
Triangle-Mesh Simplification using Error Polyhedra

Mark Eastlick and Steve Maddock

Department of Computer Science
University of Sheff ield

Portobello Road
Sheff ield S1 4DP

<m.eastlick, s.maddock>@dcs.shef.ac.uk

Abstract
We present a novel and general framework for simpli fying triangle-meshes based on vertex
decimation, as opposed to the common edge-collapse operation. Our basic simpli fication metric
is based on the evaluation of the volume of error polyhedra; such a measure is the geometric
analogue to the L1 norm between two functions. Unlike many other approaches, we perform
triangulation in three-dimensions and utili se this extra information to increase simpli fication
qualit y, dynamicall y making use of the principal curvatures of local biquadratic approximations
of the mesh.

Keywords: mesh simpli fication, vertex decimation, 3D polygon triangulation, discrete
differential geometry operators

1 Introduction

The triangle-mesh is the de facto representation
for three-dimensional models on computers. The
triangle is the simplest piecewise-linear
tessellating geometric primiti ve. It naturall y
evolves in many processes that provide solutions
to geometric problems. Algorithms based on
triangles are often cleaner than similar examples
for surfaces composed of other, more complex,
polygons. Furthermore, any such surface
subdivision can always be reduced to triangle-
mesh form. This, as well as the fact that current
graphics hardware caters most thoroughly for
triangle-meshes, contributes to the triangle’s
ubiquity.

Despite its popularity, the triangle-mesh has
various shortcomings when compared to other
modelli ng representations, such as parametric
patches. A primary limitation is that its piecewise
linear nature produces large bandwidth
requirements. A triangle-mesh can exhibit only C0
continuity at best, and therefore curved surfaces
must be densely sampled to ensure that all of their
nuances are adequately approximated. This has the
effect of creating a great many triangles for non-

trivial objects. This volume of data is an important
bottleneck in many computer graphics
applications, and this weak-link can manifest itself
as a bandwidth problem over various scales; from
graphics device data buses up to permanent
storage devices, and even networked systems.
Alternatively, it can simply emerge as prolonged
local processing of the mesh during, for example,
rendering or editing. Mesh simpli fication provides
the backbone for many of the methods that address
these problems.

We will begin by reviewing some previous
work on mesh simpli fication and certain related
issues. We will t hen describe a general framework
for simpli fying meshes to an arbitrary number of
vertices. Following this, we will describe the
metric used during simpli fication, making use of
the concept of error polyhedra. This will l ead us
to the three-dimensional, curvature-based,
triangulation algorithm used during simpli fication.
Finall y, we will present and discuss the results of
this work.

2 Related Work

There have been various paradigms proposed
for the simpli fication of triangle-meshes. The

edge-collapse and related approaches have
emerged as the most popular methods, and we will
primaril y concentrate on such approaches here.
However, the interested reader is referred to
[GAR99, EAS01] for a discussion of the full
spectrum of techniques.

A popular framework for mesh simpli fication,
introduced in [SCH92], has been termed vertex-
decimation. This approach performs a sequence of
vertex removal and retriangulation operations
(fig. 1), removing vertices from the mesh and
triangulating the resulting hole to maintain the
topological type of the mesh.

The original technique operates by performing
a number of passes over the mesh. On each pass,
all vertices that pass a binary metric are removed.
This metric is steadily relaxed until the required
resolution is reached. Newer approaches have
developed more sophisticated error metrics and
triangulation algorithms, and many have adopted
the greedy framework of incrementall y applying a
number of vertex removals operating on the vertex
that currently minimises the chosen metric.
Approaches based on incremental greedy vertex
decimation do not usually optimise the location of
the vertices participating in a vertex removal. This
leads us to the property that the vertices of a
vertex-decimated mesh are usually a subset of the
original.

The current most popular methodology for
mesh simpli fication operates by a sequence of
iterative vertex contractions (fig. 2). The basic
method performs a number of edge-collapse
operations where the resultant vertex is located at
either end or the mid-point of the collapsed edge,
and the degenerate faces are removed.

The vertex placement strategy of constraining
the location to either end of the collapsed edge can
be viewed as a special case of the vertex

decimation approach. This operation is called the
half edge-collapse. However, a more powerful
approach locates the vertex according to some
optimisation criterion, which minimises the
“error” of the operation [HOP96, RON96, GAR97,
GAR98, LIN98]. This approach removes the
subset constraint of vertex-decimated meshes, and
can provide better qualit y simpli fications,
especiall y at low numbers of vertices. A further
generali sation, introduced in [GAR97], allows
vertices that do not share an edge to be merged,
modifying the topology of the mesh to provide
better qualit y simpli fications especiall y at low
numbers of vertices. Certain methods employ
some global, as opposed to local, measure that
retains information about the original model
during simpli fication. Such methods also often
provide guaranteed error bounds [RON96, HOP96,
GAR97, GAR98]. The precursor to many of the
current state-of-the-art methods is [RON96]. In
this method, each vertex in the original mesh is
associated with the set of planes of its incident
triangles. During simpli fication, each child vertex
that is a product of an edge-collapse is associated
with the set of planes produced from the union of
its parent vertex planes. The choice of whether a
vertex should be removed is based on the distance
to each of the planes in its set. This basic method
requires a large amount of computational
resources, as during simpli fication each vertex is
associated with ever more planes. An eff icient
way of calculating the squared sum of these
distances for a given vertex was presented in
[GAR97], and is termed the quadric metric, and it
has provided the backbone for most of the recent
work on mesh simpli fication [GAR98, LIN98].

Interestingly, a recent technique shows that a
global error framework is not always required for
high qualit y simpli fication [LIN98]. This goes
somewhat against conventional wisdom, however
the results are very convincing. This method is
related to the quadric approach.

In general, a triangle-mesh based model will
include extra attributes per vertex or face, such as
its normal vector or colour. Recent methods for
mesh simpli fication have included such
information while performing simpli fication
[COH98, HOP96, GAR98]. Certain methods de-
couple the surface colour detail from the actual
geometry, and store this data as images, which are
then mapped back onto a simpli fied version of the
mesh [COH98]. Pragmatic approaches such as
these using image data produce considerably
better simpli fications at lower vertex counts and
may decrease rendering time and storage
requirements.

Figure 2 Example of a single vertex
contraction operation.

Figure 1 Example of a single vertex
removal and retriangulation operation.

3 Notation and Nomenclature

An n-simplex is the convex hull of n+1 aff inely
independent vertices, or 0-simplices. Therefore, an
n-simplex has n dimensions and is composed of
n+1 (n-1)-simplices. For example, a 1-simplex is
an edge, which is composed of two 0-simplices, or
vertices. In the same way, a 2-simplex is a
triangle, which is composed of three 1-simplices,
or edges.

A triangular mesh M is defined in terms of its
constituent vertices and the connectivity

relationships that exist between them. To this end,
we denote a triangular mesh M as a pair (P, K).

The set P consists of points pi= (xi, yi, zi) ∈ R3,
with 1 ≤ i ≤ N, which correspond to the vertices of
the mesh. The set K is an abstract simplicial
complex, which is composed of a number of
subsets of { 1, …, N} , corresponding to the
constituent 0-, 1-, and 2-simplices of the mesh. In
other words, the vertices { i} , the edges { i, j} , and
the triangles { i, j, k} . Using this complex K, we
can construct the graph of the mesh, and with the
aid of the vertices P we can embed the graph in
real 3-space.

Two vertices { i} and { j} are neighbours if
{ i, j} ∈ K. The 1-ring neighbourhood N(i) of a
vertex i is the set of 0-simplices.

The star S(i) of a vertex i is defined as the set
of its incident simplices.

We represent the simplices composing an
arbitrary valid triangulation of a set of vertices V
as T(V).

A 2-manifold vertex i is one whose star S(i) is
topologicall y equivalent, or homeomorphic, to a
disc (fig. 3). A mesh is called 2-manifold if each
of its vertices has 2-manifold topology.

A boundary vertex j is one whose star S(j) is
homeomorphic to a half-disc (fig. 3). A mesh is
called 2-manifold with boundary if each of its
vertices has either 2-manifold or boundary local
topology.

4 A Topology Preserving Mesh
Simplification Framework

For the sake of brevity, we will primaril y concern
ourselves with 2-manifold with boundary meshes.
We define a vertex removal operator VR for a
manifold triangle-mesh M and vertex i as:

The result of this operation is the mesh M’ ,
based on mesh M with point pi and simplices S(i)
removed, and a number of new simplices T(N(i))
added to maintain the topological type. An
application of the operator on a 2-manifold vertex
i results in the removal of |N(i)| triangles and
edges and the addition of |N(i)| – 2 triangles and
|N(i)| – 3 edges. Similarly, for a boundary vertex j,
an application of the operator results in the
removal of |N(j)| – 1 triangles and |N(j)| edges, and
the addition of |N(i)| – 2 triangles and |N(i)| – 3
edges. The operator is not defined for vertices
whose local topology is not manifold with
boundary. Figure 1 demonstrates the VR operator
on a 2-manifold vertex i.

We can define an error function, or metric,
EVR with a domain of all possible valid
combinations of M and i, and a real number range
according to the error, or change, between M and
M’ as a result of VR(M, i) as:

We can define another vertex removal
operator, OVR, for mesh M, as:

The result of this operator for an N vertex
mesh M is an N – 1 vertex approximation M’ that
minimises the error metric chosen for VR. For a
given M, we can define a sequence of n meshes
with increasing error produced by recursive
applications of the OVR operator:

This sequence produces a multi resolution
representation, or history, of M, containing n
different resolutions, ranging from the original
high-resolution mesh down to a base low-
resolution mesh at which point any further
applications of the OVR operator will violate the
mesh topology.

In practice, for a given mesh M, we initiall y
construct a priority-queue containing every { i} ∈

 j i

Figure 3 Example of 2-manifold vertex i
and boundary vertex j.

(4.4)
nM

MMM

=

→→

)...))))(OVR(OVR(...OVR 21

(4.1)

)N(\))(T(\

),N(\)S('\

 , | ') ,VR(

iiNKK'

iiKK

pP'PMiM i

=
=
∪==

(4.3)

)),EVR(min arg,VR(')OVR(
}{

iMMMM
Ki ∈

==

(4.2) R→) ,EVR(iM

}},{|{)(KjijiN ∈= (3.1)

},|{)(KssisiS ∈∈= (3.2)

K, ordered by increasing EVR(M, i). Therefore
removing the head vertex will give us OVR(M).
After we perform an application of OVR(M), we
need to recalculate the EVR(M, i) for all vertices
whose incident triangles have changed as a result
of the operation, and update their positions in the
priority-queue. These vertices are simply the
neighbourhood vertices N(i). This is an important
reason for the eff iciency of this approach to
simpli fication.

5 Calculation of Error Metric using
Error Polyhedra

The various discrete Ln norms and straightforward
extensions to higher numbers of dimensions are
commonly used as error metrics in other signal-
processing disciplines, such as lossy sound, image,
and video compression. A norm of the difference
between the domain and range signals is
calculated and used as a measure for the qualit y of
the approximation given by the range signal.
However, the use of such measures inherently
relies on the signal being regularly sampled, be it
in one, two, or three dimensions. We do not have
such a luxury for the data we are considering here,
and this is an important reason why mesh-
processing techniques are often more challenging
and are possibly relatively less evolved than their
older siblings.

The Ln norms for a continuous signal f are
defined as:

Therefore, we can see the Ln norm between
two discrete signals f and g can be calculated
using the following expression:

The L∞ measure is a special case, and measures
the magnitude of the maximum deviation between
the two signals. This function is called the
Hausdorff error and is often classed as the
“strongest” metric. However, its exact
computation is prohibiti vely complex for arbitrary
pairs of non-trivial meshes. Therefore, it is
desirable to find suitable alternatives for practical
simpli fication algorithms.

A geometric analogue to the L1 norm between
a mesh M and the mesh produced by a vertex
removal VR(M, i) can be seen to be the difference
in volume of the meshes over the 1-ring
neighbourhood of i. We call this closed region an
error polyhedron, and we set the range of VR(M,

i) to be the magnitude of this volume. Therefore,
an application of the OVR operator results in the
mesh with one fewer vertices that minimises the
local change in volume.

We use the following fourth-order determinant
for the volume of a 3-simplex as the basic building
block for the calculation of error polyhedron
volume. The simplex s is composed of vertices pi,
pj, pk, and pl.

The sign of VOL3(s) is equal to the sign of the
inner product of the vector from pl to the
barycentre of { pi, pj, pk} and the orientated normal
vector of { pi, pj, pk} . In other words, if the
orientated normal vector of { pi, pj, pk} is pointing
away from the half-space defined the plane of { pi,
pj, pk} containing pk then the sign of VOL3(s) will
be positi vely signed, otherwise, it will be
negatively signed.

Using this property, we can generali se this
formula to provide the volume of a closed
simplicial complex or polyhedron. Given such a
simplicial complex K and some arbitrary reference
point r, we can classify its constituent 2-simplices
as being part of the “upper” or “ lower” surface of
K, according to whether their orientated normal
vectors face away from, or towards, r. The
projection of a constituent 2-simplex onto r is a 3-
simplex. Each 3-simplex of the upper surface will
have positi ve volume, and each 3-simplex of the
lower surface will have negative volume. We can
view the complete projection of the upper and
lower surfaces onto r as the projections of each of
the simplices onto r. Notice that the projections of
both the upper and lower surface onto the origin
have identical cross section. Therefore, we can see
that the space defined by the lower surface
projection is a subset of that for the upper. The
difference between the spaces of the two
projections can be seen to be exactly the space of
the error polyhedron. Therefore we can measure
the volume of the polyhedron by taking the sum of
the volume contributions from its upper and lower
surface 2-simplex projections, which can be
calculated using (5.3). Therefore, in the spirit of
(5.2), we can define our error function EVR for a
vertex i and the n 3-simplices defining its
corresponding error polyhedron σi in the following
way, where the mth simplex of σi is denoted by
σi

m:

1
1
1
1

6
1

)(VOL3

lll

kkk

jjj

iii

zyx
zyx

zyx
zyx

s = (5.3)

(5.2)

n

x

n

L
xgxfgf

n

1

)()(

 −=− ∑

() nn

L
dxxff

n

1
)(∫= (5.3)

There are various methods for the computation
of (5.4) which are significantly faster than the
trivial separate evaluation of the n fourth-order
determinants. We have developed an eff icient
alternative approach, full detail s of which can be
found in [EAS01].

6 A Framework for Computing
Vertex Neighbourhood
Triangulation

6.1 Approaches to Triangulation
Computation

Many researchers have taken the approach of
transforming the vertex neighbourhood into a
plane; 2-dimensional triangulation is then
performed in this domain, and the result is
transformed back into 3-dimensional space to
complete the operation. The justifications for this
approach are two-fold. Firstly, manifold with
boundary vertex neighbourhood is, topologicall y,
a 2-dimensional entity, and secondly, the literature
on 2-dimensional triangulation is relatively
evolved, due, in the most part, to the requirements
of f inite-element (FE) analysis.

This approach has two main disadvantages.
Firstly, the properties exhibited by the
triangulation in 2-dimensions are either
meaningless or do not usually hold when the
triangulated vertex neighbourhood is projected
back into 3-space. The degree of approximation of
such properties in 3-space is related to the
curvature of the mesh over the neighbourhood.
The second limitation is that an extra dimension of
information that could be used to derive a more
appropriate triangulation is ignored, which leads
to poor qualit y simpli fications.

A solution to these problems can be found by
performing triangulation in 3-dimensions
[BAR98]. The first problem to be overcome for
such an approach is how to define a valid
triangulation. Clearly, a triangulation which leaves
holes, flips triangle orientation, or otherwise alters
the topology of the mesh is undesirable. Our
solution to this problem is to use a simple linear-
time validity test which is based on the notion of
consistent triangle orientation. We attempt to find
a point which is in each of the half planes defined
by a triangle and its orientated normal vector for
each triangle before and after the triangulation. If
such a point is found, then we can be sure that we
have not changed the orientation, and therefore the

topology, of the part of the mesh involved in the
operation. In practice, we use the area-weighted
mean normal vector of the neighbourhood
triangles before the triangulation operation to
derive a ray from the focus vertex. This gives us a
point “below” the surface designed to maximise
the chances of success of this technique. We use a
similar equation to (5.3) to check the orientation
of a triangle relative to our reference point. We set
pi, pj, and pk, as the orientated vertices of the
triangle in question, and pl as the reference point.
Therefore, a positi ve sign signifies a triangle with
correct orientation. The limitation of this approach
is that it is not guaranteed to find a valid reference
point, if one does exist. However, we have found
that this method works well i n practice, and its
eff iciency is an attractive property.

6.2 Principal Curvature-based
Triangulation

We employ a triangulation algorithm which
acknowledges and rectifies the problems with the
2-dimensional transformation approach. To this
end, an estimate of the level of local curvature of
the mesh is made, and the triangulation criterion is
adapted accordingly. For coplanar regions of the
mesh, the algorithm reduces to an approximation
of the minimum weight triangulation (MWT).
However, the triangles in more curved areas are
made to align with principal curvature direction
approximations according to the relative level of
curvature between those two directions. Recall
that the principal curvature directions for a point
on a surface are the orthogonal directions of least
and most curvature at that point. Given the
principal curvatures of a surface, many other
curvature based measures, such as Gaussian and
mean curvature, can be easil y derived. A complete
introduction to the theory of differential geometry
is well beyond the scope of this paper, but the
interested reader is referred to [DOC76].

Before presenting the triangulation algorithm
itself, we will examine the steps needed to derive
principal curvatures for triangle-meshes.

The typical equations from classical
differential geometry used to calculate principal
curvatures operate on parametric surfaces in R3 of
type Cn, where n > 1. This presents two immediate
problems for the calculation of such quantities for
triangle-meshes. The first diff iculty results from
its piecewise linear nature, which can offer only
C0 type surfaces, and the second is that a mesh is
not defined in terms of a parameterisation. A
solution to both of these problems is to derive a
parametric polynomial surface over the region of
interest, which can then be analysed in the usual
ways.

∑
=

=−

=
n

m

m

iL
MM

iM

1

3)(VOL'

) ,EVR(

1
σ

(5.4)

We are interested in biquadratic polynomial
surfaces of the following form:

Using the (u, v) and f(u, v) values, as well as
orthogonal basis vectors e1, e2, and e3, we can
write (6.1) such that the range is a surface x in R3,
as follows:

This is the appropriate form of a surface for
curvature analysis. To calculate the principal
curvatures for a point x(u, v), we need the first and
second order partial derivatives of x at (u, v). We
will now examine the steps needed to derive the
surface x, and hence its partial derivatives, for a
vertex neighbourhood.

A local frame for a vertex i and its
neighbourhood N(i) is computed. The origin of the
frame is the focus vertex. The vertical basis vector
of the frame, e1, is defined as the mean area-
weighted normal vector of the neighbourhood
triangles, and the two remaining basis vectors, e2
and e3, are derived using Gram-Schimdt
orthogonalization. The vector e1 defines the
direction of elevation for the f(u, v) range values,
and the vectors e2 and e3 define iso-parametric
directions for the domain values u and v
respectively.

The vertices of the neighbourhood are
transformed using an orthogonal projection onto
the plane defined by the origin and the vectors e2
and e3. The (u, v) coordinates for these points can
then be triviall y computed. The distance that each
point moves as a result of the projection gives us
corresponding f(u, v) elevation values.

A system of non-linear simultaneous equations
is constructed using (6.1) and the parameter and
range values of the projection, with the λi as
unknown coeff icients. Clearly this system can
only be solved if there is a minimum of f ive

neighbourhood vertices. However, the system of
equations is usually over constrained, and
therefore we derive a least-squares error fit for the
λi using a variant of Newton’s method.

Notice the similarity of (6.1) to a two-
dimensional second-order Maclaurin series. We
can express such a series as follows:

Using (6.1) and (6.3), we can see that the
following holds true:

Therefore the coeff icients λi represent each of
the partial derivatives of f(0,0) with respect to the
parameters u and v. Using (6.2) we can see that
the partial derivatives of x(0,0) with respect to u
and v can be written as follows:

Recall that the focus vertex forms the origin of
the neighbourhood frame, and therefore
corresponds to the point x(0,0). The partial
derivatives of x are all that is needed to compute
principal curvatures over the surface, as we shall
now see:

vuvuvu

vuf

543
2

2
2

1

),(

λλλλλ ++++
= (6.1)

() ()
321

,, veueevufvu ++=x (6.2)
()22)0,0()0,0(2)0,0(

2
1

)0,0()0,0(),(

vfuvfuf

vfufvuf

vvuvuu

vu

++

++= (6.3)

Figure 4 Example of mean curvature and normalised principal curvature direction operators.

)0,0(

)0,0(

)0,0(

)0,0(2

)0,0(2

5

4

3

2

1

v

uv

u

vv

uu

f

f

f

f

f

=
=
=
=
=

λ
λ
λ
λ
λ

(6.4)

121

141

111

31531

21321

21)0,0()0,0(

)0,0()0,0(

21)0,0()0,0(

)0,0()0,0(

)0,0()0,0(

eef

eef

eef

eeeef

eeeef

vvvv

uvuv

uuuu

vv

uu

λ
λ

λ
λ
λ

==
==
==

+=+=
+=+=

x

x

x

x

x

(6.5)

This expression represents the normal
curvature of the surface x in the parameter
direction of α. The maxima and minima of κ(α)
are characterised by dκ / dα = 0. Inserting the
partial derivatives from (6.5), we are left with a
quadratic equation in α, which can be solved to
find the directions of maximum and minimum
normal curvature, α1 and α2 respectively, for the
vertex in parameter space. These direction values
can be inserted into (6.6) to compute principal
curvatures κ1 and κ2. We can derive principal
curvature directions for the vertex in R3 from the
frame basis vectors e2 and e3 using (6.2).

Many useful differential geometry operators
can be defined in terms of principal curvatures.
Therefore, the above approach provides the
foundation for a variety of (discrete) differential
geometry operations [DOC76, DES00].

Figure 4 illustrates two such operators,
showing approximations of vertex mean curvature
and normalised principal curvature directions for a
mesh. Note that the mesh on the left is not shaded,
but pseudo-coloured according to mean curvature
approximations.

6.3 A Greedy Triangulation Algorithm for
Three-dimensional Polygons

We use a simple greedy approach during
triangulation, which incrementally adds the
current ear edge (fig. 5) of lowest weight to derive
a polygon with one fewer vertices until all that
remains is a triangle. We define an ear edge as any
orientated edge which partitions an n vertex
polygon into a triangle of the correct orientation
and an n-1 vertex polygon (fig. 5). In other words,
a candidate edge spanning consecutive vertex
triples is deemed to be an ear edge, if and only if
the triangle produced is consistently orientated
with the chosen reference point using the test from
section 6.1. In (fig. 5) the reference point is

anywhere below the plane of the page, assuming
counter-clockwise orientation.

The initialisation stage consists of filling a
priority-queue with the n candidate ear edges,
ordered according to increasing weight. An
iteration of the algorithm itself produces a
diagonal that is part of the final triangulation, and
may add up to two new, and will remove from
between one and three, ear edge candidates from
the queue. The diagonal is chosen as the current
minimum weight ear edge, and is therefore the
head priority-queue edge. The edge is then
removed from the queue, and added to the
triangulation. The addition of such a diagonal
renders the ear edges incident on the vertex of the
new triangle that is not part of the current ear edge
as invalid. Any such edges are removed from the
queue to ensure the resulting triangulation has the
appropriate topology. The removal of the current
minimum weight ear edge also allows up to two
new candidate edges to be considered in
subsequent iterations. For some current n vertex
polygon, these edges represent the ear edges of the
new, n-1 vertex, polygon that are not contained
within its own set of ear edges. As the number of
neighbourhood vertices is bounded from above,
this approach leads to a reasonable O(n log n)
triangulation algorithm when using a standard
heap-based priority-queue.

Figure 6 shows the various edges involved in
an iteration of the triangulation algorithm, where
the current ear edge is solid grey, the
corresponding invalidated edges are dotted lighter
grey, and the new candidate ear edges are darker
dashed grey.

During triangulation of the neighbourhood of
vertex k, we give each candidate edge between
vertex pi and pj a weight according to the
following equation W:

Figure 5 Example of an ear edge.

Figure 6 Edges involved in an iteration of
the triangulation algorithm.

()
2

2

��2

��2��

d
d�

GFE

gfe

u

v

++
++==

(6.6)

(6.7)
vvvuuu

vvuvuu

GFE

gfe

xxxxxx

xxx

...

...

===
===

N N N

vu

vu

xx

xx

∧

∧
=N (6.8)

(6.9) ji
k
dji

k
d

ji

ppdpp

pp

k
)�1(�

)W(

2

� −+×

=
∧

(6.10)

 ≤−

−
=

else 01

���
�

��

� MAX21
MAX

21

.

kk
kk

k
d

As shown by (6.9) and (6.10), we apply a
convex combination of a curvature-based edge
metric and a traditional MWT-style edge metric
according to a function of the principal curvatures
of the neighbourhood of vertex k.

Equation 6.10 demonstrates the dynamic aspect
of the algorithm. The κ1

k and κ2

k correspond to the
initial principal curvatures of vertex k, as
calculated using the method described in section
6.2. The values κd

k represent the relative level of
curvature between the two principal curvature
directions of the vertex k. The value κMAX
represents the sensitivity of the curvature
adaptation, with lower values representing higher
sensitivity. We have found that κMAX = 1.0 works
well in practice.

Note that the principal curvatures κk are not
recalculated as the mesh is simplified. We have
found that the initial approximation is invariably
of a higher quality than those derived from a
simplified mesh. This also has an attractive
performance side-effect, as the relatively
expensive curvature calculations are only
performed as a pre-processing stage.

7 Results

We have applied our approach to many different
meshes, and we have included examples of some
of these in figures 7-11. We have included meshes
produced using a triangulation algorithm based on
the traditional MWT metric to facilitate
comparison with the curvature-based approach.

The original cow mesh is composed of 2903
vertices, and the 50%, 75%, and 88% reductions
consist of 1453, 729, and 374 vertices
respectively. The original triceratops mesh is
composed of 2832 vertices, and the 88%
reductions consist of 354 vertices.

Figures 8 and 9 demonstrate the full method on
the cow mesh with normal and wireframe
renderings respectively. These can be compared
with figures 10 and 11 to illustrate the
improvements gained. Notice that the triangles
composing the legs of the animal have aligned
themselves with the direction of least curvature in
figures 8 and 9, but have become almost
equilateral in figures 10 and 11. Moreover, see
that the horns of the 88% curvature-based
reduction are comparable to the horns of the 75%
MWT-based reduction. Also, notice that the
triangulations of the main body of the cow are
similar. This illustrates the dynamic nature of the
curvature-based triangulation algorithm which

gracefully reduces to an approximation of the
MWT in areas of zero curvature.

The L1 norm related nature of the error
polyhedron metric is well illustrated in figure 7,
and the level to which the curvature-based
algorithm overcomes these shortcomings is also
demonstrated in figure 7. See that the horns of the
mesh produced by the MWT-based algorithm have
completely disappeared, where as the horns of the
curvature-based approach stand proud.

The meshes were produced on a 600MHz
Pentium III, reaching reduction rates of over 6000
and 5000 triangles per second for the MWT and
curvature based approaches respectively. Rates
significantly higher than these could be achieved
using a fully optimised algorithm.

8 Conclusions

We have presented a novel error metric for use
during mesh simplification based on error
polyhedra. The metric is both accurate and
efficient, and its efficacy is well illustrated in the
figures. However, its inherent similarity to the
standard L1 norm means that it suffers from
identical problems, but also enjoys similar
benefits. These benefits manifest themselves
through fast evaluation, but when combined with a
triangulation algorithm which approximates the
MWT, the error polyhedra metric has a tendency
to remove high frequency detail earlier than a L∞
based metric would. As shown in the figures, this
shortcoming is reduced when a curvature-based
triangulation algorithm is used.

We have presented a novel approach to
neighbourhood triangulation during simplification.
The method is based on the dynamic use of
discrete differential operators and utilises the extra
dimension that most other approaches ignore. We
have shown that coercing the triangulation edges
to align with the direction of least curvature
improves simplification quality, especially at low
numbers of vertices. This method does not
significantly increase simplification time and is
not metric specific, and therefore it could act as an
effective improvement to other approaches to
simplification.

The combination of error polyhedra and the
dynamic triangulation algorithm provides a fast
and accurate approach which demonstrates well
that methods based on vertex decimation can
provide a basis for efficient and effective mesh
simplification.

k

k

k

d

d
d

2

2

2 �

�

� =
∧

(6.11)

Acknowledgements

This work has been sponsored by the EPSRC and
Kazoo3D plc (www.kazoo3d.com).

We also thank Alan Watt, Michael Meredith,
and James Edge for helpful discussions during the
production of this report. James Robinson has, as
ever, provided much inspiration.

Finall y, we are indebted to Avalon – The
Public Domain 3D Mesh Repository for supplying
the meshes used in this work.

Bibliography

Barequet, G. and Dickerson, M., and Eppstein, D
(1998). On Triangulating Three-Dimensional
Polygons, Computational Geometry Theory &
Applications (10), 155-170.

Cohen, J., Olano, M., and Manocha, D. (1998).
Appearance-Preserving Simpli fication,
Computer Graphics Proceedings, Annual
Conference Series, 1998, ACM SIGGRAPH,
115-122.

Desbrun, M., Meyer, M., and Schröder, P. (2000).
Differential-Geometry Operators in nD, Multi -
Resolution Modelli ng Group, Cali fornia
Institute of Technology, pre-print.

Do Carmo, P. (1976). Differential Geometry of
Curves and Surfaces, Prentice-Hall , Inc.,
Upper Saddle River, NJ.

Eastli ck, M. and Maddock, S. (2001). Triangle
Mesh Simpli fication using Error Polyhedra,
Department of Computer Science Technical
Report, University of Sheff ield.

Garland, M. (1999). Multi resolution Modeling:
Survey & Future Opportunities, State of the Art
Report (STAR), EuroGraphics ’99.

Garland, M. and Heckbert, P. (1997). Surface
Simpli fication using Quadric Error Metrics,
Computer Graphics Proceedings, Annual
Conference Series 1997, ACM SIGGRAPH,
209-216.

Garland, M. and Heckbert, P. (1998). Simpli fying
Surfaces with Colour and Texture using
Quadric Error Metrics, Proceedings of IEEE
Visualization ‘98, 263-269.

Garland, M. and Heckbert, P. (1999). Optimal
Triangulation and Simpli fying Surfaces with
Colour and Texture using Quadric Error
Metrics, Proceedings of IEEE Visualization
‘98, 263-269.

Hoppe, H. (1996). Progressive Meshes, Computer
Graphics Proceedings, Annual Conference
Series 1996, ACM SIGGRAPH, pp. 99-108.
1996.

Lindstrom, P. and Turk, G. (1998). Fast and
Memory Eff icient Polygonal Simpli fication,
Georgia Institute of Technology Technical
Report GIT-GVU-98-11.

Ronfard, R. and Rossignac, J. Full -Range
Approximation of Triangulated Polyhedra,
Computer Graphics Forum (Proceedings of
Eurographics ’96), 15(3).

Schroeder, W. J. (1992). Decimation of Triangle-
meshes, Computer Graphics Proceedings,
Annual Conference Series 1992, ACM
SIGGRAPH, 65-70.

Figure 7 Example of wireframe rendering

of original triceratops mesh, 88%
curvature-based reduction, and 88%

MWT-based reduction.

Figure 11 Wireframe rendering of 50%, 75%, and 88% MWT-based reduction of cow mesh.

Figure 10 Standard rendering of 50%, 75%, and 88% MWT-based reduction of cow mesh.

Figure 8 Standard rendering of 50%, 75%, and 88% curvature-based reduction of cow mesh.

Figure 9 Wireframe rendering of 50%, 75%, and 88% curvature-based reduction of cow mesh.

