
Game Logic Portability
Ahmed BinSubaih, Steve Maddock, Daniela Romano

Department of Computer Science
University of Sheffield

Regent Court, 211 Portobello Street, Sheffield, U.K.
+44(0) 114 2221800

{a.binsubaih, s.maddock, d.romano}@dcs.shef.ac.uk

ABSTRACT
Many game engines integrate the game logic with the graphics
engine. In this paper we separate the two, thus making the logic
portable between game engines. In our architecture the logic is
represented as an ontology and a set of rules for a particular
application domain. A mediator with an embedded rules-engine
links the logic to a suitable game engine.

We demonstrate our architecture in two ways. First, we show a
traffic accident scenario running on two different game engines,
with a separate mediator for each engine. The logic type is smart-
terrain logic, with participants triggering events based on
interaction and proximity tests. In the second demonstration (a
simple first-person shooting game) we show the extensibility and
performance of the architecture to control non-player characters
quickly manoeuvring using proximity tests and waypoints.

Categories and Subject Descriptors
I.3.6 [Computer Graphics]: Three-Dimensional Graphics and
Realism.

General Terms
Design, Experimentation.

Keywords
Logic, Ontologies, Rules.

1. INTRODUCTION
Game engines have been used widely in supporting academic
research. For example, [9] developed a search and rescue project
in less than three months using the Unreal engine, [4] used the
Quake 3 Arena game engine for real-time geo-spatial data
visualisation, and other projects have focussed on AI [6],
architecture (the VRND Notre Dame project [3]) and on military
applications [10]. There are also examples of projects doing initial
tests with game engines. For example, Romano used the first
versions of Quake to test some of the hypotheses that were
adopted in the development of the ACTIVE system [7].

One issue with many of these game engines (e.g. Unreal, Quake,
Never Winter Nights) is that they require the logic to be formatted
in their proprietary format (usually some form of script language).
This is unfortunate considering that the logic is the core of the

game and where much time is spent during the development
lifecycle. It would be more practical if the logic was separate from
the rest of the system and could be easily migrated to another
system. The benefits of this are:

• It could encourage more researchers to make use of game
engines, since a particular game engine’s future capability (or
potential discontinuation) would not be a worry as a different
game engine could easily be substituted.

• It would increase logic reusability amongst projects, as a
person could migrate it to a familiar engine and thus avoid the
time required learning a new engine.

• It would increase the scalability possibilities for the logic,
depending on the future development of game engine
capabilities.

• The logic format could be standardised (or the translators for
different logic formats could be standardised).

The main contribution of our work is to demonstrate the
feasibility of separating out the logic by representing it using
ontologies and rules, and by introducing middleware (an events
space) between the logic and the game engine.

Section 2 gives an overview of our architecture and describes the
types of logic to be used in the system, the events space
components, and the simulation engines used. Section 3 presents
the results of using our architecture for two different domains,
each showing a different type of logic being serviced, and
discusses issues of portability, extensibility, and system
performance. Section 4 presents conclusions.

2. ARCHITECTURE
Our architecture is designed to allow both logic and reasoning to
be separate from the game engine. Figure 1 gives a conceptual
overview of the architecture. It shows how the logic is separated
from the engines by using an events space mediator which has a
rules-engine, an adapter, and a loader.

2.1 Game Logic
In ontological engineering [2] entities or objects with similar
attributes are grouped together by a ‘concept’, where attributes
form ‘slots’ to be filled in. Concepts can be further structured in a
hierarchical format similar to classes in object-oriented design. In
the following two subsections, we will describe the two kinds of
logic that we have tested so far in our architecture. Each is

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ACE’05, June 15–17, 2005, Valencia, Spain.
Copyright 2004 ACM 1-59593-110-4/00/0004…$5.00.

Figure 1: Conceptual overview of the architecture

employed in a different domain for which a separate ontology is
outlined.

2.1.1 Smart Terrain Logic
We use smart terrain logic [8] in a traffic accident domain, which
is used to train police officers in how to attend and investigate a
virtual traffic accident (running in a collaborative virtual
environment). Our earlier work on this [1] used manual
observation and input to service logic. In the current paper, the
events space automatically makes use of the logic. We use an
ontology to store the following information:

1. The virtual environment content such as the scene layout
which includes the position of objects.

2. Details about each person involved in the accident such as
name, age, injury type, etc.

3. Answers to questions put to virtual actors.
4. Hints on tasks a trainee needs to perform on each object.
5. Specific zones in the virtual environment zones such as the

complete accident scene zone and danger zones.
Example entities from our domain include: drivers, passengers,
witnesses, investigators, vehicles, skid-marks, broken glass, road,
etc. The rules for the smart terrain logic store two types of
behaviours: reactive and time-based. Reactive behaviour is
triggered by the trainee’s actions in the environment, or could also
be triggered by a trainer who has direct access to the working
memory of the simulation and the rules-engine and can modify
certain properties to guide the trainee down a desired path. An
example of reactive behaviour is when the trainee enters a zone
placed around danger sources in the environment, e.g. a burning
car. In contrast, time-based behaviour is triggered at pre-set points
in time. Examples of such behaviour include a vehicle catching
fire or an injured person starting to scream or yell.

2.1.2 NPC Movements Using Waypoints
The second demonstration of our architecture is a simple first-
person shooting game. The aim of this demonstration is to show a
more complex logic process that needs to be used in a fast-
changing environment. Essentially, the NPC must evade a human
predator by navigating amongst known waypoints.

The ontology here includes player, human, NPC, waypoint, and
movement. The human and NPC entities inherit from the player
attributes and include human in sight, human in range, NPC in
sight, NPC in range, reached destination, name, and id. The

waypoint entity also shares these same attributes plus last
waypoint visited. The movement entity holds player, destination,
id and name attributes.

The rules are used to manoeuvre any NPC who is in danger from
a human player. Being in the line of sight and range of a human
player indicates danger. Figure 2 shows the rules governing this
behaviour.

2.2 Events space (middleware)
The events space is composed of three main components: rules-
engine, adapter, and loader. The rules-engine controls the game
behaviour and the adapter synchronises the game status between
the game engine (or bespoke simulation engine) and the rules-
engine. The loader initialises the rules-engine with templates to
describe object attributes, rules to govern behaviours and facts to
represent objects in the game such as player (humans or NPCs)
and waypoints for the movement logic of the NPCs (see section
2.1.2). The following sections describe these components in more
detail.

2.2.1 Rules-engine (JESS)
The advantages of using rules are well documented. The IGDA
working group on rule-based systems has discussed the
importance for games in its 2004 report1. The main two reasons
why we choose rules to store our knowledge are: portability and
domain-independence.

The portability reason enables logic migration between different
game engines. This should remove the restriction imposed by
many of the current approaches used for formatting the logic to a
specific game engine. We combine a rules-engine with an adapter
(see section 2.2.2) to achieve this. The second reason is to achieve
a domain-independent engine where the logic is separate from the
game engine thus supporting the deployment of different games
by changing the logic in the rules-engine without having to
reprogram the game engine.

The role of the rules-engine is to reason about behaviour. It
achieves that by storing facts in its working memory that represent
the game world objects used in the game engine. The objects
chosen for representation and replication are the ones that have
some rules governing their behaviours. For instance, for
controlling an NPC’s movement in a game there is a need to store
the NPC in the working memory of the rules-engine and when the
game engine reports that the NPC player is in the line of sight of a
human player the events space then updates the rules-engine and
listens for any instructions on how to react.

1 http://www.igda.org/ai/report-2004/rbs.html

Rule 1: IF NPC in human sight AND NPC in human range
AND waypoint NOT in human sight AND waypoint NOT in
human range AND waypoint in NPC sight AND NPC last
destination not this waypoint THEN Move to that waypoint.

Rule 2: IF NPC in human sight AND NPC in human range
AND NPC last destination not this waypoint THEN Move to
that waypoint.

Figure 2: Rules governing NPC behaviour

Game Logic

Events Space

Rules

Ontology
Rules-engine

Bespoke Engine

Adapter

Game Engine

Adapter

Loader

Figure 3: Top: TorqueScript; Bottom: JessScript

2.2.2 Adapter
The adapter plays the role of the mediator which knows how to
communicate with all parties (game engine, bespoke engine and
rules-engine). This means that the adapter should be able to speak
the language understood by each engine. The rules-engine
understands JessScript, Torque speaks in TorqueScript and our
own bespoke simulation engine speaks in Python. The adapter is
also responsible for communicating game status between them.
We have so far only run one game engine at a time but there is no
reason why two game engines cannot be run concurrently.

The adapter’s communication task is achieved by holding a
translation or mapping protocol which maps between JessScript
and the other two languages. It works by mapping the game and
bespoke engine data structures to the ontology data structure
stored as templates in the rules-engine. This mapping protocol is
the mechanism that permits the logic portability. To satisfy logic
portability the logic should stay unchanged when linking the
events space with another game engine. The only modifications
allowed are at the mapping protocol level which should result in a
unique mapping protocol for each game engine to be used. The
creation of the mapping protocol for each engine is a one-time
process.

The mapping protocol relies on the ability of the engine to have a
scripting language through which the translated script is
communicated. It is also important that the engine permits on-the-
fly scripting rather than pre-compiled scripts that are changed at
run-time. Few game engines currently satisfy this constraint.
Torque is one.

The translation between the languages is achieved by storing
scripts (or sentences) with placeholders that are replaced at run-
time by the appropriate values. Figure 3 shows an example of the
scripts and their placeholders used in communication between
Jess and Torque (i.e. between JessScript and TorqueScript): The
top script communicates a decision made in the rules-engine to
instruct a specific NPC to move to a specific waypoint, whereas
the bottom script updates the rules-engine with the current
situation in the game engine with regards to the NPC status. The
placeholders are marked by variables between two ‘@’
characters. These are replaced at run-time by the appropriate
values. For instance, @NPCID@ in the top script is replaced
by the NPC id who is the subject of the move instruction
issued.

2.2.3 Logic Loader Interface
This module loads the ontology and converts it into
‘deftemplates’, which is representation in Jess. It also allows a
user to enter the facts corresponding to the objects in the game
world. Each instance created would represent an object in the
targeted game world. The way each instance knows which
object it represents is through the value set in its ‘ID’ slot by
whoever created the instance e.g. the designer. The rules-
engine gives each instance a unique id (different than the slot
ID the designer manually specifies) when loaded into memory.
These two ids allow access to an object in working memory at
each end (rules-engine and adapter) and messages sent for
replication between them make use of these ids to manipulate
the corresponding objects.

2.3 Game Engine
Either the Torque game engine or our bespoke simulation engine
can be plugged in the architecture. The Torque game engine is a
commercial multiplayer game engine developed by Garage Games
(garagegames.com). It is written in C++ and has a C-like scripting
language (TorqueScript). The bespoke engine is a multiplayer
engine developed by the authors and coded in C++ on top of
DirectX. The scripting language used for this engine is Python.

3. RESULTS AND DISCUSSION
We now present the results of two separate demonstrations
showing two separate AI techniques in action on our architecture.
The first demonstration is an accident scenario which utilises
smart terrain logic, and the second is a simple first-person
shooting game which includes evasive movements by an NPC
using waypoints.

In this section the results of running the two AI techniques (smart
terrain and evasive movements by an NPC) are described. The
smart terrain logic supports a scenario used to train new traffic
recruits on accident investigation. This demonstrates the ability to
run the same set of logic on more than one engine. The second
demonstration showing evasive movements by an NPC shows that
the architecture is extensible and caters for different game
techniques.

The aim of the accident scenario is to train police officers how to
deal with traffic incidents. The particular scenario we have used
concerns two drivers involved in an accident that results in one
severely injured passenger and no injuries to the drivers. In
addition, both vehicles have leaked hazardous material at the
scene. A trainee enters the virtual environment and must decide
how to carry out the necessary investigation. The smart terrain
logic guides the trainee through the training session by giving him
hints of what he should do next if he gets stuck. This is achieved
by the trainee querying the ‘smart’ objects in the scene. These
objects hold the information necessary to provide appropriate
guidance. For example, if the trainee clicks on one of the vehicles
involved in the accident it informs him of the operations he can

carry out on it, i.e. photographing it, measuring the distance
between its rest position and the accident point, etc. Figures 4a
and b show illustrations of running this scenario on the Torque
engine and our bespoke engine respectively.

For this scenario the logic was created as part of an extensive
knowledge gathering exercise with police personnel. This logic
was formatted for our architecture and then the same logic was
serviced to each of the game engines, thus demonstrating logic
portability. The two elements of the architecture that make this
possible are the rules-based approach and mapping protocol. The
rules-based approach helps to separate the implementation from
the behaviour. The mapping protocol is then written for the
particular game engine. A new (capable) game engine just needs a
new mapping protocol to be supplied, and the logic remains the
same.

In the second demonstration of the architecture an NPC must
evade a predator (controlled by the user) who is chasing it around
a landscape. Figure 5 illustrates an NPC character running for
cover after a human has approached him (i.e. in sight and range).
This is achieved by logic that is based on manoeuvring the NPC
using waypoints. This scenario demonstrates both the extensibility
and performance of our architecture.

Extensibility is illustrated in two ways. First the knowledge
mechanism (ontology and rules) is easily configured to hold the
scenario information. Essentially, the ontology-based approach is
similar to object-oriented programming. Second, the mapping
protocol which uses scripts mapping with placeholders can be
extended to map any part of the data structure as long as it is
exposed through a scripting language.

The shooting game also demonstrates the performance of our
architecture. Since the game is fast-paced and the NPC is
continually manoeuvring and moving in and out of range of the
predator and the waypoints, a lot of traffic is generated back and
forth between the game engine and the rules-engine. This traffic
had no appreciable effect on the workings of our architecture or
the game play. Although this cannot be considered conclusive and
further more tests need to be conducted, it serves as a positive
indicator for the practicality of the architecture.

4. CONCLUSIONS
We have presented an architecture that enables game logic to be
portable. The logic is separated from the game engine by
providing middleware that translates game engine status to the
rules-engine and services the game engine with the appropriate

behaviour. We deployed two common AI techniques on the
architecture. A traffic accident scenario employing the smart
terrain technique showed that the same logic can be run on two
different engines (bespoke and commercial). The second AI
technique was to control an NPC in a game. This demonstrated
the extensibility and flexibility of the architecture. Future work
will continue to extend the range of AI techniques supported, and
carry out more investigation into loading and performance issues.

5. REFERENCES
[1] BinSubaih A, Maddock S and Romano D (2004) A Domain-

Independent Multiplayer Architecture for Training.
International Workshop in Computer Game Design and
Technology (Nov. 1994), Liverpool, UK, 144-151.

[2] Chandrasekaran B, Josephson J R and Benjamins V R. What
are ontologies and why do we need them?, IEEE Intelligent
Systems, 14,1 (Jan/Feb 1999), 20-26.

[3] DeLeon, V and Berry R. Bringing VR to the desktop: are
you game? Multimedia, IEEE 7,2 (April/June 2000), 68–72.

[4] Fritsch D and Kada M. Visualisation Using Game Engines.
ISPRS commission 5, (Jul. 2004) Istanbul, Turkey, 621-625.

[5] Friedman-Hill E. JESS in Action, Manning Publications Co,
2003, ISBN 1930110898.

[6] Laird, J. Using a Computer Game to Develop Advanced AI,
Computer, 34 ,7 (Jul. 2001), 70-75.

[7] Romano, D. Features that Enhance the Learning of
Collaborative Decision Making Skills under Stress in Virtual
Dynamic Environments. Ph.D.thesis, Computer Based
Learning, University of Leeds, UK, August 2001.

[8] Rabin, S. Promising Game AI Techniques. AI Game
Programming Wisdom 2, Charles River Media, 2004.

[9] Wang J, Lewis M and Gennari J. Emerging areas: urban
operations and UCAVs: a game engine based simulation of
the NIST urban search and rescue arenas. 35th Winter
Simulation Conference, (2003), New Orleans, Louisiana,
1039-1045.

[10] Zyda, M, Mayberry A, Wardynski C, Shilling R and Davis,
M. The MOVES Institute’s America’s Army Operations
Game. Proceedings of the ACM SIGGRAPH 2003
Symposium on Interactive 3D Graphics, (Apr. 2003), 217-
218.

Figure 4: The accident scenario running on (a) the Torque engine; (b) our
bespoke simulation engine

Figure 5: Torque engine running a scenario
in which an NPC must run for cover.

