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Abstract

In recent years talking heads have received a great deal
of interest, both in their application to natural human-
computer dialogue, and their benefit to the intelligibility
of synthesised speech. A model for the realistic synthesis
of visual speech animation is described in this paper. Im-
ages representing the key visual speech poses (visemes) are
pre-recorded and labelled. Transitions between visemes are
created by using an image morphing technique based upon
the use of Radial Basis Functions. Timing information from
the FreeTTS speech synthesis system is used to plan the ap-
propriate transitions to create realistic speech animation. A
model of coarticulation is included in the system to improve
the realism of articulatory motion.

1. Introduction

Speech as a part of a natural dialogue is a collaboration
of both audio and visual stimuli. Whilst the audio compo-
nent is clearly the most important, visual cues such as the
movement of the lips and the visibility of the tongue allow
us to disambiguate what is heard. This is most obviously
the case with the hearing-impaired, so called lip-readers,
who use visual signals to make up for a loss in the ability to
perceive audio. However, it is also reported that the visual
component of speech can make as much as a +15dB im-
provement in signal-to-noise ratio [31], and a correspond-
ing increase in the intelligibility of the speech. This, along
with interest in making the human-computer dialogue more
natural, have led to a great deal of interest in the synthesis
of visual speech.

This paper discusses the implementation of an audio-
visual speech synthesizer. The system described is an ex-
tension of the FreeTTS speech synthesis engine [13], a Java
implementation of the Festival synthesizer [4]. The visual

component is created by morphing images representing im-
portant speech lip poses (visemes) thus creating visually re-
alistic animation.

2. Background and Previous Wor k

Most research into audio-visual synthesis focuses upon
the modelling of facial movement. Many techniques
use three-dimensional models of the face, using defor-
mation algorithms to recreate facial expressions. These
models typically fall into two main categories [24]: (i)
Physically/Anatomically-based techniques; (ii) Terminal
analogue techniques. Physical models attempt to model
the structure and function of the muscles and skin in the
face, whereas terminal analogue methods model facial ex-
pression in isolation from its physical-means of produc-
tion. Networks of masses connected by springs are typically
used in physically modelling facial behaviour [28, 20, 15],
with forces applied to the network to simulate the action of
muscles. Non-physics models use generic animation tech-
niques such as morph-targets [26] and spatial deformations
[16, 9, 17] to create facial expressions. An overview of
three-dimensional facial animation techniques can be found
in [27]. For the remainder of this section we shall focus
upon two-dimensional techniques more related to the work
in this paper.

Image metamorphosis (morphing) techniques relate to
the transition between two digital images. Whilst cross-
dissolving (linear colour interpolation) images produces
disturbing double exposure effects (fig. 2f), image morph-
ing methods use geometric transformation in coordination
with colour interpolation to create fluid transitions. In or-
der to create the geometric transformation, key features are
labelled in the source and destination images. The location
of pixels are defined in relation to the placement of key fea-
tures, and thus displacement of the features will produce a
warping of the image.



Several different methods have been described for the
warping of images. Beier and Neely [3] describe the field
warping algorithm, which uses line pairs in the source and
destination images to define a coordinate mapping. Lee et
al [19] describe a morphing algorithm based upon the use of
Multilevel Free-Form Deformations (MFFDs). These relate
the deformation of a parallelpiped lattice to a transformation
of the underlying image. The MFFD model is controlled by
a set of feature points which place positional constraints on
the MFFD lattice. Finally, several authors [1, 21, 30] have
described the use of scattered data interpolation techniques
to geometric transformation of an image. These methods
use Radial Basis Functions (RBFs) to define a surface which
passes through a few scattered feature points. Displacement
of the feature points thus leads to a deformed surface and
underlying image. An overview of these and similar image
metamorphosis techniques can be found in [32].

Liu et al [22] describe an alternative method for animat-
ing faces in images. Facial expressions from one photo-
graph can be mapped onto another using Expression Ratio
Images (ERIs). Each ERI models the variation in illumina-
tion due to a variation in facial expression. In combination
with a geometric warp an ERI allows the application of an
expression from one individual to another.

The synthesis of visual speech has coevolved with meth-
ods to synthesise human facial expression. Simple tech-
niques linearly interpolate between static visual speech
postures (visemes) [9], not dealing with the underlying
complexities of articulatory control. More recent meth-
ods incorporate models of coarticulation [7, 29] which
blend the visemes together in a physically plausible way.
Whilst many three-dimensional models for simulating vi-
sual speech movements incorporate coarticulation effects,
there is a greater inherent difficulty in simulating this blend-
ing for image-based methods where no natural parameteri-
sation exists.

The Miketalk system [10] is an audio-visual speech syn-
thesis system based upon morphing viseme images. The
morphing algorithm used relies upon concatenated optical
flow, where optical flow describes the mapping between
the source and destination images. Optical flow refers to
a family of techniques designed to calculate the move-
ment between subsequent frames in an image sequence
(see [2]). Unfortunately, given the large displacements be-
tween visemes, optical flow may not accurately calculate
the required warp function. For this reason Miketalk uses
concatenated optical flow which may require several in-
between frames to guide the transition between visemes.
This is a disadvantage of the technique, requiring the cap-
ture of a large number of visemes and transitional-visemes
to allow the image morphing algorithm to work.

Bregler et al [5] describe a speech synthesis system
based upon the concatenation of small video sequences rep-

resenting triphones (three phonemes in sequence, e.g. /p-
aa-p/). This method relies upon an extremely large dataset
of speech units, which must be specially recorded for the
purpose. Such databases are difficult to capture making it
difficult to change the system to control a different talking
head.

Brooke and Scott [6] use Hidden Markov Models
(HMM) to model triphone sequences for speech synthesis.
The output of the system is image sequences encoded using
Principal Components Analysis (PCA) for data compres-
sion purposes. The quality of synthesis using HMMs is en-
tirely determined by the quantity of data acquired initially
to train the system, and cannot work without a sufficient
dataset being available.

3. Our Approach

Our implemented system controls the synthesis of visi-
ble articulations during speech. The approach taken, similar
to [10], involves morphing between static viseme images.
Where our approach is distinct is in the method of produc-
ing transitions between phonemes. Radial Basis Functions
are used to morph between hand-labelled viseme images.
This provides a morphing algorithm which does not rely
upon computationally expensive optical flow algorithms, or
in-between images to guide the transition between visemes.
A statistical model of facial shape is used to provide a
more efficient parameterisation for visible speech articula-
tion. This parameterisation enables a model of speech coar-
ticulation to be included in the system, leading to more re-
alistic and natural animations. The stages of our approach
are as follows:

e Data Acquisition - Forty English visemes were
captured, directly corresponding to the phonemes used
in the FreeTTS synthesis system (see Table 1).

e Labelling - Individual visemes are labelled with 22
feature points (a subset of the MPEG-4 feature point
set [18]).

e Model Construction - A Principal Components
(PC) model of visual articulation is created from the
labelled feature points. The major components calcu-
lated using this technique are retained allowing a cer-
tain degree of data compression. Each PC is subse-
quently a parameter in the system used in the coarticu-
lation of visemes.

e Audio — Visual Synthesis - Using output phone
timings from the FreeTTS speech synthesis system,
visemes are aligned with the output audio. In-between
frames are rendered by interpolating the visemes using
an image metamorphosis method based upon a scat-
tered data-interpolation technique.



This paper continues with a discussion of the image mor-
phing algorithm (Section 4), a description of the parameter-
isation of speech articulation (Section 5), an overview of
how this is used in the framework of a text-to-visual-speech
synthesiser (Section 6), and finally conclusions of this work
and discussion of possible future improvements (Section 7).

4. Image Mor phing

Image morphing algorithms deal with the transition be-
tween two digital images. Smooth transformations can-
not be produced by simply fading one image into another,
because the features in the two images may be unaligned
producing a disturbing double-exposure effect. In order to
compensate for this, image morphing algorithms rely upon
both a geometric alignment and colour interpolation to pro-
duce smooth transitional images.

Given two images, I and Iy, two warping functions are
specified, do_1 : R2 — R? and di1_0 : R2 — R?, which
respectively forward warp I, to coincide with I; and back-
ward warp I; to coincide with I;. Once the geometric map-
ping between images is determined the pixels can simply
be interpolated between the two images, both in colour and
location.

Some pixels will not be filled by such a technique as
holes will appear where one pixel maps onto several in the
destination image, i.e. dilation of part of the image due to
the warping functions. These holes are removed using a
simple scanline or bilinear fill algorithm.

The most important feature of image metamorphosis
methods is the technique for determining the coordinate
mapping between Iy and I;. In this work we use an imple-
mentation of the technique described in [1, 21, 30], which
uses Radial Basis Functions to warp the images to coincide
with one another.

4.1. Radial Basis Functionsfor Image Warping

The most general means of specifying image features re-
lies upon the placement of primitives on the two matched
images. These primitives may be points, lines or curves.
The warp between the two images can then be defined
by finding surfaces that interpolate the feature primitives.
Curves and lines can both be point sampled, allowing us to
define the surfaces which pass through the point sets using
scattered-data interpolation techniques. Radial Basis Func-
tions (RBFs) are one such means of producing a smooth
interpolated surface from a set of scattered feature points.

The RBF approach constructs the interpolant as a lin-
ear combination of basis functions (the RBFs). Defining a
surface which interpolates a number of known points relies
upon determining the coefficients «; from (1).
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Figure 1. Warping a 2D mesh with RBFs: a)
original mesh; b) mesh after warping.

f(x) = pm(x) +Zai¢i<||w — i) 1)

The value of the function ¢; depends only upon the dis-
tance from its centre z; and thus is called radial. The
weights, «a;, of the basis functions are found by placing the
centres back into (1) and solving the resulting set of linear
equations.

The polynomial term p,,, is included to allow a certain
degree of polynomial precision, but may be excluded alto-
gether. If p,, is of degree m = 1 then the polynomial term
is a simple affine transformation. Where the influence of
the RBFs tend to zero, the result of the interpolation will be
dominated by the influence of the polynomial term. In this
work we use the identity transform for the polynomial term,
i.e. pm(z) = 2.

For the purposes of image warping we use the inverse
multiquadric (2) for the RBF. These produce C, interpo-
lated surfaces when the functions are global and not lo-
cally bounded. Other possible alternatives for ¢; include
the gaussian and the thin-plate spline.

1
T) = — 2
The radii of each function r; is unique, and is determined
as the least distance to its surrounding data points (3).

T = minizjl|z; — ;] (3)

Figure 1 demonstrates the use of RBFs in warping a 2D
mesh. The same approach can be used to warp images (fig.
2), as a part of an image metamorphosis method. The sur-
faces created by RBF interpolation are smooth, making for
good image transitions. The disadvantage of RBFs lies in
their global nature, since for every pixel in the image every
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Figure 2. Image metamorphasis with RBFs:
a) source image Ip; b) destination image I;
c) forward warping I, with dy_,;; d) backward
warping I; with dy_,; €) result of morphing
between I, and I;; f) cross-dissolved image.

RBF must be taken into account. An improvement in effi-
ciency, as proposed in [30], can be made by evaluating the
RBFs on a lower resolution grid, and interpolating the grid
displacements to warp individual pixels.

5. Statistically M odelling Visible Articulation

The morphing technique described in Section 4 relies
upon the placement of key feature points on each of the
images. This is a rather crude parameterisation of visible
articulation when the movement of these points is not inde-
pendent. A statistical model of visible articulation allows us
to define the feature point set in terms of a very few param-
eters. In this work Principal Component Analysis (Section
5.1) is used to define parameters for facial shape directly
from a labelled dataset of visemes.

5.1. Principal Components Analysis

Principal components analysis (PCA) is a classical mul-
tivariate statistical technique which provides a generative
model for an input population. We define a random vec-
tor population, consisting of s samples (4) as having mean
vector u, (5) and covariance matrix C,, (6).

v = {vo, ...,US}T (4)
po = E{v} ®)

Cy :E{(v_ﬂv)(v_ﬂv)T} (6)

We can define this population using the mean vector
and the combination of a set of orthogonal basis vectors e;
weighted by a set of factors b; (7).

v=pw+ Y e (7)
i=1

As the covariance matrix is symmetric, the orthogonal
basis set can be calculated by finding its eigenvectors e; and
eigenvalues A; (8).

Cve,' = /\iei,i =1.s (8)

|Cy — Al =0, )

The eigenvalues \; are the solutions to the characteristic
equation (9) which can be solved by reducing to tridiago-
nal form and using the QR algorithm. The product of the
orthogonal transformations used in the QR algorithm give
the eigenvectors of C',. Further discussion into the solu-
tion of general eigenproblems and a description of the QR
algorithm can be found in [11].

The eigenvectors e; of the covariance matrix C, are
called the principal components (PCs) of the vector pop-
ulation, ordered by the eigenvalues A\; which hold the vari-
ance o2 for each PC. The number of PCs will equal the
number of dimensions in the sample vectors s. However, in
most cases the first n (where n < s) components will ac-
count for enough of the variance within the population for
the rest to be discarded. For this reason a truncated princi-
pal component model can be used both to extract important
relationships, and as a form of data compression. Choos-
ing how many PCs should be kept is a matter of debate -
for discussion on this subject and PCA in general refer to
[14, 12].

5.2. Formulation of the M odel

In order to create a statistical model of visible articula-
tion we consider each set of feature points to be a single
sample v; within the system.

Vi = {Ti0, Yio, Tit s s xi(n—l)ayi(n—l)} (10)

We perform the PCA upon this dataset which determines
the most highly correlated vectors (the eigenvectors e;), of
which we keep those which account for the top 99% of the



Vowels
AA odd UW two
AE at EH Ed
AH hut ER  hurt
AO ought EY ate
AW cow IH it
AY hide Y eat
UH hood OW oat
(0)4 toy
Consonants
B be K key
M me D dee
P pee T tea
CH cheese HH he
JH gee L lee
SH she N knee
ZH seizure NG ping
DH thee R read
TH theta S sea
F fee W we
V vee Y  yield
G green Z zee

Table 1. English phone classification used in
FreeTTS.

variance ( 3 PCs). This leads to a parameterisation of the
feature points which is subsequently used in the modelling
of coarticulation (Section 6.1).

6. Speech Synchronised Animation

The model described works in collaboration with the
FreeTTS system to synthesize each new utterance. The
FreeTTS synthesizer works by concatenating low level au-
dio units (diphones) to produce the audible speech signal.
Phone timing information is extracted from the FreeTTS
system, and is used to control the synthesis of the visual
signal.

For each audio phone (Table 1) a corresponding visual
unit (viseme) is stored. Transitions between visemes are
synthesised using the image metamorphosis method de-
scribed in Section 4. Trivially, linear interpolation is used to
determine in-between frames, however, the resulting anima-
tions are not physically correct. In order to create a better
approximation of speech articulation a model of coarticu-
lation has been included in the model as we shall now de-
scribe.

6.1. Modelling Coarticulation

The process of speech production cannot simply de-
scribed as a linear interpolation between invariant linguistic
units (in our case visemes). The movement of the artic-
ulators is complex, and the obscuration of the boundaries
between visemes should be correctly accounted for.

The blending of visemes can be split two ways: the an-
ticipatory preparation for a future viseme (backward coar-
ticulation), and the inertia of a preceding viseme affect-
ing future articulations (forward coarticulation). Typically
coarticulation prevents the articulators from meeting ideal
phone targets during speech production, which is why sim-
ple linear interpolation models can look unnatural.

Several models for coarticulation have been proposed in
the speech production literature (e.g. [25, 23]). These are
based upon the use of functions to blend articulatory move-
ments over time. In this work we use a model initially pro-
posed by Cohen and Massaro [7]. Each viseme, s, has a
corresponding dominance function, D, for each PC pa-
rameter p. A negative exponential function (11) is used to
define the dominance a segment (viseme) exerts over the
utterance.

e beerl7l if 7] > 0
Dg,(1) = P . - 11
sp( ) {aspea—)sp‘r |f |T| < 0 ( )

In (11), « is the magnitude of the dominance function, 7
is the time distance from the segment center, ¢ determines
the width of the function, and —0._,, and —6_, 5, define the
rate of forward and backward coarticulation respectively. A
weighted combination of these dominance functions (12) is
used to translate static visemes into the resultant articula-
tory curve for an utterance. Figure 3 shows the effect of
dominance functions on the interpolation of a single speech
parameter. As a result of the described coarticulation model
the articulatory parameters may not pass directly through
their target values, thus mimicking the role of context in
speech production.

’U(llp — Z?:O ‘DSP(T)ta,rgetSp (12)

Ym0 Dsp

In order to apply the result of the dominance functions,
a further warp is applied to the result of a linear morph be-
tween the source and destination viseme images. This ac-
counts for the difference between a linear interpolation and
a more accurate model of speech production. The warp is
applied as described in Section 4.1, which requires that a
further linear system must be solved every frame.
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Figure 3. Modelling coarticulation: a) dom-
inance functions for several speech seg-
ments; b) output parameter curve (target pa-
rameters shown as circles).

7. Conclusions

The use of RBF-based image morphing produces smooth
natural transitions between neighbouring visemes. This is
an improvement over other morph-based techniques such as
concatenated optical flow, due to the decreased data storage
requirements of the method. The central column of fig. 4
demonstrates some of the transitions generated by the sys-
tem in synthesising speech movements. Unfortunately, the
labelling of visemes with feature points is a time consuming
task which must be performed before any animations can be
created. A possible improvement would be to automatically
label visemes with feature points using a method such as the
Active Appearance Model described in [8].

One of the major contributions of this paper is the im-
plementation of coarticulation functions for image-based
models. Whilst these are increasingly common in three-
dimensional talking heads, little research has been carried
out into controlling image morphs with dominance func-
tions. Our results lead to less robotic speech movements
than reported [10] with simple linear interpolation.

Naturally, image-based methods, such as that described
in this paper, have advantages over models which attempt
to model the complexities of facial expression and appear-
ance in three-dimensions. As would be expected, the ani-
mations output by the system appear photo-realistic. A dis-
advantage of our current image-based method is the lack
of expressive capability. Our talking head cannot smile, or
raise its eyebrows as would occur in normal human-human
communication. Such capabilities could be incorporated
using the currently implemented warping functions. How-

Figure 4. Synthesized viseme transitions.
Central column contains transitional frames
between the source and destination visemes.

ever, issues regarding the blending of visual speech with
expressions are still unresolved. Another current problemis
that the head cannot be reoriented like a three-dimensional
model, and so we cannot see the animation from a differ-
ent viewpoint. View morphing could be implemented to
enable this functionality, although the amount of viseme
data required would be greater. For these reasons three-
dimensional heads dominate research, even though it could
be argued that image-based methods could be used to create
realistic looking animation on lightweight platforms such as
mobile phones and PDAs.
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