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Abstract

We present a novel and general framework for simplifying triangle-meshes based on vertex
decimation, as oppased to the mmmon edge-collapse operation. Our basic simplification metric
is based onthe evaluation d the volume of error polyhedra; such a measure is the geometric
analogle to the L, narm between two functions. Unlike many ather approaches, we perform
triangdation in threedimensions and uili se this extra information to increase simplification
quality, dynamicdly making wse of the principal curvatures of locd biquadratic goproximations

of the mesh.

Keywords: mesh simplification, vertex dedmation, 3D polygontrianguation, discrete

differential geometry operators

1 Introduction

The triange-mesh is the de facto representation
for threedimensional models on computers. The
triangle is the smplest piecewvise-linea
tessllating geometric  primitive. It naturaly
evolves in many processs that provide solutions
to geometric problems. Algorithms based on
triangles are often cleaner than similar examples
for surfaces composed of other, more complex,
poygors. Furthermore, any such surface
subdvision can aways be reduced to triangle-
mesh form. This, as well as the fad that current
graphics hardware cders most thorougHy for
triangle-meshes, contributes to the triangle's
ubiquity.

Despite its popuarity, the triangle-mesh has
various dortcomings when compared to ather
modelling representations, such as parametric
patches. A primary limitation is that its piecevise
liner nature prodwes large bandwidth
requirements. A triangle-mesh can exhibit only C’
continuity at best, and therefore airved surfaces
must be densely sampled to ensure that al of their
nuances are alequately approximated. This hasthe
effed of creaing a grea many triangles for non

trivial objeds. This volume of dataisan important
baottlenedk in many computer  graphics
applicaions, and this weak-link can manifest itself
as a bandwidth problem over various sdes; from
graphics device data buses up to permanent
storage devices, and even networked systems.
Alternatively, it can smply emerge & prolonged
locd processng d the mesh duing, for example,
rendering a editing. Mesh simplification provides
the badkbore for many of the methods that address
these problems.

We will begin by reviewing some previous
work on mesh simplification and certain related
isaues. We will then describe ageneral framework
for smplifying meshes to an arbitrary number of
vertices. Following this, we will describe the
metric used duing simplificaion, making wse of
the oncept of error polyhedra. This will lead us
to the threedimensional, curvature-based,
trianguation algorithm used duing smplification.
Finally, we will present and dscussthe results of
this work.

2 Related Work

There have been various paradigms proposed
for the smplificaion d triangle-meshes. The
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Figure 1 Example of a single vertex
removal and retriangulation operation.

edge-collapse and related approaches have
emerged as the most popuar methods, and we will
primarily concentrate on such approacies here.
However, the interested reader is referred to
[GAR99, EASO]] for a discusson d the full
spedrum of techniques.

A popdar framework for mesh smplificaion,
introduwced in [SCH92], has been termed vertex-
decimation. This approach performs a sequence of
vertex removal and retriangulation operations
(fig. 1), removing wertices from the mesh and
trianguating the resulting hde to maintain the
topdogicd type of the mesh.

The original technique operates by performing
a number of passes over the mesh. On ead pass
al vertices that passa binary metric are removed.
This metric is gedlily relaxed urtil the required
resolution is readed. Newer approaches have
developed more sophisticated error metrics and
trianguation algorithms, and many have alopted
the greedy framework of incrementally applying a
number of vertex removals operating onthe vertex
that currently minimises the dosen metric.
Approaches based on incremental greedy vertex
dedmation do no usually optimise the location o
the vertices participating in a vertex removal. This
leads us to the property that the vertices of a
vertex-dedmated mesh are usually a subset of the
original.

The aurrent most popdar methoddogy for
mesh simplification operates by a sequence of
iterative vertex contractions (fig. 2). The basic
method performs a number of edge-collapse
operations where the resultant vertex is located at
either end a the mid-point of the allapsed edge,
and the degenerate faces are removed.

The vertex placement strategy of constraining
the locaionto either end d the allapsed edge can
be viewed as a spedal case of the vertex
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Figure 2 Example of a single vertex
contraction operation.

dedmation approach. This operation is cdled the
half edge-collapse. However, a more powerful
approach locaes the vertex acording to some
optimisation criterion, which minimises the
“error” of the operation [HOP96, RON96, GAR97,
GAR98, LIN9g. This approach removes the
subset constraint of vertex-dedmated meshes, and
can provide better quality smplifications,
espedaly at low numbers of vertices. A further
generalisation, introduced in [GAR97], alows
vertices that do nd share an edge to be merged,
modifying the topdogy d the mesh to provide
better quality simplificaions espedally at low
numbers of vertices. Certain methods employ
some global, as oppaed to locd, measure that
retains information abou the origina model
during simplification. Such methods also often
provide guaranteed error bounds [RON96, HOP96,
GAR97, GAR9g]. The preaursor to many o the
current state-of-the-art methods is [RON96]. In
this method ead vertex in the original mesh is
asciated with the set of planes of its incident
triangles. During simplification, ead child vertex
that is a product of an edge-collapse is associated
with the set of planes produced from the union d
its parent vertex planes. The dhoice of whether a
vertex shoud be removed is based onthe distance
to ead of the planesin its st. This basic method
requires a large amourt of computational
resources, as during simplification ead vertex is
asciated with ever more planes. An efficient
way of cdculating the squared sum of these
distances for a given vertex was presented in
[GAR97], and is termed the quadric metric, and it
has provided the badkbore for most of the recent
work onmesh simplification [GAR98, LIN9g].

Interestingly, a recent technique shows that a
global error framework is naot always required for
high quality simplification [LIN98]. This goes
somewhat against conventional wisdom, however
the results are very convincing. This method is
related to the quadric gpproach.

In general, a triangle-mesh based model will
include extra dtributes per vertex or face such as
its normal vedor or colour. Recent methods for
mesh smplificaion have included such
information while performing simplificaion
[COH98, HOP96, GAR98]. Certain methods de-
coupe the surface olour detail from the adua
geometry, and store this data & images, which are
then mapped badk onto a simplified version d the
mesh [COH98]. Pragmatic gpproaches such as
these using image data produwce ®nsiderably
better smplifications at lower vertex courts and
may deaease rendering time and storage
reguirements.
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Figure 3 Example of 2-manifold vertex i
and boundary vertex j.

3 Notation and Nomenclature

An n-smplexisthe convex hul of n+1 affinely
independent vertices, or 0-simplices. Therefore, an
n-simplex has n dimensions and is compased of
n+1 (n-1)-simplices. For example, a 1-simplex is
an edge, which is compased o two O-simplices, or
vertices. In the same way, a 2-smplex is a
triangle, which is composed o three 1-smplices,
or edges.

A triangdar mesh M is defined in terms of its
condgtituent  vertices and the @nredivity

N@) = {J [{i, } O K} (3.2)

relationships that exist between them. To this end,
we denate atrianguar mesh M as a pair (P, K).

S(i) ={s|iOss0OK} (3.2)

The set P consists of paints p= (%, Y, z) O R,
with 1<i < N, which correspondto the vertices of
the mesh. The set K is an abstract simplicial
complex which is composed of a number of
subsets of {1, ..., N}, correspondng to the
congtituent 0-, 1-, and 2simplices of the mesh. In
other words, the vertices {i}, the edges({i, j}, and
the triangles {i, j, k}. Using this complex K, we
can construct the graph d the mesh, and with the
aid o the vertices P we can embed the graph in
red 3-space

Two vertices {i} and {j} are neighbous if
{i, j} O K. The 1-ring reighbouhood N(i) of a
vertex i isthe set of 0-simplices.

The star S(i) of avertex i is defined as the set
of itsincident simplices.

We represent the simplices composing an
arbitrary valid trianguation d a set of vertices V
asT(V).

A 2-manifold vertex i is one whose star (i) is
topdogicdly equivalent, or homeomorphic, to a
disc (fig. 3). A mesh is cdled 2-manifold if eadt
of its vertices has 2-manifold topd ogy.

A bounday vertex j is one whose star S(j) is
homeomorphic to a half-disc (fig. 3). A mesh is
cdled 2-manifold with bounday if ead o its
vertices has either 2-manifold or boundary locd
topdogy.

4 A Topology Preserving Mesh
Simplification Framework

For the sake of brevity, we will primarily concern
ourselves with 2-manifold with bounday meshes.
We define a vertex removal operator VR for a
manifold triangle-mesh M and vertex i as:

VR(M,i)=M' | P=P'Op,
K\K'=S@)\N@), (41
K'\ K =T(N(i))\ N(i)

The result of this operation is the mesh M’,
based onmesh M with pdnt p, and simplices S(i)
removed, and a number of new simplices T(N(i))
added to maintain the topdogicd type. An
applicaion d the operator on a 2-manifold vertex
i results in the removal of |N(i)| triangles and
edges and the adition o |N(i)] — 2 triangles and
[N(i)| — 3 edges. Similarly, for aboundry vertex j,
an applicdion d the operator results in the
removal of [N(j)| — 1trianglesand [N(j)| edges, and
the adition of |N(i)] — 2 triangles and |N(i)| — 3
edges. The operator is not defined for vertices
whose locd topdogy is not manifold with
boundry. Figure 1 demonstrates the VR operator
onaZ2-manifold vertex i.

We can define an error function, or metric,
EVR with a doman o al possble valid
combinations of M and i, and a red number range
acording to the aror, or change, between M and
M’ asaresult of VR(M, i) as.

EVR(M, i) - R (4.2)

We can define aother vertex removal
operator, OVR, for mesh M, as:

OVR(M) = M'= VR(M, argminEVR(M 1))
O 4.3)

The result of this operator for an N vertex
mesh M isan N — 1 vertex approximation M’ that
minimises the aror metric chosen for VR. For a
given M, we can define asequence of n meshes
with increasing error prodwced by reaursive
applicaions of the OVR operator:

OVR(...OVROVR(M) - M%) = M?)...)
=M" (4.4)

This squence produces a multiresolution
representation, or history, of M, containing n
different resolutions, ranging from the origina
high-resolution mesh down to a base low-
resolution mesh a which pdnt any further
applicaions of the OVR operator will violate the
mesh topdogy.

In pradice, for a given mesh M, we initialy
construct a priority-queue cntaining every {i} O



K, ordered by incressing EVR(M, i). Therefore
removing the head vertex will give us OVR(M).
After we perform an appliction d OVR(M), we
need to recdculate the EVR(M, i) for all vertices
whose incident triangles have dhanged as a result
of the operation, and updite their positionsin the
priority-queue. These vertices are simply the
neighbouhood \ertices N(i). This is an important
reason for the dficiency of this approach to
smplification.

5 Calculation of Error Metric using
Error Polyhedra

The various discrete L, norms and straightforward
extensions to higher numbers of dimensions are
commonly used as error metrics in other signal-
processng dsciplines, such asloss/ sound image,
and video compresson. A norm of the difference
between the domain and range signals is
cdculated and wsed as a measure for the quality of
the gproximation gven by the range signal.
However, the use of such measures inherently
relies on the signal being regularly sampled, be it
in ore, two, or threedimensions. We do nd have
such a luxury for the data we ae wnsidering here,
and this is an important reason why mesh-
processng techniques are often more callenging
and are possbly relatively less evolved than their
older siblings.

The L, noms for a ntinuows sgnal f are
defined as:

11 = (Iroored” 53

Therefore, we car see the L, nom between
two dscrete signals f and g can be cdculated
using the foll owing expresson:

It - 9|, = Qz [f(¥) - g(x)lng (5.2)

The L, measureisa spedal case, and measures
the magnitude of the maximum deviation between
the two signals. This function is cdled the
Hausdorff error and is often classed as the
“srongest”  metric.  However, its exad
computation is prohibitively complex for arbitrary
pairs of nontrivial meshes. Therefore, it is
desirable to find suitable dternatives for pradicd
simplificaion algorithms.

A geometric analogue to the L, norm between
a mesh M and the mesh produwced by a vertex
removal VR(M, i) can be seen to be the difference
in vdume of the meshes over the 1-ring
neighbouhood d i. We cdl this closed region an
error polyhedron, and we set the range of VR(M,

i) to be the magnitude of this volume. Therefore,
an applicaion d the OVR operator results in the
mesh with ore fewer vertices that minimises the
locd change in vdume.

We use the foll owing fourth-order determinant
for the volume of a 3-simplex as the basic building
block for the cdculation d error polyhedron
volume. The simplex sis compaosed of vertices p,

P, P, @ndp,.
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The sign d VOL®(s) is equal to the sign d the
inner prodwt of the vedor from p, to the
barycentre of {p, p, p} and the orientated namal
vedor of {p, p, p}. In aher words, if the
orientated namal vedor of {p, p, p} is painting
away from the half-spacedefined the plane of {p,
p, p} containing p, then the sign d VOL(s) will
be pogtively signed, otherwise, it will be
negatively signed.

Using this property, we car generalise this
formula to provide the volume of a dosed
simplicial complex or payhedron. Given such a
simplicial complex K and some abitrary reference
point r, we can classfy its constituent 2-simplices
as being part of the “upper” or “lower” surfaceof
K, acaording to whether their orientated namal
vedors face avay from, or towards, r. The
projedion d a mngtituent 2-simplex ortor isa 3-
simplex. Each 3-simplex of the upper surfacewill
have positive volume, and ead 3-simplex of the
lower surfacewill have negative volume. We can
view the acomplete projedion d the upper and
lower surfaces onto r as the projedions of ead of
the simplices onto r. Notice that the projedions of
both the upper and lower surface onto the origin
have identicd cross gdion. Therefore, we can see
that the gspace defined by the lower surface
projedion is a subset of that for the upper. The
difference between the spaces of the two
projedions can be seen to be exadly the spaceof
the aror payhedron. Therefore we can measure
the volume of the polyhedron bytaking the sum of
the volume contributions from its upper and lower
asurface 2-smplex projedions, which can be
cdculated using (5.3). Therefore, in the spirit of
(5.2), we can define our error function EVR for a
vertex i and the n 3-smplices defining its
correspording error payhedron o, in the following
way, where the mth simplex of o, is denated by
o™

<
N _N

VOL3(s) =

ok
X _X
<
N
=
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M =M1, = % VoL
There ae various methods for the computation
of (5.4) which are significantly faster than the
trivial separate evaluation d the n fourth-order
determinants. We have developed an efficient
dternative gproad, full details of which can be
foundin [EASO]].

6 A Framework for Computing
Vertex Neighbourhood
Triangulation

6.1 Approaches to Triangulation
Computation

Many reseachers have taken the gproach of
transforming the vertex neighbouhood into a
plane; 2-dimensional trianguation is then
performed in this domain, and the result is
transformed badk into 3-dimensional space to
complete the operation. The justifications for this
approach are two-fold. Firstly, manifold with
boundry vertex neighbouhoodis, topdogicdly,
a 2-dimensional entity, and seoondy, the literature
on 2dimensional triangdation is relatively
evolved, due, in the most part, to the requirements
of finite-element (FE) analysis.

This approach has two main dsadvantages.
Firstly, the properties exhibited by the
triangdation in  2dimensions are dther
meaningless or do nd usually hdd when the
trianguated vertex neighbouhood is projeded
badk into 3-space The degreeof approximation o
such properties in 3-space is related to the
curvature of the mesh ower the neighbouhood
The secondlimitationisthat an extradimension d
information that could be used to derive amore
appropriate trianguation is ignared, which leads
to poa quality simplifications.

A solution to these problems can be found by
performing trianguation in  3-dimensions
[BAR9E]. The first problem to be overcome for
such an approach is how to define a valid
trianguation. Clealy, atrianguation which leaves
hdes, flips triang e orientation, or otherwise dters
the topdogy d the mesh is undesirable. Our
solution to this problem is to use asimple linea-
time validity test which is based onthe nation d
consistent triangle orientation. We atempt to find
apoint which isin ead of the half planes defined
by a triange and its orientated namal vedor for
ead triangle before and after the trianguation. If
such a point is found then we can be sure that we
have not changed the orientation, and therefore the

topdogy, of the part of the mesh invaved in the
operation. In pradice, we use the aeaweighted
mean nama vedor of the neighbouhood
triangles before the trianguation operation to
derive aray from the focus vertex. Thisgivesus a
point “below” the surface designed to maximise
the dhances of successof thistechnique. We use a
similar equation to (5.3) to chedk the orientation
of atriange relative to ou reference point. We set
P, B, and p, as the orientated vertices of the
triangle in question, and p, as the reference point.
Therefore, a posgitive sign signifies a triangle with
corred orientation. The limitation d this approach
isthat it is not guaranteed to find a valid reference
point, if one does exist. However, we have found
that this method works well in pradice, and its
efficiency is an attradive property.

6.2 Principal Curvature-based
Triangulation

We @amploy a triangdation algorithm which
adknowledges and redifies the problems with the
2-dimensional transformation approach. To this
end, an estimate of the level of locd curvature of
the mesh is made, and the trianguation criterionis
adapted acwrdingly. For coplanar regions of the
mesh, the dgorithm reduces to an approximation
of the minimum weight trianguation (MWT).
However, the triangles in more airved areas are
made to align with principal curvature diredion
approximations acording to the relative level of
curvature between those two dredions. Recdl
that the principal curvature diredions for a point
on a surface ae the orthogoral diredions of least
and most curvature & that point. Given the
principal curvatures of a surface many other
curvature based measures, such as Gausdan and
mean curvature, can be eaily derived. A complete
introduction to the theory of differential geometry
is well beyond the scope of this paper, but the
interested reader isreferred to [DOC7€6].

Before presenting the trianguation algorithm
itself, we will examine the steps needed to derive
principal curvatures for triange-meshes.

The typicd equations from clasdcd
differential geometry used to cdculate principal
curvatures operate on parametric surfaces in R® of
type C", where n > 1. This presents two immediate
problems for the cdculation d such quantities for
triangle-meshes. The first difficulty results from
its piecevise linea nature, which can dffer only
C’ type surfaces, and the second is that a mesh is
not defined in terms of a parameterisation. A
solution to bah o these problems is to derive a
parametric paynomial surfaceover the region d
interest, which can then be analysed in the usual
ways.



Figure 4 Example of mean curvature and normalised principal curvature direction operators.

We ae interested in hiquadratic polynomial
surfaces of the following form:

f(U, V) = (61)
}\lu2 + A2v2 + }\Su + }\4uv + }\Sv

Using the (u, v) and f(u, v) values, as well as
orthogoral basis vedors e, e, and e, we can
write (6.1) such that the range is a surfacex in R®,
asfollows:

x(u,v) = f(u, vje + ue, + ve (6.2)

This is the gpropriate form of a surface for
curvature analysis. To cdculate the principal
curvatures for a point x(u, v), we need the first and
seoond ader partial derivatives of x at (u, v). We
will now examine the steps nealed to derive the
asurface x, and hence its partial derivatives, for a
vertex neighbouhood

A locd frame for a vertex i and its
neighbouhoodN(i) is computed. The origin of the
frame is the focus vertex. The verticd basis vedor
of the frame, e, is defined as the mean area
weighted namal vedor of the neighbouhood
triangles, and the two remaining besis vedors, e,
and e, ae derived using Gram-Schimdt
orthogordlization. The vedor e, defines the
diredion d elevation for the f(u, v) range values,
and the vedors e, and e, define iso-parametric
diredions for the domain values u and v
respedively.

The vertices of the neighbouhood are
transformed using an orthogoral projedion orto
the plane defined by the origin and the vedors e,
and e,. The (u, v) coordinates for these points can
then be trivially computed. The distance that eat
point moves as a result of the projedion gves us
correspondng f(u, v) elevation values.

A system of nonlinea simultaneous equations
is constructed using (6.1) and the parameter and
range values of the projedion, with the A as
unknovn coefficients. Clealy this gstem can
only be solved if there is a minimum of five

neighbouhood \ertices. However, the system of
equations is usualy over constrained, and
therefore we derive aleast-squares error fit for the
A, using avariant of Newton's method

Notice the dmilarity of (6.1) to a two-
dimensional second-order Madaurin series. We
can express sich a series as foll ows:

fuv) = f,(00u + f (00 + (6.3)

%(fuu(O,O)UZ +2f_ (00w + f_(00N2)

Using (6.1) and (6.3), we ca see that the
following hddstrue:

A, = 2f,(00)

A, = 2f (00)

A, = £,(00) (€4
A, = f,00

A, = 1,00

Therefore the wefficients A, represent ead of
the partial derivatives of f(0,0) with resped to the
parameters u and v. Using (6.2) we can see that
the partial derivatives of x(0,0) with resped to u
and v can be written as foll ows:

x,(00) = f (00)e +e = Age + ¢

x,(00) = f (00)e +e = Ag + €

x,(00) = f (00)e = VY2Ag (6.5)

x,,(0,0) f (00¢ = Aeg

x_,(0,0) f (00eg =12Ae

Recd! that the focus vertex forms the origin of
the neighbouhood frame, and therefore
corresponds to the point x(0,0). The partia
derivatives of x are dl that is needed to compute
principal curvatures over the surface as we shall
now see
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e=x,Nf=x_.Ng=x_.N

_ _ _ (6.7)
E = XX, F = XX, G = X, X,
N = X, va

- x [ x (6.8)

This expresson represents the normal
curvature of the surface x in the parameter
direction of a. The maxima and minima of k(o)
are characterised by dk / da = 0. Inserting the
partial derivatives from (6.5), we are left with a
quadratic equation in o, which can be solved to
find the directions of maximum and minimum
normal curvature, a, and a, respectively, for the
vertex in parameter space. These direction values
can be inserted into (6.6) to compute principal
curvatures Kk, and K,. We can derive principal
curvature directions for the vertex in R® from the
frame basis vectors e, and e, using (6.2).

Many useful differential geometry operators
can be defined in terms of principal curvatures.
Therefore, the above approach provides the
foundation for a variety of (discrete) differential
geometry operations [DOC76, DES0Q].

Figure 4 illustrates two such operators,
showing approximations of vertex mean curvature
and normalised principal curvature directionsfor a
mesh. Note that the mesh on the left is not shaded,
but pseudo-coloured according to mean curvature
approximations.

6.3 A Greedy Triangulation Algorithm for
Three-dimensional Polygons

We use a smple greedy approach during
triangulation, which incrementally adds the
current ear edge (fig. 5) of lowest weight to derive
a polygon with one fewer vertices until all that
remainsisatriangle. We define an ear edge as any
orientated edge which partitions an n vertex
polygon into a triangle of the correct orientation
and an n-1 vertex polygon (fig. 5). In other words,
a candidate edge spanning consecutive vertex
triples is deemed to be an ear edge, if and only if
the triangle produced is consistently orientated
with the chosen reference point using the test from
section 6.1. In (fig. 5) the reference point is

&

Figure 5 Example of an ear edge.

anywhere below the plane of the page, assuming
counter-clockwise orientation.

The initialisation stage consists of filling a
priority-queue with the n candidate ear edges,
ordered according to increasing weight. An
iteration of the algorithm itself produces a
diagonal that is part of the final triangulation, and
may add up to two new, and will remove from
between one and three, ear edge candidates from
the queue. The diagonal is chosen as the current
minimum weight ear edge, and is therefore the
head priority-queue edge. The edge is then
removed from the queue, and added to the
triangulation. The addition of such a diagona
renders the ear edges incident on the vertex of the
new triangle that is not part of the current ear edge
as invalid. Any such edges are removed from the
gueue to ensure the resulting triangulation has the
appropriate topology. The removal of the current
minimum weight ear edge also allows up to two
new candidate edges to be considered in
subsequent iterations. For some current n vertex
polygon, these edges represent the ear edges of the
new, n-1 vertex, polygon that are not contained
within its own set of ear edges. As the number of
neighbourhood vertices is bounded from above,
this approach leads to a reasonable O(n log n)
triangulation algorithm when using a standard
heap-based priority-queue.

Figure 6 shows the various edges involved in
an iteration of the triangulation agorithm, where
the current ear edge is solid grey, the
corresponding invalidated edges are dotted lighter
grey, and the new candidate ear edges are darker
dashed grey.

During triangulation of the neighbourhood of
vertex k, we give each candidate edge between
vertex p, and p a weight according to the
following equation W:

W(pp,) =
—_— [1 —
%medJ+a—Kqu| (6.9)
DKk — Kk
k B : 2 Kl:f - K; s KM/—\X
Kd =0 Kpax
Fi. 0 dse (6.10)

Figure 6 Edges involved in an iteration of
the triangulation algorithm.




d = & (6.11)

As shown by (6.9) and (6.10), we apply a
convex combination of a curvature-based edge
metric and a traditional MWT-style edge metric
according to a function of the principal curvatures
of the neighbourhood of vertex k.

Equation 6.10 demonstrates the dynamic aspect
of the algorithm. The Kk, and K, correspond to the
initial principal curvatures of vertex k, as
calculated using the method described in section
6.2. The values K, represent the relative level of
curvature between the two principal curvature
directions of the vertex k. The value k,,,
represents the sengtivity of the curvature
adaptation, with lower values representing higher
sengitivity. We have found that k,,,, = 1.0 works
well in practice.

Note that the principal curvatures k* are not
recalculated as the mesh is simplified. We have
found that the initial approximation is invariably
of a higher quality than those derived from a
simplified mesh. This aso has an attractive
performance sSde-effect, as the relatively
expensive curvature calculations are only
performed as a pre-processing stage.

7 Results

We have applied our approach to many different
meshes, and we have included examples of some
of these in figures 7-11. We have included meshes
produced using a triangulation algorithm based on
the traditiona MWT metric to facilitate
comparison with the curvature-based approach.

The original cow mesh is composed of 2903
vertices, and the 50%, 75%, and 88% reductions
consist of 1453, 729, and 374 vertices
respectively. The original triceratops mesh is
composed of 2832 vertices, and the 88%
reductions consist of 354 vertices.

Figures 8 and 9 demonstrate the full method on
the cow mesh with normal and wireframe
renderings respectively. These can be compared
with figures 10 and 11 to illustrate the
improvements gained. Notice that the triangles
composing the legs of the animal have aligned
themselves with the direction of least curvature in
figures 8 and 9, but have become amost
equilateral in figures 10 and 11. Moreover, see
that the horns of the 88% curvature-based
reduction are comparable to the horns of the 75%
MWT-based reduction. Also, notice that the
triangulations of the main body of the cow are
similar. This illustrates the dynamic nature of the
curvature-based triangulation algorithm which

gracefully reduces to an approximation of the
MWT in areas of zero curvature.

The L, norm related nature of the error
polyhedron metric is well illustrated in figure 7,
and the level to which the curvature-based
algorithm overcomes these shortcomings is aso
demonstrated in figure 7. See that the horns of the
mesh produced by the MWT-based algorithm have
completely disappeared, where as the horns of the
curvature-based approach stand proud.

The meshes were produced on a 600MHz
Pentium 111, reaching reduction rates of over 6000
and 5000 triangles per second for the MWT and
curvature based approaches respectively. Rates
significantly higher than these could be achieved
using a fully optimised algorithm.

8 Conclusions

We have presented a novel error metric for use
during mesh simplification based on error
polyhedra. The metric is both accurate and
efficient, and its efficacy is well illustrated in the
figures. However, its inherent similarity to the
standard L, norm means that it suffers from
identical problems, but aso enjoys similar
benefits. These benefits manifest themselves
through fast evaluation, but when combined with a
triangulation algorithm which approximates the
MWT, the error polyhedra metric has a tendency
to remove high frequency detail earlier than a L.
based metric would. As shown in the figures, this
shortcoming is reduced when a curvature-based
triangulation algorithm is used.

We have presented a novel approach to
neighbourhood triangulation during simplification.
The method is based on the dynamic use of
discrete differential operators and utilises the extra
dimension that most other approaches ignore. We
have shown that coercing the triangulation edges
to align with the direction of least curvature
improves simplification quality, especialy at low
numbers of vertices. This method does not
significantly increase simplification time and is
not metric specific, and therefore it could act as an
effective improvement to other approaches to
simplification.

The combination of error polyhedra and the
dynamic triangulation algorithm provides a fast
and accurate approach which demonstrates well
that methods based on vertex decimation can
provide a basis for efficient and effective mesh
simplification.
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Figure 7 Example of wireframe rendering
of original triceratops mesh, 88%
curvature-based reduction, and 88%
MWT-based reduction.
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Figure 8 Standard rendering of 50%, 75%, and 88% curvature-based reduction of cow mesh.
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Figure 9 Wireframe rendering of 50%, 75%, and 88% curvature-based reduction of cow mesh.
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Figure 10 Standard rendering of 50%, 75%, and 88% MWT-based reduction of cow mesh.

Figure 11 Wireframe rendering of 50%, 75%, and 88% MWT-based reduction of cow mesh.




