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Abstract 
We present a novel and general framework for simpli fying triangle-meshes based on vertex 
decimation, as opposed to the common edge-collapse operation. Our basic simpli fication metric 
is based on the evaluation of the volume of error polyhedra; such a measure is the geometric 
analogue to the L1 norm between two functions. Unlike many other approaches, we perform 
triangulation in three-dimensions and utili se this extra information to increase simpli fication 
qualit y, dynamicall y making use of the principal curvatures of local biquadratic approximations 
of the mesh. 
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differential geometry operators

1 Introduction 

The triangle-mesh is the de facto representation 
for three-dimensional models on computers. The 
triangle is the simplest piecewise-linear 
tessellating geometric primiti ve. It naturall y 
evolves in many processes that provide solutions 
to geometric problems. Algorithms based on 
triangles are often cleaner than similar examples 
for surfaces composed of other, more complex, 
polygons. Furthermore, any such surface 
subdivision can always be reduced to triangle-
mesh form. This, as well as the fact that current 
graphics hardware caters most thoroughly for 
triangle-meshes, contributes to the triangle’s 
ubiquity.  

Despite its popularity, the triangle-mesh has 
various shortcomings when compared to other 
modelli ng representations, such as parametric 
patches. A primary limitation is that its piecewise 
linear nature produces large bandwidth 
requirements. A triangle-mesh can exhibit only C0 
continuity at best, and therefore curved surfaces 
must be densely sampled to ensure that all of their 
nuances are adequately approximated. This has the 
effect of creating a great many triangles for non-

trivial objects. This volume of data is an important 
bottleneck in many computer graphics 
applications, and this weak-link can manifest itself 
as a bandwidth problem over various scales; from 
graphics device data buses up to permanent 
storage devices, and even networked systems. 
Alternatively, it can simply emerge as prolonged 
local processing of the mesh during, for example, 
rendering or editing. Mesh simpli fication provides 
the backbone for many of the methods that address 
these problems. 

We will begin by reviewing some previous 
work on mesh simpli fication and certain related 
issues. We will t hen describe a general framework 
for simpli fying meshes to an arbitrary number of 
vertices. Following this, we will describe the 
metric used during simpli fication, making use of 
the concept of error polyhedra. This will l ead us 
to the three-dimensional, curvature-based, 
triangulation algorithm used during simpli fication. 
Finall y, we will present and discuss the results of 
this work. 

2 Related Work 

There have been various paradigms proposed 
for the simpli fication of triangle-meshes. The 



edge-collapse and related approaches have 
emerged as the most popular methods, and we will 
primaril y concentrate on such approaches here. 
However, the interested reader is referred to 
[GAR99, EAS01] for a discussion of the full 
spectrum of techniques. 

A popular framework for mesh simpli fication, 
introduced in [SCH92], has been termed vertex-
decimation. This approach performs a sequence of 
vertex removal and retriangulation operations 
(fig. 1), removing vertices from the mesh and 
triangulating the resulting hole to maintain the 
topological type of the mesh.  

The original technique operates by performing 
a number of passes over the mesh. On each pass, 
all vertices that pass a binary metric are removed. 
This metric is steadily relaxed until the required 
resolution is reached. Newer approaches have 
developed more sophisticated error metrics and 
triangulation algorithms, and many have adopted 
the greedy framework of incrementall y applying a 
number of vertex removals operating on the vertex 
that currently minimises the chosen metric. 
Approaches based on incremental greedy vertex 
decimation do not usually optimise the location of 
the vertices participating in a vertex removal. This 
leads us to the property that the vertices of a 
vertex-decimated mesh are usually a subset of the 
original.  

The current most popular methodology for 
mesh simpli fication operates by a sequence of 
iterative vertex contractions (fig. 2). The basic 
method performs a number of edge-collapse 
operations where the resultant vertex is located at 
either end or the mid-point of the collapsed edge, 
and the degenerate faces are removed.  

The vertex placement strategy of constraining 
the location to either end of the collapsed edge can 
be viewed as a special case of the vertex 

decimation approach. This operation is called the 
half edge-collapse. However, a more powerful 
approach locates the vertex according to some 
optimisation criterion, which minimises the 
“error” of the operation [HOP96, RON96, GAR97, 
GAR98, LIN98]. This approach removes the 
subset constraint of vertex-decimated meshes, and 
can provide better qualit y simpli fications, 
especiall y at low numbers of vertices. A further 
generali sation, introduced in [GAR97], allows 
vertices that do not share an edge to be merged, 
modifying the topology of the mesh to provide 
better qualit y simpli fications especiall y at low 
numbers of vertices. Certain methods employ 
some global, as opposed to local, measure that 
retains information about the original model 
during simpli fication. Such methods also often 
provide guaranteed error bounds [RON96, HOP96, 
GAR97, GAR98]. The precursor to many of the 
current state-of-the-art methods is [RON96]. In 
this method, each vertex in the original mesh is 
associated with the set of planes of its incident 
triangles. During simpli fication, each child vertex 
that is a product of an edge-collapse is associated 
with the set of planes produced from the union of 
its parent vertex planes. The choice of whether a 
vertex should be removed is based on the distance 
to each of the planes in its set. This basic method 
requires a large amount of computational 
resources, as during simpli fication each vertex is 
associated with ever more planes. An eff icient 
way of calculating the squared sum of these 
distances for a given vertex was presented in 
[GAR97], and is termed the quadric metric, and it 
has provided the backbone for most of the recent 
work on mesh simpli fication [GAR98, LIN98].  

Interestingly, a recent technique shows that a 
global error framework is not always required for 
high qualit y simpli fication [LIN98]. This goes 
somewhat against conventional wisdom, however 
the results are very convincing. This method is 
related to the quadric approach.  

In general, a triangle-mesh based model will 
include extra attributes per vertex or face, such as 
its normal vector or colour. Recent methods for 
mesh simpli fication have included such 
information while performing simpli fication 
[COH98, HOP96, GAR98]. Certain methods de-
couple the surface colour detail from the actual 
geometry, and store this data as images, which are 
then mapped back onto a simpli fied version of the 
mesh [COH98]. Pragmatic approaches such as 
these using image data produce considerably 
better simpli fications at lower vertex counts and 
may decrease rendering time and storage 
requirements. 

 

 

 

Figure 2  Example of a single vertex 
contraction operation. 

 

 

Figure 1  Example of a single vertex 
removal and retriangulation operation. 



3 Notation and Nomenclature 

An n-simplex is the convex hull of n+1 aff inely 
independent vertices, or 0-simplices. Therefore, an 
n-simplex has n dimensions and is composed of 
n+1 (n-1)-simplices. For example, a 1-simplex is 
an edge, which is composed of two 0-simplices, or 
vertices. In the same way, a 2-simplex is a 
triangle, which is composed of three 1-simplices, 
or edges. 

A triangular mesh M is defined in terms of its 
constituent vertices and the connectivity 

relationships that exist between them. To this end, 
we denote a triangular mesh M as a pair (P, K). 

The set P consists of points pi= (xi, yi, zi) ∈ R3, 
with 1 ≤ i ≤ N, which correspond to the vertices of 
the mesh. The set K is an abstract simplicial 
complex, which is composed of a number of 
subsets of { 1, …, N} , corresponding to the 
constituent 0-, 1-, and 2-simplices of the mesh. In 
other words, the vertices { i} , the edges { i, j} , and 
the triangles { i, j, k} . Using this complex K, we 
can construct the graph of the mesh, and with the 
aid of the vertices P we can embed the graph in 
real 3-space. 

Two vertices { i} and { j} are neighbours if         
{ i, j} ∈ K. The 1-ring neighbourhood N(i) of a 
vertex i is the set of 0-simplices.  

The star S(i) of a vertex i is defined as the set 
of its incident simplices.  

We represent the simplices composing an 
arbitrary valid triangulation of a set of vertices V 
as T(V). 

A 2-manifold vertex i is one whose star S(i) is 
topologicall y equivalent, or homeomorphic, to a 
disc (fig. 3). A mesh is called 2-manifold if each 
of its vertices has 2-manifold topology.  

A boundary vertex j is one whose star S(j) is 
homeomorphic to a half-disc (fig. 3). A mesh is 
called 2-manifold with boundary if each of its 
vertices has either 2-manifold or boundary local 
topology. 

 

4 A Topology Preserving Mesh 
Simplification Framework 

For the sake of brevity, we will primaril y concern 
ourselves with 2-manifold with boundary meshes. 
We define a vertex removal operator VR for a 
manifold triangle-mesh M and vertex i as: 

The result of this operation is the mesh M’ , 
based on mesh M with point pi and simplices S(i) 
removed, and a number of new simplices T(N(i)) 
added to maintain the topological type. An 
application of the operator on a 2-manifold vertex 
i results in the removal of |N(i)| triangles and 
edges and the addition of |N(i)| – 2 triangles and 
|N(i)| – 3 edges. Similarly, for a boundary vertex j, 
an application of the operator results in the 
removal of |N(j)| – 1 triangles and |N(j)| edges, and 
the addition of |N(i)| – 2 triangles and |N(i)| – 3 
edges. The operator is not defined for vertices 
whose local topology is not manifold with 
boundary. Figure 1 demonstrates the VR operator 
on a 2-manifold vertex i. 

We can define an error function, or metric, 
EVR with a domain of all possible valid 
combinations of M and i, and a real number range 
according to the error, or change, between M and 
M’  as a result of VR(M, i) as: 

We can define another vertex removal 
operator, OVR, for mesh M, as:  

The result of this operator for an N vertex 
mesh M is an N – 1 vertex approximation M’ that 
minimises the error metric chosen for VR. For a 
given M, we can define a sequence of n meshes 
with increasing error produced by recursive 
applications of the OVR operator: 

This sequence produces a multi resolution 
representation, or history, of M, containing n 
different resolutions, ranging from the original 
high-resolution mesh down to a base low-
resolution mesh at which point any further 
applications of the OVR operator will violate the 
mesh topology. 

In practice, for a given mesh M, we initiall y 
construct a priority-queue containing every { i} ∈ 
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Figure 3  Example of 2-manifold vertex i 
and boundary vertex j. 
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K, ordered by increasing EVR(M, i). Therefore 
removing the head vertex will give us OVR(M). 
After we perform an application of OVR(M), we 
need to recalculate the EVR(M, i) for all vertices 
whose incident triangles have changed as a result 
of the operation, and update their positions in the 
priority-queue. These vertices are simply the 
neighbourhood vertices N(i). This is an important 
reason for the eff iciency of this approach to 
simpli fication. 

5 Calculation of Error Metric using 
Error Polyhedra 

The various discrete Ln norms and straightforward 
extensions to higher numbers of dimensions are 
commonly used as error metrics in other signal-
processing disciplines, such as lossy sound, image, 
and video compression. A norm of the difference 
between the domain and range signals is 
calculated and used as a measure for the qualit y of 
the approximation given by the range signal. 
However, the use of such measures inherently 
relies on the signal being regularly sampled, be it 
in one, two, or three dimensions. We do not have 
such a luxury for the data we are considering here, 
and this is an important reason why mesh-
processing techniques are often more challenging 
and are possibly relatively less evolved than their 
older siblings.  

The Ln norms for a continuous signal f are 
defined as: 

Therefore, we can see the Ln norm between 
two discrete signals f and g can be calculated 
using the following expression: 

The L∞ measure is a special case, and measures 
the magnitude of the maximum deviation between 
the two signals. This function is called the 
Hausdorff error and is often classed as the 
“strongest” metric. However, its exact 
computation is prohibiti vely complex for arbitrary 
pairs of non-trivial meshes. Therefore, it is 
desirable to find suitable alternatives for practical 
simpli fication algorithms. 

A geometric analogue to the L1 norm between 
a mesh M and the mesh produced by a vertex 
removal VR(M, i) can be seen to be the difference 
in volume of the meshes over the 1-ring 
neighbourhood of i. We call this closed region an 
error polyhedron, and we set the range of VR(M, 

i) to be the magnitude of this volume. Therefore, 
an application of the OVR operator results in the 
mesh with one fewer vertices that minimises the 
local change in volume. 

We use the following fourth-order determinant 
for the volume of a 3-simplex as the basic building 
block for the calculation of error polyhedron 
volume. The simplex s is composed of vertices pi, 
pj, pk, and pl. 

The sign of VOL3(s) is equal to the sign of the 
inner product of the vector from pl to the 
barycentre of { pi, pj, pk} and the orientated normal 
vector of  { pi, pj, pk} . In other words, if the 
orientated normal vector of { pi, pj, pk} is pointing 
away from the half-space defined the plane of { pi, 
pj, pk} containing pk then the sign of VOL3(s) will 
be positi vely signed, otherwise, it will be 
negatively signed. 

Using this property, we can generali se this 
formula to provide the volume of a closed 
simplicial complex or polyhedron. Given such a 
simplicial complex K and some arbitrary reference 
point r, we can classify its constituent 2-simplices 
as being part of the “upper” or “ lower” surface of 
K, according to whether their orientated normal 
vectors face away from, or towards, r. The 
projection of a constituent 2-simplex onto r is a 3-
simplex. Each 3-simplex of the upper surface will 
have positi ve volume, and each 3-simplex of the 
lower surface will have negative volume. We can 
view the complete projection of the upper and 
lower surfaces onto r as the projections of each of 
the simplices onto r. Notice that the projections of 
both the upper and lower surface onto the origin 
have identical cross section. Therefore, we can see 
that the space defined by the lower surface 
projection is a subset of that for the upper. The 
difference between the spaces of the two 
projections can be seen to be exactly the space of 
the error polyhedron. Therefore we can measure 
the volume of the polyhedron by taking the sum of 
the volume contributions from its upper and lower 
surface 2-simplex projections, which can be 
calculated using (5.3). Therefore, in the spirit of 
(5.2), we can define our error function EVR for a 
vertex i and the n 3-simplices defining its 
corresponding error polyhedron σi in the following 
way, where the mth simplex of σi is denoted by 
σi
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There are various methods for the computation 
of (5.4) which are significantly faster than the 
trivial separate evaluation of the n fourth-order 
determinants. We have developed an eff icient 
alternative approach, full detail s of which can be 
found in [EAS01]. 

6 A Framework for Computing 
Vertex Neighbourhood 
Triangulation 

6.1 Approaches to Triangulation 
Computation 

Many researchers have taken the approach of 
transforming the vertex neighbourhood into a 
plane; 2-dimensional triangulation is then 
performed in this domain, and the result is 
transformed back into 3-dimensional space to 
complete the operation. The justifications for this 
approach are two-fold. Firstly, manifold with 
boundary vertex neighbourhood is, topologicall y, 
a 2-dimensional entity, and secondly, the literature 
on 2-dimensional triangulation is relatively 
evolved, due, in the most part, to the requirements 
of f inite-element (FE) analysis.  

This approach has two main disadvantages. 
Firstly, the properties exhibited by the 
triangulation in 2-dimensions are either 
meaningless or do not usually hold when the 
triangulated vertex neighbourhood is projected 
back into 3-space. The degree of approximation of 
such properties in 3-space is related to the 
curvature of the mesh over the neighbourhood. 
The second limitation is that an extra dimension of 
information that could be used to derive a more 
appropriate triangulation is ignored, which leads 
to poor qualit y simpli fications. 

A solution to these problems can be found by 
performing triangulation in 3-dimensions 
[BAR98]. The first problem to be overcome for 
such an approach is how to define a valid 
triangulation. Clearly, a triangulation which leaves 
holes, flips triangle orientation, or otherwise alters 
the topology of the mesh is undesirable. Our 
solution to this problem is to use a simple linear-
time validity test which is based on the notion of 
consistent triangle orientation. We attempt to find 
a point which is in each of the half planes defined 
by a triangle and its orientated normal vector for 
each triangle before and after the triangulation. If 
such a point is found, then we can be sure that we 
have not changed the orientation, and therefore the 

topology, of the part of the mesh involved in the 
operation. In practice, we use the area-weighted 
mean normal vector of the neighbourhood 
triangles before the triangulation operation to 
derive a ray from the focus vertex. This gives us a 
point “below” the surface designed to maximise 
the chances of success of this technique. We use a 
similar equation to (5.3) to check the orientation 
of a triangle relative to our reference point. We set 
pi, pj, and pk, as the orientated vertices of the 
triangle in question, and pl as the reference point. 
Therefore, a positi ve sign signifies a triangle with 
correct orientation. The limitation of this approach 
is that it is not guaranteed to find a valid reference 
point, if one does exist. However, we have found 
that this method works well i n practice, and its 
eff iciency is an attractive property. 

6.2 Principal Curvature-based 
Triangulation 

We employ a triangulation algorithm which 
acknowledges and rectifies the problems with the 
2-dimensional transformation approach. To this 
end, an estimate of the level of local curvature of 
the mesh is made, and the triangulation criterion is 
adapted accordingly. For coplanar regions of the 
mesh, the algorithm reduces to an approximation 
of the minimum weight triangulation (MWT). 
However, the triangles in more curved areas are 
made to align with principal curvature direction 
approximations according to the relative level of 
curvature between those two directions. Recall 
that the principal curvature directions for a point 
on a surface are the orthogonal directions of least 
and most curvature at that point. Given the 
principal curvatures of a surface, many other 
curvature based measures, such as Gaussian and 
mean curvature, can be easil y derived. A complete 
introduction to the theory of differential geometry 
is well beyond the scope of this paper, but the 
interested reader is referred to [DOC76]. 

Before presenting the triangulation algorithm 
itself, we will examine the steps needed to derive 
principal curvatures for triangle-meshes.  

The typical equations from classical 
differential geometry used to calculate principal 
curvatures operate on parametric surfaces in R3 of 
type Cn, where n > 1. This presents two immediate 
problems for the calculation of such quantities for 
triangle-meshes. The first diff iculty results from 
its piecewise linear nature, which can offer only 
C0 type surfaces, and the second is that a mesh is 
not defined in terms of a parameterisation. A 
solution to both of these problems is to derive a 
parametric polynomial surface over the region of 
interest, which can then be analysed in the usual 
ways.  
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We are interested in biquadratic polynomial 
surfaces of the following form: 

Using the (u, v) and f(u, v) values, as well as 
orthogonal basis vectors e1, e2, and e3, we can 
write (6.1) such that the range is a surface x in R3, 
as follows: 

This is the appropriate form of a surface for 
curvature analysis. To calculate the principal 
curvatures for a point x(u, v), we need the first and 
second order partial derivatives of x at (u, v). We 
will now examine the steps needed to derive the 
surface x, and hence its partial derivatives, for a 
vertex neighbourhood. 

A local frame for a vertex i and its 
neighbourhood N(i) is computed. The origin of the 
frame is the focus vertex. The vertical basis vector 
of the frame, e1, is defined as the mean area-
weighted normal vector of the neighbourhood 
triangles, and the two remaining basis vectors, e2 
and e3, are derived using Gram-Schimdt 
orthogonalization. The vector e1 defines the 
direction of elevation for the f(u, v) range values, 
and the vectors e2 and e3 define iso-parametric 
directions for the domain values u and v 
respectively.  

The vertices of the neighbourhood are 
transformed using an orthogonal projection onto 
the plane defined by the origin and the vectors e2 
and e3. The (u, v) coordinates for these points can 
then be triviall y computed. The distance that each 
point moves as a result of the projection gives us 
corresponding f(u, v) elevation values.  

A system of non-linear simultaneous equations 
is constructed using (6.1) and the parameter and 
range values of the projection, with the λi as 
unknown coeff icients. Clearly this system can 
only be solved if there is a minimum of f ive 

neighbourhood vertices. However, the system of 
equations is usually over constrained, and 
therefore we derive a least-squares error fit for the 
λi using a variant of Newton’s method.  

Notice the similarity of (6.1) to a two-
dimensional second-order Maclaurin series. We 
can express such a series as follows: 

Using (6.1) and (6.3), we can see that the 
following holds true: 

Therefore the coeff icients λi represent each of 
the partial derivatives of f(0,0) with respect to the 
parameters u and v. Using (6.2) we can see that 
the partial derivatives of x(0,0) with respect to u 
and v can be written as follows: 

Recall that the focus vertex forms the origin of 
the neighbourhood frame, and therefore 
corresponds to the point x(0,0). The partial 
derivatives of x are all that is needed to compute 
principal curvatures over the surface, as we shall 
now see: 
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Figure 4  Example of mean curvature and normalised principal curvature direction operators.  
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This expression represents the normal 
curvature of the surface x in the parameter 
direction of α. The maxima and minima of κ(α) 
are characterised by dκ / dα = 0. Inserting the 
partial derivatives from (6.5), we are left with a 
quadratic equation in α, which can be solved to 
find the directions of maximum and minimum 
normal curvature, α1 and α2 respectively, for the 
vertex in parameter space. These direction values 
can be inserted into (6.6) to compute principal 
curvatures κ1 and κ2. We can derive principal 
curvature directions for the vertex in R3 from the 
frame basis vectors e2 and e3 using (6.2). 

Many useful differential geometry operators 
can be defined in terms of principal curvatures. 
Therefore, the above approach provides the 
foundation for a variety of (discrete) differential 
geometry operations [DOC76, DES00]. 

Figure 4 illustrates two such operators, 
showing approximations of vertex mean curvature 
and normalised principal curvature directions for a 
mesh. Note that the mesh on the left is not shaded, 
but pseudo-coloured according to mean curvature 
approximations.  

6.3 A Greedy Triangulation Algorithm for 
Three-dimensional Polygons 

We use a simple greedy approach during 
triangulation, which incrementally adds the 
current ear edge (fig. 5) of lowest weight to derive 
a polygon with one fewer vertices until all that 
remains is a triangle. We define an ear edge as any 
orientated edge which partitions an n vertex 
polygon into a triangle of the correct orientation 
and an n-1 vertex polygon (fig. 5). In other words, 
a candidate edge spanning consecutive vertex 
triples is deemed to be an ear edge, if and only if 
the triangle produced is consistently orientated 
with the chosen reference point using the test from 
section 6.1. In (fig. 5) the reference point is 

anywhere below the plane of the page, assuming 
counter-clockwise orientation. 

The initialisation stage consists of filling a 
priority-queue with the n candidate ear edges, 
ordered according to increasing weight. An 
iteration of the algorithm itself produces a 
diagonal that is part of the final triangulation, and 
may add up to two new, and will remove from 
between one and three, ear edge candidates from 
the queue. The diagonal is chosen as the current 
minimum weight ear edge, and is therefore the 
head priority-queue edge. The edge is then 
removed from the queue, and added to the 
triangulation. The addition of such a diagonal 
renders the ear edges incident on the vertex of the 
new triangle that is not part of the current ear edge 
as invalid. Any such edges are removed from the 
queue to ensure the resulting triangulation has the 
appropriate topology. The removal of the current 
minimum weight ear edge also allows up to two 
new candidate edges to be considered in 
subsequent iterations. For some current n vertex 
polygon, these edges represent the ear edges of the 
new, n-1 vertex, polygon that are not contained 
within its own set of ear edges. As the number of 
neighbourhood vertices is bounded from above, 
this approach leads to a reasonable O(n log n) 
triangulation algorithm when using a standard 
heap-based priority-queue.  

Figure 6 shows the various edges involved in 
an iteration of the triangulation algorithm, where 
the current ear edge is solid grey, the 
corresponding invalidated edges are dotted lighter 
grey, and the new candidate ear edges are darker 
dashed grey. 

During triangulation of the neighbourhood of 
vertex k, we give each candidate edge between 
vertex pi and pj a weight according to the 
following equation W: 

 

Figure 5  Example of an ear edge. 

 

Figure 6  Edges involved in an iteration of 
the triangulation algorithm. 
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As shown by (6.9) and (6.10), we apply a 
convex combination of a curvature-based edge 
metric and a traditional MWT-style edge metric 
according to a function of the principal curvatures 
of the neighbourhood of vertex k. 

Equation 6.10 demonstrates the dynamic aspect 
of the algorithm. The κ1

k and κ2

k correspond to the 
initial principal curvatures of vertex k, as 
calculated using the method described in section 
6.2. The values κd

k represent the relative level of 
curvature between the two principal curvature 
directions of the vertex k. The value κMAX 
represents the sensitivity of the curvature 
adaptation, with lower values representing higher 
sensitivity. We have found that κMAX = 1.0 works 
well in practice. 

Note that the principal curvatures κk are not 
recalculated as the mesh is simplified. We have 
found that the initial approximation is invariably 
of a higher quality than those derived from a 
simplified mesh. This also has an attractive 
performance side-effect, as the relatively 
expensive curvature calculations are only 
performed as a pre-processing stage.  

7 Results 

We have applied our approach to many different 
meshes, and we have included examples of some 
of these in figures 7-11. We have included meshes 
produced using a triangulation algorithm based on 
the traditional MWT metric to facilitate 
comparison with the curvature-based approach. 

The original cow mesh is composed of 2903 
vertices, and the 50%, 75%, and 88% reductions 
consist of 1453, 729, and 374 vertices 
respectively. The original triceratops mesh is 
composed of 2832 vertices, and the 88% 
reductions consist of 354 vertices. 

Figures 8 and 9 demonstrate the full method on 
the cow mesh with normal and wireframe 
renderings respectively. These can be compared 
with figures 10 and 11 to illustrate the 
improvements gained. Notice that the triangles 
composing the legs of the animal have aligned 
themselves with the direction of least curvature in 
figures 8 and 9, but have become almost 
equilateral in figures 10 and 11. Moreover, see 
that the horns of the 88% curvature-based 
reduction are comparable to the horns of the 75% 
MWT-based reduction. Also, notice that the 
triangulations of the main body of the cow are 
similar. This illustrates the dynamic nature of the 
curvature-based triangulation algorithm which 

gracefully reduces to an approximation of the 
MWT in areas of zero curvature. 

The L1 norm related nature of the error 
polyhedron metric is well illustrated in figure 7, 
and the level to which the curvature-based 
algorithm overcomes these shortcomings is also 
demonstrated in figure 7. See that the horns of the 
mesh produced by the MWT-based algorithm have 
completely disappeared, where as the horns of the 
curvature-based approach stand proud.  

The meshes were produced on a 600MHz 
Pentium III, reaching reduction rates of over 6000 
and 5000 triangles per second for the MWT and 
curvature based approaches respectively. Rates 
significantly higher than these could be achieved 
using a fully optimised algorithm. 

8 Conclusions 

We have presented a novel error metric for use 
during mesh simplification based on error 
polyhedra. The metric is both accurate and 
efficient, and its efficacy is well illustrated in the 
figures. However, its inherent similarity to the 
standard L1 norm means that it suffers from 
identical problems, but also enjoys similar 
benefits. These benefits manifest themselves 
through fast evaluation, but when combined with a 
triangulation algorithm which approximates the 
MWT, the error polyhedra metric has a tendency 
to remove high frequency detail earlier than a L∞ 
based metric would. As shown in the figures, this 
shortcoming is reduced when a curvature-based 
triangulation algorithm is used.  

We have presented a novel approach to 
neighbourhood triangulation during simplification. 
The method is based on the dynamic use of 
discrete differential operators and utilises the extra 
dimension that most other approaches ignore. We 
have shown that coercing the triangulation edges 
to align with the direction of least curvature 
improves simplification quality, especially at low 
numbers of vertices. This method does not 
significantly increase simplification time and is 
not metric specific, and therefore it could act as an 
effective improvement to other approaches to 
simplification. 

The combination of error polyhedra and the 
dynamic triangulation algorithm provides a fast 
and accurate approach which demonstrates well 
that methods based on vertex decimation can 
provide a basis for efficient and effective mesh 
simplification.  
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Figure 7  Example of wireframe rendering 

of original triceratops mesh, 88% 
curvature-based reduction, and 88% 

MWT-based reduction. 



  

 

 
Figure 11  Wireframe rendering of 50%, 75%, and 88% MWT-based reduction of cow mesh. 

 
Figure 10  Standard rendering of 50%, 75%, and 88% MWT-based reduction of cow mesh. 

 

Figure 8  Standard rendering of 50%, 75%, and 88% curvature-based reduction of cow mesh. 

 

Figure 9  Wireframe rendering of 50%, 75%, and 88% curvature-based reduction of cow mesh. 

 


