

G-factor Portability in Game Development Using Game Engines

Ahmed BinSubaih & Steve Maddock
Department of Computer Science, University of Sheffield

Regent Court, 211 Portobello Street, Sheffield, U.K. +44(0) 114 2221800
{a.binsubaih, s.maddock}@dcs.shef.ac.uk

ABSTRACT
Many games today are developed using game engines. This
development approach supports various aspects of portability. For
example games can be ported from one platform to another and
assets can be imported into different engines. The portability aspect
that still remains underdeveloped and requires further examination is
the complexity involved in porting a ‘game’ between game engines.
In this work the game elements that we aim to make portable are:
game logic, object model, and game state which represent the game’s
brain. These are referred to as the game factor (or G-factor). We
describe how a typical game development approach using the Torque
game engine makes the G-factor dependent on the engine and we
contrast this with a new approach which enables G-factor portability
between engines.

Categories and Subject Descriptors
I.3.6 [Computer Graphics]: Three-Dimensional Graphics and
Realism.

General Terms
Design, Architecture, Experimentation.

Keywords
Game engine, Portability, Game development.

1. INTRODUCTION
The shift in game development from developing games from scratch
to using game engines was first introduced by Quake and marked the
advent of the game-independent game engine development approach
[20]. In this approach the game engine became “the collection of
modules of simulation code that do not directly specify the game’s
behaviour (game logic) or game’s environment (level data)” [27].
This makes the game engine reusable for (or portable to) different
game projects. However this shift produces a game which is
notoriously dependent on the game engine. For example why can’t a
player take his favourite game (say Unreal) and play it on Quake
engine or vice versa?

Hardware and software abstractions have facilitated the ability to
play a game on different hardware and on different operating systems
(in some cases with some modifications). These abstractions have

also facilitated the ability to use level data assets such as 3D models,
sound, music, and texture across different game engines. This ability
should also be extended to allow for the game itself to be portable.
The goal of our work is to make the game engine’s brain portable,
where the brain holds the game state and the object model and uses
the game logic to control the game. We collectively refer to these
three things as the G-factor. We see the portability of the G-factor as
the next logical step in the evolution of game development and
following Lewis and Jacobson’s terminology [20] we call it the
game-engines independent game development approach (see Figure
1).

A benefit of making the G-factor portable would be to encourage
more developers to make use of game engines, since a particular
game engine’s future capability (or potential discontinuation, as was
the fate of Adobe Atmosphere which was used for Adolescent
Therapy – Personal Investigator [10]) would not be a worry as a
different game engine could easily be substituted. This problem has
recently been referred to as “the RenderWare Problem” [9] after the
acquisition of RenderWare engine by Electronic Arts (EA) and its
removal from the market. We see the issue of rewriting the G-factor
from scratch every time we migrate from one engine to another as
similar to the undesired practice of developing games from scratch
which was deemed unfeasible and resulted in the advent of game
engines.

Section 2 describes the aspects of portability in relation to game
engines and the techniques that have been tried to aid G-factor
portability. Section 3 demonstrates the issues with the typical game
development approach through the development of a sample game
which is then contrasted to the development of the same game using
the new approach which enables the G-factor to be portable. Section
4 describes the evaluations conducted and discusses the two
development approaches. Finally section 5 presents the conclusions.

2. PORTABILITY AND G-FACTOR
Figure 2 illustrates the current aspects of portability addressed in
game engines. First, with hardware and software portability the game
can be played across different platforms and operating systems by
employing hardware and software abstractions. Second, portability
of assets means that 3D models, textures and sounds can be used
across different game engines. Third, middleware portability allows
for components to be used across game engines such as AI and
physics.

The aspect of portability that requires further investigation is the G-
factor portability. Examining what has been done to aid this
portability we found initiatives and projects which can be grouped
into four areas: artificial intelligence (AI) architectures, interfaces,
standards and file formats, and frameworks or protocols.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
CyberGames 2007, September 10–11, 2007, Manchester, UK.
Copyright 2004 ACM 1-58113-000-0/00/0004…$5.00.

The AI architectures use custom made or off-the-shelf components
such as the AI Middleware (e.g. SOAR [19], AI.Implant1, etc). The
need for using a component to handle the AI emerged because of the
increase in AI complexity and the increase in the processing time
allocated for it. This made reinventing the AI wheel every time a
game is developed a redundant process. From a software engineering
perspective this practice is encouraged as it promotes above all
reusability. The practice of specifying the game using the AI
middleware format is not what we eventually want since this merely
moves it from one proprietary format (game engines) to another (AI
middleware). Nevertheless it is a step in the right direction of
moving the game away from the game engine’s format. The
architectures that promote portability more than others are those that
allow complete removal of the game from the game engine such as
TIELT [2]. Others that only partially remove the game are obviously
less portable such as Mimesis [28] and MissionEngine [26]. The AI
architectures promote the use of their own proprietary format which
is similar to what game engines do. Furthermore suggesting a
monolithic architecture as a complete entity is not what is needed.
Instead initiatives must examine the causes of the G-factor
portability problem and provide practical solutions that can be
employed even if their architecture or middleware is not chosen.

The interfaces aim to provide access to external programs and in
game engines we found two types of interfaces: specific and
common. These provide access to the G-factor elements to overcome
the difficulty raised by the lack of interoperability. A number of
interfaces have been developed to provide access to specific game
engines. For example the interfaces that have been used to access

1 http://www.biographictech.com (accessed 5/5/2007).

Unreal are Gamebots [1] and GOLOG Bots [14]. To access Quake
one can use Quakebot [18]. FlexBot [17] is used to access Half-Life
and Shadow Door [13] is used for Neverwinter Nights. These
provide interfaces for specific game engines. Other projects are
attempting to provide common interfaces to game engines such as
the initiative by International Game Developers Association (IGDA)
for world interfacing [21] and OASIS [3]. Interfaces may have more
success in the serious games community rather than a fast evolving
games industry.

The third area is the standards and file-based formats such as
VRML/X3D2. These still lack the maturity needed for game
development. For instance VRML lacks the rendering capability
required. It also suffers from speed and security issues [15].

The fourth area is the frameworks or protocols that aid
interoperability between different simulations like the High Level
Architecture (HLA) [23] and Java Adaptive Dynamic Environment
(JADE) [22]. Despite the fact that this category focuses more on the
interoperability between simulations and less on how the game is
linked to the simulation it is mentioned here to illustrate that
portability exists at different levels. HLA for instance promotes it at
the simulation and object level and JADE promotes interoperability
at the functionality level. HLA identified the simulation functionality
that are generally required across all systems and thus should not
only be part of a single simulation system but available for others. To
achieve this it moved the general simulation functionality from the
simulation system to the HLA infrastructure and thus made them
accessible to other simulation systems [24]. An example of the
functionality provided is object management which is used to share

2 http://www.web3d.org/x3d/ (accessed 5/5/2007).

Engine A

Engine B

Game State

Object Model

Game Logic

G-Factor

User Input

Graphics

Network

Engine Core
Sound

Physics

Logging

Scripting

AI

GUI System

Game State Object Model Game Logic

Game Specific

• Reduces the dependency on a single game
engine by making the G-factor portable.

• The speed overhead of using software
interfaces became acceptable.

• The increase in development cost
forced code reuse which resulted in
decoupling the game from the game
engine.

• Games are too dependent on the
game engine.

Issues:

• Performance & Implementation overheads.
Issues:

• Complex game logic which required specialized
components.

• Encourages more game engine usage as an engine’s potential
discontinuation is not a major issue.

Figure 1: Game development evolution.

object instances between different simulations. JADE was designed
to address the monolithic nature of current Virtual Environment
(VE) systems. Oliveira et al [24] argue that in current VE systems it
is not possible to replace or increment the necessary functionality.
JADE proposes to host Modules without the concern for their
functionality which is the responsibility of the VE developer. A
Module can encapsulate an entire system or a block of code and thus
can be reused by others. These frameworks and protocols require the
projects to comply with their infrastructure to be able to interoperate
with other systems. The other challenge facing them is to create a
generalizable infrastructure to support any kind of environment [16].

In a survey [7] of 30 projects that have used game engines we found
that AI architectures and interfaces were used by 30% of the projects
surveyed.

3. A NEW ARCHITECTURE FOR G-
FACTOR PORTABILITY
This section contrasts a typical game development approach to the
game development approach proposed in this work. Section 4.1
describes what is consider a typical development approach through
the development of a sample game and highlights the dependencies
associated with this approach. Section 4.2 then proposes a new
approach to address these dependencies and describes an architecture
called game space architecture (GSA) which has been implemented
to validate this approach.

Table 1: Comparing a typical game development approach to GSA’s approach.

Step Typical Approach GSA’s Approach

• Create the decorative objects in the game engine. 1. Create the level
data.

 • Create the game objects using the
world builder or TorqueScript.

• Create the game objects using the world builder in the game
engine and give them a unique ID which identifies these objects in
the game space as well. Load these objects using TorqueScript.

• Create the game objects in the game space with the same unique
ID using Jython.

2. Create the GUI. • Use the game engine interface builder or TorqueScript to create the interface. The behaviour is set as part of
the game logic (step 4).

3. Create the object
model.

• Use TorqueScript to extend the objects
or create new ones.

• Create the object models for the game objects that require
representation in the game engine and the game space.

• Create the other game objects models in game space.
4. Create the game

logic.
• Use TorqueScript to set the behaviour
in the game engine.

• Use Jython or Java to create the logic in the game space.

5. Create the adapter. • Send the updates from the game engine to the game space.

• Create the adapter which translates between the game engine
and the game space.

Logic Model State

Hardware

Software

Software & Hardware Portability

Engine A

Logic Model State

Engine B

Middleware Portability (AI, physics, etc)

Assets Portability (3D models, texture, sound, etc)

Engine A Engine B

Logic Model State

G-factor Portability

Current Portability in Game Engines Next: G-factor Portability

Figure 2: Portability in game engines.

3.1 A Typical Approach to Game Development
We will use a game we call ‘Moody NPCs’ to illustrate the typical
approach to game development. The game consists of a number of
non-player characters (NPCs) that react to a player based on their
mood. The player can carry out actions such as greeting or swearing.
Each NPC reacts to the action based on his mood which is governed
by two variables: cowardness/courage and forgiveness/punishment.
The game allows the user to navigate the level and click on an NPC
which reveals its current mood and the actions available. The player
can adjust the mood variables and try out different actions. The
Torque game engine is used to demonstrate how the game is
developed. The typical game development approach can be grouped
into four main steps as shown in the typical approach column in
Table 1.

To create the game level data Torque engine provides a level editor
called World Editor. The level can also be created using other ways
such as: scripting, API, configuration files, etc. The game level data
contains the terrain of the environment and the decorative objects
(e.g. houses, trees, etc). These objects can be exported from 3D
modeling tools (e.g. 3D Studio Max) to Torque’s format. The level
also contains location markers for the game objects (e.g. NPCs and
player). Scripting is used to create the other game objects (e.g.
Reaction, Action, and Interaction) as shown in Figure 3c. This
approach for creating the game level data is very common amongst
game engines and as the surveys [7] showed 84% of the engines
surveyed provide editors to create the game level.

Figure 4 shows the graphical user interface which has mood
variables sliders on the top left corner of the screen and actions
controller on the bottom left corner of the screen. The player can use
the keyboard to navigate around and the mouse to select a NPC
which reveals its mood variables and the actions. Torque has a GUI
Editor to set most interface controllers. As with the game level data
the interface can be created by other means such as scripting, and
configuration files.

Figure 4: The interface created using GUI builder.

//Level Data: Add action and reaction game objects
createAction("40","action1","bad","You are an idiot!","looknw");
createAction("41","action2","good","Hi there!","celwave");
createReaction("80","reaction1","40","bad","No you are the
idiot!","looknw");

//Object Model: Create the Action object
function createAction(%ID,%Name,%Rate,%Message,%Gesture)
{
 %action = new SimObject()
 {
 ID=%ID;
 Name=%Name;
 Rate=%Rate;
 Message=%Message;
 Gesture=%Gesture;
 };
 $actionsArray.add(%action);
}

//Game Logic
function
calculateEmotionOutput(%actionType,%forgiveness,%punishment,
%cowardness,%courageness)
 {
 %actionWeight=0;
 if(%actionType$="verybad") {
 %actionWeight=-1;}
 else if(%actionType$="bad") {
 %actionWeight=-0.5;}
 …

Figure 3: Developing Moody NPCs using a standard game development approach.

(a)

(c)

(b)

(d)

The third step is to create the object model to hold the structure for
the game objects. The object model consists of five classes (see
Figure 3a): Player, NPC, Action, Reaction, and Interaction. Torque
has a default object model for the player and the AI player. These
can be extended to add the properties that are specific to the game
(i.e. mood variables to NPC). The extension and the creation of the

other classes can be created using a static object model using either
C++ or TorqueScript. The other game object models are created
using scripting (see Figure 3b for an example). The final step is to
create the game logic which controls how the NPC reacts to the
player actions (see Figure 3d for an example).

Communication between the game engine and the game space

1 6

...
2

3

 "Gears of War”
Gameplay Code

~250,000 lines C++, script code

Software Dependencies [26]

Unreal Engine 3
Middleware Game Engine
~250,000 lines C++ code

 OpenAL
 Audio

 Ogg
 Vorbis
 Music
Codec

 DirectX
Graphics ...

Game Space

• Holds the G-factor elements.

• Services the game to engines.

• Uses a dynamic object model.

Unreal
Engine

Torque
Engine ...

Games are too
dependent on the
underlying software
(i.e. game engine).

Problem Solution

 M
o

d
el

C
o

n
tro

ller
V

iew

1. Updates are received from the game engine.
2. The adapter uses the scripts mapping table to convert the message to a

Jython script.
3. Game state is updated.
4. When a modification is done in the game state the adapter is notified.
5. If the object is of class interest then the adapter converts it to a game

engine script.
6. Script is sent to the game engine.

Torque
Adapter

Unreal
Adapter

4

5

• Recreate the game objects.

• Recreate the object model.

• Rewrite the game logic in the new engine’s language.

Scripts Mapping (Game Engine � Game Space)

Scripts Mapping (Game Space � Game Engine)

 Message Jython/Java

Scenario.setPropertyValue(Instance, Property, Values, …) 2

 Attribute Engine Script

• Game objects in the game space remain intact, but the
ones in the game engine need to be created again.

• Object model in the game space remain intact, but the
ones in the game engine need to be created again.

• Game logic is not affected.

• Link the game space to the new engine (i.e. adapter).

NPCName.animate(Gesture) Interaction: ReactionAttribute

Adapter

Scripts Messages

Scripts
& API

74% of the engines &
86.7% of the projects
surveyed used data-
driven approaches but
games remain tied to
the engine.

83.3% of the projects
surveyed used the
engines’ specific object
models and 76.7% used
engines’ scripting
languages.

Reduce the dependencies
by allowing the G-factor
elements to exist
independently of the game
engine.

Use a variant of MVC for
the separation and on-the-fly
scripting to link back to the
engine to maintain
accessibility to the engine at
scripting level.

Porting the G-factor to another engine Porting the G-factor to another engine

Figure 5: GSA overview.

V
arian

t o
f M

V
C

 P
attern

Scenario.addInstance(“NPC”,
“ID,Name,Forgiveness,Punish
ment,Voice”,
“1,Kork1,0,0,1”);

new Sun() {
 azimuth = "0";
 elevation = "35";
 color = "0.60 0.60 0.60 1.0";
 ambient = "0.40 0.40 0.40 1.0";
direction = "0.57735 0.57735 -
0.57735";
 scale = "1 1 1";
 position = "0 0 0";
 rotation = "1 0 0 0";
 locked = "true";};

while ((%targetObject = containerSearchNext()) != 0)
{
 if (%targetobject.getDataBlock().getName() $= "AIPlayerMarker")
 {
 %i++;
 %player = AIPlayer::spawnAtMarker("Kork" @ %i, %targetobject);
 %targetobject.sethidden(true);
 }
}

Decorative objects

Game objects

TorqueScript generated

TorqueScript to
load game objects.

Game Space Game Engine

Jython
Game objects

Figure 6: Creating the level data using GSA.

Action, Reaction, and interaction.

Scenario.addInstance(“NPC”,
“ID,Name,Forgiveness,Punishment,
Voice”, “1,Kork1,0,0,1”);

Game objects

Jython to create the
players and NPCs.

3.2 GSA’s Approach
Figure 5 illustrates the software dependencies problem the GSA is
aiming to tackle. The example of dependencies is highlighted by the
development of ‘Gears of War’ which is dependent on Unreal
Engine 3 and the underlying software [26]. This is similar to the
dependency the Moody NPCs game suffers from. Furthermore it is
similar to the dependencies exhibited by the projects we surveyed
[7].

GSA’s objective is to reduce the dependencies by adopting a service-
oriented design philosophy which enables the G-factor to exist
independently of the game engine. The service-oriented approach has
proved its practicality for achieving different types of portability
such as platforms and languages [12]. The novel design approach
employed in GSA combines a variant of the model-view-controller
(MVC) pattern to separate the G-factor (i.e. model) from the game
engine (i.e. view) with on-the-fly scripting to enable communication
through an adapter (i.e. controller). The use of a variant of MVC
rather than the normal MVC avoids a known liability which tight
couples the view to the model [8]. The use of on-the-fly scripting is
used to maintain the attractive attributes associated with a typical
game development which uses data-driven mechanisms to modify the
G-factor. Most notably modifiability is upheld in a typical game
development approach using scripting which our surveys found to be
very popular with game engines and projects that use game engines.
To maintain this level of modifiability (i.e. scripting level access) to
the game engine and the game space, GSA uses on-the-fly scripting
to communicate with both via the adapter. For example a
communication may begin with the game engine sending the updates
to the adapter (step 1 in the communication protocol shown in Figure

5). The adapter converts them into scripts or direct API calls (step 2)
which are then used to update the game space (step 3). When the
game space needs to communicate with the game engine it notifies
the adapter of the changes that need to be communicated (step 4).
The adapter formats these into the engine’s scripting language (step
5) and sends them to the engine to be executed (step 6). The
separation and the communication mechanism allow the G-factor to
exist independently of the game engine. The effect this has on
portability means that when migrating to a new engine the elements
in the game space (i.e. the game state, object model, and game logic)
can stay intact. Contrasting this to migrating a game developed using
a typical game development approach which often require all three to
be created again shows the extent of the effort saved.

As was shown in Table 1 the first difference between this approach
and the typical game development approach is the creation of the
game objects which is split over the game engine and the game space
due to the two types of game objects (see Figure 6). The first type are
the game objects that have to have representations inside the game
engine to provide visual representations such as the Player and the
NPCs needed for the Moody NPCs game. These require real-time
processing in the game engine and it is impractical to communicate
every frame from the game space to the game engine. Therefore these
objects have to be created in the game engine as well as the game
space and only updates are communicated. The second type of the
game objects are the ones that do not have representations inside the
game engine such as the Action, Interaction, and Reaction objects.
These objects can be created in the game space only. The object
model creation is similarly split over the game engine and the game
space (see Figure 7).

The second difference is creating the game logic in the game space
rather than the game engine. The third difference is creating the
adapter which handles the communication between the game space
and the game engine.

4. EVALUATION AND DISCUSSION
To evaluate the architecture’s ability to make the G-factor portable
while maintaining the quality attributes of the typical game
development (i.e. modifiability and performance) we conducted two
types of evaluations: ad-hoc [4] and structured [5]. The ad-hoc
evaluation showed that the same G-factor can be serviced to two
different engines. The structured evaluation found the following
issues associated with GSA:

• Performance is affected by the separation decisions made (MVC,
scripting, and messaging) to achieve portability. Further
performance tests on a small game showed that the average game
space’s CPU and memory overheads reported are: 1.51% and
16.49MB respectively. The game engine runs at almost the same
CPU speed in both approaches.

• There is a danger if the message load increases that the game
space becomes the bottleneck in the architecture. Further tests
showed that the frames per second (FPS) reduces by 11.6% when
using GSA’s approach compared with the typical approach for a
throughput of 55.49 messages per second.

• The data integrity across the different game states is at risk. Initial
tests revealed no problems, but further tests are required before this
can be established with certainty.

When contrasting the two development approaches it is obvious that
the GSA approach requires extra work. Therefore, the choice
between the two can be dependent on the project size. If the project
is a prototype and if rewriting the game is not an issue then the
typical development approach is more suitable for rapid prototyping.
However if that is not the case, then the GSA development approach
presents a better option due to combining the portability attribute
with the modular design principle. This means that the need for
portable G-factor can be considered as a whole or as a part. Projects
that require the whole G-factor to be portable can adopt the whole
architecture. But projects that are only capable of investing in part of

the G-factor to be portable can choose to do so. Making only part of
the G-factor portable may be the only option available for projects
that choose an engine that does not provide some of the capabilities
required by the architectural decisions. For instance the survey of the
projects [7] that use game engines found that 51% of the projects
chose Unreal engine for a variety of reasons despite the fact that it
does not support on-the-fly scripting.

5. CONCLUSIONS
This work has examined portability in game engines and found three
elements that are still lagging behind other portabilities which are
object model, game logic, and game state which form the game’s
brain. The reasons behind their over dependencies on a game engine
were demonstrated using a sample game development. The same
sample game development was then contrasted with the GSA’s
approach to show how the migration process can be reduced. The
effectiveness of this approach has been evaluated and the remaining
challenges described. We have used this approach to develop a
serious game which was used to train traffic accident investigators in
Dubai police [6].

Dounis [11] predicts that gameplay is going to be the distinguishing
factor between future games. This will generally mean an increase in
the game size. Combined with the increased number of commercial
licensees of game engines and the interest engines are receiving from
outside the games industry (e.g. serious games community), this will
increase the need for portable games which can become a very strong
selling point due to two reasons. The first reason is because
developers can keep the visual aspects of their game up to date with
the latest game engine. The second reason is the security from having
to face ‘the RenderWare Problem’.

6. REFERENCES
[1] Adobbati, R., Marshall, A.N., Scholer, A., Tejada, S., Kaminka, G.,

Schaffer, S., Sollitto, C. Gamebots: A 3D Virtual World Test-Bed For
Multi-Agent Research. Proceedings of the International Conference for
Autonomous Agents, Workshop on Infrastructure for Agents, MAS,
and Scalable MAS, Montreal, Canada, (2001).

[2] Aha, D.W., Molineaux, M. Integrating learning in interactive gaming
simulators. Challenges of Game AI: Proceedings of the AAAI'04

function onPunishmentChange(%this)
{
 for (%c = 0; %c<MissionCleanup.getCount(); %c++)
 {
 %obj = MissionCleanup.getObject(%c);
 if ((%obj.getClassName() $= "AIPlayer")&&(%obj.selected==1))
 {
 %obj.punishment=guiPunishment.getValue();
 }
 }
}

Game Space Game Engine

TorqueScript
Object models for
Player and NPCs.

Jython/Java

Object models for
Action, Reaction,
and Interaction.

Figure 7: Creating the object models using GSA.

Object models for
Player and NPCs.

Object models
stored in a
database.

Workshop (Technical Report WS-04-04). San Jose, CA: AAAI Press,
(2004).

[3] Berndt, C.; I.Watson; and H.Guesgen. OASIS: An Open AI Standard
Interface Specification to Support Reasoning, Representation and
Learning in Computer Games. IJCAI-05 Workshop on Reasoning,
Representation, and Learning in Computer Games. 31-July 2005,
Edinburgh, 19-24.

[4] BinSubaih A., Maddock S. and Romano D.M. Game Logic Portability.
ACM SIGCHI International Conference on Advances in Computer
Entertainment Technology ACE 2005, Computer Games Technology
session, June 15-17th, Valencia, Spain, pp. 458-461, ISBN 1-59593-
110-4.

[5] BinSubaih A., Maddock S. Using ATAM to Evaluate a Game-based
Architecture. Workshop on Architecture-Centric Evolution (ACE
2006). Hosted at the 20th European Conference on Object-Oriented
Programming ECOOP 2006 July 3-7, 2006, Nantes, France.

[6] BinSubaih A., Maddock S., Romano D.M. A Serious Game for Traffic
Accident Investigators. Special Issue of International Journal of
Interactive Technology and Smart Education on "Computer Game-
based Learning."

[7] BinSubaih, A., Maddock, S., Romano, D. (2007). A Survey of ‘Game’
Portability. Department of Computer Science Technical Report CS-07-
05, 2007, University of Sheffield.

[8] Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M.
Pattern-Oriented Software Architecture: A System of Patterns. Volume
1, (1996), John Wiley and Sons, ISBN: 0471958697

[9] Carless, S. (2007) Rise of the Game Engine. Game Developer, April,
2007, pp.2.

[10] Coyle, D. and Matthews, M. Personal Investigator: a Therapeutic 3D
Game for Teenagers. CHI2004 Vienna 25-29 April 2004. Presented at
the Social Learning Through Gaming Workshop.

[11] Dounis, E. The Great Debate: Gameplay vs. Graphics, September 7th,
2006, http://www.gamersmark.com/articles/205/

[12] Erl,T. Service-Oriented Architecture: Concepts, Technology, and
Design. ISBN: 0131858580 Publisher: Prentice Hall 8/2/2005

[13] Hussain, T.S. and Vidaver, G. Flexible and purposeful NPC behaviors
using real-time genetic control. Proceedings of the 2006 World
Congress on Computational Intelligence, July 16-20, Vancouver, BC.

[14] Jacobs, S., Ferrein, A. and Lakemeyer, G. Unreal Golog Bots. In
IJCAI'05 WS on Reasoning, Representation, and Learning in
Computer Games, 31-July 2005, Edinburgh, 19-24.

[15] Jankovic, L. Games Development in VRML. Virtual Reality 2000, 5.
pp. 195-203.

[16] Kapolka, A. The Extensible Run-Time Infrastructure (XRTI): An
Emerging Middleware Platform for Interoperable Networked Virtual
Environments. Proceedings of the Lake Tahoe Workshop on
Collaborative Virtual Reality and Visualization, October 2003.

[17] Khoo, A., Dunham, G., Trienens, N., Sood, S. Efficient, Realistic NPC
Control Systems using Behavior-Based Techniques. Proceedings of the
AAAI 2002 Spring Symposium Series: Artificial Intelligence and
Interactive Entertainment, Menlo Park, CA.

[18] Laird, J. It Knows What You’re Going To Do : Adding Anticipation to
a Quakebot. Agents, 2001, pp. 385-392

[19] Laird, J.E., Assanie, M., Bachelor, B., Benninghoff, N., Enam, S.,
Jones, B., Kerfoot, A., Lauver, C., Magerko, B., Sheiman, J. Stokes, D.
Wallace, S. A Testbed for Developing Intelligent Synthetic Characters.
In Artificial Intelligence and Interactive Entertainment: Papers from
the 2002 AAAI Spring Symposium, Menlo Park, CA (2002).

[20] Lewis, M. and Jacobson, J. Game Engines in Scientific Research.
Communications of the Association for Computing Machinery
(CACM), NY: ACM 45(1), 2002.

[21] Nareyek, A., Combs, N., Karlsson, B., Mesdaghi, S., Wilson, I. The
2005 Report of the IGDA's Artificial Intelligence Interface Standards
Committee. http://www.igda.org/ai/report-2005/report-2005.html.
(accessed 5/5/2007)

[22] Oliveira, M., Crowcroft, J., Slater, M. An innovative design approach to
build virtual environment systems. Proceedings of the workshop on
Virtual environments 2003, ACM International Conference Proceeding
Series; Vol. 39, Zurich, Switzerland Pages: 143 – 151, (2003) ISBN:1-
58113-686-2.

[23] Smith, R. Essential techniques for military modeling and simulation.
Proceedings of the 30th conference on Winter Simulation, (1998), 805
– 812, ISBN:0-7803-5134-7

[24] Smith, R. D. Strategic directions for distributed simulation. Simulation
2000 Series, 2, 1-9.

[25] Sweeney T. The Next Mainstream Programming Language: A Game
Developer's Perspective. January 11-13, 2006 The 33rd Annual ACM
SIGPLAN - SIGACT Symposium on Principles of Programming
Languages Charleston, South Carolina.
www.cs.princeton.edu/~dpw/popl/06/Tim-POPL.ppt (accessed
5/5/2007)

[26] Vilhjalmsson, H., Samtani, and P. MissionEngine: Multi-system
integration using Python in the Tactical Language Project. PyCon 2005,
March 23-25, Washington, D.C. (2005).

[27] Wang, J., Lewis, M., and Gennari J. Emerging areas: urban operations
and UCAVs: a game engine based simulation of the NIST urban search
and rescue arenas. 35th Winter Simulation Conference, (2003), New
Orleans, Louisiana, 1039-1045.

[28] Young, R.M., Riedl, M.O., Branly, M., Jhala, A., Martin, R.J., and
Saretto, C.J. An architecture for integrating plan-based behavior
generation with interactive game environments. Journal of Game
Development, 1(1), 51-70, (2004).

