
Anti-aliasing with Stratified B-spline Filters
of Arbitrary Order

MANUEL N. GAMITO and STEVE C. MADDOCK

Department of Computer Science

The University of Sheffield

A simple and elegant method is presented to perform anti-aliasing in computer-generated im-
ages. The method uses stratified sampling to reduce the occurrence of artifacts in the image and
features a B-spline filter, of some desired order, to compute the final luminous intensity at each
pixel. The method is scalable through the specification of the filter order. A B-spline filter of
order one amounts to a simple anti-aliasing scheme with box filtering. Increasing the order of the
B-spline generates progressively smoother filters. Computation of the filter values is done in a
recursive way, as part of a sequence of Newton-Raphson iterations, to obtain the optimal sample
positions in screen space. The method is currently used to anti-alias images generated by ray
casting of implicit procedural surfaces.

Categories and Subject Descriptors: G.1.5 [Numerical Analysis]: Roots of Nonlinear Equa-
tions—Iterative Methods; G.2.1 [Numerical Analysis]: Combinatorics—Recurrences and Dif-
ference Equations; G.3 [Probability and Statistics]: Probabilistic Algorithms and Random
number generation; I.3.3 [Computer Graphics]: Picture/Image Generation—Antialiasing

General Terms: Algorithms, Design

Additional Key Words and Phrases: Anti-aliasing, B-spline filter, ray tracing, stratified sampling

1. INTRODUCTION

Anti-aliasing is an important component in the rendering of computer-generated
images and is used to eliminate high frequencies that would otherwise show up as
objectionable image artifacts. The most common approach to anti-aliasing relies on
the concept of super-sampling, where several image samples are rendered per pixel.
The final pixel colour is averaged down from the computed luminous intensities of
all the samples [Glassner 1995].
Super-sampling, by itself, pushes coherent artifacts into higher frequencies and

makes them less noticeable but cannot eliminate aliasing completely. An improve-
ment was introduced by Cook with the concept of stratified sampling [Cook 1989].
In stratified sampling, the position of each sample is slightly perturbed from its orig-
inal position on the node of a regular sampling grid. This has the advantage that
those high frequencies still remaining in the image now become disguised as noise,
which, as the authors argue, is much less objectionable to the human visual system
than coherent aliasing artifacts.
Anti-aliasing can be further enhanced with a low-pass filter. Instead of perform-

ing a simple arithmetic averaging to compute the pixel colour from the colour of

Author’s emails: M.Gamito@dcs.shef.ac.uk, S.Maddock@dcs.shef.ac.uk.
Author’s address: Department of Computer Science, Regent Court 211 Portobello Street, Sheffield,
S1 4DP, United Kingdom.

Department of Computer Science, Memorandum CS – 05 – 02, March 2005.



2 · M. Gamito and S. Maddock

all neighbouring samples, a weighted average is taken, where the weight for each
sample is given by the filter and usually depends on the distance, in screen space,
between the sample and the pixel position.
This article will present a method for performing stratified anti-aliasing on com-

puter generated images with a low-pass filter chosen from a family of B-spline basis
functions. A similar approach, has been presented by Stark et al. [2005]. We con-
sider, however, our approach to be more elegant, simpler to implement, and also
more general, since Stark et al. present the solution for B-spline filters of up to
order four (cubic B-splines) whereas our method can work with any filter order.
By choosing the order of the B-spline filter, one can have different filter behaviours
for anti-aliasing, starting with the box filter and going through the tent and cubic
filters.
Section 2 presents a more detailed formulation of the anti-aliasing problem. Sec-

tion 3 introduces some properties of B-spline basis functions that are necessary for
this work. Section 4 presents our anti-aliasing method. Section 5 presents some
results, with Section 6 presenting conclusions.

2. STRATIFIED MONTE CARLO ANTI-ALIASING

We seek to compute the luminous intensity I(x), for each point x in screen space, in
such a way that high frequencies are removed and do not cause aliasing when I(x)
is regularly sampled onto the discrete pixel positions. Removal of high frequencies
from a signal is possible by convolving it with some appropriate low-pass filter h(x).
The anti-aliased intensity I ′(x) becomes:

I ′(x) =

∫

I(u)h(x− u) du (1)

Anti-aliasing algorithms for computer graphics always try to provide some nu-
merical approximation to this integral that is both accurate and not too expensive
to compute. The simplest approximation is to replace the integral by a summation
over several image positions:

I ′(x) ≈
∑

i

I(ui)h(x− ui) (2)

The samples ui are regularly placed around point x, with N samples along each
of the horizontal and vertical directions, for a total of N2 intensity computations
necessary to obtain a single pixel intensity. This amounts to performing a weighted
average of all the computed luminous intensities, where the weights are obtained
from the filter kernel.
The approach, expressed by (2), is not particularly efficient because it does not

take into account the influence of the filter when placing the samples. The samples
ui are regularly spaced around x, regardless of which values the filter will take
there. It can happen, and usually does, that many samples will be placed in re-
gions farthest from x where the values of h(x − ui) will be small1 These farthest

1Any reasonable low-pass filter will have a kernel function with a maximum value at the origin
that decreases monotonically with distance.

Department of Computer Science, Memorandum CS – 05 – 02, March 2005.



Anti-aliasing with Stratified B-spline Filters · 3

samples will have a negligible impact on the anti-aliased intensity I ′(x), due to the
small value of their weights during averaging. This can be seen as a major source
of inefficiency when one remembers that computation of the luminous intensities
I(ui), with ray tracing or some other rendering algorithm, is always an expensive
procedure.
A better approach than (2) is to numerically compute the anti-aliasing convolu-

tion (1) with Monte Carlo integration [Shirley and Morley 2003]. In Monte Carlo
integration, a simple arithmetic average is used to compute the filtered intensity
value:

I ′(x) ≈
1

N2

∑

i

I(ui) (3)

The trick with Monte Carlo is that the positions ui are taken to be the outcome
of a random variable, whose probability density function (PDF) is the low-pass filter
itself. There is now a very low probability that samples will be placed in regions
where h(x−ui) is small. By treating the filter as the PDF of some random process,
we are assured that samples will be placed in regions where they are more likely to
contribute to the anti-aliased intensity. We must now deal with the issue of how
to randomly place samples in screen space, according to some arbitrary probability
density h(x).

First we consider h(x) itself. It must obey certain constraints if it is to be a valid
PDF. The most obvious constraint is that h(x) must be strictly positive, since it
does not make sense to talk about negative probabilities. Secondly, the integral
∫

∞ h(x)dx must be unity. This amounts to saying that there is a probability of
one (a certainty) that a sample will be located somewhere in screen space. If this
later constraint does not hold but the filter still has a finite positive integral, it is
possible to obtain a normalized PDF by using h(x)/

∫

∞ h(x)dx as the filter kernel.
With a valid PDF, we can now obtain another important measure for a random

process, the cumulative density function (CDF). If h(x) is a PDF, then its CDF is
given by:

H(x) =

∫ x

−∞
h(t) dt (4)

The CDF H(x) gives us the probability that the random variable will take values
below x. In the case of two-dimensional random variables, as is the case in this work,
it gives us the probability that a screen sample will be inside the rectangle that has
a lower left vertex at minus infinity, in both horizontal and vertical coordinates,
and an upper right vertex at point x. If h(x) is a proper PDF, then we have again
H(+∞) = 1, meaning the sample is bound to be somewhere on the screen.
To numerically compute a sample from a random process, knowing its CDF, we

use the method of function inversion [Press et al. 1992]. We begin by generating
a uniform random variable y that takes values in the unit rectangle [0, 1[×[0, 1[.
The sample having our desired CDF, H(x), and PDF, h(x), is now obtained by
finding the solution to the equation:

y = H(x) (5)

Department of Computer Science, Memorandum CS – 05 – 02, March 2005.



4 · M. Gamito and S. Maddock

0

0.5

1

PSfrag replacements

x
y

h(x)

H(x)
0  

0.5

1

PSfrag replacements

x

y

h(x)

H(x)

Fig. 1. A probability density function (left) and its corresponding cumulative density function
(right). To obtain a sample x with this PDF, sample uniformly with y and obtain x by inverting
the CDF.

Figure 1 exemplifies this process for a typical low-pass filter in one dimension. It
is possible to see that H(x) is a monotonically increasing function from 0 to 1. This
is true of any CDF and it is a property that will be used to advantage in Section 4.

To distribute sample points around the point x for Monte Carlo integration we
create a regular grid of samples, not in screen space, but in the unit square space
of the y variable. These samples become stratified by the addition of a random
component ξ that breaks up the regularity of the grid:

vi = ∆v i+ ξ (6)

If we use N samples, along both the horizontal and vertical coordinates, then the
vector ∆v has equal components 1/N and the random vector ξ has components
taking uniform random values in the interval [0, 1/N [. We thus obtain a stratified
distribution of samples ui to use in the Monte Carlo approximation (3) to the
anti-aliasing integral. The samples obey a PDF equal to the filter h(x), by having
them be the solution of vi = H(ui) for all i.

3. A FAMILY OF CARDINAL B-SPLINES

A family of cardinal B-spline bases nm(x), with knots placed at integer positions,
can be obtained by performing consecutive convolutions with the characteristic
function on the interval [0, 1[. We start off with the B-spline of order one, which is
the aforementioned characteristic function itself:

n1(x) =

{

1 if x ∈ [0, 1[,

0 otherwise.
(7)

The convolution of a B-spline of order m − 1 with the characteristic function
gives the next B-spline in the sequence:

nm(x) = (nm−1 ∗ n1) (x) =

∫ 1

0
nm−1(x− t) dt, for m > 1. (8)

Because of the consecutive convolutions, the B-spline curves become progressively
smoother as m increases.

Department of Computer Science, Memorandum CS – 05 – 02, March 2005.



Anti-aliasing with Stratified B-spline Filters · 5

We state, in this section, properties of the family of B-spline functions that make
them particularly attractive for use as low-pass filters in anti-aliasing. Most of this
material is taken from Chui [1992] without demonstration and the reader is invited
to consult that work for a thorough treatment of the subject. The properties of
B-spline bases that are relevant for anti-aliasing are as follows:

nm(x) > 0, for 0 < x < m. (9a)
∫ +∞

−∞
nm(x) dx = 1, for all m. (9b)

suppnm = [0,m]. (9c)

nm(x) =
x

m− 1
nm−1(x) +

m− x
m− 1

nm−1(x− 1), for m > 1. (9d)

Properties (9a) and (9b) together tell us that any nm(x) is a valid probability
density function for Monte Carlo anti-aliasing. The support of a B-spline nm(x),
when defined according to (8), is the interval [0,m]. For anti-aliasing, however, we
require that random samples be centered around some desired pixel position. This
can be achieved for B-spline filters by generating the samples, as explained in the
previous section, and performing a simple offset of −m/2 along the horizontal and
vertical coordinates. Property (9d) is the most important. It gives us an algebraic
relation between the B-spline of order m and the B-spline of order m−1. With this
knowledge and with knowledge of the shape of n1(x) (7) we can compute nm(x)
recursively, at any point x and for any order m.
We now know that B-splines can be used as filters for anti-aliasing and that

a simple recursive procedure exists to evaluate them. To study the behaviour of
B-splines as low-pass filters, we must also study their spectra n̂m(f), as given by
the application of the Fourier transform to nm(x):

n̂m(f) = F {nm(x)} =

(

sinπf

πf

)m

e−iπfm/2 (10)

If we admit a unit distance between pixels on the screen, we then have a sam-
pling frequency of 1 Hz, along the horizontal and vertical directions. The Nyquist
Sampling Theorem tells us that we must filter out all frequencies above 0.5 Hz if
no aliasing is to occur. Ideally, we would like to have a perfect low-pass filter with
a sharp frequency cut-off at 0.5 Hz. Such an ideal filter, however, would have an
infinite support and would be intractable under any of the approximations to the
anti-aliasing integral. The family of B-spline basis functions provides a sequence of
approximations to this ideal low-pass filter.
Figure 2 shows the shape of four B-splines with orders of 1, 2, 4 and 20, on the left,

together with the modulus of their respective spectra, on the right. The spectrum
of the ideal low-pass filter for anti-aliasing has been superimposed as a dashed
rectangle. The basis n1(x) originates the well-known box filter for anti-aliasing.
It is quite simple to implement but it allows too many high frequencies to pass
through, as evidenced by the significant lobes that fall outside of the spectrum for
the perfect filter.

Department of Computer Science, Memorandum CS – 05 – 02, March 2005.



6 · M. Gamito and S. Maddock

0

0.5

1

PSfrag replacements

n1(x)

n2(x)
n4(x)
n20(x)
|
n1(f)|
|
n2(f)|
|
n4(f)|
|
n20(f)|

0  

0.5

1

PSfrag replacements

n1(x)
n2(x)
n4(x)
n20(x)

|
n1(f)|

|
n2(f)|
|
n4(f)|
|
n20(f)|

0

0.5

1

PSfrag replacements

n1(x)

n2(x)

n4(x)
n20(x)
|
n1(f)|
|
n2(f)|
|
n4(f)|
|
n20(f)|

0  

0.5

1

PSfrag replacements

n1(x)
n2(x)
n4(x)
n20(x)
|
n1(f)|

|
n2(f)|

|
n4(f)|
|
n20(f)|

0

0.4

0.8

PSfrag replacements

n1(x)
n2(x)

n4(x)

n20(x)
|
n1(f)|
|
n2(f)|
|
n4(f)|
|
n20(f)|

0

0.5

1

PSfrag replacements

n1(x)
n2(x)
n4(x)
n20(x)
|
n1(f)|
|
n2(f)|

|
n4(f)|

|
n20(f)|

0

0.2 

0.4 

PSfrag replacements

n1(x)
n2(x)
n4(x)

n20(x)

|
n1(f)|
|
n2(f)|
|
n4(f)|
|
n20(f)|

0

0.5

1

PSfrag replacements

n1(x)
n2(x)
n4(x)
n20(x)
|
n1(f)|
|
n2(f)|
|
n4(f)|

|
n20(f)|

Fig. 2. B-spline basis functions (on the left), for m equal to 1, 2, 4 and 20, and their respective
spectra (on the right). The spectrum for the ideal anti-aliasing filter is superimposed, as a dashed
rectangle, on the later.

Department of Computer Science, Memorandum CS – 05 – 02, March 2005.



Anti-aliasing with Stratified B-spline Filters · 7

The basis n2(x) is also known as the tent or triangle filter because of its shape. It
has a better spectral behaviour than the box filter, since the lateral spectral lobes
are now more attenuated. However, the trend of increasing m in order to block
more of the high frequencies cannot continue indefinitely. For too large a value ofm,
the low frequencies also become excessively attenuated. This is exemplified by the
B-spline filter of order 20 in Figure 2. Visually, this distortion in the low frequencies
translates into a blurry image, where the amount of blurring is far greater than
necessary to eliminate aliasing. It is generally considered that a good compromise
between blocking the high frequencies and not distorting the low frequencies is
achieved with the cubic B-spline filter n4(x), also shown in Figure 2.
Once a particular order for the B-spline is chosen, a two-dimensional anti-aliasing

filter is made from the cartesian product of the nm(x) kernel with itself:

h(x) = h(x1, x2) = nm(x1)nm(x2) (11)

It would be equally as simple to have different orders for the horizontal and
vertical kernels but there does not seem to be, however, any significant advantage
in doing so.

4. STRATIFIED ANTI-ALIASING WITH B-SPLINES

Stratified Monte Carlo anti-aliasing with B-spline low-pass filters requires random
screen samples to be computed with a PDF given by nm(x). This, in turn, requires
the following CDF to be known:

Nm(x) =

∫ x

0
nm(t) dt (12)

We present here four properties about the integral Nm(x) of a B-spline basis
function that will be important when writing an implementation of anti-aliasing.
Unlike (9), these properties were not taken from Chui [1992], although they can be
derived from results in Chui with little effort.

suppNm(x) = [0,+∞[ (13a)

Nm(x) increases monotonically from Nm(0) = 0 to lim
x→+∞

Nm(x) = 1. (13b)

nm(x) = Nm−1(x)−Nm−1(x− 1), for m > 1. (13c)

Nm(x) =
x

m
Nm−1(x) +

(

1− x

m

)

Nm−1(x− 1), for m > 1. (13d)

Properties (13a) and (13b) are a direct consequence of (12), together with (9a),
(9b) and (9c). These two properties tell us that Nm(x) is a valid CDF. Properties
(13c) and (13d) are derived in the Appendix. Property (13c) gives an algebraic
relationship between the spline function and its integral at the next lower order.
Property (13d) presents a numerical recipe for computing any value of Nm(x) in a
recursive way. At the end of the recursion lies the N1(x) function, whose shape has
a trival expression, as given by (14).

Department of Computer Science, Memorandum CS – 05 – 02, March 2005.



8 · M. Gamito and S. Maddock

N1(x) =











0 if x < 0,

x if x ∈ [0, 1[,

1 if x ≥ 1.

(14)

The generation of random samples for Monte Carlo integration, with a B-spline
acting as the PDF, now requires solving the following equation for a sample x
in either horizontal or vertical screen coordinates, where y is a stratified uniform
random variable in the [0, 1[ interval:

y = Nm(x) (15)

The solution is immediate when m = 1 but, unfortunately, becomes rather in-
volved for higher orders. Rather than try to solve (15) analytically, the best ap-
proach is to use a numerical iterative method like Newton-Raphson to find the zero
of the auxiliary function f(x) = Nm(x)− y [Press et al. 1992].
Newton-Raphson is a powerful root finder since it has quadratic convergence but

some care must usually be taken before its application. The root must first be
bracketed inside a suitable interval. Then, f(x) must be monotonic inside that
interval with a non-vanishing derivative everywhere. All these conditions are nat-
urally met in the case of a B-spline CDF. Clearly, there is one and only one root
x inside the interval between y = 0 and y = 1. The function is monotonically
increasing inside that interval, as assured by property (13b), and the only points
where the derivative vanishes are the two interval extremes. If we first clear the
boundary case y = 0 ⇒ x = 0 then a series of Newton-Raphson iterations can be
started, with full confidence that it will converge to the solution2:

xi+1 = xi −
f(xi)

f ′(xi)
= xi −

Nm(xi)− y
N ′m(xi)

= xi −
Nm(xi)− y
nm(xi)

(16)

The cost of performing (16) is 2m−1 recursive calls ofNm(xi) and 2m−1 recursive
calls of nm(xi), giving a total complexity ofO(2m+1) per Newton-Raphson iteration.
It is possible to do better by replacing (13c) and (13d) in (16):

xi+1 = xi −
(xiNm−1(xi) + (m− xi)Nm−1(xi − 1)) /m− y

Nm−1(xi)−Nm−1(xi − 1)
, for m > 1. (17)

The cost is now 2m−1 − 1 recursive calls to compute Nm−1(xi) and similarly for
Nm−1(xi − 1). The complexity is O(2m), half of what it was before.

The Newton-Raphson iterations are started off with x0 = m/2, which is at the
center of the interval (9c) where the random variable x is bound to lie.

5. RESULTS

Figure 3 shows results of rendering an implicit surface by ray casting [Gamito and
Maddock 2005]. The upper image does not feature any anti-aliasing, with a single

2The boundary case y = 1 need not be considered because y is a uniform random variable in [0, 1[.

Department of Computer Science, Memorandum CS – 05 – 02, March 2005.



Anti-aliasing with Stratified B-spline Filters · 9

ray being cast exactly from the center of each pixel. The bottom image shows
the same surface rendered with our anti-aliasing method. The differences between
the two images are more easily discernible at the internal edges between different
surface features.
Figure 4 shows the effect of changing the number of samples per pixel for a small

section of the implicit surface from Figure 3. From left to right, top to bottom,
the sequence shows no anti-aliasing, and anti-aliasing with a cubic B-spline filter
with N2 equal to 4, 9 and 100 samples per pixel. Performing anti-aliasing by taking
only four random samples (two samples along each coordinate direction) is not very
effective but it does show that coherent aliasing artifacts are converted into noise
by the stratification of sample points. When N2 increases to 9 and then to 100
results become progressively better.
The number of Newton-Raphson iterations, whilst rendering the images of Fig-

ure 4, was from 1 to a maximum of 8, depending on the value of y when inverting
(15). If y = 0.5 then x = x0 = m/2 and the algorithm converges after exactly one
iteration. If, on the other hand, y moves away towards one of the extremities of
the [0, 1[ interval, a larger number of iterations will be required for xi to converge
to the solution. Nevertheless, the number of iterations always remains small due to
the quadratic convergence properties of Newton-Raphson root finding.

6. CONCLUSIONS AND FUTURE WORK

B-splines are useful filters for anti-aliasing. They include the widely used box and
tent filters as the first two members of their family. Cubic B-splines, however,
have better filtering behaviour. Our method can generate any of these filters, and
any B-spline filter in general, through a simple and elegant recursive procedure.
This recursive procedure keeps us from having to deal with the actual piecewise
polynomials, which describe the shape of the B-splines. Explicitly working with the
polynomial representation for some B-spline nm(x) can become quite an involved
procedure, even for moderate values of m. The cost of recursively evaluating nm(x)
grows geometrically with m. This is not, however, a serious constraint for our
method since filters of too high an order introduce excessive blurring and should
be avoided.

Generation of random samples for Monte Carlo anti-aliasing, having nm(x) as
their probability density function, requires inversion of y = Nm(x) where Nm(x)
is the cumulative density function associated with the B-spline filter. This can be
accomplished numerically with Newton-Raphson root finding in a way that is always
guaranteed to converge. Experiments have shown that the number of required
iterations remains within single digits.
Performing anti-aliasing on computer generated images is an expensive propo-

sition. By using N2 samples per pixel we are doing the same amount of work as
though we were rendering a virtual image with a resolution N2 higher than the
actual image. The present method does not take into account local image infor-
mation when performing anti-aliasing. In the example presented in the previous
section, it is quite wasteful to be casting N2 rays for a pixel located on the inside of
the implicit surface and far from any edge. A single ray would have sufficed, as the
non-antialiased image in Figure 4 can attest to. In this image, aliasing is only evi-
dent at the edges, while the internal surface features remain smooth. Techniques for

Department of Computer Science, Memorandum CS – 05 – 02, March 2005.



10 · M. Gamito and S. Maddock

Fig. 3. Comparison between no anti-aliasing (above) and anti-aliasing (below) for a computer
rendering of a procedural implicit surface.

turning the present anti-aliasing method with B-splines into an adaptive procedure,
similar to the work by Painter and Sloan [1989], should be further investigated.

Department of Computer Science, Memorandum CS – 05 – 02, March 2005.



Anti-aliasing with Stratified B-spline Filters · 11

Fig. 4. From left to right, top to bottom: no anti-aliasing, anti-aliasing with a cubic B-spline filter
with N equal to 2, 3 and 10 samples along each coordinate direction.

Department of Computer Science, Memorandum CS – 05 – 02, March 2005.



12 · M. Gamito and S. Maddock

APPENDIX

We begin by deriving the relation (13c) between a B-spline of order m and the
integral of B-splines of order m − 1. To do so, we need to express nm(x) as an
mth-order finite difference of powers of x. The reader is invited to consult Chui
[1992] for more details. Take the notation x+ = max(x, 0) to represent the restric-
tion of x to positive values only. Similarly, xm+ = (x+)

m. Consider also the finite
differences of order m for some function f(x). These are defined with the following
recurrence relation:

(∆f) (x) = f(x)− f(x− 1) (A.1)

(∆mf) (x) =
(

∆m−1 (∆f)
)

(x), for m > 1. (A.2)

Armed with this notation, we can write a B-spline nm(x) as:

nm(x) =
1

(m− 1)!
∆mxm−1+ , for m > 1. (A.3)

Taking the integral of (A.3), we arrive at a similar equation for Nm(x):

Nm(x) =

∫ x

0
nm(t) dt =

1

(m− 1)!

∫ x

0
∆mtm−1+ dt

=
1

(m− 1)!

∫ x

0
∆m−1

{

tm−1+ − (t− 1)m−1+

}

dt

=
1

(m− 1)!
∆m−1

{∫ x

0
tm−1+ dt−

∫ x

0
(t− 1)m−1+ dt

}

=
1

(m− 1)!
∆m−1

{∫ x

0
tm−1+ dt−

∫ x−1

−1
tm−1+ dt

}

=
1

(m− 1)!
∆m−1

{∫ x

0
tm−1+ dt−

∫ x−1

0
tm−1+ dt

}

=
1

(m− 1)!
∆m

∫ x

0
tm−1+ dt =

1

m!
∆mxm+ , for m > 1.

(A.4)

Using (A.4) twice, we have:

Nm−1(x)−Nm−1(x− 1) =

=
1

(m− 1)!
∆m−1xm−1+ − 1

(m− 1)!
∆m−1(x− 1)m−1+

=
1

(m− 1)!
∆m−1

{

xm−1+ − (x− 1)m−1+

}

=
1

(m− 1)!
∆mxm−1+ = nm(x), for m > 1. (A.5)

This completes the derivation of (13c).

Department of Computer Science, Memorandum CS – 05 – 02, March 2005.



Anti-aliasing with Stratified B-spline Filters · 13

We now take the recurrence relation that exists for nm(x) and arrive at a similar
relation for Nm(x), expressed in (13d). We place an integral on both sides of (9d)
and perform integration by parts:

Nm(x) =

∫ x

0
nm(t) dt

=

∫ x

0

t

m− 1
nm−1(t) dt +

∫ x

0

m− t
m− 1

nm−1(t− 1) dt

=
t

m− 1
Nm−1(t)

∣

∣

∣

∣

x

0

+
m− t
m− 1

Nm−1(t− 1)

∣

∣

∣

∣

x

0

− 1

m− 1

∫ x

0
Nm−1(t) dt +

1

m− 1

∫ x

0
Nm−1(t− 1) dt

=
x

m− 1
Nm−1(x) +

m− x
m− 1

Nm−1(x− 1)

− 1

m− 1

∫ x

0
{Nm−1(t)−Nm−1(t− 1)} dt, for m > 1.

(A.6)

Replacing (13c) in (A.6), we get:

Nm(x) =
x

m− 1
Nm−1(x) +

m− x
m− 1

Nm−1(x− 1)− 1

m− 1

∫ x

0
nm(t) dt

=
x

m− 1
Nm−1(x) +

m− x
m− 1

Nm−1(x− 1)− 1

m− 1
Nm(x), for m > 1. (A.7)

Sending the Nm(x) term on the right to the left hand side of the equation and
rearranging terms, we finally arrive at:

Nm(x) =
x

m
Nm−1(x) +

(

1− x

m

)

Nm−1(x− 1), for m > 1. (A.8)

This completes the derivation of (13d).

REFERENCES

Chui, C. K. 1992. An Introduction to Wavelets. Wavelet Analysis and its Applications, vol. 1.
Academic Press, Chapter 4, 81–117.

Cook, R. L. 1989. Stochastic sampling and distributed ray tracing. In An Introduction to Ray
Tracing, A. S. Glassner, Ed. Academic Press, Chapter 5, 161–199.

Gamito, M. N. and Maddock, S. C. 2005. Ray casting implicit procedural noises with reduced
affine arithmetic. to be published.

Glassner, A. S. 1995. Principles of Digital Image Synthesis. Morgan Kaufmann Publishers Inc.

Painter, J. and Sloan, K. 1989. Antialiased ray tracing by adaptive progressive refinement. In
Computer Graphics (SIGGRAPH ’89 Proceedings). Vol. 23. 281–288.

Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. 1992. Numerical
Recipes in C: The Art of Scientific Computing. Cambridge University Press.

Shirley, P. and Morley, R. K. 2003. Realistic Ray Tracing , Second ed. A K Peters Ltd.

Stark, M., Shirley, P., and Ashikhmin, M. 2005. Generation of stratified samples for B-spline
pixel filtering. to appear in Journal of Graphics Tools.

Department of Computer Science, Memorandum CS – 05 – 02, March 2005.


