G-factor Portability in Game Development Using Game Engines

Ahmed BinSubaih & Steve Maddock
Department of Computer Science, University of Sheffield
Regent Court, 211 Portobello Street, Sheffield, U.K. +44(0) 114 2221800
{a.binsubaih, s.maddock}@dcs.shef.ac.uk

ABSTRACT

Many games today are developed using game engifibs
development approach supports various aspects redibplity. For
example games can be ported from one platform tthen and
assets can be imported into different engines. gdreability aspect
that still remains underdeveloped and requirehésrexamination is
the complexity involved in porting a ‘game’ betwegame engines.
In this work the game elements that we aim to nzdeweable are:
game logic, object model, and game state whictesgmt the game’s
brain. These are referred to as the game factoiG(actor). We
describe how a typical game development approaidly tise Torque
game engine makes the G-factor dependent on thieecagd we
contrast this with a new approach which enablead®sf portability
between engines.

Categories and Subject Descriptors
I.3.6 [Computer Graphics]: Three-Dimensional Graphics and
Realism.

General Terms
Design, Architecture, Experimentation.

Keywords
Game engine, Portability, Game development.

1. INTRODUCTION

The shift in game development from developing gafres scratch
to using game engines was first introduced by Qaakkmarked the
advent of the game-independent game engine develupapproach
[20]. In this approach the game engine became ¢Etiikection of

modules of simulation code that do not directlycifyethe game’s
behaviour (game logic) or game’s environment (ledala)” [27].

This makes the game engine reusable for (or pertad)l different
game projects. However this shift produces a gantéchw is

notoriously dependent on the game engine. For eleawipy can't a
player take his favourite game (say Unreal) ang laon Quake
engine or vice versa?

Hardware and software abstractions have facilitated ability to
play a game on different hardware and on diffecgrgrating systems
(in some cases with some modifications). Theseratigins have

Permission to make digital or hard copies of alpart of this work for
personal or classroom use is granted without feeiged that copies are
not made or distributed for profit or commercialadtage and that copies
bear this notice and the full citation on the fipsige. To copy otherwise,
or republish, to post on servers or to redistribiatdists, requires prior
specific permission and/or a fee.

CyberGames 2007, September 10-11, 2007, Manchester,

Copyright 2004 ACM 1-58113-000-0/00/0004...$5.00.

also facilitated the ability to use level data &sseich as 3D models,
sound, music, and texture across different gam@esagThis ability
should also be extended to allow for the gamefiteebe portable.
The goal of our work is to make the game engine&nbportable,
where the brain holds the game state and the ofijedel and uses
the game logic to control the game. We collectivedfer to these
three things as the G-factor. We see the portphufithe G-factor as
the next logical step in the evolution of game d@wment and
following Lewis and Jacobson’s terminology [20] wall it the
game-engines independent game development app(seehrigure
1).

A benefit of making the G-factor portable would teeencourage
more developers to make use of game engines, sirparticular
game engine’s future capability (or potential distimuation, as was
the fate of Adobe Atmosphere which was used for |éstent
Therapy — Personal Investigator [10]) would notéevorry as a
different game engine could easily be substitutéds problem has
recently been referred to as “the RenderWare Pnobj@] after the
acquisition of RenderWare engine by Electronic AE#\) and its
removal from the market. We see the issue of rewrithe G-factor
from scratch every time we migrate from one endmenother as
similar to the undesired practice of developing garfrom scratch
which was deemed unfeasible and resulted in therddef game
engines.

Section 2 describes the aspects of portabilityelation to game
engines and the techniques that have been triedidtoG-factor
portability. Section 3 demonstrates the issues thithtypical game
development approach through the development @hnapke game
which is then contrasted to the development ofséiree game using
the new approach which enables the G-factor todstabple. Section
4 describes the evaluations conducted and discuggestwo
development approaches. Finally section 5 presbhatsonclusions.

2. PORTABILITY AND G-FACTOR

Figure 2 illustrates the current aspects of politgbaddressed in
game engines. First, with hardware and softwareapdity the game
can be played across different platforms and operatystems by
employing hardware and software abstractions. Skcpartability
of assets means that 3D models, textures and saamdbe used
across different game engines. Third, middlewangapdity allows
for components to be used across game engines aadi and
physics.

The aspect of portability that requires furtheresgtigation is the G-
factor portability. Examining what has been done aid this
portability we found initiatives and projects whichn be grouped
into four areas: artificial intelligence (Al) art¢bctures, interfaces,
standards and file formats, and frameworks or pal

G-Factor

Engine A Game State
. Object Model
Engine B ﬁ
Game Logic

* Reduces the dependency on a single game
engine by making the G-factor portable.

* Encourages more game engine usage as an engite’giab
discontinuation is not a major issue.

Issues:

« Performance & Implementation overheads.

Game Engines-Independent Game

Game Specific

ol Object Model Game Logic » The increase in development cost
; forced code reuse which resulted in
Engine Core decoupling the game from the game
User Input Sound Scripting engine.
. . » The speed overhead of using software
Graphics Physics Al interfaces became acceptable.
. » Complex game logic which required specialized
Network Logging GUI System components.
Issues:
* Games are too dependent on the
game engine.
Game-Independent Game Engines

Figure 1: Game development evolution.

The Al architectures use custom made or off-théfst@nponents
such as the Al Middleware (e.g. SOAR [19], Al.Imptfa etc). The
need for using a component to handle the Al emebgeduse of the
increase in Al complexity and the increase in thecpssing time
allocated for it. This made reinventing the Al whegery time a
game is developed a redundant process. From assefemgineering
perspective this practice is encouraged as it ptesnabove all
reusability. The practice of specifying the gamengsthe Al
middleware format is not what we eventually wamicsi this merely
moves it from one proprietary format (game engiriesinother (Al
middleware). Nevertheless it is a step in the rigitection of
moving the game away from the game engine's fornidte
architectures that promote portability more thamees are those that
allow complete removal of the game from the gangirensuch as
TIELT [2]. Others that only partially remove thenga are obviously
less portable such as Mimesis [28] and MissionEa{@6]. The Al
architectures promote the use of their own proaneformat which
is similar to what game engines do. Furthermoregssiing a
monolithic architecture as a complete entity is wbiat is needed.
Instead initiatives must examine the causes of €dactor
portability problem and provide practical solutiotisat can be
employed even if their architecture or middlewaraat chosen.

The interfaces aim to provide access to externagnpams and in
game engines we found two types of interfaces: iipeand

common. These provide access to the G-factor elesnerovercome
the difficulty raised by the lack of interoperatyili A number of
interfaces have been developed to provide accespddfic game
engines. For example the interfaces that have beed to access

! http://www.biographictech.com (accessed 5/5/2007).

Unreal are Gamebots [1] and GOLOG Bots [14]. ToeascQuake
one can use Quakebot [18]. FlexBot [17] is usedciess Half-Life
and Shadow Door [13] is used for Neverwinter Nighthese
provide interfaces for specific game engines. Otpmjects are
attempting to provide common interfaces to gamenasgsuch as
the initiative by International Game Developers dation (IGDA)
for world interfacing [21] and OASIS [3]. Interfacenay have more
success in the serious games community ratherahfast evolving
games industry.

The third area is the standards and file-based &tansuch as
VRML/X3D2 These still lack the maturity needed for game
development. For instance VRML lacks the renderdagability
required. It also suffers from speed and secusiyés [15].

The fourth area is the frameworks or protocols tret
interoperability between different simulations likee High Level
Architecture (HLA) [23] and Java Adaptive DynamioEronment
(JADE) [22]. Despite the fact that this categorguses more on the
interoperability between simulations and less om libe game is
linked to the simulation it is mentioned here ttudirate that
portability exists at different levels. HLA for itssice promotes it at
the simulation and object level and JADE promotesroperability
at the functionality level. HLA identified the siation functionality
that are generally required across all systemsthad should not
only be part of a single simulation system but laéé for others. To
achieve this it moved the general simulation fior@iity from the
simulation system to the HLA infrastructure andshuade them
accessible to other simulation systems [24]. Anngla of the
functionality provided is object management whistused to share

2 http://www.web3d.org/x3d/ (accessed 5/5/2007).

Current Portability in Game Engines

Assets Portability (3D models, texture, sound,

‘ Next: G-factor Portability

A

Middleware Portability (Al, physics, e!

v

A

v

Logic Logic

A
v

Software & Hardwar Portability

Software

Hardwart

Figure 2: Portability in game engines.

object instances between different simulations. HAkas designed
to address the monolithic nature of current Virt&advironment
(VE) systems. Oliveira et al [24] argue that inreat VE systems it
is not possible to replace or increment the necedsactionality.
JADE proposes to host Modules without the concern their
functionality which is the responsibility of the VEeveloper. A
Module can encapsulate an entire system or a ldbckde and thus
can be reused by others. These frameworks andgoteteequire the
projects to comply with their infrastructure to &lgle to interoperate
with other systems. The other challenge facing tlieno create a
generalizable infrastructure to support any kinémfironment [16].

In a survey [7] of 30 projects that have used gangnes we found
that Al architectures and interfaces were usedd9s 8f the projects
surveyed.

3. ANEW ARCHITECTURE FOR G-
FACTOR PORTABILITY

This section contrasts a typical game developmpptaach to the
game development approach proposed in this worktidde 4.1

describes what is consider a typical developmeptageh through
the development of a sample game and highlightslépendencies
associated with this approach. Section 4.2 therpgses a new
approach to address these dependencies and desamilaechitecture
called game space architecture (GSA) which has beplemented
to validate this approach.

Table 1: Comparing a typical game development appixh to GSA’s approach.

Step Typical Approach

GSA'’s Approach

1. Create the level

* Create the decorative objects in the game engine.

data.

world builder or TorqueScript.

* Create the game objects using f

h

e Create the game objects using the world buildethexgame
engine and give them a unique ID which identiftesse objects in
the game space as well. Load these objects usirgu&8cript.

* Create the game objects in the game space witkatine unique
ID using Jython.

2. Create the GUI. e Use the game engine interface builder or TorqueSticreate the interface. The behaviour is seiaatsof
the game logic (step 4).
3. Create the object * Use TorqueScript to extend the objects Create the object models for the game objects tbatire
model. or create new ones. representation in the game engine and the game.spac
* Create the other game objects models in game space.
4. Crgate the game * Use TorqueScript to set the behavigur Use Jython or Java to create the logic in the gspaee.
logic. in the game engine.
5. Create the adapter. * Send the updates from the game engine to the gaace.s

* Create the adapter which translates between the gamgine
and the game space.

RootObject
HD
+HName

A

[[[]

Reaction Action Interaction Player
+ActionAttribute Hvlessage +Action
HWlessage +AnimationGesture +Reaction
+AnimationGesture +Actionlnitiator
+ActionReceiver
NPC

+Cowardness_Courage
+orgiveness_Punishment

(@)

//Level Data: Add action and reaction game objects
createAction("40","action1","bad","You are an idigtiooknw");
createAction("41","action2","good","Hi there!","aghve");
createReaction("80","reaction1","40","bad","No yare the
idiot!","looknw");

(©

//Object Model: Create the Action object
function createAction(%ID,%Name,%Rate,%Message, tEes

{

%action = new SimObject()
{
ID=%ID;
Name=%Name;
Rate=%Rate;
Message=%Message;
Gesture=%Gesture;
8
$actionsArray.add(%action);

}

_ (b)
/IGame Logic
function
calculateEmotionOutput(%actionType,%forgiveness, Bighument,
%cowardness,%courageness)

%actionWeight=0;

if(%eactionType$="verybad") {
%actionWeight=-1;}

else if(%actionType$="bad") {
%actionWeight=-0.5;}

(d)

Figure 3: Developing Moody NPCs using a standard gae development approach.

3.1 A Typical Approach to Game Development
We will use a game we call ‘Moody NPCs'’ to illugeahe typical
approach to game development. The game consisisnofmber of
non-player characters (NPCs) that react to a plagsed on their
mood. The player can carry out actions such adiggeer swearing.
Each NPC reacts to the action based on his moochwhigoverned
by two variables: cowardness/courage and forgiv@pasishment.
The game allows the user to navigate the levelddiok on an NPC
which reveals its current mood and the actionslalvi. The player
can adjust the mood variables and try out differactions. The
Torque game engine is used to demonstrate how #me gis
developed. The typical game development approacstbeagrouped
into four main steps as shown in the typical apghoeolumn in
Table 1.

To create the game level data Torque engine prs\adievel editor
called World Editor. The level can also be creatsihg other ways

such as: scripting, API, configuration files, eftie game level data

contains the terrain of the environment and theodgive objects
(e.g. houses, trees, etc). These objects can bertedpfrom 3D
modeling tools (e.g. 3D Studio Max) to Torque’snfiat. The level
also contains location markers for the game objéxts NPCs and
player). Scripting is used to create the other gabgcts (e.g.
Reaction, Action, and Interaction) as shown in Fég3c. This
approach for creating the game level data is verymaon amongst
game engines and as the surveys [7] showed 84%eotngines
surveyed provide editors to create the game level.

Figure 4 shows the graphical user interface whias Imood

variables sliders on the top left corner of theesor and actions
controller on the bottom left corner of the screBne player can use
the keyboard to navigate around and the mouse lextsa NPC

which reveals its mood variables and the actiomsqde has a GUI
Editor to set most interface controllers. As wille tgame level data
the interface can be created by other means sudergging, and

configuration files.

Figure 4: The interface created using GUI builder.

The third step is to create the object model tal tibé structure for
the game objects. The object model consists of @lasses (see
Figure 3a): Player, NPC, Action, Reaction, and rat#on. Torque
has a default object model for the player and theplayer. These
can be extended to add the properties that ardfispiecthe game

(i.e. mood variables to NPC). The extension andctieation of the

other classes can be created using a static abjedel using either
C++ or TorqueScript. The other game object modets aeated
using scripting (see Figure 3b for an example). fihal step is to
create the game logic which controls how the NP&ctseto the
player actions (see Figure 3d for an example).

Problem

Solution

Games are too

dependent on the
underlying software
(i.e. game engine).

74% of the engines &
86.7% of the projects

surveyed used data-

driven approaches bu

games remain
the engine.

tied to

83.3% of the projects
surveyed used the

engines’ specific obje
models and 76.7% us
engines’ scripting
languages.

)

Use a variant of MVC for
the separation and on-the-fl
scripting to link back to the
engine to maintain
accessibility to the engine af
scripting level.

Reduce the dependenci
by allowing the G-factor
elements to exist
independently of the ga
engine.

<

DirectX
Graphics

/

Software Dependencies [26]

"Gears of War”
Gameplay Code

~250,000 lines C++, script code

Unreal Engine 3

OpenAL
Audio i
Codec

Il

Middleware Game Engine
~250,000 lines C++ code

Ogg
Vorbis
Music

S

* Uses a dynamic object model. 5

Script g

& API ol e

2'~._ o k<

Unreal Bl Torque 2| <

Adapter 2: Adapter o | O

. o | I

) ; - =l

g

6 1 Script essag >
Unreal Torque <
Engine e Engine 2

Game Space

[OPON

* Holds the G-factor elements.
* Services the game to engines.

Porting the G-factor to another engine

Recreate the game objects.
Recreate the object model.
Rewrite the game logic in the new engine’s language

Porting the G-factor to another engine

* Game objects in the game space remain intacthleut
ones in the game engine need to be created again.

* Object model in the game space remain intact,Hmit t
ones in the game engine need to be created again.

* Game logic is not affected.
¢ Link the game space to the new engine (i.e. adapte

Communication between the game engine and the garspace

g b~ w

. The adapter uses the scripts mapping table to cotheemessage to a

Jython script.

. Game state is updated.

. When a modification is done in the game state tfapter is notified.

. If the object is of class interest then the adapbawverts it to a game
engine script.

. Script is sent to the game engine

. Updates are received from the game engine.

Adapter

Scripts Mapping (Game Engir2 Game Space)

Message

Jython/Jay

a

[2] Scenario.setPropertyValue(Instance, Property, \éalug |

Attribute

Engine Scrig

Scripts Mapping (Game Space Game Engine)

t

[Interaction: ReactionAttributd NPCName. ammate(Gesture)

Figure 5: GSA overview.

3.2 GSA’s Approach

Figure 5 illustrates the software dependencieslpnolihe GSA is
aiming to tackle. The example of dependenciesdhlighted by the
development of ‘Gears of War’ which is dependent Wnreal
Engine 3 and the underlying software [26]. Thissisilar to the
dependency the Moody NPCs game suffers from. Fumthre it is
similar to the dependencies exhibited by the ptsjeee surveyed
[7].

GSA's objective is to reduce the dependencies bytg a service-
oriented design philosophy which enables the Gafatb exist
independently of the game engine. The service-taikapproach has
proved its practicality for achieving different g of portability
such as platforms and languages [12]. The novebdespproach
employed in GSA combines a variant of the modelwientroller
(MVC) pattern to separate the G-factor (i.e. modedjn the game
engine (i.e. view) with on-the-fly scripting to dsl@ communication
through an adapter (i.e. controller). The use aofadant of MVC
rather than the normal MVC avoids a known liabiltjich tight
couples the view to the model [8]. The use of ceHti scripting is
used to maintain the attractive attributes assediatith a typical
game development which uses data-driven mechansmsedify the
G-factor. Most notably modifiability is upheld in tgpical game
development approach using scripting which our eysound to be
very popular with game engines and projects thatgasne engines.
To maintain this level of modifiability (i.e. sctipg level access) to
the game engine and the game space, GSA uses -fig-fueipting
to communicate with both via the adapter. For eXxeamp
communication may begin with the game engine sentfia updates
to the adapter (step 1 in the communication prdtsicown in Figure

Game Engine

Decorative object

v

i -

TorqueScrigt generated
new Sun() {
azimuth ="0";
elevation = "35";

TorqueScript to
load gamg objec

while ((%targetObject = containerSearchNext()) J= 0

5). The adapter converts them into scripts or tifdd calls (step 2)
which are then used to update the game space 3tafyhen the

game space needs to communicate with the gameeeitgiotifies

the adapter of the changes that need to be comatedigstep 4).
The adapter formats these into the engine’s sngptinguage (step
5) and sends them to the engine to be execute@ @teThe

separation and the communication mechanism all@nGHactor to

exist independently of the game engine. The effaid has on

portability means that when migrating to a new eaghe elements
in the game space (i.e. the game state, objectImena® game logic)
can stay intact. Contrasting this to migrating engaleveloped using
a typical game development approach which oftenireall three to

be created again shows the extent of the effodsav

As was shown in Table 1 the first difference betw#@s approach
and the typical game development approach is thation of the
game objects which is split over the game engirtkthe game space
due to the two types of game objects (see Figurét® first type are
the game objects that have to have representatiside the game
engine to provide visual representations such esPthyer and the
NPCs needed for the Moody NPCs game. These regeateime
processing in the game engine and it is impractwaommunicate
every frame from the game space to the game enfimrezefore these
objects have to be created in the game engine bhsasvthe game
space and only updates are communicated. The sdgpadf the
game objects are the ones that do not have repatisais inside the
game engine such as the Action, Interaction, anacf® objects.
These objects can be created in the game space Tmdy object
model creation is similarly split over the game iergand the game
space (see Figure 7).

Game Spac

Game objects

v

Game objects Jython

Game objects

Action, Reaction, and interaction.

Scenario.addInstance(“NPC”,
“ID,Name,Forgiveness,Punishment,
Voice”, “1,Kork1,0,0,1");

Jython to create the
players and NPCsi

Scenario.addInstance(“NPC”,

{
color ="0.60 0.60 0.60 1.0"; if (%targetobject.getDataBlock().getName() $= "RierMarker”) “ID,Name,Forgiveness,Punish

ambient = "0.40 0.40 0.40 1.0"{
direction = "0.57735 0.57735 - 0j++;

0.57735";

scale="111" %targetobject.sethidden(true);
position ="0 0 0% }

rotation ="100 0"; }

locked = "true";};

ment,Voice”,
“1,Kork1,0,0,1";

%player = AlPlayer::spawnAtMarker("Kork" @ %i, %tretobject);

Figure 6: Creating the level data using GSA.

Game Engine

Object models for_
Player and NPCs.

B
function onPunishmentChange(%this)

TorqueScript

for (%c = 0; %c<MissionCleanup.getCount(); %c++)

%o0bj = MissionCleanup.getObject(%c); |

Game Spac

Object models for
Player and NP(s. Jython/Java
Object models for

Action, Reaction,
and Interactior

if (Yoobj.getClassName() $="AlPlayer")&&(%obglected==1))

%o0bj.punishment=guiPunishment.getValue();
}
}
}

Object models
stored in a
database.

Figure 7: Creating the object models using GSA.

The second difference is creating the game logithégame space
rather than the game engine. The third differercereating the
adapter which handles the communication betweergédmee space
and the game engine.

4. EVALUATION AND DISCUSSION

To evaluate the architecture’s ability to make @wactor portable
while maintaining the quality attributes of the iggd game
development (i.e. modifiability and performance) eenducted two
types of evaluations: ad-hoc [4] and structured [Bhe ad-hoc
evaluation showed that the same G-factor can bécserto two
different engines. The structured evaluation fouhd following
issues associated with GSA:

* Performance is affected by the separation decisitede (MVC,
scripting, and messaging) to achieve portabilityurtirer
performance tests on a small game showed thatviiage game
space’s CPU and memory overheads reported are%ol.add
16.49MB respectively. The game engine runs at dlrtites same
CPU speed in both approaches.

* There is a danger if the message load increasestitbagame
space becomes the bottleneck in the architectunethér tests
showed that the frames per second (FPS) reducdd 696 when
using GSA’'s approach compared with the typical epph for a
throughput of 55.49 messages per second.

* The data integrity across the different game statasrisk. Initial
tests revealed no problems, but further testseayeired before this
can be established with certainty.

When contrasting the two development approachissolbvious that
the GSA approach requires extra work. Therefores dhoice

between the two can be dependent on the projeet Bithe project
is a prototype and if rewriting the game is notissue then the
typical development approach is more suitable dpid prototyping.

However if that is not the case, then the GSA dgwakent approach
presents a better option due to combining the piitta attribute

with the modular design principle. This means ttie¢ need for
portable G-factor can be considered as a whole @r @art. Projects
that require the whole G-factor to be portable adopt the whole
architecture. But projects that are only capablmedsting in part of

the G-factor to be portable can choose to do sd&ideonly part of

the G-factor portable may be the only option avdéafor projects

that choose an engine that does not provide sortfeeafapabilities
required by the architectural decisions. For instatihe survey of the
projects [7] that use game engines found that 51%e projects

chose Unreal engine for a variety of reasons despé fact that it
does not support on-the-fly scripting.

5. CONCLUSIONS

This work has examined portability in game engiaed found three
elements that are still lagging behind other pdlitegs which are

object model, game logic, and game state which fdrengame’s
brain. The reasons behind their over dependenciesgame engine
were demonstrated using a sample game developribat.same
sample game development was then contrasted wghGBA’s

approach to show how the migration process canetiaced. The
effectiveness of this approach has been evaluatédree remaining
challenges described. We have used this approaadftevelop a
serious game which was used to train traffic acttidevestigators in
Dubai police [6].

Dounis [11] predicts that gameplay is going to he distinguishing
factor between future games. This will generallyamen increase in
the game size. Combined with the increased numbeoramercial
licensees of game engines and the interest engire®ceiving from
outside the games industry (e.g. serious games coity}y this will
increase the need for portable games which camieovery strong
selling point due to two reasons. The first reassnbecause
developers can keep the visual aspects of theieggto date with
the latest game engine. The second reason is ¢hétgdrom having
to face ‘the RenderWare Problem’.

6. REFERENCES

[1] Adobbati, R., Marshall, A.N., Scholer, A., Tejadd, Kaminka, G.,
Schaffer, S., Sollitto, C. Gamebots: A 3D Virtuabkld Test-Bed For
Multi-Agent Research. Proceedings of the IntermaticConference for
Autonomous AgentsWorkshop on Infrastructure for Agents, MAS,
and Scalable MASVontreal, Canada, (2001).

[2] Aha, D.W., Molineaux, M. Integrating learning intémactive gaming
simulators. Challenges of Game Al: Proceedings of the AAAI'04

(3]

(5]

(6]

(7]

(8]

E)

Workshop(Technical Report WS-04-04). San Jose, CA: AAA¢<3
(2004).

Berndt, C.; .Watson; and H.Guesgen. OASIS: An Opérstandard

Interface Specification to Support Reasoning, Rsprgtion and

Learning in Computer Games$JCAI-05 Workshop on Reasoning,
Representation, and Learning in Computer Gamgs-July 2005,

Edinburgh, 19-24.

BinSubaih A., Maddock S. and Romano D.M. Game Lé&pctability.
ACM SIGCHI International Conference on AdvancesCiomputer
Entertainment Technology ACE 2005, Computer Gansehriology
session June 15-17th, Valencia, Spain, pp. 458-461, ISBBD593-
110-4.

BinSubaih A., Maddock S. Using ATAM to Evaluate are-based
Architecture. Workshop on Architecture-Centric Eu@n (ACE
2006). Hosted at th@0th European Conference on Object-Oriented
Programming ECOOP 2008uly 3-7, 2006, Nantes, France.

BinSubaih A., Maddock S., Romano D.M. A Serious @dor Traffic
Accident Investigators.Special Issue of International Journal of
Interactive Technology and Smart Education on "Cotap Game-
based Learning."

BinSubaih, A., Maddock, S., Romano, D. (200X)Survey of ‘Game’
Portability. Department of Computer Science Technical RepS8r0&
05, 2007, University of Sheffield.

Buschmann, F., Meunier, R., Rohnert, H., SommerRgd, Stal, M.
Pattern-Oriented Software Architecture: A SysterRaiterns Volume
1, (1996), John Wiley and Sons, ISBN: 0471958697

Carless, S. (2007) Rise of the Game Engame DeveloperApril,
2007, pp.2.

[10] Coyle, D. and Matthews, M. Personal Investigatoifherapeutic 3D

Game for Teenager€HI2004 Vienna 25-29 April 2004. Presented at
the Social Learning Through Gaming Workshop.

[11] Dounis, E. The Great Debate: Gameplay vs. GrapKieptember 7th,

2006, http://www.gamersmark.com/articles/205/

[12] ErI,T. Service-Oriented Architecture: Concepts, Technalognd

Design ISBN: 0131858580 Publisher: Prentice Hall 8/B20

[13] Hussain, T.S. and Vidaver, G. Flexible and purpgdssPC behaviors

using real-time genetic controProceedings of the 2006 World
Congress on Computational Intelligende)y 16-20, Vancouver, BC.

[14] Jacobs, S., Ferrein, A. and Lakemeyer, G. Unredbgs®ots. In

IJCAI'05 WS on Reasoning, Representation, and liegrnin
Computer GamesS1-July 2005, Edinburgh, 19-24.

[15] Jankovic, L. Games Development in VRML. Virtual Rga2000, 5.

pp. 195-203.

[16] Kapolka, A. The Extensible Run-Time InfrastructugRTI): An

Emerging Middleware Platform for Interoperable Netked Virtual

Environments. Proceedings of the Lake Tahoe Workshop on
Collaborative Virtual Reality and Visualizatip®ctober 2003.

[17] Khoo, A., Dunham, G., Trienens, N., Sood, S. Eiitj Realistic NPC
Control Systems using Behavior-Based TechnigBesceedings of the
AAAI 2002 Spring Symposium Series: Atrtificial ligeince and
Interactive EntertainmentMenlo Park, CA.

[18] Laird, J. It Knows What You're Going To Do : Addidmticipation to
a QuakebotAgents, 2001pp. 385-392

[19] Laird, J.E., Assanie, M., Bachelor, B., Benninghdff, Enam, S.,
Jones, B., Kerfoot, A., Lauver, C., Magerko, B.efaman, J. Stokes, D.
Wallace, S. A Testbed for Developing Intelligenn8etic Characters.
In Artificial Intelligence and Interactive Entertainent: Papers from
the 2002 AAAI Spring Symposiultenlo Park, CA (2002).

[20] Lewis, M. and Jacobson, J. Game Engines in Scienfesearch.
Communications of the Association for Computing Kiaery
(CACM), NY: ACM 45(1), 2002.

[21] Nareyek, A., Combs, N., Karlsson, B., Mesdaghi, \ilson, I. The
2005 Report of the IGDA's Artificial Intelligencentbrface Standards
Committee. http://www.igda.org/ai/report-2005/rep@@05.html.
(accessed 5/5/2007)

[22] Oliveira, M., Crowcroft, J., Slater, M. An innovegi design approach to
build virtual environment systemsProceedings of the workshop on
Virtual environments 2003ACM International Conference Proceeding
Series; Vol. 39, Zurich, Switzerland Pages: 143%%,12003) ISBN:1-
58113-686-2.

[23] smith, R. Essential techniques for military modgliand simulation.
Proceedings of the 30th conference on Winter Sitiana(1998), 805
— 812, ISBN:0-7803-5134-7

[24] Smith, R. D. Strategic directions for distributéchslation. Simulation
2000 Series, 2, 1-9.

[25] Sweeney T. The Next Mainstream Programming LanguAg&ame
Developer's Perspective. January 11-13, 2006 The 88nual ACM
SIGPLAN - SIGACT Symposium on Principles of Prograimg

Languages Charleston, South Carolina.
www.cs.princeton.edu/~dpw/popl/06/Tim-POPL.ppt Exsed
5/5/2007)

[26] Vilhjalmsson, H., Samtani, and P. MissionEngine: ItMsystem
integration using Python in the Tactical Languaggeet. PyCon 2005
March 23-25, Washington, D.C. (2005).

[27] wang, J., Lewis, M., and Gennari J. Emerging areesan operations
and UCAVs: a game engine based simulation of tf&TNirban search
and rescue arenas. 35th Winter Simulation Confere(2003), New
Orleans, Louisiana, 1039-1045.

[28] Young, R.M., Riedl, M.O., Branly, M., Jhala, A., Mia, R.J., and
Saretto, C.J. An architecture for integrating ptersed behavior
generation with interactive game environmenisurnal of Game
Developmentl(l), 51-70, (2004).

