

Game Portability Using a Service-Oriented Approach
Ahmed BinSubaih & Steve Maddock

Department of Computer Science, University of Sheffield
Regent Court, 211 Portobello Street, Sheffield, U.K. +44(0) 114 2221800

{a.binsubaih, s.maddock}@dcs.shef.ac.uk

ABSTRACT
Game assets are portable between games. The games themselves are,

however, dependent on the game engine they were developed on.

Middleware has attempted to address this by, for instance, separating

out the AI from the core game engine. Our work takes this further by

separating the 'game' from the game engine, and making it portable

between game engines. The game elements that we make portable are

the game logic, the object model and the game state, which represent

the game's brain, and which we collectively refer to as the game

factor, or G-factor. We achieve this using an architecture based

around a service-oriented approach. We present an overview of this

architecture and its use in developing games. The evaluation

demonstrates that the architecture does not affect performance

unduly, adds little development overhead, is scaleable, and supports

modifiability.

Keywords
Game engine, Portability, Game development, Evaluation.

1. INTRODUCTION
The shift in game development from developing games from scratch

to using game engines was first introduced by Quake and marked the

advent of the game-independent game engine development approach

[23]. In this approach, the game engine became "the collection of

modules of simulation code that do not directly specify the game's

behaviour (game logic) or game's environment (level data)" [26].

The game engine is thus reusable for (or portable to) different game

projects. However this shift produces a game that is dependent on

the game engine. For example, why can't a player take his favourite

game (say Unreal) and play it on Quake engine or Quake game on

Unreal engine?

Hardware and software abstractions have facilitated the ability to

play a game on different hardware and on different operating

systems. These abstractions have also facilitated the ability to use

data assets such as 3D models, sound, music, and texture across

different game engines. This ability should also be extended to allow

for the game itself to be portable. The goal of our work is to make

the game engine's brain portable, where the brain holds the game

state and the object model and uses the game logic to control the

game. We collectively refer to these three things as the G-factor.

We see the portability of the G-factor as the next logical step in the

evolution of game development and, following Lewis and Jacobson's

terminology [23], we call it the game-engines independent game

development approach. A benefit of making the G-factor portable

would be to encourage more developers to make use of game

engines, since a particular game engine's future capability (or

potential discontinuation, as was the fate of Adobe Atmosphere

which was used for Adolescent Therapy - Personal Investigator [14])

would not be a worry as a different game engine could easily be

substituted. This problem has recently been referred to as "the

RenderWare Problem" [11] after the acquisition of RenderWare

engine by Electronic Arts (EA) and its removal from the market. We

see the issue of rewriting the G-factor from scratch every time we

migrate from one engine to another as similar to the undesired

practice of developing games from scratch which was deemed

unfeasible and resulted in the advent of game engines.

As we noted earlier, portability is an issue that pervades all games

with regards to game assets. In addition, however, and related to our

work, are the moves towards addressing more aspects of portability.

Examples include artificial intelligence (AI) architectures and

interfaces [8]. AI architectures use custom made or off-the-shelf

components such as AI Middleware (e.g. SOAR [22] or

AI.Implant1). However, specifying the game using the AI

middleware format merely moves the game from one proprietary

format (game engines) to another (AI middleware). The work on

interfaces aims to facilitate access to game engines. For example,

Gamebots [1] and GOLOG Bots [18] are the interfaces that have

been used to access Unreal, with, similarly, Quakebot [21] for

Quake, FlexBot [20] for Half-Life, and Shadow Door [17] for

Neverwinter Nights. These provide interfaces for specific game

engines. Other projects are attempting to provide common interfaces

to game engines such as the initiative by International Game

Developers Association (IGDA) for world interfacing [24] and

OASIS [4]. Despite this work, such interfaces may have more

success in the serious games community rather than the fast-evolving

games industry.

In [9], we described, in detail, how to make the G-factor portable. In

this paper, we give an overview of this earlier work, and instead

focus more on the evaluation process, addressing issues such as

performance, implementation overhead, scalability, and

modifiability. We present results of conducting both an unstructured

evaluation process and a structured evaluation using ATAM [13],

and contrast the two in the subsequent discussion.

The remainder of this paper is structured as follows. Section 2

demonstrates the issues with the typical game development approach

through the development of a sample game. This is then contrasted

with the development of the same game using our approach, which

enables the G-factor to be portable. Section 3 describes the

evaluation process and what it revealed about the two development

approaches. Finally section 4 presents the conclusions.

2. AN ARCHITECTURE FOR G-FACTOR

PORTABILITY
This section contrasts a typical game development approach with the

game development approach proposed in our work. Section 2.1

describes what is considered to be a typical development approach

through the development of a sample game, and highlights the

dependencies associated with this approach. Section 2.2 then

proposes an approach to address these dependencies and describes

an architecture called game space architecture (GSA) which has been

implemented to validate this approach.

1 http://www.biographictech.com (accessed 5/5/2007).

2.1 A Typical Approach to Game Development
We will use a game we call ‘Moody NPCs’ to illustrate the typical

approach to game development. The game consists of a number of

non-player characters (NPCs) that react to a player based on their

mood. The player can carry out actions such as greeting or swearing.

Each NPC reacts to the action based on his mood which is governed

by two variables: cowardness/courage and forgiveness/punishment.

The game allows the user to navigate the level and click on an NPC

which reveals its current mood and the actions available. The player

can adjust the mood variables and try out different actions. The

Torque game engine is used to demonstrate how the game is

developed.

The typical game development approach can be grouped into four

main steps as shown in the typical approach column in Table 1. To

create the game level data (step 1), Torque engine provides a level

editor called World Editor. The level can also be created using other

ways such as: scripting, API, configuration files, etc. The game level

data contains the terrain of the environment and the decorative

objects (e.g. houses, trees, etc). The level also contains location

markers for the game objects (e.g. NPCs and player). Scripting is

used to create the other game objects (e.g. Reaction, Action, and

Interaction). This approach for creating the game level data is very

common amongst game engines - 84% of engines we surveyed

provided editors to create the game level [8].

Figure 1 shows the graphical user interface created in step 2. This

has mood variables sliders on the top left corner of the screen and an

actions controller on the bottom left corner of the screen. The player

can use the keyboard to navigate around and the mouse to select an

NPC. We used Torque's GUI Editor to set the interface controllers,

although it is also possible to use scripting and configuration files.

Step 3 is to create the object model to hold the structure for the game

objects. The object model consists of five classes: Player, NPC,

Action, Reaction, and Interaction. Torque has a default object model

for the player and the AI player. We extended these to add the

properties that are specific to the game (i.e. mood variables for an

NPC). We created the other classes using a static object model using

TorqueScript. The other game object models are created using

scripting. Finally, step 4 is to create the game logic which controls

how the NPC reacts to the player actions.

2.2 GSA’s Approach
Figure 2 illustrates the software dependencies problem GSA is

aiming to tackle. the example used is the development of ‘Gears of

War’, which is dependent on Unreal Engine 3 and the underlying

software [25]. This is similar to the dependency the Moody NPCs

game suffers from, and also to the dependencies exhibited by the

projects we surveyed in an earlier paper [8].

GSA’s objective is to reduce the dependencies by adopting a service-

oriented design philosophy, which enables the G-factor to exist

independently of the game engine. The service-oriented approach has

proved its practicality for achieving different types of portability

such as platforms and languages [16]. The novel design approach

employed in GSA combines a variant of the model-view-controller

(MVC) pattern to separate the G-factor (i.e. model) from the game

engine (i.e. view) with on-the-fly scripting to enable communication

through an adapter (i.e. controller). The use of a variant of MVC

rather than the normal MVC avoids a known liability where the

view is tightly coupled to the model [10]. The use of on-the-fly

scripting is used to maintain the attractive attributes associated with

typical game development where data-driven mechanisms are used to

modify the G-factor. Most notably, modifiability is upheld in the

typical game development approach using scripting, which our

Figure 1: The Moody NPCs game.

Table 1: Comparing a typical game development approach to GSA’s approach.

Step Typical Approach GSA’s Approach

• Create the decorative objects in the game engine. 1. Create the level data.

• Create the game objects using

the world builder or

TorqueScript.

• Create the game objects using the world builder in the game engine

and give them a unique ID which identifies these objects in the game

space as well. Load these objects using TorqueScript.

• Create the game objects in the game space with the same unique ID

using Jython.

2. Create the GUI. • Use the game engine interface builder or TorqueScript to create the interface. The behaviour is set as part of

the game logic (step 4).

3. Create the object

model.
• Use TorqueScript to extend the

objects or create new ones.

• Create the object models for the game objects that require

representation in the game engine and the game space.

• Create the other game objects models in game space.

4. Create the game logic. • Use TorqueScript to set the

behaviour in the game engine.

• Use Jython or Java to create the logic in the game space.

5. Create the adapter. • Send the updates from the game engine to the game space.

• Create the adapter which translates between the game engine and the

game space.

surveys found to be very popular with game engines and projects that

use game engines [8]. To maintain this level of modifiability (i.e.

scripting level access) to the game engine and the game space, GSA

uses on-the-fly scripting to communicate with both via the adapter.

For example, a communication may begin with the game engine

sending the updates to the adapter (step 1 in the communication

protocol shown in Figure 3). The adapter converts them into scripts

or direct API calls (step 2) which are then used to update the game

space (step 3). When the game space needs to communicate with the

game engine, it notifies the adapter of the changes that need to be

communicated (step 4). The adapter formats these into the engine’s

scripting language (step 5) and sends them to the engine to be

executed (step 6). The separation and the communication mechanism

allow the G-factor to exist independently of the game engine. The

effect this has on portability is that when migrating to a new engine

the elements in the game space (i.e. the game state, object model, and

game logic) can stay intact. Contrasting this to migrating a game

developed using the typical game development approach, which

often require all three elements to be created again, shows the extent

of the effort saved.

 As was shown in Table 1, the first difference between our approach

and the typical game development approach is the creation of the

game objects, which is split over the game engine and the game

space due to the two types of game objects. The first type are the

game objects that have to have representations inside the game

engine to provide visual representations, such as the Player and the

NPCs needed for the Moody NPCs game. These require real-time

processing in the game engine and it is impractical to communicate

every frame from the game space to the game engine. Therefore these

objects have to be created in the game engine as well as the game

space and only updates are communicated. The second type of game

objects are the ones that do not have representations inside the game

engine, such as the Action, Interaction, and Reaction objects. These

objects can be created in the game space only. The object model

creation is similarly split over the game engine and the game space.

The second difference is creating the game logic in the game space

1. Updates are received from the game engine.

2. The adapter uses the scripts mapping table to convert the message to a

Jython script.

3. Game state is updated.

4. When a modification is done in the game state the adapter is notified.

5. If the object is of class interest then the adapter converts it to a game

engine script.

6. Script is sent to the game engine.

Scripts Mapping (Game Engine � Game Space)

Scripts Mapping (Game Space � Game Engine)

Message Jython/Java

 Scenario.setPropertyValue(Instance, Property, Values, …) 2

Attribute Engine Script

NPCName.animate(Gesture) Interaction: ReactionAttribute

Adapter

Figure 3: Communication between the game engine and the game space.

.

1 6

... 2

3

"Gears of War”

Gameplay Code

~250,000 lines C++, script code

Software Dependencies [25]

Unreal Engine 3

Middleware Game Engine

~250,000 lines C++ code

OpenAL

Audio

Ogg

Vorbis

Music

Codec

DirectX

Graphics
...

Game Space

• Holds the G-factor elements.
• Services the game to engines.
• Uses a dynamic object model.

Unreal

Engine

...

Games are too

dependent on the

underlying software

(i.e. game engine).

Problem Solution

M
o

d
el

C
o

n
tro

ller
V

iew

4

5

• Recreate the game objects.

• Recreate the object model.

• Rewrite the game logic in the new engine’s language.

• Game objects in the game space remain intact, but the

ones in the game engine need to be created again.

• Object model in the game space remain intact, but the

ones in the game engine need to be created again.

• Game logic is not affected.

• Link the game space to the new engine (i.e. adapter).

Scripts Messages

Scripts

& API

74% of the engines &

86.7% of the projects

surveyed used data-

driven approaches but

games remain tied to

the engine.

83.3% of the projects

surveyed used the

engines’ specific object

models and 76.7% used

engines’ scripting

languages.

Reduce the dependencies

by allowing the G-factor

elements to exist

independently of the game

engine.

Use a variant of MVC for

the separation and on-the-fly

scripting to link back to the

engine to maintain

accessibility to the engine at

scripting level.

Porting the G-factor to another engine Porting the G-factor to another engine

Figure 2: GSA overview. The numbers highlighting the communication between the game space and the game engine are described in

Figure 3.

V
arian

t o
f M

V
C

 P
attern

Unreal

Adapter

Torque

Adapter

Torque

Engine

rather than the game engine. The third difference is creating the

adapter which handles the communication between the game space

and the game engine.

3. EVALUATION AND DISCUSSION
A software architecture can be evaluated using structured or

unstructured methods. An unstructured evaluation, which is a

common way to evaluate a software architecture [3], consists of

randomly throwing challenges at the architecture and hoping that

either the architecture can address them, or that they will reveal its

limitations. In structured evaluation, methods such as ATAM [13],

SAAM [19], ARID [12], and ABAS, PASA and CBAM [2] are used

to probe the architecture with the aim of exercising the whole

architecture. We used ATAM in our structured evaluation, a method

that is not limited to a particular stage of the development cycle, and

which involves stakeholders (i.e. user, maintainer, developer,

manager, tester, architect, security expert, etc.) in specifying the

architecture attributes to address. In the following paragraphs, we

will summarise the findings of detailed structured [6] and

unstructured [5] evaluations carried out in our earlier research

papers. We will focus on four attributes: portability, performance,

modifiability and scalability. Following this, we contrast the

structured and unstructured approaches to evaluation.

3.1 Portability
The unstructured evaluation found that GSA managed to address the

portability challenge by servicing the same G-factor to two different

engines [4]: a bespoke engine developed on top of DirectX 9.0 and

the Torque game engine (see Figure 4). This was done without

modifying the G-factor and was constrained to modifying the

adapter. Similarly, the structured evaluation found GSA supports

portability. It found that the separation using the MVC pattern

allows for better portability since it allows for multiple views (i.e.

game engines) for the same model (i.e. G-factor). In addition, the

structured evaluation found that portability could be undermined if

the game engine does not fully expose the required functionality

through scripting since the adapter relies on scripting for

communicating back to the game engine (see Figure 2).

3.2 Performance
The aim here was to find the average reduction in frames-per-second

(fps) due to the use of GSA. To get a performance indicator a player

was simulated to be running continuously around a path for 30

minutes (see Figure 5). Using this simulation, two performance tests

were run to contrast the overheads of a game developed with the

typical development approach to one developed using GSA. The

performance overheads measured were: fps, CPU, memory, and

network (for the test using the game space). The average reduction in

fps was 11.69% when following the GSA approach. This average fps

reduction is relatively large for a small game and more tests need to

be performed to get a better indication of how this reduction will

scale with the game size. However, when comparing this finding to

the findings from the scalability challenge (described later) we find

that GSA does not affect performance unduly. The structured

evaluation revealed two issues. It found that the data integrity across

the different game states (i.e. game engine and game space) was at

risk. This is due to the delays that might occur because of the

separation as a result of the use of the MVC pattern which add an

overhead for exchanging information. Initial tests revealed no

problems, but further tests are required before this can be established

with certainty. In addition, there is a danger if the message load

increases that the game space becomes the bottleneck in the

architecture.

3.3 Modifiability
Here, the success of GSA was judged by the ability to create

different G-factors on the same architecture using a different object

model and game logic. The fact that different G-factors (Figure 1,

Figure 4, Figure 5, and Figure 6) can be developed using GSA

showed its modifiability. In addition, a structured evaluation process

measured the modifiability across the different parts of GSA by

examining how each architectural decision affects modifiability and

how it trades against the other quality attributes (e.g. portability and

performance) [6]. The evaluation revealed that if a single unique

identifier cannot be set for game objects on the game space and game

engine then GSA becomes very sensitive to any modification as it

has to be added manually in the adapter. Furthermore, using on-the-

fly scripting allows for better modifiability but runs slower than pre-

compiled code. Modifiability is also enhanced by the use of a variant

of the MVC pattern that reduces the dependencies between the

model and the view.

3.4 Scalability
The aim was to identify how much overhead is added as the game

size grows. This was examined by developing a serious game for

traffic accident investigators [7] (see Figure 6). The adapter’s

implementation overhead for each challenge is presented in Table 2.

Using the implementation overheads of the adapters compared to

their game logic sizes in each of the test games developed, we can

forecast that for small game size the overhead is large, but that it

stabilises at around 6% for code of size between 100,000 and

500,000 lines2. The scalability challenge also showed that

performance overhead was not noticeable when judging its success

in training [7] for which smooth play is crucial to avoid frustrating

the users. The structured evaluation found that using a dynamic

object model allows for better game model scalability but it makes

the architecture very sensitive to change as the change propagates to

the game logic and to the adapter.

2 http://support.microsoft.com/kb/828236 (accessed 24/8/2007).

Figure 6: A serious game for

traffic accident investigators [7].

Figure 4: (left) smart terrain running on bespoke engine; (right) the

same G-factor running on Torque [5].

Figure 5: First-person shooter

game [5].

3.5 Structured vs. Unstructured Evaluation
The unstructured evaluation revealed how well the architecture can

cope with the challenges. However, there was no easy way to

establish the correlation between the challenge and what

architectural decisions had supported or undermined it. Furthermore

the unsystematic way of generating scenarios (i.e. challenges) meant

that some time was unnecessarily spent in implementing different

tests when one could have served all the challenges (e.g. the

implementation of the serious game (see Figure 6) used in the

scalability challenge could have been used to test all of the

challenges). This could be attributed to the incomplete overall

evaluation picture due to the lack of systematic guidance. Although,

there is no guarantee that a structured evaluation would not produce

redundant probing since, just like the unstructured evaluation, it is

also scenario-based. However, the chances are reduced due to the

fact that the generation of scenarios is guided by using a utility tree3

in which all the scenarios are identified. This serves two purposes.

The first purpose is that once all the scenarios are present the

experimentation can begin by choosing a test where preferably all

these scenarios can be addressed. The second purpose is that it

describes the decisions that are going to be analyzed by the scenario

which means any repetitive probing can be identified.

The problem with scenario-based evaluation which both unstructured

and structured evaluations use is that the evaluation is only as good

3 The utility tree elicits the quality attributes down to the scenario

level to provide a mechanism for translating architectural

requirements into concrete practical scenarios.

as the scenarios generated, which in turn depends on the

stakeholders in the evaluation team. Although there are measures put

in place to ensure the selection includes all the important personnel

(i.e. architects and domain experts), the fundamental problem still

persists.

Contrasting ATAM’s output to the unstructured evaluation results,

which quite often answer the challenge with yes or no, or with some

metrics such as network load or fps, highlights the strengths of

ATAM. ATAM classifies the decisions according to how they affect

the architecture (i.e. support or undermine it). We found the ATAM

process helpful in understanding our architecture better. Of further

benefit is that it should also act as a guide when there is a need to

modify or evolve GSA. This guidance is based on the fact that it

reveals the strengths and weaknesses of the architectural decisions.

In future, we recommend using ATAM alongside the development

cycle. This is where ATAM is designed to be most effective by

revealing issues at different stages of the development cycle when

they are cheaper to address. Had we started with ATAM we believe

it would have saved us time and effort by avoiding the creation of a

number of redundant challenges.

4. CONCLUSIONS
We have presented an architecture for making ‘games’ (i.e. G-

factors) portable between game engines. The changes required to the

typical game development approach have been demonstrated through

the development of a sample game called Moody NPCs. In addition,

the work has presented the findings from two types of evaluation.

The findings have revealed that GSA is capable of making the G-

factor portable, but GSA adds performance and implementation

overheads. Despite these overheads, GSA has been shown to scale to

real world applications [7]. Modifiability has been found to be

sensitive in cases where a unique identifier cannot be set for game

objects.

Whilst the unstructured evaluation managed to reveal issues with the

architecture, the mechanism of throwing random challenges resulted

in redundant challenges and failed to articulate which architectural

decisions undermined or supported GSA. Using ATAM guided the

evaluation better. Employed earlier, it could have helped to avoid the

redundancy in the unstructured evaluation. Also, it was capable of

revealing how the architectural decisions interact in order to support

the required attributes. Although the portability presented in this

work has only been shown across two engines, the approach

followed to achieve that is consistent in the way the two engines

were linked via the adapter and therefore there is no reason why it

cannot be followed to link other engines.

With gameplay predicted to be the distinguishing factor between

future games [15] and combined with the increased number of

commercial licensees of game engines and the interest engines are

receiving from outside the games industry (e.g. the serious games

community), this will increase the need for portable games for two

reasons. The first reason is because developers can keep the visual

aspects of their game up to date with the latest game engine. The

second reason is the security from having to face ‘the RenderWare

Problem’ [11]. However, the incentive for game engine developers is

less clear.

5. REFERENCES
[1] Adobbati, R., Marshall, A.N., Scholer, A., Tejada, S., Kaminka,

G., Schaffer, S., and Sollitto, C. (2001). Gamebots: a 3D virtual

world test-bed for multi-agent research. In Proceedings of 2nd

International Workshop on Infrastructure, MAS and MAS

Scalability.

Table 2: The implementation overhead for the adapter.

Challenge Logic size (lines

of code)

Adapter size (lines of code)

Portability 60 346 (bespoke) 354 (Torque)

Modifiability 100 350

Performance 70 300

Scalability 6214 1100

Figure 7: The adapter code forecast compared to the game logic

code size.

Adapter Implementation Overhead

15.63

9.38

6.64 6.32 6.12 6.05

0

2

4

6

8

10

12

14

16

18

0 100000 200000 300000 400000 500000 600000

Gameplay code size (number of lines)

O
v
e
rh

e
a
d
 %

[2] Bahsoon, R., and Emmerich, W. (2003). Evaluating software

architectures: development, stability and evolution. In

Proceedings of ACS/IEEE International Conference on

Computer Systems and Applications.

[3] Bahsoon, R., and Emmerich, W. (2006). Architectural Stability

and Middleware: An Architecture Centric Evolution

Perspective. In Proceedings of the ECOOP 2006 workshop on

Architecture-Centric Evolution.

[4] Berndt, C., Watson, I., and Guesgen, H. (2005). OASIS: an

open AI standard interface specification to support reasoning,

representation and learning in computer games. In Proceedings

of Proceedings of Workshop for International Joint Conference

on Artificial Intelligence (IJCAI-05), Workshop on Reasoning,

Representation, and Learning in Computer Games, pages 19-

24.

[5] BinSubaih, A., Maddock, S., and Romano, D. (2005). Game

logic portability. In Proceedings of ACM SIGCHI International

Conference on Advances in Computer Entertainment

Technology ACE 2005, Computer Games Technology session,

pages 458-461.

[6] BinSubaih A., and Maddock S. (2006). Using ATAM to

evaluate a game-based architecture. Workshop on Architecture-

Centric Evolution (ACE 2006), hosted at the 20th European

Conference on Object-Oriented Programming ECOOP 2006.

[7] BinSubaih A., Maddock S., and Romano D. (2006). A serious

game for traffic accident investigators. Special Issue of

International Journal of Interactive Technology and Smart

Education on "Computer Game-based Learning.", 3(4):329-346.

[8] BinSubaih, A., Maddock, S., and Romano, D. (2007). A survey

of ‘game’ portability. Department of Computer Science

Technical Report CS-07-05, 2007, University of Sheffield.

[9] BinSubaih, A., and Maddock, S. (2007). G-factor portability in

game development using game engines. In Proceedings of The

Third International Conference on Games Research and

Development 2007.

[10] Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., and

Stal, M. (1996). Pattern-oriented software architecture: a system

of patterns. Volume 1, John Wiley and Sons.

[11] Carless, S. (2007). Rise of the game engine. Game Developer,

April, 2007, pages 2-2.

[12] Clements, P. (2000). Active reviews for intermediate designs.

Technical Report CMU/SEI-2000-TN-009, Software

Engineering Institute.

[13] Clements, P., Kazman, R., and Klein, M.(2001). Evaluating

software architectures: methods and case studies, Addison

Wesley.

[14] Coyle, D. and Matthews, M. Personal Investigator: a

Therapeutic 3D Game for Teenagers. CHI2004 Vienna 25-29

April 2004. Presented at the Social Learning Through Gaming

Workshop.

[15] Dounis, E. (2006). The great debate: gameplay vs. graphics,

GamersMark.com,7/9/2006,http://www.gamersmark.com/article

s/205/ (accessed 31/1/2007).

[16] Erl, T. (2005). Service-oriented architecture: concepts,

technology, and design. Prentice Hall.

[17] Hussain, T.S., and Vidaver, G. (2006). Flexible and purposeful

NPC behaviors using real-time genetic control. In Proceedings

of the 2006 World Congress on Computational Intelligence,

pages 785-792.

[18] Jacobs, S., Ferrein, A., and Lakemeyer, G. (2005). Unreal

Golog Bots. In Proceedings of Workshop for International Joint

Conference on Artificial Intelligence (IJCAI-05), Workshop on

Reasoning, Representation, and Learning in Computer Games.

[19] Kazman, R., Klein, M., Barbacci, M., Longstaff, T., Lipson, H.,

and Carriere, J. (1998). The architecture tradeoff analysis

method. In Proceedings of Fourth IEEE International

Conference on Engineering of Complex Computer Systems,

pages 68-78.

[20] Khoo, A., Dunham, G., Trienens, N., and Sood, S. (2002).

Efficient, realistic NPC control systems using behavior-based

techniques. In Proceedings of the AAAI 2002 Spring

Symposium Series: Artificial Intelligence and Interactive

Entertainment.

[21] Laird, J. (2001). It knows what you’re going to do: adding

anticipation to a Quakebot. In Proceedings of the Fifth

International Conference on Autonomous Agents, pages 385-

392.

[22] Laird, J.E., Assanie, M., Bachelor, B., Benninghoff, N., Enam,

S., Jones, B., Kerfoot, A., Lauver, C., Magerko, B., Sheiman, J.,

 Stokes, D., and Wallace, S. (2002). A testbed for developing

intelligent synthetic characters. In Artificial Intelligence and

Interactive Entertainment: Papers from the 2002 AAAI Spring

Symposium, pages 52-56.

[23] Lewis, M., and Jacobson, J. (2002) Game engines in scientific

research. Communications of the Association for Computing

Machinery (CACM), 45(1):27-31.

[24] Nareyek, A., Combs, N., Karlsson, B., Mesdaghi, S., and

Wilson, I. (2005). The 2005 report of the IGDA's artificial

intelligence interface standards committee. International Game

Developers Association, http://www.igda.org/ai/report-

2005/report-2005.html (accessed 14/8/2007).

[25] Sweeney T. (2006). The Next Mainstream Programming

Language: A Game Developer's Perspective. The 33rd Annual

ACM SIGPLAN - SIGACT Symposium on Principles of

Programming Languages Charleston, South Carolina.

www.cs.princeton.edu/~dpw/popl/06/Tim-POPL.ppt (accessed

5/5/2007).

[26] Wang, J., Lewis, M., and Gennari J. (2003). Emerging areas:

urban operations and UCAVs: a game engine based simulation

of the NIST urban search and rescue arenas. In Proceedings of

the 35th Winter Simulation Conference, pages 1039-1045.

