniqsewported, and
carry out more investigation into loading and perfance issues.

5. REFERENCES

[1] BinSubaih A, Maddock S and Romano D (2004) Aniin-
Independent Multiplayer Architecture for Training.
International Workshop in Computer Game Design and
Technology(Nov. 1994), Liverpool, UK, 144-151.

[2] Chandrasekaran B, Josephson J R and BenjamRsWhat
are ontologies and why do we need thetBEE Intelligent
Systemsl4,1(Jan/Feb 1999), 20-26.

[3] DeLeon, V and Berry R. Bringing VR to the degit are
you gameMultimedia, IEEE 7,2 (April/June 2000), 68—72.

[4] Fritsch D and Kada M. Visualisation Using GaiBegines.
ISPRS commission Bul. 2004) Istanbul, Turkey, 621-625.

[5] Friedman-Hill E.JESS in ActionManning Publications Co,
2003, ISBN 1930110898.

[6] Laird, J. Using a Computer Game to Develop Athed Al,
Computer 34 ,7(Jul. 2001), 70-75.

[7] Romano, D. Features that Enhance the Learning of
Collaborative Decision Making Skills under Stresd/irtual
Dynamic Environments Ph.D.thesis, Computer Based
Learning, University of Leeds, UK, August 2001.

[8] Rabin, S. Promising Game Al TechniqueAl Game
Programming Wisdom 2, Charles River Media, 2004.

[9] Wang J, Lewis M and Gennari J. Emerging araaban
operations and UCAVs: a game engine based simnolatio
the NIST urban search and rescue arer¥gh Winter
Simulation Conference(2003), New Orleans, Louisiana,
1039-1045.

[10] Zyda, M, Mayberry A, Wardynski C, Shilling Rd Davis,
M. The MOVES Institute’s America’s Army Operations
Game Proceedings of the ACM SIGGRAPH 2003
Symposium on Interactive 3D Graphi¢8pr. 2003), 217-
218.

