A Survey of ‘Game’ Portability

Ahmed BinSubaih, Steve Maddock, and Daniela Romano

Department of Computer Science
University of Sheffield
Regent Court, 211 Portobello Street, Sheffield, U.K
+44(0) 114 2221800
{A.BinSubaih, S.Maddock, D.Romano}@dcs.shef.ac.uk

Abstract. Many games today are developed using game engifes.
development approach supports various aspects makplity. For example
games can be ported from one platform to anothdrassets can be imported
into different engines. The portability aspect tteuires further examination is
the complexity involved in porting a 'game' betwgmme engines. The game
elements that need to be made portable are the tayice the object model,
and the game state, which together represent time'garain. We collectively
refer to these as the game factor, or G-factors Wark presents the findings of
a survey of 40 game engines to show the technithegsprovide for creating
the G-factor elements and discusses how these item® affect G-factor
portability. We also present a survey of 30 praebat have used game engines
to show how they set the G-factor.

Keywords: game development, portability, game engines.

1 Introduction

The shift in game development from developing gafm@s scratch to using game
engines was first introduced by Quake and markesl dbvent of the game-
independent game engine development approach (L&wiacobson, 2002). In this
approach the game engine became “the collectionaafules of simulation code that
do not directly specify the game’s behaviour (gdogic) or game’s environment
(level data)” (Wang et al, 2003). This makes thegangine reusable for (or portable
to) different game projects. However this shiftguoes a game which is notoriously
dependent on the game engine. For example why eaplayer take his favourite
game (say Unreal) and play it on Quake engine c& versa?

Hardware and software abstractions have facilitétedability to play a game on
different hardware and on different operating syste(in some cases with some
modifications). These abstractions have also fatdd the ability to use level data
assets such as 3D models, sound, music, and textuoss different game engines.
This ability should also be extended to allow fioe game itself to be portable. The
goal of our work is to make the game engine’s bpairtable, where the brain holds
the game state and the object model and uses the lggic to control the game. We
collectively refer to these three things as thea@dr. We see the portability of the G-
factor as the next logical step in the evolutioryaie development. Following Lewis
and Jacobson's terminology (Lewis & Jacobson, 2008)call it the game engines

2 Ahmed BinSubaih, Steve Maddock, and Dari&mano

independent game development approach (see Figur€idure 1 illustrates the
evolution of game development and highlights tiseiés facing each approach.

A benefit of making the G-factor portable wouldtbeencourage more developers
to make use of game engines, since a particulaegamine’s future capability (or
potential discontinuation, as was the fate of Adéglbeosphere which was used for
Adolescent Therapy — Personal Investigator (Coyla&thews, 2004)) would not be
a worry as a different game engine could easilysblestituted. This problem has

G-Factor
Engine A Game State
Issues:

. Object Model
Engine B k
Game Logic
« Performance & Implementation overheads.

Game Engines-Independent Game

* Reduces the dependency on a single game

engine by making the G-factor portable.

* Encourages more game engine usage as an engine’giao
discontinuation is not a major issue.

Game Specifit
ERIID SR Object Model Game Logic » The increase in development cost
forced code reuse which resulted in
Engine Core ‘ decoupling the game from the game
User Input Sound Scripting engine.
" . » The speed overhead of using software
Rendering Physics Al interfaces became acceptable.
. « Complex game logic which required specialized
Network Logging GUI System components.
Issues:
» Games are too dependent on the
game engine.
Game-Independent Game Engines

Spacewar! 50 line « Easy to modify but it lacks clear separation betwee
the game code and the engine code.
* Bypass operating system looking for speed.
» Simple game logic
Issues:
« Lack of code reuse. It was common to rewrite thé&en

game.

Hardcoded Games (software based)
Missile simulation 194¢
/ » The early games were hardwired into the circ
J E * Simple game logic

Issues:

* Practically unmodifiable.
Hardwired Games (hardware based)

Figure 1: Game development evolution.

A Survey of ‘Game’ Portability 3

recently been referred to as “the RenderWare PmoblgCarless, 2007) after the

acquisition of RenderWare engine by Electronic AE8) and its removal from the

market. We see the issue of rewriting the G-faiitum scratch every time we migrate
from one engine to another as similar to the umddspractice of developing games
from scratch which was deemed unfeasible and exbul the advent of game
engines.

To identify the extent of the portability problem game development in general
and game engines in particular we decided to cdnis@ surveys. The first survey
was a survey of game engines. The objective of shiwey was to illustrate the
effects the development practices encouraged byegamgines have on the G-factor
elements. The second survey was on projects thad haed game engines. The
objective of this survey was to examine how posale G-factor for projects that
use game engines is.

Section 2 describes the aspects of portabilityelation to game engines and the
techniques that have been tried to aid G-factotapdity. Section 3 describes the
governing variables and how they affect the G-fatteplementation and how we
used them to create a categorization for game eadiased on how they promote
portability. Section 3 also presents the findings survey conducted to identify the
methods game engines provide for creating the @faSection 4 presents the
second survey which examines the common practickswied by projects using
game engines. Finally section 5 presents the ceiuris.

2 Portability and G-factor

Figure 2 illustrates the current aspects of politgtaddressed in game engines. First,
with hardware and software portability the game ¢@n played across different
platforms and operating systems by employing hardveend software abstractions.
Second, portability of assets means that 3D motktsires and sounds can be used
across different game engines. Third, middlewangapdity allows for components
to be used across game engines such as Al anccphysi

The aspect of portability that requires further egtigation is the G-factor
portability. Examining what has been done to aid gortability we found initiatives
and projects which can be grouped into four areatficial intelligence (Al)
architectures, interfaces, standards and file fesn@nd frameworks or protocols.

The Al architectures use custom made or off-théfstoenponents such as the Al
Middleware (e.g. SOAR (Laird et al, 2002), Al.Impty etc). The need for using a
component to handle the Al emerged because ofrigrease in Al complexity and
the increase in the processing time allocated tfoiThis made reinventing the Al
wheel every time a game is developed a redundamteps. From a software
engineering perspective the use of Al architectusegncouraged as it promotes
above all reusability. The practice of specifyilg tgame using the Al middleware
format is not what we eventually want since thisrehe moves it from one
proprietary format (game engines) to another (Atldfeware). Nevertheless it is a

1 http://www.biographictech.com (accessed 5/5/2007).

4 Ahmed BinSubaih, Steve Maddock, and Darikmano

Current Portability in Game Engines Next: G-factor Portability

Assets Portability (3D models, texture, sound,

Middleware Portability (Al, physics, et R N
| State | Logic | Model
i G-factor Portabilit

»
»

A

State | Logic Model State | Logic Model

Engine A Engine B

Software & Hardwar Portability

Scftware

Hardwart

Figure 2: Portability in game engines.

step in the right direction of moving the game avrayn the game engine’s format.
The architectures that promote portability morenttahers are those that allow
complete removal of the game from the game engimeh sas TIELT (Aha &
Molineaux, 2004). Others that only partially remode game are obviously less
portable such as Mimesis (Young et al, 2004) andsMhEngine (Vilhjalmsson &
Samtani, 2005). The Al architectures promote theafgheir own proprietary format
which is similar to what game engines do. Furtheamsuggesting a monolithic
architecture as a complete entity is not what ieded. Instead initiatives must
examine the causes of the G-factor portability fgoband provide practical solutions
that can be employed even if their architectursiaidleware is not chosen.

The interfaces aim to provide access to externajnams and in game engines we
found two types of interfaces: specific and commbimese provide access to the G-
factor elements to overcome the difficulty raisgdtbe lack of interoperability. A
number of interfaces have been developed to praddess to specific game engines.
For example the interfaces that have been usedctesa Unreal are Gamebots
(Adobbati et al, 2001) and GOLOG Bots (Jacobs e2@05). To access Quake one
can use Quakebot (Laird, 2001). FlexBot (Khoo eR802) is used to access Half-
Life and Shadow Door (Hussain & Vidaver, 2006) sed for Neverwinter Nights.
These provide interfaces for specific game engi@#ker projects are attempting to
provide common interfaces to game engines sucthegnitiative by International
Game Developers Association (IGDA) for world ingaiing (Nareyek et al, 2005)
and OASIS (Berndt et al, 2005). Interfaces may hanage success in the serious
games community rather than in a fast evolving gaimgustry.

A Survey of ‘Game’ Portability 5

The third area is the standards and file-baseddtysuch as VRML/X3D These
still lack the maturity needed for game developmé&ir instance VRML lacks the
rendering capability required. It also suffers frepeed and security issues (Jankovic,
2000).

The fourth area is the frameworks or protocols Hidtinteroperability between
different simulations like the High Level Architece (HLA) (Smith, 1998) and Java
Adaptive Dynamic Environment (JADE) (Oliveira et @D03). Despite the fact that
this category focuses more on the interoperabiigfween simulations and less on
how the game is linked to the simulation it is ni@méd here to illustrate that
portability exists at different levels. HLA for itasice promotes it at the simulation
and object level and JADE promotes interoperabdityhe functionality level. HLA
identified the simulation functionality that arengeally required across all systems
and thus should not only be part of a single sitiaasystem but available for others.
To achieve this it moved the general simulationcfiomality from the simulation
system to the HLA infrastructure and thus made #imulation functionality
accessible to other simulation systems (Smith, 2080 example of the functionality
provided is object management which is used toesldnject instances between
different simulations. JADE was designed to addtkesmonolithic nature of current
Virtual Environment (VE) systems. Oliveira et afae that in current VE systems it
is not possible to replace or increment the necggsactionality. JADE proposes to
host Modules without the concern for their functitity which is the responsibility of
the VE developer. A Module can encapsulate aneestistem or a block of code and
thus can be reused by others. These frameworkgraocols require the projects to
comply with their infrastructure to be able to mugerate with other systems. The
other challenge facing them is to create a germaalle infrastructure to support any
kind of environment (Kapolka, 2003).

This section has presented the different aspegiemébility that are supported by
game engines and has analyzed what has been dofer $0 address G-factor
portability. The next two sections present two sys/to help better understand G-
factor portability and to highlight what is requdrérom a development approach that
aims to promote G-factor portability.

3 Survey of G-factor in Game Engines

The objective of this survey is to discover theaepment practices encouraged by
game engines through examining the tools they geoto specify the G-factor (e.g.
scripting language, object model, API access, warld interface builders, etc). We
also aim to create a categorization that groupsnesdoy the way they promote G-
factor portability. Current game engines’ categatians listed by researchers include
ones based on the player's point of view (Stang32@® based on the game genre
(e.g. action, strategy, sports, simulation, eta)other categorization is one proposed
by Young et al (Young et al, 2004) that is basedhenintegration between intelligent
reasoning capabilities and game engines. Youngjseta@egorization is divided into

2 http:/lwww.web3d.org/x3d/ (accessed 5/5/2007).

6 Ahmed BinSubaih, Steve Maddock, and Darik&mano

three groups: mutually specific, Al specific, andnge specific. In the mutually
specific category the essence is on creating nemctifanalities using specific
intelligent reasoning tools or techniques (suclplasning algorithms) for a specific
game engine. This can be described as having &oeome relationship between the
new Al functionality and the game engine. In thessal category, Al specific, a set
of Al functionalities can be used across a ranggahe engines — a one-to-many
relationship between the Al functionalities and gaengines. The game specific
category allows more than one Al element to be wsed specific game engine. This
is many-to-one relationship between the Al elemantsthe game engine.

In our categorization the focus is on the relatipdetween the G-factor and the
game engine. We identified three variables to goteis relationship: location (hard-
coded or data-driven), object model (static or dyitg, and scripting constraint
(precompiled or compiled and interpreted on-thg-flyhese variables describe how
the three G-factor elements are set. Location tescthow the game state, object
model, and game logic are specified (i.e. whetled4{toded in the game engine or
specified using data-driven techniques). The objeotlel and scripting constraint
variables refer to how the G-factor’s object maaiedi logic are set respectively.

The following sections describe how these variabfésct G-factor portability and
provide examples from industry, wherever possitieshow how these variables are
being implemented and more importantly what lessae been learnt in doing so.

3.1 Game Location

Location refers to whether the engine promotes-bad®d or data-driven approaches
to create the G-factor. The hard-coded approacdhflexible and does not meet the
current dynamic game design requirements since @difg the game too deeply in
the code is very restrictive as it shields it frtme designers and artists (Keith, 2003;
Schertenleib, 2006). Keith also reports anotheblera with this approach which is
the over dependency on the object hierarchies ébabiour which makes the code
fragile and very difficult to maintain. This problewas also mentioned by Bilas
(Bilas, 2002) who noted that the line between tbatent and the engine keeps
moving as the requirements get fuzzier and advisedhange to a data-driven
development approach, warning that resistance warnilglcause regular refactoring.

The data-driven approach allows the data to beneéfiby configuration files
and/or scripts (Schertenleib, 2006) and theselsme ted into the program to dictate
its flow. The need for the game engines to be extig flexible is the reason why it is
crucial to have a data-driven design focus wheeegtime is controlled by data which
resides outside the engine (Tong, 2003). The adgast alongside the
aforementioned flexibility are: extensibility anchproved process (Fermier, 2002).
The disadvantages are performance, its too pow€rapper, 2003), there is more
work up-front (Leonard, 1999), over-engineering dadk of ownership (Fermier,
2002), and difficulty in debugging (Wilson, 2003).

The advantages of the data-driven approach outwéigh disadvantages as
reported by the developers of a number of commlegames. The developers of
‘Gabriel Knight 3’ (budget over $4.5 million, deegiment time almost 3 years)
reported that the initial hard-coding of the stegguence of the game in C++ meant

A Survey of ‘Game’ Portability 7

that engineers were creating content instead okiwgron the engine and also that
the tiniest changes to the game required reconmilathich “made the development
process unbelievably inefficient.” (Bilas, 2000jm8ar problems were reported by
the developers of ‘Thief: The Dark Project’ (budggpproximately $3 million,
development time 2.5 years) who also moved to adoptdata-driven approach
(Leonard, 1999). The developers of ‘Jurassic P@geration Genesis’ (development
time 22 months) said that the data-driven approd@y used required initial
investment but the time spent was saved many tioves and it opened up the
possibility of creating expansion packs (Chan et2803). They also reported that
“the data-driven approach worked so well that tgfoumuch of our development,
Thief and System Shock 2 (two very different gamesd the same executable and
simply chose a different object hierarchy and detzat run time”.

From the portability point of view the separationceuraged by a data-driven
approach allows for clearer specification of theitdaries between the data and the
system — thus making it more modular. A game thaepresented by data is much
easier to manipulate and understand than one viictiertwined in the application
code. Therefore, any technigue that moves the gamay from the engine is
beneficial to the G-factor portability cause. Moren it also allows for the creation
of intuitive tools (Shumaker, 2002) for manipulatirthe data thus increasing
modifiability.

3.2 Object/Class Model

The object model describes the classes for thectsbje a game. These objects can be
divided into two types: game objects and decoratijects. Game objects represent
all non-terrain and interactive logic content (Bjl2003) and they are the ones that
are of interest to the G-factor. The decorativeeotsj are merely used to enhance the
look of the environment such as terrain, sky, € object model used can either be
static or dynamic.

A static object model has hard-coded representatiohcannot be modified at run-
time. For instance a new object type (or classhoame added without having to
modify the hard-coded representation and recontpiind loading the application
(e.g. Java is an example of static object modéig problem with this is highlighted
by the development of ‘Ultima Underworld 1' (Durar2003). Initially the
development started under the impression that ¢meptayer characters (NPCs) and
doors do not share many components. Later on, éseggrer wanted to allow the
player to have a conversation with a door just @sdén have a conversation with
NPCs but since the initial design only allowed NP®@shave the conversation
component, they found that pushing the componentth# hierarchy was very
difficult and resolved to use a hack around theblenm. Similar lessons were learnt
by the developers of ‘Dark Engine’ (Leonard, 199%he success of that was
demonstrated by the ability to have no code-basedegobject hierarchy of any kind
in Thief. This was handled through a general datehs@here an object can possess
properties and hold relations with other objects.

A dynamic object model allows the creation and rficaliion of classes along with
their properties and hierarchies dynamically. Theaatages and disadvantages of

8 Ahmed BinSubaih, Steve Maddock, and Darikmano

using a dynamic object model pattern are clearScdbed by Riehle et al (Riehle et
al, 2005). The primary advantages that aid poitgibélre: end-user configuration,
language independent, run-time object type creatind explicit model. The end-user
configuration ability means that the game developedesigner is able to define
concepts from his domain (c.f. ontologies (Charekagan et al, 1999)) and does not
have to hard-code them. This means the object moamielexist outside the game
engine and more importantly is modifiable indepetliye of the engine. This
promotes flexibility and extensibility. The secoadvantage is being specified in a
language that is independent from the implementadmguage since object model
can be stored outside the application in a file atatabase which makes it easier to
port between engines of different implementatiorgleages. It also simplifies sharing
the object model between games. The run-time olyga creation is important for
games with persistent worlds like the massivelytiplalyer online games (MMOG)
(e.g. ‘Toontown’ (Goslin, 2004)). The final advagéais the explicit model provided
by the dynamic object model enables querying theabbmodel to find the classes
and their properties, property type, inheritante, e

The potential disadvantages of using the dynamjeocbbmodel pattern are the
performance and memory usage penalties associdtiedtwrhe use of it in industry
by games such as Thief shows that it is not undeéngithe game to the point of
making it unplayable. Another disadvantage is thatquires extra work initially to
create the framework that is going to hold the dyicaobject model. For systems that
do not provide a dynamic object model there is akammund which involves
constructing classes dynamically by using on-tigesfIripting languages (described in
the next section). These languages can be grouptedwo categories: class-based
(e.g. Python) and prototype-based or instance-bgsgd JavaScript). The difference
is that in the prototype-based approach there ardistinct entities for classes and
instances. The prototype-based approach makesghhg classes more cumbersome
and counterintuitive to developers familiar withjeati-oriented programming since
the class description is embedded in the instarfuehwblurs the separation object-
oriented developers are accustomed to.

3.3 Game Logic Scripting Constraint

The third variable to govern the relationship betwehe G-factor and the game
engine is the language processing constraint. Aggdevelopment moves away from
code-driven approaches to a data-driven approatiakies the data more complex to
represent and manipulate. What is needed is a aimapproach than the code-driven
approach but one that still retains some, if nét @ its flexibility and power.

Scripting is an answer to this. Scripting is a pamgming language that is similar to
coding but generally simpler and also requires telnadit-compile-link-run process

Examples of scripting languages are: Python, Rubg, etc. They share a number of
characteristics (Garces, 2006) such as: they gtelbivel languages, provide flexible
flow control, and they are interpreted languagest ompiled into machine code).
Although scripting uses code as the basis forepseasentation it is considered to fall

3 http://en.wikipedia.org/wiki/Scripting_languagec¢assed 5/5/2007).

A Survey of ‘Game’ Portability 9

into the data-driven category (Schertenleib, 20083ny game development teams
found in scripting an ideal solution to the prograemn bottleneck problem as was
stated by the developers of ‘Treyarch’s Dracondsisfrom, 2000). Despite the
known performance issue with scripting, the devetspof ‘Centipede 3D’ (Rouse,
1999) and ‘Shiny’s Wild 9’ (Malenfant, 2000) fourtdat the tradeoff for scripting
flexibility and ease of use over performance waspasitive move. LaMothe
(LaMothe, 2002) estimated that about 99% of all smrtial games use scripting.
Our survey in section 3.4 puts this figure to 74.4%

Scripting languages can either be precompiled orpiled and interpreted on-the-
fly. Precompiled means the code is compiled befoeegame starts whereas on-the-
fly means compiling happens at run-time. This mattes on-the-fly feature very
useful for programs that cannot afford to make é&pplication offline such as
Massively Multiplayer Online Games (MMOG). Howetbhese languages run slower
than the precompiled ones. Despite this many deeetothink the tradeoff is
worthwhile. The developers of ‘Pirates of the Cheian — Battle for the Buccaneer
Gold’ (Schell and Shochet, 2001) found on-the-flyigting very valuable to conduct
guest testing. They used the Scheme scripting kgeytio be able to reprogram the
game while the guests were live in the game. ThesidhEngine (Vilhjalmsson &
Samtani, 2005) architecture found in on-the-flyigtang an ideal solution to avoid
making the architecture too rigid and too slow ¢égpond to design changes. The
dynamic nature of the language used by the ar¢hite¢Python) meant that the class
definitions in the architecture did not have todb&nged every time the data format
changed when new features were requested. Howeatmwas not the case with the
second scripting language they used because thegecbinreal engine. Unreal
provides UnrealScript which requires precompilifigey found it to be less flexible
than Python as for every change to the page tygkeirskill builder a new class in
UnrealScript had to be created.

For portability, on-the-fly scripting plays a vitedle. The first role is to facilitate
the dynamic object model workaround described éngtevious section. The second
role of the scripting is to enable translation thgl the use of the script mapping
technique described in BinSubaih and Maddock (Blre#u & Maddock, 2006). The
third role is to avoid undermining the current flahty associated with programming
directly on the game engine (i.e. avoid introducingestrictive layer). For instance,
Gamebots uses predefined text-based protocol mesgaginteract with the game
engine to receive sensory information (synchronaod asynchronous) and send
actions (e.g. CHANGEWEAPON, RUNTO, JUMP, STOP, et8) project for
teaching Bayesian behaviors to game charactersHfL et al, 2004) made use of
Gamebots and found it to be restricting the intdoachey could have with the game
engine. TIELT requires adding the actions and ssnfmat have to be exchanged
between the game engine and the decision systdimet&nowledge bases residing
inside TIELT. In a project (Ponsen et al, 2005 tiiged TIELT for integration with
Stratagus, which provides on-the-fly language (Litajvas found that every time a
new action was needed the knowledge base had tpd&ted to allow that. This
shields the on-the-fly language from the decisigstesm undermining the power of
the language. Another problem with TIELT, also slbby the protocol messages of
Gamebots, is that they introduced their own sargptanguages which is not ideal as
we now explain.

10 Ahmed BinSubaih, Steve Maddock, and DariRgmano

Developers wanting to add scripting support tortlaechitecture are faced with
two options: either to build their own scriptingiuage or use one from the off-the-
shelf languages available. Tong (Tong, 2003) ndobed as people stop wanting to
spend resources on developing their own specifiptitg languages a more common
option is to leverage the use of existing languagbe advantages to be gained from
doing so are: having a rich feature set with plaritgocumentation, utilizing a wealth
of existing tools, simplifying the interface withe engine code, and utilizing fast and
efficient code. The disadvantages are: performanterface between C/C++ and the
scripting language can be constraining, lacks gieduligging and development tools,
and lack of easily available libraries and extensidexamples from the industry also
echo Tong's call. The developers of ‘Gabriel Knightecommend using an existing
language to avoid spending time creating documientatf the syntax and training
scripters. A more forceful example was cited byomtmwn’ developers who had to
change the scripting language after more than sirths into the project. The issue
with their own proprietary language was to do wiperformance and code
management which forced them to switch to an exgdinguage (Python).

3.4 Categorization

Table 1 describes the categorization we have adatethe game engines using the
three governing variables (location, object model] scripting constraint) described
in the previous sections. For simplicity and clafgiiurposes we do not create any
category for game engines that might support twap@rties of the three governing
variables. For example, if a game engine locateggme inside it (hard-coded) and
can read it from outside (data-driven) we categotiie engine with the most superior
property — outside is superior to inside, dynamtiject model is superior to static
object model, and on-the-fly language is supermptecompiled. The superiority-
deciding factor is based on how it promotes G-fagtrtability. Based on that we
have created six categories for game engines: cegldynamic, serviced-static,
loaded-dynamic, loaded-static, hard-coded-dynansind hard-coded-static. The
portability column in table 1 indicates the directiof increased portability support.
Table A.1 shows the engines surveyed and the aatélgey belong to. The table also
includes two columns for the tools provided by #megine (world builders and
scripting languages used) and a column for the gamgéne cost. We added these to
the survey to help explain the popularity reasdres particular engine.

Table 1: Engines’ categories.

Category Location Object Model Scripting ConstrainPortability
Serviced-dynamic Data-driven Dynamic On-the-fly
Serviced-static Data-driven Static On-the-fly
Loaded-dynamic Data-driven Dynamic Precompiled
Loaded-static Data-driven Static Precompiled
Hard-coded-dynamic Hard-coded Dynamic -

Hard-coded-static Hard-coded Static

A Survey of ‘Game’ Portability =~ 11

The findings of the survey are summarised by the foe charts in figure 3. The
categorization chart (figure 3a) shows that 43%hef game engines fall into the
serviced-dynamic category. However none of the rgimplemented the dynamic
object model directly and the ones that do haveedsn either through the
workaround using on-the-fly scripting (section 3d?)through different techniques.
The findings also show that scripting is very pepulith 74.4% of the engines
supporting it (figure 3c). Figure 3d show that “dwe-fly” scripting (48.8%) to be
more popular than precompiled scripting (25.6%aly, figure 3b shows that most
(69%) of the game engines surveyed cost $100 sr les

Categotrization More thar Cost
mfgtzt‘i’ged' . Not public e
N _ Hard-coded- 5% e
Servx:e_d 6% Dynamic | |$101.$1000 12% ° 29%
Dynaric o 14%
43%
Loaded- 5
Serviced- Loaded- Static Ganre pric
Static Dynanic 1% or <=$100
5% 5% 0%
(a) (b)
Sciripting Scripting Processing Constraint
Not
Not
General supported " .
30.5% supported ‘on-the-fly’
- 256% 56 48.8%
Proprietary Preconrpiled
34.9% 25.6%
() (d)
Figure 3: Game engines’ survey showing the G-factor portigbgicripting used, and
cost

4 Survey of Projects Using Game Engines

The objective of our survey of projects using gamgines is threefoldrirst it aims

to examine how portable the G-factor for projediattuse game engines is, by
checking how they choose location, object moded, language. The second objective
is to find out the reasons cited by the projectsufsing a specific game engine. This
should help identify the attributes that increase game engine’s popularity and

12 Ahmed BinSubaih, Steve Maddock, and DariRgmano

examine how they affect portability. These attrdsushould help form the base list of
the attributes that should be addressed by any gawelopment approach. Finally,
the survey gauges the acceptance of using anyedpproaches described in section
2 to aid portability and the reasons for doing $his should provide us with an
indicator of how acceptable a development appro#wit promotes G-factor
portability would be.

Table A.2 gives a list of the projects surveyedibiyng six items for each project.
The first item (column three) specifies the gameie® used. The second item
(column four) specifies whether the project usediaad-coded or a data-driven
approach or a combination of both. To find ouhi toncept of having the game state
(or part of it) outside the engine is acceptaliEmithree (column five) shows where
the game state is at run-time (i.e. inside or detsir uses a combination of both). The
game state holds the game objects. If these objeetiving inside the engine only
then are they labelled inside. If they are livingtside the engine and have
corresponding objects inside the engine then theyadelled outside. Finally if part
of them is inside and the other part is outside they are a combination of both.

The fourth item (column six) describes whether tiigect model is specific or
independent or uses a combination of both. If thgead model uses the engine
specific model or extends it then it is considespdcific. If however it uses its own
model independently from the engine’s model then tonsidered independent. If it
mixes both then it is considered to be a mixturbaih. The fifth item (column seven)
specifies the language used to set the game |dbgis.can either be specific/custom
made (e.g. UnrealScript) or independent/general. [ython) or a combination of
both. The last column details the approach useddtportability.

Figure 4 shows five pie charts for the G-factorakimn, object model, game
language, where the game state held at run-time eargine usage. We were
concerned that the results are swayed by Unredl was used in the majority of
projects surveyed (51%). To alleviate this concemn balanced the table to one
project per engine which reduced table A.2 to Misrof unique game engines. As the
listing of the projects in the table was not orgaxiin any way we selected the first
occurrence of the engine and disregarded the fetsteoprojects that use the same
engine. The result of the balanced table is shawfigure 5. These results assured us
of the trend that was exhibited by the previousiltegi.e. unbalanced table) which
indicated that the majority of the projects surwkgbare the same characteristics of: a
high tendency to use data-driven approaches, a teigthency to use the engine’s
specific object model, a high tendency to use tiggree’s proprietary language, and a
high tendency to specify the game state insidestigine.

A Survey of ‘Game’ Portability 13

Location Obect Model
Hard-coded Independent Specific

10% 16.7% 60%

2.3%
Data-driven
86.7%
(@ (b)
Garre Logic Scripting Constrairt Garre State (at unHine)
Specific
Independent 5006 Qutside Inside

23.3% 20%

26.7%

© (d)

Game Bngines Usage
3d
. Torque
HashPoint :;l \Mrtools GamreStudio

Figure 4: A survey of projects using game engines to show thay tend to set up the G-factor elements
and also show the game engines used.

14 Ahmed BinSubaih, Steve Maddock, and DariRgmano

Location Obect Model
Hard-coded Independent .
20% Both 10% Specific
10% 0%
Data-driven
0%
(@ (b)
Gane Logic Scripting Constraint Gane State (at runine)
| endent i i
ndi%o $ e Sp;);)rﬁc Qutside Inside
() 10% 0%
Both
20%

(© (d)

Figure 5: The results of the balanced table show similaréanis to ones reported by figure 4.

In an attempt to understand the characteristidsniad&e game engines attractive or
unattractive we counted the comments made by pgeogiescribed in table A.2 about
each engine. Table 2 organizes the comments byntimber of mentions they
received (unique per project). As far as portapit concerned, figure 6 shows the
six comments that are of importance to any gameldpment approach that aims to
promote G-factor portability. We believe these #ine elements that should be
guarded as much as possible by any new approaehpi€hchart shows the level of
importance each holds which should help trading asfé over the other when a
decision may affect more than one element. Foairts scripting received 22% while
performance was not highly mentioned. This makeégtatg a high priority attribute.
It is also reflected by the examples we cited eafliom the industry where trading
scripting over performance was found to be a pasithove (see section 3.3). The
chart also shows that a small learning curve is hlghly regarded. This backs our
earlier argument that introducing something congijetnew (e.g. new scripting
language or new standards) might not be the beSbroand instead any new
approach should aim to make use of well-known prestwherever possible.

A Survey of ‘Game’ Portability = 15

This should also reduce the time it
takes to make a decision about a
particular approach or engine since
knowing that the basic building blocks Comment Number of

Table 2: Comments order by the number of
mentions received.

have been tried and tested would _ mentions
increase the confidence in thetg‘é‘:‘ings 910
approach or engine and -

: . Small Learning Curve 9
correspondingly reduce the time t Features (Physics, Al, 9

Investigate It. . Statistics, Recordable)
One of the concerns raised abo Modifiability (configurable, | 8

game engines was with regards to thextensible, flexible,
lack of integration abl|lty with integration, abstraction)

external modules. The need for thatPopular/well-tested 8
was raised because of either the lackultiplayer 7
of needed features (i.e. need forLow cost/open source 7
complex Al behaviour (Fielding et al] Authoring Tools 6
2004)) or the need to avoig Outsourcing 4
reinventing the wheel (e.g. building Rapid prototyping 3

biomedical simulation (Ryan, 2005)).

The other issue mentioned was with regards to the af scripting languages.
Interestingly both scripting issues raised werdnwitgards to scripting languages that
were custom made. This backs the earlier argumethieoneed to avoid creating
custom languages.

The third objective of the survey was to find obe treasons behind using
approaches that aid portability. The findings stibat 30% of the projects described
in table A.2 made use of these approaches. Theoagpes used fall into the Al and
interfaces groups. The primary reasons mentionedaftopting these were the
integration with external modules something gamgir@s not supporting very well
as described in the previous section. The issusgedavere with regards to the
restriction introduced over the game engine access.

Mulitplayer Authoring Tools
17% 14%

Rapid Prototyping
e

ripting
22%

Small Leaminy
CQurve
21%

Figure 6: Comments made about the features that are impdadamojects
using game engines which any game development agipshould aim to
preserve.

16

5

Ahmed BinSubaih, Steve Maddock, and Darkelmnano

Conclusions

Certain kinds of portability are supported as disea in section 2 such as asset
portability however G-factor portability has notcedved similar attention. The

co

nsequences of not supporting G-factor portabifitgans that moving a game

between game engines is cumbersome and makes ti@odeto choose a game
engine a critical one. We believe there is a neecduce the immediate and future

ris

ks associated with this decision. We believeaasing G-factor portability would

make this decision less crucial.

Based on the findings of the this survey we hawated an approach to aid G-

factor portability (BinSubaih & Maddock, 2006) arthve successful used this
approach in the development of a serious gamedtfict accident investigators in the
Dubai police force (BinSubaih et al, 2006a).

References

10

. Adobbati, R., Marshall, A.N., Scholer, A., Tejada, Kaminka, G., Schaffer, S. and Sallitto,

C. 2001. Gamebots: A 3D Virtual World Test-Bed RMulti-Agent Research. Proceedings
of the International Conference for Autonomous AgeWorkshop on Infrastructure for
Agents, MAS, and Scalable MAS, Montreal, Canada.

. Aha, D.W. and Molineaux, M. 2004. Integrating ldagin interactive gaming simulators.

Challenges of Game Al: Proceedings of the AAAI'04¥¢hop (Technical Report WS-04-
04). San Jose, CA: AAAI Press.

. Berndt, C., Watson, I., and Guesgen, H. 2005. OA®I$ Open Al Standard Interface

Specification to Support Reasoning, Representadiod Learning in Computer Games.
IJCAI-05 Workshop on Reasoning, Representation, lagaining in Computer Games. 31-
July 2005, Edinburgh, 19-24.

. Bilas, S. 2000. Postmortem: Sierra Studios’ Galitréght 3: Blood of the Sacred, Blood of

the Damned, Game Developer Magazine, June 2000.

. Bilas, S. 2002. A data-driven game object systenam& Developers Conference

Proceedings 2002. http://www.drizzle.com/~scottb/gdme-objects.ppt (accessed
5/5/2007).

. Bilas, S. 2003. The Continuous World of Dungeon g8je Gas Powered Games,

www.drizzle.com/~scottb/gdc/continuous-world.htrodessed 5/5/2007).

. BinSubaih, A. and Maddock, S. 2006. Using ATAM tovaliate a Game-based

Architecture. Workshop on Architecture-Centric Bxan (ACE 2006). Hosted at the 20th
European Conference on Object-Oriented Programri@@®OP 2006 July 3-7, 2006,
Nantes, France.

. BinSubaih, A., Maddock, S., and Romano D.M. 2008aSerious Game for Traffic

Accident Investigators. Special Issue of Internaialournal of Interactive Technology and
Smart Education on Computer Game-based Learning.

. BinSubaih, A., Maddock, S., and Romano, D.M. 2008b. Architecture for Portable

Serious Games. Doctoral Symposium, hosted at the RPOropean Conference on Object-
Oriented Programming ECOOP 2006 July 3-7, 2006 té&ifrrance.

Blackman, S. 2005. Serious games...and less! SIGGR@&Bputer Graphics 39, 1 (Feb.

2005), 12-16.

A Survey of ‘Game’ Portability =~ 17

11 Carless, S. 2007. Rise of the Game Engine. Gamel®gar, April, 2007, pp.2.

12 Cavazza, M., Charles, F., and Mead, S. J. 2002rdating with virtual characters in
interactive storytelling. In Proceedings of the sFiinternational Joint Conference on
Autonomous Agents and Multiagent Systems: Part dig@gha, Italy, July 15 - 19, 2002).
AAMAS '02. ACM Press, New York, NY, 318-325.

13 Cavazza, M., Hartley, S., Lugrin, J., and Le Bids,2004. Qualitative physics in virtual
environments. In Proceedings of the 9th internafioBonference on intelligent User
interfaces (Funchal, Madeira, Portugal, January 18, 2004). IUl '04. ACM Press, New
York, NY, 54-61.

14Chan, K., Spagnolo, S., Stevens, S., Hagger, NauCID., and Carlton, G. 2003.
Postmortem: Blue Tongue Software's Jurassic Paplerddion Genesis, Gamasutra March
17, 2003, http://lwww.gamasutra.com/features/2003@3tn_01.shtml.

15 Chandrasekaran, B., Josephson, J.R., and BenjamiRs,1999. What are ontologies and
why do we need them? IEEE Intelligent Systems,Rn1999, 14(1), pp. 20-26.

16.Chao, D. 2001. Doom as an interface for processagemnent, Proceedings of the SIGCGI
conference on Human factors in computing systematti®, Washington, 2001, 152-157.

17Coyle, D. and Matthews, M. 2004. Personal Investigaa Therapeutic 3D Game for
Teenagers. CHI2004 Vienna 25-29 April 2004. Preskmit the Social Learning Through
Gaming Workshop.

18Creel, J., Maslov, A., Mikeal, A., and Speight,2D06. Information and Decision-making in
Immersive Digital Environments.
http://loam.evans.tamu.edu/courses/cnm/files/Pt#20Final%20Report.doc.

19Darken, C., Morgan, J., and Paull, G. 2004. Effitiend Dynamic Response to Fire. AAAI
04 Challenges in Game Al workshop, July 2004

20Davies, N.P., Mehdi, Q.H., and Gough, N. 2005. @ngaand Visualising an Intelligent
NPC using Game Engines and Al Tools. 19TH Europ@anference on Modelling and
Simulation, June 1st - 4th, 2005, Riga, Latvia.

21Davis, M., Shilling, R., Mayberry, A., Bossant, Rl¢Cree, J., Dossett, S., Buhl, C., Chang,
C., Champlin, E., Wiglesworth, T. and Zyda, M. 200aking America’'s Army The
Wizardry Behind the U.S. Army’'s Hit PC Game. JabQ£

22 Diller, D., Roberts, B., Willmuth, T. 2005. DARWARSBmbush! A Case Study in the
Adoption and Evolution of a Game-based Convoy Tainy the U.S. Army. Simulation
Interoperability Standards Organization, 18-23 Sefter (2005).

23Duran, A. 2003. Building Object Systems. Game Depets Conference Proceedings. 2003.
http://lwww.ionstorm.com/gdc2003/AlexDuran/ (acces56/2007).

24 Eliens, A., Bhikharie, S.V. 2006. Game VU develgpia masterclass for high-school
students using the Half-life 2 SDK.GAME'ON-NA'2008gptember 19-20, 2006.

25Fermier, R. 2002. Creating a Data Driven EngineseC8tudy: The Age Of Mythology,
GDC 2002, http://www.gamasutra.com/features/slfdesfier/index.htm

26 Fielding, D., Fraser, M., Logan, B., and S.Benf@@04. Extending game participation with
embodied reporting agents. Proceedings of the 28@M SIGCHI International
Conference on Advances in computer entertainmehnt#dogy. ACE '04. 100 —108

27 Fristrom, J. 2000. Postmortem: Treyarch's Dracor@amasutra, August 14, 2000,
http://www.gamasutra.com/20000814/fristrom_01.haiccessed 5/5/2007).

28 Garces, D. 2006. Scripting Language Survey, GamgrBmming Gems 6, 2006, Charles
River Media, pp. 323-340, ISBN: 1584504501

29.Goslin, M. 2004. Postmortem: Disney Online's Towamtp Gamasutra January 28, 2004,
http://www.gamasutra.com/features/20040128/goslirstiml (accessed 5/5/2007).

30 Heckenberg, S. G., Herbert, R. D., and Webber0R42Visualisation of the minority game
using a mod. In Proceedings of the 2004 Austratlastymposium on information
Visualisation - Volume 35 (Christchurch, New ZealprN. Churcher and C. Churcher, Eds.

18 Ahmed BinSubaih, Steve Maddock, and DariRgmano

ACM International Conference Proceeding Series, 96l Australian Computer Society,
Darlinghurst, Australia, 157-163.

31Hunicke, R. and Chapman, V. 2004. Al for DynamidfiDulty Adjustment in Games. In
Proceedings of the Challenges in Game Al Workshbpeteenth National Conference on
Artificial Intelligence (AAAI '04) (San Jose, Catifnia) AAAI Press, 2004.

32Hussain, T.S. and Vidaver, G. 2006. Flexible angpseful NPC behaviors using real-time
genetic control. Proceedings of the 2006 World Gesg on Computational Intelligence
(July 16-20, Vancouver, BC).

33Jankovic, L. 2000. Games Development in VRML. \VattReality 2000, 5. pp. 195-203.

34Kapolka, A. 2003. The Extensible Run-Time Infrasttwe (XRTI): An Emerging
Middleware Platform for Interoperable Networkedtal Environments. Proceedings of the
Lake Tahoe Workshop on Collaborative Virtual Readihd Visualization, October 2003.

35Keith, C. 2003. From the Ground Up: Creating a C®exhnology Group,Gamasutra
August 1, 2003, http://www.gamasutra.com/featui@33®801/keith_01.shtml (accessed
5/5/2007).

36Khoo, A., Dunham, G., Trienens, N., and Sood, 2 Efficient, Realistic NPC Control
Systems using Behavior-Based Techniques. Proceedoigthe AAAI 2002 Spring
Symposium Series: Artificial Intelligence and Irgtetive Entertainment, Menlo Park, CA.

37Laird, J. 2001. It Knows What You're Going To Dodding Anticipation to a Quakebot.
Agents, 2001, pp. 385-392

38Laird, J.E., Assanie, M., Bachelor, B., Benninghd¥f, Enam, S., Jones, B., Kerfoot, A.,
Lauver, C., Magerko, B., Sheiman, J., Stokes,abd Wallace, S. 2002. A Testbed for
Developing Intelligent Synthetic Characters. In ifigial Intelligence and Interactive
Entertainment: Papers from the 2002 AAAI Spring $gsium, Menlo Park, CA (2002).

39LaMothe, A. 2002. Letter from the Series Editor ethappeared in Alex Varanese. Game
Scripting Mastery, Premier Press (18 Dec 2002),ISB}1841578.

40Le Hy, R., Arrigoni, A., Bessi ere, P., and Lebkl®. 2004 Teaching Bayesian Behaviors
to Video Game Characters. Robotics and Autonomgate8is, 47:177-- 185, 2004.

41l enoir, T. 2003. Programming Theatres of War: Gaalars as Soldiers, Robert Lathma,
ed, Bytes, Bandwidth, and Bullets, New York: TherNeress, 2003.

42 eonard, T. 1999. Postmortem: Looking Glass's THibke Dark Project, Game Developer
Magazine, July 1999.

43Lewis, M. and J.Jacobson. 2002. Game Engines en8iic Research. Communications of
the Association for Computing Machinery (CACM), NXCM 45(1), 2002.

44 Malenfant, D. 2000. Postmortem: Shiny's Wild 9, @antra, January 07, 2000,
http://www.gamasutra.com/features/20000107/wild9hi (accessed 5/5/2007).

45McGrath, D. and Hill, D. 2004. UnrealTriage: A Gaifdased Simulation for Emergency
Response. The Huntsville Simulation Conferencepkat 2004. Sponsored by The Society
for Modeling and Simulation International.

46 Muioz-Avila, H. and Aha, D. 2004. On the Role ofptanation for Hierarchical Case-
Based Planning in Real-Time Strategy Games. Pdig®e of ECCBR-04 Workshop on
Explanations in CBR.

47 Nareyek, A., Combs, N., Karlsson, B., Mesdaghia8d Wilson, I. 2005. The 2005 Report
of the IGDA's Artificial Intelligence Interface Stdards = Committee.
http://www.igda.org/ai/report-2005/report-2005.htifaccessed 5/5/2007)

48 Oliveira, M., Crowcroft, J., and Slater, M. 2003n Annovative design approach to build
virtual environment systems. Proceedings of thekalwp on Virtual environments 2003,
ACM International Conference Proceeding Series; 86| Zurich, Switzerland Pages: 143
— 151, (2003) ISBN:1-58113-686-2.

490ta, M. 2003. Extending the Al in a Commercial GaBmgine. School of Information
Technology and Electrical Engineering, The Univgrsif Queensland, 29th Oct, 2003,
Bachelor Thesis.

A Survey of ‘Game’ Portability =~ 19

50Ponsen, M., Lee-Urban, }u'oz-Avila, H., Aha, D., and Molineaux, M. 2005. Sagus:
An Open-Source Game Engine for Research in Reaé Binategy Games. Workshop for
International Joint Conference on Atrtificial Intgkénce (IJCAI-05).

51Riehle, D., Tilman, M., and Johnson, R. 2005. Dyma®bject Model. In Pattern
Languages of Program Design 5. Edited by Dragosdanu, Markus Volter, James
Noble. Reading, MA: Addison-Wesley, 2005.

52 Robertson, J. and Good, J. 2003. Ghostwriter:reatinge virtual environment for children.
Proceeding of the 2003 conference on Interacti@igdeand children, July 2003, 85-91.

53 Rouse, R. 1999. Leaping Lizard's Centipede 3D, Ganna, September 10, 1999,
http://www.gamasutra.com/features/19990910/cengped.htm

54 Ryan, M., Hill, D., and McGrath, D. 2005. Simulatitnteroperability with a Commercial
Game Engine. European Simulation Interoperabilityrkghop 2005, 27-30 June 2005.

55.Schell, J. and Shochet, J. 2001. Designing Inteeadtheme Park Rides: Lessons From
Disney's Battle for the Buccaneer Gold, Gamasutduly 6, 2001, URL:
http://www.gamasutra.com/features/20010706/schglhttn

56.Schertenleib, S. 2006. Designing a Multilayer, Bhige Al Engine, Game Programming
Gems 6, 2006, Charles River Media, pp. 291-305NSE84504501

57 Shumaker, S. 2002. Techniques and Strategies fom-@aen design in Game
Development. http://ai.eecs.umich.edu/soar/Clag8é#alks/Schumaker.pdf

58.Smith, R. 1998. Essential techniques for militargdeling and simulation. Proceedings of
the 30th conference on winter simulation, 1998, 8@3.2, ISBN:0-7803-5134-7.

59.Smith, R. D. 2005. Strategic directions for diaftdd simulation. Simulation 2000 Series, 2,
1-9.

60.Spronck, P. 2005. Adaptive Game Al. Ph.D. thesiga8fricht University Press, Maastricht,
The Netherlands.

61Stang, B. 2003. Game Engines Features and Passgilinstitute of Informatics and
Mathematical Modeling at the Technical UniversifyDenmark, 2003.

62 Stanley,K., Bryant,B., and Miikkulainen,R. 2005.&dR&me Neuroevolution in the NERO
Video Game, IEEE Transactions on Evolutionary Cotajion, volume 9, number 6, pages
653-668, December 2005.

63.Tapper, P. 2003. Personality Parameters: FlexibtlyExtensibly Providing a Variety of Al
Opponents' Behaviors, Gamasutra December 3, 2003,
http://www.gamasutra.com/features/20031203/tapdeshdml

64.Tong, T. 2003. Scripting in C using Co-Routinesly@criptable Game Logic, 8/4/2003,
http://www.gamedev.net/reference/articles/articlell@sp

65Vilhjalmsson, H. and P.Samtani. 2005. MissionEngiMulti-system integration using
Python in the Tactical Language Project, PyCon 2080&ch 23-25, Washington, D.C.

66 Wang, J.; M.Lewis, and J.Gennari. 2003. Emergireagr urban operations and UCAVs: a
game engine based simulation of the NIST urbarckeand rescue arenas. In 35th Winter
Simulation Conference. 1039-1045, 2003.

67 Wilson, K. 2003. The GDC 2003 Game Object StruckReoaindtable. Tuesday, March 11,
2003, http://gamearchitect.net/Articles/GameObjectirtitable.html

68 Wunsche, B., Kot, B., Gits, A, Amor, R., Hoskingahd Grundy, J. 2005. A Framework for
Game Engine Based Visualisations, Proceedings GNX '05, Dunedin, New Zealand, 28-
29 November 2005, pp. 465-470.

69.Young, R.M., Riedl, M.O., Branly, M., Jhala, A., Kia, R.J., and Saretto, C.J. 2004. An
architecture for integrating plan-based behaviomegation with interactive game
environments. Journal of Game Development , 1(1){&

20

Appendix A

Ahmed BinSubaih, Steve Maddock, and Darkelmnano

Table A.1 Game Engines Survey

Seq | Game Engine Category World Editor Scripting Language Cost
1 Panda3D 1.2.38 Serviced-dynamic* | v Python Free
2 Torque Game Engine 1.4% Serviced-dynamic* | v TorqueScript $150 - $340
3 Nebula Device 28 Serviced-dynamic? Lua, Python, Ruby, TCL, etc Free
4 Delta3D 1.3.0 Serviced-dynamic*| v Python Free
5 Luxinia Serviced-dynamic* | v Lua Free - €100
6 C4 Enginet Serviced-dynamic* | v Graph-based $100
7 CryENGINE 2 Serviced-dynamic* | v Lua
8 Crystal Space 3D 1.0 § Serviced-dynamic* Python, Java, Perl Free
9 Unigine v0.4 Serviced-dynamic*| v UnigineScript $1495 - $19985
10 Deep Creatorf Serviced-dynamict v Lisp $1,995
11 Beyond Virtualf Serviced-dynamic*| v AngelScript $99-$155
12 Jet3D Serviced-dynamic* | v Lua Free
13 Sylphis 3D Serviced-dynamic*| v Python $122
14 Lawmaker Game Engine Serviced-dynamig* v Lua $149.99 - $7999.99
15 Soya 3D 0.11.2 Serviced-dynamic? Python Free
16 Shark 3D Serviced-dynamic*| v Perch
17 Qube Serviced-dynamic* | v QScript Free
18 Stratagus 2.1 Serviced-dynamict v Lua Free
19 Blender 2.43 Serviced-dynamic¥ v Python Free
20 | Operation Flashpoint Serviced-static v v $Game
21 | 3D GameStudio (A6 Game Engine 6.4)f Servicedsstat v C-Script $49-$899
22 Virtools 4 Loaded-dynamic v VSL $9,500
23 Unity1.5% Loaded-dynamic* | v C#,JavaScript, Boo $250 - $1,499
24 DOOM 3 Loaded-static v SCRIPT $Game
DOOM Hard-coded-static | v Free
25 | Quake il Loaded-static v QVM files $Game
Quake Il Hard-coded-static | v Free
Quake Loaded-static v QuakeC Free
26 Unreal Engine 2.5 Loaded-static v UnrealScript $Game -$350,000
27 | Power Render 6 Loaded-static v AngelScript $150 - $8500
28 Reality Factory Loaded-static v Simkin Free - $149.99
29 Serious Engine 2 Loaded-static v Macro $20,000 - $100,000
30 Quest3D 3.5.2 Loaded-static v Graph-based $999-$9,999
31 | Aurora Neverwinter Nights 1 Loaded-static v NWScript $Game
32 TV3D SDK 6% Hard-coded-static Free - $500
33 Ciphert Hard-coded-static | v $100
34 | 3lmpactt Hard-coded-static $99
35 DarkBASIC Prot Hard-coded-static $89.99
36 Irrlicht Hard-coded-static | v Free
37 OGRE Hard-coded-static Free
38 Half-Life 2 (Valve Source) Hard-coded-static | v $Game
39 Jupiter EX Hard-coded-static | v $10,000 - $50,000
40 Blitz3D Hard-coded-static | v $100

* Uses the work around suggested in section 3.2 or an alternative technique to create the dynamic object model.
¥ One of the top 10 commercial engines cited by http://www.devmaster.net/engines/ as of 23/Feb/2007.
§ One of the top 10 open source engines cited by http://www.devmaster.net/engines/ as of 23/Feb/2007.

A Survey of ‘Game’ Portability

Table A.2Projects Survey

21

Seq | Project Engine Location Game State (run-time) | Object Model Game Logic Language Approach
Hard- Data- | Inside | Outside Specific | Independent | Specific Independent
coded | driven

1 Ambush! Operation v v v v
(Diller et al, Flashpoint
2005)

2 Tactical Iraqi Unreal v v v v v UnrealScript | v (C++, Gamebots,
(TLTS) Tournament Python, MissionEngine
(Vilhjalmsson | 2003 database, and
and Samtani, xml files)

2005)

3 UnrealTriage Unreal v v v UnrealScript
(first version) Tournament
(McGrath and 2004
Hill, 2004)

4 UnrealTriage Unreal v v v v VAnesoft UnrealScript | vAnesoft Extended
(second Tournament simulator simulator version of
version) 2004 Gamebots
(Ryan 2005)

5 Urban search Unreal v v V(RETSINA) | v V(RETSINA) | UnrealScript | V(RETSINA) | Gamebots
and rescue Tournament
(Wang et al, 2003
2003)

6 VRND Notre Unreal v v v UnrealScript
Dame (Delon &

Berry, 2000)

7 Efficient and Unreal v v v UnrealScript
Dynamic
Response to
Fire (Darken et
al. 2004)

8 Sonocard Virtools v v v V Graphical

tools

9 Le Redoutabfe | Virtools v v v vvsL
(Blackman,

2005)

10 3D Driving 3D v v v C-Script
Academy GameStudio
(Traffic Al & (A6 engine)

Physics engine)
(Blackman,
2005)

11 Information and| Neverwinter v v v NWScript
Decision- Nights
Making (Creel Aurora
et al, 2006) Engine

12 Mimesis Virtual | Unreal v v v v v UnrealScript | v Mimesis
Aquarium
(Young et al,

2004)

13 PSDoom (Chao, Doom v v v v v v v
2001)

14 Visualisation Quake 3 v v v v Shader script
Tools (software
Visualization
tool and a
biomedical
visualisation
tool) (Wunsche

4 http:/lwww.virtools.com/applications/simulationtencs.asp (accessed 1/3/2007)

5 http://www.virtools.com/applications/simulationei@utable.asp (accessed 1/3/2007)

22

Ahmed BinSubaih, Steve Maddock, and Darkelmnano

Seq

Project

Engine

Location

Game State (run-time)

Object Model

Game Logic Language

Hard-
coded

Data-
driven

Inside

Outside

Specific

Independent

Specific

Independent

Approach

et all, 2005)

15

Flying Mutator
(Ota, 2003)

Unreal

UnrealScript

16

VU-Life 2
(Eliens &
Bhikharie,
2006)

Half-Life

17

Creating and
Visualising an
Intelligent NPC
using Game
Engines and Al
Tools (Davies
et al, 2005)

Unreal

Gamebots

18

Stratagus: An
Open-Source
Game Engine
for Research in
Real-Time
Strategy Games
(Ponsen et al,
2005)

Stratagus

TIELT

19

Neverwinter
Nights Game
Al (Spronck,
2005)

Neverwinter
Nights
Aurora
Engine

NWScript

20

Wargus Game
Al (Spronck,
2005)

Wargus

Lua

21

Flexible and
Purposeful NPC
Behaviors using
Real-Time
Genetic Control
(Hussain &
Vidaver, 2006)

Neverwinter
Nights
Aurora
Engine

Shadow Door
+ ACTB-
NWN bridge

22

Interacting with
Virtual
Characters in
Interactive
Storytelling
(Cavazza et al,
2002)

Unreal

UnrealScript

VC++ planner

23

Qualitative
Physics In
Virtual
Environments
(Cavazza et al,
2004)

Unreal

UnrealScript

vQP
Simulation
module

24

Extending
Game
Participation
with Embodied
Reporting
Agents
(Fielding et al,
2004)

Unreal

UnrealScript

Gamebots

25

Ghostwriter
(Robertson and
Good, 2003)

Unreal

UnrealScript

26

America's Army
third-person

Unreal

UnrealScript

A Survey of ‘Game’ Portability 23

Seq

Project

Engine

Location

Game State (run-time)

Object Model

Game Logic Language

Hard-
coded

Data-
driven

Inside

Outside

Specific

Independent

Specific

Independent

Approach

perspective
helicopter
physics (Davis
et al, 2004)

27

NERO project
(Stanley et al,
2005)

Torque

TorqueScript

28

The Minority
Game
(Heckenberg et
al, 2004)

Unreal
Tournament
2003

UnrealScript

29

Explanation for
Hierarchical
case-based
planning
(Mufioz-Avila

& Aha, 2004)

Stratagus

TIELT

30

Hamlet
(Hunicke &
Chapman,
2004)

Half-life

