
A Survey of ‘Game’ Portability

Ahmed BinSubaih, Steve Maddock, and Daniela Romano

Department of Computer Science

University of Sheffield
Regent Court, 211 Portobello Street, Sheffield, U.K.

+44(0) 114 2221800
{A.BinSubaih, S.Maddock, D.Romano}@dcs.shef.ac.uk

Abstract. Many games today are developed using game engines. This
development approach supports various aspects of portability. For example
games can be ported from one platform to another and assets can be imported
into different engines. The portability aspect that requires further examination is
the complexity involved in porting a 'game' between game engines. The game
elements that need to be made portable are the game logic, the object model,
and the game state, which together represent the game's brain. We collectively
refer to these as the game factor, or G-factor. This work presents the findings of
a survey of 40 game engines to show the techniques they provide for creating
the G-factor elements and discusses how these techniques affect G-factor
portability. We also present a survey of 30 projects that have used game engines
to show how they set the G-factor.

Keywords: game development, portability, game engines.

1 Introduction

The shift in game development from developing games from scratch to using game
engines was first introduced by Quake and marked the advent of the game-
independent game engine development approach (Lewis & Jacobson, 2002). In this
approach the game engine became “the collection of modules of simulation code that
do not directly specify the game’s behaviour (game logic) or game’s environment
(level data)” (Wang et al, 2003). This makes the game engine reusable for (or portable
to) different game projects. However this shift produces a game which is notoriously
dependent on the game engine. For example why can’t a player take his favourite
game (say Unreal) and play it on Quake engine or vice versa?

Hardware and software abstractions have facilitated the ability to play a game on
different hardware and on different operating systems (in some cases with some
modifications). These abstractions have also facilitated the ability to use level data
assets such as 3D models, sound, music, and texture across different game engines.
This ability should also be extended to allow for the game itself to be portable. The
goal of our work is to make the game engine’s brain portable, where the brain holds
the game state and the object model and uses the game logic to control the game. We
collectively refer to these three things as the G-factor. We see the portability of the G-
factor as the next logical step in the evolution of game development. Following Lewis
and Jacobson's terminology (Lewis & Jacobson, 2002), we call it the game engines

2 Ahmed BinSubaih, Steve Maddock, and Daniela Romano

independent game development approach (see Figure 1). Figure 1 illustrates the
evolution of game development and highlights the issues facing each approach.

A benefit of making the G-factor portable would be to encourage more developers
to make use of game engines, since a particular game engine’s future capability (or
potential discontinuation, as was the fate of Adobe Atmosphere which was used for
Adolescent Therapy – Personal Investigator (Coyle & Matthews, 2004)) would not be
a worry as a different game engine could easily be substituted. This problem has

Engine A

Engine B

Game State

Object Model

Game Logic

G-Factor

User Input

Rendering

Network

Engine Core
Sound

Physics

Logging

Scripting

AI

GUI System

Game State Object Model Game Logic

Game Specific

 Spacewar! 50 lines

• Reduces the dependency on a single game
engine by making the G-factor portable.

• The speed overhead of using software
interfaces became acceptable.

• The increase in development cost
forced code reuse which resulted in
decoupling the game from the game
engine.

• Bypass operating system looking for speed.

• Easy to modify but it lacks clear separation between
the game code and the engine code.

• The early games were hardwired into the circuit.

• Practically unmodifiable.

Issues:

• Lack of code reuse. It was common to rewrite the entire
game.

Issues:

• Games are too dependent on the
game engine.

Issues:

• Performance & Implementation overheads.

Issues:

• Complex game logic which required specialized
components.

• Simple game logic.

• Simple game logic.

• Encourages more game engine usage as an engine’s potential
discontinuation is not a major issue.

Missile simulation 1948

Figure 1: Game development evolution.

A Survey of ‘Game’ Portability 3

recently been referred to as “the RenderWare Problem” (Carless, 2007) after the
acquisition of RenderWare engine by Electronic Arts (EA) and its removal from the
market. We see the issue of rewriting the G-factor from scratch every time we migrate
from one engine to another as similar to the undesired practice of developing games
from scratch which was deemed unfeasible and resulted in the advent of game
engines.

To identify the extent of the portability problem in game development in general
and game engines in particular we decided to conduct two surveys. The first survey
was a survey of game engines. The objective of this survey was to illustrate the
effects the development practices encouraged by game engines have on the G-factor
elements. The second survey was on projects that have used game engines. The
objective of this survey was to examine how portable the G-factor for projects that
use game engines is.

Section 2 describes the aspects of portability in relation to game engines and the
techniques that have been tried to aid G-factor portability. Section 3 describes the
governing variables and how they affect the G-factor implementation and how we
used them to create a categorization for game engines based on how they promote
portability. Section 3 also presents the findings of a survey conducted to identify the
methods game engines provide for creating the G-factor. Section 4 presents the
second survey which examines the common practices followed by projects using
game engines. Finally section 5 presents the conclusions.

2 Portability and G-factor

Figure 2 illustrates the current aspects of portability addressed in game engines. First,
with hardware and software portability the game can be played across different
platforms and operating systems by employing hardware and software abstractions.
Second, portability of assets means that 3D models, textures and sounds can be used
across different game engines. Third, middleware portability allows for components
to be used across game engines such as AI and physics.

The aspect of portability that requires further investigation is the G-factor
portability. Examining what has been done to aid this portability we found initiatives
and projects which can be grouped into four areas: artificial intelligence (AI)
architectures, interfaces, standards and file formats, and frameworks or protocols.

The AI architectures use custom made or off-the-shelf components such as the AI
Middleware (e.g. SOAR (Laird et al, 2002), AI.Implant1, etc). The need for using a
component to handle the AI emerged because of the increase in AI complexity and
the increase in the processing time allocated for it. This made reinventing the AI
wheel every time a game is developed a redundant process. From a software
engineering perspective the use of AI architectures is encouraged as it promotes
above all reusability. The practice of specifying the game using the AI middleware
format is not what we eventually want since this merely moves it from one
proprietary format (game engines) to another (AI middleware). Nevertheless it is a

1 http://www.biographictech.com (accessed 5/5/2007).

4 Ahmed BinSubaih, Steve Maddock, and Daniela Romano

step in the right direction of moving the game away from the game engine’s format.
The architectures that promote portability more than others are those that allow
complete removal of the game from the game engine such as TIELT (Aha &
Molineaux, 2004). Others that only partially remove the game are obviously less
portable such as Mimesis (Young et al, 2004) and MissionEngine (Vilhjalmsson &
Samtani, 2005). The AI architectures promote the use of their own proprietary format
which is similar to what game engines do. Furthermore suggesting a monolithic
architecture as a complete entity is not what is needed. Instead initiatives must
examine the causes of the G-factor portability problem and provide practical solutions
that can be employed even if their architecture or middleware is not chosen.

The interfaces aim to provide access to external programs and in game engines we
found two types of interfaces: specific and common. These provide access to the G-
factor elements to overcome the difficulty raised by the lack of interoperability. A
number of interfaces have been developed to provide access to specific game engines.
For example the interfaces that have been used to access Unreal are Gamebots
(Adobbati et al, 2001) and GOLOG Bots (Jacobs et al, 2005). To access Quake one
can use Quakebot (Laird, 2001). FlexBot (Khoo et al, 2002) is used to access Half-
Life and Shadow Door (Hussain & Vidaver, 2006) is used for Neverwinter Nights.
These provide interfaces for specific game engines. Other projects are attempting to
provide common interfaces to game engines such as the initiative by International
Game Developers Association (IGDA) for world interfacing (Nareyek et al, 2005)
and OASIS (Berndt et al, 2005). Interfaces may have more success in the serious
games community rather than in a fast evolving games industry.

Logic Model State

Hardware

Software

Software & Hardware Portability

Engine A

Logic Model State

Engine B

Middleware Portability (AI, physics, etc)

Assets Portability (3D models, texture, sound, etc)

Engine A Engine B

Logic Model State

G-factor Portability

Current Portability in Game Engines Next: G-factor Portability

Figure 2: Portability in game engines.

A Survey of ‘Game’ Portability 5

The third area is the standards and file-based formats such as VRML/X3D2. These
still lack the maturity needed for game development. For instance VRML lacks the
rendering capability required. It also suffers from speed and security issues (Jankovic,
2000).

The fourth area is the frameworks or protocols that aid interoperability between
different simulations like the High Level Architecture (HLA) (Smith, 1998) and Java
Adaptive Dynamic Environment (JADE) (Oliveira et al, 2003). Despite the fact that
this category focuses more on the interoperability between simulations and less on
how the game is linked to the simulation it is mentioned here to illustrate that
portability exists at different levels. HLA for instance promotes it at the simulation
and object level and JADE promotes interoperability at the functionality level. HLA
identified the simulation functionality that are generally required across all systems
and thus should not only be part of a single simulation system but available for others.
To achieve this it moved the general simulation functionality from the simulation
system to the HLA infrastructure and thus made the simulation functionality
accessible to other simulation systems (Smith, 2000). An example of the functionality
provided is object management which is used to share object instances between
different simulations. JADE was designed to address the monolithic nature of current
Virtual Environment (VE) systems. Oliveira et al argue that in current VE systems it
is not possible to replace or increment the necessary functionality. JADE proposes to
host Modules without the concern for their functionality which is the responsibility of
the VE developer. A Module can encapsulate an entire system or a block of code and
thus can be reused by others. These frameworks and protocols require the projects to
comply with their infrastructure to be able to interoperate with other systems. The
other challenge facing them is to create a generalizable infrastructure to support any
kind of environment (Kapolka, 2003).

This section has presented the different aspects of portability that are supported by
game engines and has analyzed what has been done so far to address G-factor
portability. The next two sections present two surveys to help better understand G-
factor portability and to highlight what is required from a development approach that
aims to promote G-factor portability.

3 Survey of G-factor in Game Engines

The objective of this survey is to discover the development practices encouraged by
game engines through examining the tools they provide to specify the G-factor (e.g.
scripting language, object model, API access, world and interface builders, etc). We
also aim to create a categorization that groups engines by the way they promote G-
factor portability. Current game engines’ categorizations listed by researchers include
ones based on the player’s point of view (Stang 2003) or based on the game genre
(e.g. action, strategy, sports, simulation, etc). Another categorization is one proposed
by Young et al (Young et al, 2004) that is based on the integration between intelligent
reasoning capabilities and game engines. Young et al’s categorization is divided into

2 http://www.web3d.org/x3d/ (accessed 5/5/2007).

6 Ahmed BinSubaih, Steve Maddock, and Daniela Romano

three groups: mutually specific, AI specific, and game specific. In the mutually
specific category the essence is on creating new functionalities using specific
intelligent reasoning tools or techniques (such as planning algorithms) for a specific
game engine. This can be described as having a one-to-one relationship between the
new AI functionality and the game engine. In the second category, AI specific, a set
of AI functionalities can be used across a range of game engines – a one-to-many
relationship between the AI functionalities and game engines. The game specific
category allows more than one AI element to be used on a specific game engine. This
is many-to-one relationship between the AI elements and the game engine.

In our categorization the focus is on the relationship between the G-factor and the
game engine. We identified three variables to govern this relationship: location (hard-
coded or data-driven), object model (static or dynamic), and scripting constraint
(precompiled or compiled and interpreted on-the-fly). These variables describe how
the three G-factor elements are set. Location describes how the game state, object
model, and game logic are specified (i.e. whether hard-coded in the game engine or
specified using data-driven techniques). The object model and scripting constraint
variables refer to how the G-factor’s object model and logic are set respectively.

The following sections describe how these variables affect G-factor portability and
provide examples from industry, wherever possible, to show how these variables are
being implemented and more importantly what lessons have been learnt in doing so.

3.1 Game Location

Location refers to whether the engine promotes hard-coded or data-driven approaches
to create the G-factor. The hard-coded approach is inflexible and does not meet the
current dynamic game design requirements since embedding the game too deeply in
the code is very restrictive as it shields it from the designers and artists (Keith, 2003;
Schertenleib, 2006). Keith also reports another problem with this approach which is
the over dependency on the object hierarchies for behaviour which makes the code
fragile and very difficult to maintain. This problem was also mentioned by Bilas
(Bilas, 2002) who noted that the line between the content and the engine keeps
moving as the requirements get fuzzier and advised a change to a data-driven
development approach, warning that resistance would only cause regular refactoring.

The data-driven approach allows the data to be defined by configuration files
and/or scripts (Schertenleib, 2006) and these are then fed into the program to dictate
its flow. The need for the game engines to be extremely flexible is the reason why it is
crucial to have a data-driven design focus where the game is controlled by data which
resides outside the engine (Tong, 2003). The advantages alongside the
aforementioned flexibility are: extensibility and improved process (Fermier, 2002).
The disadvantages are performance, its too powerful (Tapper, 2003), there is more
work up-front (Leonard, 1999), over-engineering and lack of ownership (Fermier,
2002), and difficulty in debugging (Wilson, 2003).

The advantages of the data-driven approach outweigh the disadvantages as
reported by the developers of a number of commercial games. The developers of
‘Gabriel Knight 3’ (budget over $4.5 million, development time almost 3 years)
reported that the initial hard-coding of the story sequence of the game in C++ meant

A Survey of ‘Game’ Portability 7

that engineers were creating content instead of working on the engine and also that
the tiniest changes to the game required recompilation which “made the development
process unbelievably inefficient.” (Bilas, 2000). Similar problems were reported by
the developers of ‘Thief: The Dark Project’ (budget approximately $3 million,
development time 2.5 years) who also moved to adopt the data-driven approach
(Leonard, 1999). The developers of ‘Jurassic Park: Operation Genesis’ (development
time 22 months) said that the data-driven approach they used required initial
investment but the time spent was saved many times over and it opened up the
possibility of creating expansion packs (Chan et al, 2003). They also reported that
“the data-driven approach worked so well that through much of our development,
Thief and System Shock 2 (two very different games) used the same executable and
simply chose a different object hierarchy and data set at run time”.

From the portability point of view the separation encouraged by a data-driven
approach allows for clearer specification of the boundaries between the data and the
system – thus making it more modular. A game that is represented by data is much
easier to manipulate and understand than one which is intertwined in the application
code. Therefore, any technique that moves the game away from the engine is
beneficial to the G-factor portability cause. Moreover, it also allows for the creation
of intuitive tools (Shumaker, 2002) for manipulating the data thus increasing
modifiability.

3.2 Object/Class Model

The object model describes the classes for the objects in a game. These objects can be
divided into two types: game objects and decorative objects. Game objects represent
all non-terrain and interactive logic content (Bilas, 2003) and they are the ones that
are of interest to the G-factor. The decorative objects are merely used to enhance the
look of the environment such as terrain, sky, etc. The object model used can either be
static or dynamic.

A static object model has hard-coded representation and cannot be modified at run-
time. For instance a new object type (or class) cannot be added without having to
modify the hard-coded representation and recompiling and loading the application
(e.g. Java is an example of static object model). The problem with this is highlighted
by the development of ‘Ultima Underworld 1’ (Duran, 2003). Initially the
development started under the impression that the non-player characters (NPCs) and
doors do not share many components. Later on, the designer wanted to allow the
player to have a conversation with a door just as he can have a conversation with
NPCs but since the initial design only allowed NPCs to have the conversation
component, they found that pushing the component up the hierarchy was very
difficult and resolved to use a hack around the problem. Similar lessons were learnt
by the developers of ‘Dark Engine’ (Leonard, 1999). The success of that was
demonstrated by the ability to have no code-based game object hierarchy of any kind
in Thief. This was handled through a general database where an object can possess
properties and hold relations with other objects.

A dynamic object model allows the creation and modification of classes along with
their properties and hierarchies dynamically. The advantages and disadvantages of

8 Ahmed BinSubaih, Steve Maddock, and Daniela Romano

using a dynamic object model pattern are clearly described by Riehle et al (Riehle et
al, 2005). The primary advantages that aid portability are: end-user configuration,
language independent, run-time object type creation, and explicit model. The end-user
configuration ability means that the game developer or designer is able to define
concepts from his domain (c.f. ontologies (Chandrasekaran et al, 1999)) and does not
have to hard-code them. This means the object model can exist outside the game
engine and more importantly is modifiable independently of the engine. This
promotes flexibility and extensibility. The second advantage is being specified in a
language that is independent from the implementation language since object model
can be stored outside the application in a file or a database which makes it easier to
port between engines of different implementation languages. It also simplifies sharing
the object model between games. The run-time object type creation is important for
games with persistent worlds like the massively multiplayer online games (MMOG)
(e.g. ‘Toontown’ (Goslin, 2004)). The final advantage is the explicit model provided
by the dynamic object model enables querying the object model to find the classes
and their properties, property type, inheritance, etc.

The potential disadvantages of using the dynamic object model pattern are the
performance and memory usage penalties associated with it. The use of it in industry
by games such as Thief shows that it is not undermining the game to the point of
making it unplayable. Another disadvantage is that it requires extra work initially to
create the framework that is going to hold the dynamic object model. For systems that
do not provide a dynamic object model there is a workaround which involves
constructing classes dynamically by using on-the-fly scripting languages (described in
the next section). These languages can be grouped into two categories: class-based
(e.g. Python) and prototype-based or instance-based (e.g. JavaScript). The difference
is that in the prototype-based approach there are no distinct entities for classes and
instances. The prototype-based approach makes sharing the classes more cumbersome
and counterintuitive to developers familiar with object-oriented programming since
the class description is embedded in the instance which blurs the separation object-
oriented developers are accustomed to.

3.3 Game Logic Scripting Constraint

The third variable to govern the relationship between the G-factor and the game
engine is the language processing constraint. As game development moves away from
code-driven approaches to a data-driven approach it makes the data more complex to
represent and manipulate. What is needed is a simpler approach than the code-driven
approach but one that still retains some, if not all, of its flexibility and power.
Scripting is an answer to this. Scripting is a programming language that is similar to
coding but generally simpler and also requires shorter edit-compile-link-run process3.
Examples of scripting languages are: Python, Ruby, Lua, etc. They share a number of
characteristics (Garces, 2006) such as: they are high-level languages, provide flexible
flow control, and they are interpreted languages (not compiled into machine code).
Although scripting uses code as the basis for its representation it is considered to fall

3 http://en.wikipedia.org/wiki/Scripting_language (accessed 5/5/2007).

A Survey of ‘Game’ Portability 9

into the data-driven category (Schertenleib, 2006). Many game development teams
found in scripting an ideal solution to the programmer bottleneck problem as was
stated by the developers of ‘Treyarch’s Draconus’ (Fristrom, 2000). Despite the
known performance issue with scripting, the developers of ‘Centipede 3D’ (Rouse,
1999) and ‘Shiny’s Wild 9’ (Malenfant, 2000) found that the tradeoff for scripting
flexibility and ease of use over performance was a positive move. LaMothe
(LaMothe, 2002) estimated that about 99% of all commercial games use scripting.
Our survey in section 3.4 puts this figure to 74.4%.

Scripting languages can either be precompiled or compiled and interpreted on-the-
fly. Precompiled means the code is compiled before the game starts whereas on-the-
fly means compiling happens at run-time. This makes the on-the-fly feature very
useful for programs that cannot afford to make the application offline such as
Massively Multiplayer Online Games (MMOG). However these languages run slower
than the precompiled ones. Despite this many developers think the tradeoff is
worthwhile. The developers of ‘Pirates of the Caribbean – Battle for the Buccaneer
Gold’ (Schell and Shochet, 2001) found on-the-fly scripting very valuable to conduct
guest testing. They used the Scheme scripting language to be able to reprogram the
game while the guests were live in the game. The MissionEngine (Vilhjalmsson &
Samtani, 2005) architecture found in on-the-fly scripting an ideal solution to avoid
making the architecture too rigid and too slow to respond to design changes. The
dynamic nature of the language used by the architecture (Python) meant that the class
definitions in the architecture did not have to be changed every time the data format
changed when new features were requested. However that was not the case with the
second scripting language they used because they chose Unreal engine. Unreal
provides UnrealScript which requires precompiling. They found it to be less flexible
than Python as for every change to the page type in the skill builder a new class in
UnrealScript had to be created.

For portability, on-the-fly scripting plays a vital role. The first role is to facilitate
the dynamic object model workaround described in the previous section. The second
role of the scripting is to enable translation through the use of the script mapping
technique described in BinSubaih and Maddock (BinSubaih & Maddock, 2006). The
third role is to avoid undermining the current flexibility associated with programming
directly on the game engine (i.e. avoid introducing a restrictive layer). For instance,
Gamebots uses predefined text-based protocol messages to interact with the game
engine to receive sensory information (synchronous and asynchronous) and send
actions (e.g. CHANGEWEAPON, RUNTO, JUMP, STOP, etc). A project for
teaching Bayesian behaviors to game characters (Le Hy et al, 2004) made use of
Gamebots and found it to be restricting the interaction they could have with the game
engine. TIELT requires adding the actions and sensors that have to be exchanged
between the game engine and the decision system to the knowledge bases residing
inside TIELT. In a project (Ponsen et al, 2005) that used TIELT for integration with
Stratagus, which provides on-the-fly language (Lua), it was found that every time a
new action was needed the knowledge base had to be updated to allow that. This
shields the on-the-fly language from the decision system undermining the power of
the language. Another problem with TIELT, also shared by the protocol messages of
Gamebots, is that they introduced their own scripting languages which is not ideal as
we now explain.

10 Ahmed BinSubaih, Steve Maddock, and Daniela Romano

Developers wanting to add scripting support to their architecture are faced with

two options: either to build their own scripting language or use one from the off-the-
shelf languages available. Tong (Tong, 2003) noted that as people stop wanting to
spend resources on developing their own specific scripting languages a more common
option is to leverage the use of existing languages. The advantages to be gained from
doing so are: having a rich feature set with plenty of documentation, utilizing a wealth
of existing tools, simplifying the interface with the engine code, and utilizing fast and
efficient code. The disadvantages are: performance, interface between C/C++ and the
scripting language can be constraining, lacks good debugging and development tools,
and lack of easily available libraries and extensions. Examples from the industry also
echo Tong’s call. The developers of ‘Gabriel Knight 3’ recommend using an existing
language to avoid spending time creating documentation of the syntax and training
scripters. A more forceful example was cited by ‘Toontown’ developers who had to
change the scripting language after more than six months into the project. The issue
with their own proprietary language was to do with performance and code
management which forced them to switch to an existing language (Python).

3.4 Categorization

Table 1 describes the categorization we have created for the game engines using the
three governing variables (location, object model, and scripting constraint) described
in the previous sections. For simplicity and clarity purposes we do not create any
category for game engines that might support two properties of the three governing
variables. For example, if a game engine locates the game inside it (hard-coded) and
can read it from outside (data-driven) we categorize the engine with the most superior
property – outside is superior to inside, dynamic object model is superior to static
object model, and on-the-fly language is superior to precompiled. The superiority-
deciding factor is based on how it promotes G-factor portability. Based on that we
have created six categories for game engines: serviced-dynamic, serviced-static,
loaded-dynamic, loaded-static, hard-coded-dynamic, and hard-coded-static. The
portability column in table 1 indicates the direction of increased portability support.
Table A.1 shows the engines surveyed and the category they belong to. The table also
includes two columns for the tools provided by the engine (world builders and
scripting languages used) and a column for the game engine cost. We added these to
the survey to help explain the popularity reasons of a particular engine.

Table 1: Engines’ categories.

Category Location Object Model Scripting Constraint Portability
Serviced-dynamic Data-driven Dynamic On-the-fly

Serviced-static Data-driven Static On-the-fly
Loaded-dynamic Data-driven Dynamic Precompiled

Loaded-static Data-driven Static Precompiled
Hard-coded-dynamic Hard-coded Dynamic -

Hard-coded-static Hard-coded Static

A Survey of ‘Game’ Portability 11

The findings of the survey are summarised by the four pie charts in figure 3. The
categorization chart (figure 3a) shows that 43% of the game engines fall into the
serviced-dynamic category. However none of the engines implemented the dynamic
object model directly and the ones that do have done so either through the
workaround using on-the-fly scripting (section 3.2) or through different techniques.
The findings also show that scripting is very popular with 74.4% of the engines
supporting it (figure 3c). Figure 3d show that “on-the-fly” scripting (48.8%) to be
more popular than precompiled scripting (25.6%). Finally, figure 3b shows that most
(69%) of the game engines surveyed cost $100 or less.

4 Survey of Projects Using Game Engines

The objective of our survey of projects using game engines is threefold. First it aims
to examine how portable the G-factor for projects that use game engines is, by
checking how they choose location, object model, and language. The second objective
is to find out the reasons cited by the projects for using a specific game engine. This
should help identify the attributes that increase the game engine’s popularity and

 (a) (b)

 (c) (d)

Categorization

Loaded-
Static
21%

Serviced-
Dynamic

43%

Serviced-
Static
5%

Loaded-
Dynamic

5%

Hard-coded-
Static
26%

Hard-coded-
Dynamic

0%

Cost

Game price
or <= $100

30%

$101-$1000
14%

More than
$1000
12%

Free
39%

Not public
5%

Scripting

General
39.5%

Not
supported

25.6%

Proprietary
34.9%

Scripting Processing Constraint

Not
supported

25.6%
"on-the-fly"

48.8%

25.6%

Precompiled

Figure 3: Game engines’ survey showing the G-factor portability, scripting used, and
cost.

12 Ahmed BinSubaih, Steve Maddock, and Daniela Romano

examine how they affect portability. These attributes should help form the base list of
the attributes that should be addressed by any game development approach. Finally,
the survey gauges the acceptance of using any of the approaches described in section
2 to aid portability and the reasons for doing so. This should provide us with an
indicator of how acceptable a development approach that promotes G-factor
portability would be.

Table A.2 gives a list of the projects surveyed by listing six items for each project.
The first item (column three) specifies the game engine used. The second item
(column four) specifies whether the project uses a hard-coded or a data-driven
approach or a combination of both. To find out if the concept of having the game state
(or part of it) outside the engine is acceptable, item three (column five) shows where
the game state is at run-time (i.e. inside or outside or uses a combination of both). The
game state holds the game objects. If these objects are living inside the engine only
then are they labelled inside. If they are living outside the engine and have
corresponding objects inside the engine then they are labelled outside. Finally if part
of them is inside and the other part is outside then they are a combination of both.

The fourth item (column six) describes whether the object model is specific or
independent or uses a combination of both. If the object model uses the engine
specific model or extends it then it is considered specific. If however it uses its own
model independently from the engine’s model then it is considered independent. If it
mixes both then it is considered to be a mixture of both. The fifth item (column seven)
specifies the language used to set the game logic. This can either be specific/custom
made (e.g. UnrealScript) or independent/general (e.g. Python) or a combination of
both. The last column details the approach used to aid portability.

Figure 4 shows five pie charts for the G-factor location, object model, game
language, where the game state held at run-time and engine usage. We were
concerned that the results are swayed by Unreal as it was used in the majority of
projects surveyed (51%). To alleviate this concern we balanced the table to one
project per engine which reduced table A.2 to 10 rows of unique game engines. As the
listing of the projects in the table was not organized in any way we selected the first
occurrence of the engine and disregarded the rest of the projects that use the same
engine. The result of the balanced table is shown in figure 5. These results assured us
of the trend that was exhibited by the previous results (i.e. unbalanced table) which
indicated that the majority of the projects surveyed share the same characteristics of: a
high tendency to use data-driven approaches, a high tendency to use the engine’s
specific object model, a high tendency to use the engine’s proprietary language, and a
high tendency to specify the game state inside the engine.

A Survey of ‘Game’ Portability 13

Figure 4: A survey of projects using game engines to show how they tend to set up the G-factor elements
and also show the game engines used.

Game State (at run-time)

Outside
20%

Inside
60%

Both
20%

Game Engines Usage

Torque
3%

FlashPoint
3%

Doom
3%

Virtools
7%

3d
GameStudio

3%

Stratagus/
Wargus

10%

Half-Life
7%

Aurora
Engine
10%

Quake
3%

Unreal
51%

(a) (b)

(c) (d)

(e)

Object Model

Both
23.3%

Specific
60%

Independent
16.7%

Game Logic Scripting Constraint

Independent

23.3%

Specific
50%

Both
26.7%

Location

Hard-coded
10%

Data-driven
86.7%

Both
3.3%

14 Ahmed BinSubaih, Steve Maddock, and Daniela Romano

In an attempt to understand the characteristics that make game engines attractive or

unattractive we counted the comments made by projects described in table A.2 about
each engine. Table 2 organizes the comments by the number of mentions they
received (unique per project). As far as portability is concerned, figure 6 shows the
six comments that are of importance to any game development approach that aims to
promote G-factor portability. We believe these are the elements that should be
guarded as much as possible by any new approach. The pie chart shows the level of
importance each holds which should help trading off one over the other when a
decision may affect more than one element. For instance scripting received 22% while
performance was not highly mentioned. This makes scripting a high priority attribute.
It is also reflected by the examples we cited earlier from the industry where trading
scripting over performance was found to be a positive move (see section 3.3). The
chart also shows that a small learning curve is also highly regarded. This backs our
earlier argument that introducing something completely new (e.g. new scripting
language or new standards) might not be the best option and instead any new
approach should aim to make use of well-known practices wherever possible.

Figure 5: The results of the balanced table show similar tendencies to ones reported by figure 4.

Location

Data-driven
70%

Hard-coded
20% Both

10%

Object Model

Both
20%

Specific
70%

Independent

10%

Game Logic Scripting Constraint

Independent

10%

Both
20%

Specific
60%

Game State (at run-time)

Outside
10%

Both
20%

Inside
70%

(a) (b)

(c) (d)

A Survey of ‘Game’ Portability 15

This should also reduce the time it
takes to make a decision about a
particular approach or engine since
knowing that the basic building blocks
have been tried and tested would
increase the confidence in that
approach or engine and
correspondingly reduce the time to
investigate it.

One of the concerns raised about
game engines was with regards to the
lack of integration ability with
external modules. The need for that
was raised because of either the lack
of needed features (i.e. need for
complex AI behaviour (Fielding et al,
2004)) or the need to avoid
reinventing the wheel (e.g. building
biomedical simulation (Ryan, 2005)).
The other issue mentioned was with regards to the use of scripting languages.
Interestingly both scripting issues raised were with regards to scripting languages that
were custom made. This backs the earlier argument of the need to avoid creating
custom languages.

The third objective of the survey was to find out the reasons behind using
approaches that aid portability. The findings show that 30% of the projects described
in table A.2 made use of these approaches. The approaches used fall into the AI and
interfaces groups. The primary reasons mentioned for adopting these were the
integration with external modules something game engines not supporting very well
as described in the previous section. The issues raised were with regards to the
restriction introduced over the game engine access.

Table 2: Comments order by the number of
mentions received.

Comment Number of
mentions

Graphics 10
Scripting 9
Small Learning Curve 9
Features (Physics, AI,
Statistics, Recordable)

9

Modifiability (configurable,
extensible, flexible,
integration, abstraction)

8

Popular/well-tested 8
Multiplayer 7
Low cost/open source 7
Authoring Tools 6
Outsourcing 4
Rapid prototyping 3

Figure 6: Comments made about the features that are important to projects
using game engines which any game development approach should aim to

preserve.

Scripting
22%

Small Learning
Curve
21%

Mulitplayer
17%

Authoring Tools
14%

Modifiability
19%

Rapid Prototyping
7%

16 Ahmed BinSubaih, Steve Maddock, and Daniela Romano

5 Conclusions

Certain kinds of portability are supported as discussed in section 2 such as asset
portability however G-factor portability has not received similar attention. The
consequences of not supporting G-factor portability means that moving a game
between game engines is cumbersome and makes the decision to choose a game
engine a critical one. We believe there is a need to reduce the immediate and future
risks associated with this decision. We believe increasing G-factor portability would
make this decision less crucial.

Based on the findings of the this survey we have created an approach to aid G-
factor portability (BinSubaih & Maddock, 2006) and have successful used this
approach in the development of a serious game for traffic accident investigators in the
Dubai police force (BinSubaih et al, 2006a).

References

1. Adobbati, R., Marshall, A.N., Scholer, A., Tejada, S., Kaminka, G., Schaffer, S. and Sollitto,
C. 2001. Gamebots: A 3D Virtual World Test-Bed For Multi-Agent Research. Proceedings
of the International Conference for Autonomous Agents, Workshop on Infrastructure for
Agents, MAS, and Scalable MAS, Montreal, Canada.

2. Aha, D.W. and Molineaux, M. 2004. Integrating learning in interactive gaming simulators.
Challenges of Game AI: Proceedings of the AAAI'04 Workshop (Technical Report WS-04-
04). San Jose, CA: AAAI Press.

3. Berndt, C., Watson, I., and Guesgen, H. 2005. OASIS: An Open AI Standard Interface
Specification to Support Reasoning, Representation and Learning in Computer Games.
IJCAI-05 Workshop on Reasoning, Representation, and Learning in Computer Games. 31-
July 2005, Edinburgh, 19-24.

4. Bilas, S. 2000. Postmortem: Sierra Studios’ Gabriel Knight 3: Blood of the Sacred, Blood of
the Damned, Game Developer Magazine, June 2000.

5. Bilas, S. 2002. A data-driven game object system. Game Developers Conference
Proceedings 2002. http://www.drizzle.com/~scottb/gdc/game-objects.ppt (accessed
5/5/2007).

6. Bilas, S. 2003. The Continuous World of Dungeon Siege, Gas Powered Games,
www.drizzle.com/~scottb/gdc/continuous-world.htm (accessed 5/5/2007).

7. BinSubaih, A. and Maddock, S. 2006. Using ATAM to Evaluate a Game-based
Architecture. Workshop on Architecture-Centric Evolution (ACE 2006). Hosted at the 20th
European Conference on Object-Oriented Programming ECOOP 2006 July 3-7, 2006,
Nantes, France.

8. BinSubaih, A., Maddock, S., and Romano D.M. 2006a. A Serious Game for Traffic
Accident Investigators. Special Issue of International Journal of Interactive Technology and
Smart Education on Computer Game-based Learning.

9. BinSubaih, A., Maddock, S., and Romano, D.M. 2006b. An Architecture for Portable
Serious Games. Doctoral Symposium, hosted at the 20th European Conference on Object-
Oriented Programming ECOOP 2006 July 3-7, 2006, Nantes, France.

10. Blackman, S. 2005. Serious games…and less! SIGGRAPH Computer Graphics 39, 1 (Feb.
2005), 12-16.

A Survey of ‘Game’ Portability 17

11. Carless, S. 2007. Rise of the Game Engine. Game Developer, April, 2007, pp.2.
12. Cavazza, M., Charles, F., and Mead, S. J. 2002. Interacting with virtual characters in

interactive storytelling. In Proceedings of the First international Joint Conference on
Autonomous Agents and Multiagent Systems: Part 1 (Bologna, Italy, July 15 - 19, 2002).
AAMAS '02. ACM Press, New York, NY, 318-325.

13. Cavazza, M., Hartley, S., Lugrin, J., and Le Bras, M. 2004. Qualitative physics in virtual
environments. In Proceedings of the 9th international Conference on intelligent User
interfaces (Funchal, Madeira, Portugal, January 13 - 16, 2004). IUI '04. ACM Press, New
York, NY, 54-61.

14. Chan, K., Spagnolo, S., Stevens, S., Hagger, N., Chau, D., and Carlton, G. 2003.
Postmortem: Blue Tongue Software's Jurassic Park: Operation Genesis, Gamasutra March
17, 2003, http://www.gamasutra.com/features/20030317/chan_01.shtml.

15. Chandrasekaran, B., Josephson, J.R., and Benjamins, V.R. 1999. What are ontologies and
why do we need them? IEEE Intelligent Systems, Jan/Feb 1999, 14(1), pp. 20-26.

16. Chao, D. 2001. Doom as an interface for process management, Proceedings of the SIGCGI
conference on Human factors in computing systems, Seattle, Washington, 2001, 152-157.

17. Coyle, D. and Matthews, M. 2004. Personal Investigator: a Therapeutic 3D Game for
Teenagers. CHI2004 Vienna 25-29 April 2004. Presented at the Social Learning Through
Gaming Workshop.

18. Creel, J., Maslov, A., Mikeal, A., and Speight, C. 2006. Information and Decision-making in
Immersive Digital Environments.
http://loam.evans.tamu.edu/courses/cnm/files/Project%20Final%20Report.doc.

19. Darken, C., Morgan, J., and Paull, G. 2004. Efficient and Dynamic Response to Fire. AAAI
04 Challenges in Game AI workshop, July 2004

20. Davies, N.P., Mehdi, Q.H., and Gough, N. 2005. Creating and Visualising an Intelligent
NPC using Game Engines and AI Tools. 19TH European Conference on Modelling and
Simulation, June 1st - 4th, 2005, Riga, Latvia.

21. Davis, M., Shilling, R., Mayberry, A., Bossant, P., McCree, J., Dossett, S., Buhl, C., Chang,
C., Champlin, E., Wiglesworth, T. and Zyda, M. 2004. Making America’s Army The
Wizardry Behind the U.S. Army’s Hit PC Game. Jan, 2004.

22. Diller, D., Roberts, B., Willmuth, T. 2005. DARWARS Ambush! A Case Study in the
Adoption and Evolution of a Game-based Convoy Trainer by the U.S. Army. Simulation
Interoperability Standards Organization, 18-23 September (2005).

23. Duran, A. 2003. Building Object Systems. Game Developers Conference Proceedings. 2003.
http://www.ionstorm.com/gdc2003/AlexDuran/ (accessed 5/5/2007).

24. Eliens, A., Bhikharie, S.V. 2006. Game VU developing a masterclass for high-school
students using the Half-life 2 SDK.GAME'ON-NA'2006, September 19-20, 2006.

25. Fermier, R. 2002. Creating a Data Driven Engine: Case Study: The Age Of Mythology,
GDC 2002, http://www.gamasutra.com/features/slides/fermier/index.htm

26. Fielding, D., Fraser, M., Logan, B., and S.Benford. 2004. Extending game participation with
embodied reporting agents. Proceedings of the 2004 ACM SIGCHI International
Conference on Advances in computer entertainment technology. ACE '04. 100 –108

27. Fristrom, J. 2000. Postmortem: Treyarch's Draconus, Gamasutra, August 14, 2000,
http://www.gamasutra.com/20000814/fristrom_01.htm (accessed 5/5/2007).

28. Garces, D. 2006. Scripting Language Survey, Game Programming Gems 6, 2006, Charles
River Media, pp. 323-340, ISBN: 1584504501

29. Goslin, M. 2004. Postmortem: Disney Online's Toontown, Gamasutra January 28, 2004,
http://www.gamasutra.com/features/20040128/goslin_01.shtml (accessed 5/5/2007).

30. Heckenberg, S. G., Herbert, R. D., and Webber, R. 2004. Visualisation of the minority game
using a mod. In Proceedings of the 2004 Australasian Symposium on information
Visualisation - Volume 35 (Christchurch, New Zealand). N. Churcher and C. Churcher, Eds.

18 Ahmed BinSubaih, Steve Maddock, and Daniela Romano

ACM International Conference Proceeding Series, vol. 99. Australian Computer Society,
Darlinghurst, Australia, 157-163.

31. Hunicke, R. and Chapman, V. 2004. AI for Dynamic Difficulty Adjustment in Games. In
Proceedings of the Challenges in Game AI Workshop, Nineteenth National Conference on
Artificial Intelligence (AAAI '04) (San Jose, California) AAAI Press, 2004.

32. Hussain, T.S. and Vidaver, G. 2006. Flexible and purposeful NPC behaviors using real-time
genetic control. Proceedings of the 2006 World Congress on Computational Intelligence
(July 16-20, Vancouver, BC).

33. Jankovic, L. 2000. Games Development in VRML. Virtual Reality 2000, 5. pp. 195-203.
34. Kapolka, A. 2003. The Extensible Run-Time Infrastructure (XRTI): An Emerging

Middleware Platform for Interoperable Networked Virtual Environments. Proceedings of the
Lake Tahoe Workshop on Collaborative Virtual Reality and Visualization, October 2003.

35. Keith, C. 2003. From the Ground Up: Creating a Core Technology Group,Gamasutra
August 1, 2003, http://www.gamasutra.com/features/20030801/keith_01.shtml (accessed
5/5/2007).

36. Khoo, A., Dunham, G., Trienens, N., and Sood, S. 2002. Efficient, Realistic NPC Control
Systems using Behavior-Based Techniques. Proceedings of the AAAI 2002 Spring
Symposium Series: Artificial Intelligence and Interactive Entertainment, Menlo Park, CA.

37. Laird, J. 2001. It Knows What You’re Going To Do: Adding Anticipation to a Quakebot.
Agents, 2001, pp. 385-392

38. Laird, J.E., Assanie, M., Bachelor, B., Benninghoff, N., Enam, S., Jones, B., Kerfoot, A.,
Lauver, C., Magerko, B., Sheiman, J., Stokes, D., and Wallace, S. 2002. A Testbed for
Developing Intelligent Synthetic Characters. In Artificial Intelligence and Interactive
Entertainment: Papers from the 2002 AAAI Spring Symposium, Menlo Park, CA (2002).

39. LaMothe, A. 2002. Letter from the Series Editor which appeared in Alex Varanese. Game
Scripting Mastery, Premier Press (18 Dec 2002),ISBN: 1931841578.

40. Le Hy, R., Arrigoni, A., Bessi ere, P., and Lebeltel, O. 2004 Teaching Bayesian Behaviors
to Video Game Characters. Robotics and Autonomous Systems, 47:177-- 185, 2004.

41. Lenoir, T. 2003. Programming Theatres of War: Gamemakers as Soldiers, Robert Lathma,
ed, Bytes, Bandwidth, and Bullets, New York: The New Press, 2003.

42. Leonard, T. 1999. Postmortem: Looking Glass's Thief: The Dark Project, Game Developer
Magazine, July 1999.

43. Lewis, M. and J.Jacobson. 2002. Game Engines in Scientific Research. Communications of
the Association for Computing Machinery (CACM), NY: ACM 45(1), 2002.

44. Malenfant, D. 2000. Postmortem: Shiny's Wild 9, Gamasutra, January 07, 2000,
http://www.gamasutra.com/features/20000107/wild9_01.htm (accessed 5/5/2007).

45. McGrath, D. and Hill, D. 2004. UnrealTriage: A Game-Based Simulation for Emergency
Response. The Huntsville Simulation Conference, October 2004. Sponsored by The Society
for Modeling and Simulation International.

46. Muñoz-Avila, H. and Aha, D. 2004. On the Role of Explanation for Hierarchical Case-
Based Planning in Real-Time Strategy Games. Proceedings of ECCBR-04 Workshop on
Explanations in CBR.

47. Nareyek, A., Combs, N., Karlsson, B., Mesdaghi, S., and Wilson, I. 2005. The 2005 Report
of the IGDA's Artificial Intelligence Interface Standards Committee.
http://www.igda.org/ai/report-2005/report-2005.html. (accessed 5/5/2007)

48. Oliveira, M., Crowcroft, J., and Slater, M. 2003. An innovative design approach to build
virtual environment systems. Proceedings of the workshop on Virtual environments 2003,
ACM International Conference Proceeding Series; Vol. 39, Zurich, Switzerland Pages: 143
– 151, (2003) ISBN:1-58113-686-2.

49. Ota, M. 2003. Extending the AI in a Commercial Game Engine. School of Information
Technology and Electrical Engineering, The University of Queensland, 29th Oct, 2003,
Bachelor Thesis.

A Survey of ‘Game’ Portability 19

50. Ponsen, M., Lee-Urban, S.,
M u ٌ

oz-Avila, H., Aha, D., and Molineaux, M. 2005. Stratagus:
An Open-Source Game Engine for Research in Real-Time Strategy Games. Workshop for
International Joint Conference on Artificial Intelligence (IJCAI-05).

51. Riehle, D., Tilman, M., and Johnson, R. 2005. Dynamic Object Model. In Pattern
Languages of Program Design 5. Edited by Dragos Manolescu, Markus Völter, James
Noble. Reading, MA: Addison-Wesley, 2005.

52. Robertson, J. and Good, J. 2003. Ghostwriter: a narrative virtual environment for children.
Proceeding of the 2003 conference on Interaction design and children, July 2003, 85-91.

53. Rouse, R. 1999. Leaping Lizard’s Centipede 3D, Gamasutra, September 10, 1999,
http://www.gamasutra.com/features/19990910/centipede_01.htm

54. Ryan, M., Hill, D., and McGrath, D. 2005. Simulation Interoperability with a Commercial
Game Engine. European Simulation Interoperability Workshop 2005, 27-30 June 2005.

55. Schell, J. and Shochet, J. 2001. Designing Interactive Theme Park Rides: Lessons From
Disney's Battle for the Buccaneer Gold, Gamasutra, July 6, 2001, URL:
http://www.gamasutra.com/features/20010706/schell_01.htm

56. Schertenleib, S. 2006. Designing a Multilayer, Pluggable AI Engine, Game Programming
Gems 6, 2006, Charles River Media, pp. 291-305, ISBN: 1584504501

57. Shumaker, S. 2002. Techniques and Strategies for Data-driven design in Game
Development. http://ai.eecs.umich.edu/soar/Classes/494/talks/Schumaker.pdf

58. Smith, R. 1998. Essential techniques for military modeling and simulation. Proceedings of
the 30th conference on winter simulation, 1998, 805 – 812, ISBN:0-7803-5134-7.

59. Smith, R. D. 2005. Strategic directions for distributed simulation. Simulation 2000 Series, 2,
1-9.

60. Spronck, P. 2005. Adaptive Game AI. Ph.D. thesis, Maastricht University Press, Maastricht,
The Netherlands.

61. Stang, B. 2003. Game Engines Features and Possibilities. Institute of Informatics and
Mathematical Modeling at the Technical University of Denmark, 2003.

62. Stanley,K., Bryant,B., and Miikkulainen,R. 2005. Real-time Neuroevolution in the NERO
Video Game, IEEE Transactions on Evolutionary Computation, volume 9, number 6, pages
653-668, December 2005.

63. Tapper, P. 2003. Personality Parameters: Flexibly and Extensibly Providing a Variety of AI
Opponents' Behaviors, Gamasutra December 3, 2003,
http://www.gamasutra.com/features/20031203/tapper_01.shtml

64. Tong, T. 2003. Scripting in C using Co-Routines Fully Scriptable Game Logic, 8/4/2003,
http://www.gamedev.net/reference/articles/article1974.asp

65. Vilhjalmsson, H. and P.Samtani. 2005. MissionEngine: Multi-system integration using
Python in the Tactical Language Project, PyCon 2005, March 23-25, Washington, D.C.

66. Wang, J.; M.Lewis, and J.Gennari. 2003. Emerging areas: urban operations and UCAVs: a
game engine based simulation of the NIST urban search and rescue arenas. In 35th Winter
Simulation Conference. 1039-1045, 2003.

67. Wilson, K. 2003. The GDC 2003 Game Object Structure Roundtable. Tuesday, March 11,
2003, http://gamearchitect.net/Articles/GameObjectRoundtable.html

68. Wunsche, B., Kot, B., Gits, A, Amor, R., Hosking, J. and Grundy, J. 2005. A Framework for
Game Engine Based Visualisations, Proceedings of IVCNZ '05, Dunedin, New Zealand, 28-
29 November 2005, pp. 465-470.

69. Young, R.M., Riedl, M.O., Branly, M., Jhala, A., Martin, R.J., and Saretto, C.J. 2004. An
architecture for integrating plan-based behavior generation with interactive game
environments. Journal of Game Development , 1(1), 51-70.

20 Ahmed BinSubaih, Steve Maddock, and Daniela Romano

Appendix A

Table A.1 Game Engines Survey

Seq Game Engine Category World Editor Scripting Language Cost

1 Panda3D 1.2.3§ Serviced-dynamic* √√√√ Python Free
2 Torque Game Engine 1.4‡ Serviced-dynamic* √√√√ TorqueScript $150 - $340
3 Nebula Device 2§ Serviced-dynamic* Lua, Python, Ruby, TCL, etc Free
4 Delta3D 1.3.0 Serviced-dynamic* √√√√ Python Free
5 Luxinia Serviced-dynamic* √√√√ Lua Free - €100
6 C4 Engine‡ Serviced-dynamic* √√√√ Graph-based $100
7 CryENGINE 2 Serviced-dynamic* √√√√ Lua
8 Crystal Space 3D 1.0 § Serviced-dynamic* Python, Java, Perl Free
9 Unigine v0.4 Serviced-dynamic* √√√√ UnigineScript $1495 - $19985
10 Deep Creator‡ Serviced-dynamic* √√√√ Lisp $1,995
11 Beyond Virtual‡ Serviced-dynamic* √√√√ AngelScript $99-$155
12 Jet3D Serviced-dynamic* √√√√ Lua Free
13 Sylphis 3D Serviced-dynamic* √√√√ Python $122
14 Lawmaker Game Engine Serviced-dynamic* √√√√ Lua $149.99 - $7999.99
15 Soya 3D 0.11.2 Serviced-dynamic* Python Free
16 Shark 3D Serviced-dynamic* √√√√ Perch
17 Qube Serviced-dynamic* √√√√ QScript Free
18 Stratagus 2.1 Serviced-dynamic* √√√√ Lua Free
19 Blender 2.43 Serviced-dynamic* √√√√ Python Free
20 Operation Flashpoint Serviced-static √√√√ √√√√ $Game
21 3D GameStudio (A6 Game Engine 6.4)‡ Serviced-static √√√√ C-Script $49-$899
22 Virtools 4 Loaded-dynamic √√√√ VSL $9,500
23 Unity1.5‡ Loaded-dynamic* √√√√ C#,JavaScript, Boo $250 - $1,499

DOOM 3 Loaded-static √√√√ SCRIPT $Game 24
DOOM Hard-coded-static √√√√ Free
Quake III Loaded-static √√√√ QVM files $Game
Quake II Hard-coded-static √√√√ Free

25

Quake Loaded-static √√√√ QuakeC Free
26 Unreal Engine 2.5 Loaded-static √√√√ UnrealScript $Game -$350,000
27 Power Render 6 Loaded-static √√√√ AngelScript $150 - $8500
28 Reality Factory Loaded-static √√√√ Simkin Free - $149.99
29 Serious Engine 2 Loaded-static √√√√ Macro $20,000 - $100,000
30 Quest3D 3.5.2 Loaded-static √√√√ Graph-based $999-$9,999
31 Aurora Neverwinter Nights 1 Loaded-static √√√√ NWScript $Game
32 TV3D SDK 6‡ Hard-coded-static Free - $500
33 Cipher‡ Hard-coded-static √√√√ $100
34 3Impact‡ Hard-coded-static $99
35 DarkBASIC Pro‡ Hard-coded-static $89.99
36 Irrlicht Hard-coded-static √√√√ Free
37 OGRE Hard-coded-static Free
38 Half-Life 2 (Valve Source) Hard-coded-static √√√√ $Game
39 Jupiter EX Hard-coded-static √√√√ $10,000 - $50,000
40 Blitz3D Hard-coded-static √√√√ $100

* Uses the work around suggested in section 3.2 or an alternative technique to create the dynamic object model.
‡ One of the top 10 commercial engines cited by http://www.devmaster.net/engines/ as of 23/Feb/2007.
§ One of the top 10 open source engines cited by http://www.devmaster.net/engines/ as of 23/Feb/2007.

A Survey of ‘Game’ Portability 21

Table A.2 Projects Survey

Location Game State (run-time) Object Model Game Logic Language Seq Project Engine
Hard-
coded

Data-
driven

Inside Outside Specific Independent Specific Independent
Approach

1 Ambush!
(Diller et al,
2005)

Operation
Flashpoint

 √√√√ √√√√ √√√√ √√√√

2

Tactical Iraqi
(TLTS)
(Vilhjalmsson

and Samtani,

2005)

Unreal
Tournament
2003

 √√√√ √√√√ √√√√ √√√√ √√√√ UnrealScript

√√√√ (C++,
Python,
database, and
xml files)

Gamebots,
MissionEngine

3 UnrealTriage
(first version)
(McGrath and
Hill, 2004)

Unreal
Tournament
2004

 √√√√ √√√√ √√√√ UnrealScript

4 UnrealTriage
(second
version)
(Ryan 2005)

Unreal
Tournament
2004

 √√√√ √√√√ √√√√ √√√√ √√√√Anesoft
simulator

UnrealScript √√√√Anesoft
simulator

Extended
version of
Gamebots

5 Urban search
and rescue
(Wang et al,
2003)

Unreal
Tournament
2003

 √√√√ √√√√ √√√√(RETSINA) √√√√ √√√√(RETSINA) UnrealScript √√√√(RETSINA) Gamebots

6 VRND Notre
Dame (Delon &
Berry, 2000)

Unreal √√√√ √√√√ √√√√ UnrealScript

7 Efficient and
Dynamic
Response to
Fire (Darken et
al. 2004)

Unreal √√√√ √√√√ √√√√ UnrealScript

8 Sonocard4 Virtools √√√√ √√√√ √√√√ √√√√ Graphical
tools

9 Le Redoutable5
(Blackman,
2005)

Virtools √√√√ √√√√ √√√√ √√√√ VSL

10 3D Driving
Academy
(Traffic AI &
Physics engine)
(Blackman,
2005)

3D
GameStudio
(A6 engine)

 √√√√ √√√√ √√√√ C-Script

11 Information and
Decision-
Making (Creel
et al, 2006)

Neverwinter
Nights
Aurora
Engine

 √√√√ √√√√ √√√√ NWScript

12 Mimesis Virtual
Aquarium
(Young et al,
2004)

Unreal √√√√ √√√√ √√√√ √√√√ √√√√ UnrealScript √√√√ Mimesis

13 PSDoom (Chao,
2001)

Doom √√√√ √√√√ √√√√ √√√√ √√√√ √√√√ √√√√

14 Visualisation
Tools (software
Visualization
tool and a
biomedical
visualisation
tool) (Wunsche

Quake 3 √√√√ √√√√ √√√√ √√√√ Shader script

4 http://www.virtools.com/applications/simulation-enteccs.asp (accessed 1/3/2007)
5 http://www.virtools.com/applications/simulation-redoutable.asp (accessed 1/3/2007)

22 Ahmed BinSubaih, Steve Maddock, and Daniela Romano

Location Game State (run-time) Object Model Game Logic Language Seq Project Engine
Hard-
coded

Data-
driven

Inside Outside Specific Independent Specific Independent
Approach

et all, 2005)

15 Flying Mutator
(Ota, 2003)

Unreal √√√√ √√√√ √√√√ UnrealScript

16 VU-Life 2
(Eliens &
Bhikharie,
2006)

Half-Life √√√√ √√√√ √√√√ √√√√

17 Creating and
Visualising an
Intelligent NPC
using Game
Engines and AI
Tools (Davies
et al, 2005)

Unreal √√√√ √√√√ √√√√ √√√√ Gamebots

18 Stratagus: An
Open-Source
Game Engine
for Research in
Real-Time
Strategy Games
(Ponsen et al,
2005)

Stratagus √√√√ √√√√ √√√√ √√√√ TIELT

19 Neverwinter
Nights Game
AI (Spronck,
2005)

Neverwinter
Nights
Aurora
Engine

 √√√√ √√√√ √√√√ NWScript

20 Wargus Game
AI (Spronck,
2005)

Wargus √√√√ √√√√ √√√√ Lua

21 Flexible and
Purposeful NPC
Behaviors using
Real-Time
Genetic Control
(Hussain &
Vidaver, 2006)

Neverwinter
Nights
Aurora
Engine

 √√√√ √√√√ √√√√ √√√√ Shadow Door
+ ACTB-
NWN bridge

22 Interacting with
Virtual
Characters in
Interactive
Storytelling
(Cavazza et al,
2002)

Unreal √√√√ √√√√ √√√√ √√√√ UnrealScript √√√√C++ planner

23 Qualitative
Physics In
Virtual
Environments
(Cavazza et al,
2004)

Unreal √√√√ √√√√ √√√√ √√√√ √√√√ UnrealScript √√√√QP
Simulation
module

24 Extending
Game
Participation
with Embodied
Reporting
Agents
(Fielding et al,
2004)

Unreal √√√√ √√√√ √√√√ UnrealScript √√√√ Gamebots

25 Ghostwriter
(Robertson and
Good, 2003)

Unreal √√√√ √√√√ √√√√ UnrealScript

26 America's Army
third-person

Unreal √√√√ √√√√ √√√√ UnrealScript

A Survey of ‘Game’ Portability 23

Location Game State (run-time) Object Model Game Logic Language Seq Project Engine
Hard-
coded

Data-
driven

Inside Outside Specific Independent Specific Independent
Approach

perspective
helicopter
physics (Davis
et al, 2004)

27 NERO project
(Stanley et al,
2005)

Torque √√√√ √√√√ √√√√ TorqueScript

28 The Minority
Game
(Heckenberg et
al, 2004)

Unreal
Tournament
2003

 √√√√ √√√√ √√√√ UnrealScript

29 Explanation for
Hierarchical
case-based
planning
(Muñoz-Avila
& Aha, 2004)

Stratagus √√√√ √√√√ √√√√ √√√√ TIELT

30 Hamlet
(Hunicke &
Chapman,
2004)

Half-life √√√√ √√√√ √√√√ √√√√

