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A method for ray casting implicit surfaces, defined with procedural noise models, is presented.
The method is robust in that it is able to guarantee correct intersections at all image pixels and
for all types of implicit surfaces. This robustness comes from the use of an affine arithmetic
representation for the quantity that expresses the variation of the implicit function along a ray.
Affine arithmetic provides a bounding interval estimate which is tighter than the interval estimates
returned by conventional interval arithmetic. Our ray casting method is also efficient due to
a proposed modification in the data structure used to hold affine arithmetic quantities. This
modified data structure ultimately leads to a reduced affine arithmetic model. We show that
such a reduced affine arithmetic model is able to retain all the tight estimation capabilities of
standard affine arithmetic, in the context of ray casting implicit procedural noises, while being
faster to compute and more efficient to store. We also show that, without this reduced model,
affine arithmetic would not have any advantage over the more conventional interval arithmetic for
ray casting the class of implicit procedural surfaces that we are interested in visualizing.

Categories and Subject Descriptors: G.1.0 [Numerical Analysis]: General—Computer Arith-
metic; G.1.5 [Numerical Analysis]: Roots of Nonlinear Equations—Error analysis ; Iterative
methods; G.4 [Mathematical Software]: Reliability and robustness; I.3.5 [Computer Graph-
ics]: Computational Geometry and Object Modeling—Boundary representations; I.3.7 [Com-
puter Graphics]: Three-Dimensional Graphics and Realism—Raytracing
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1. INTRODUCTION

Implicit surfaces play an important role in computer graphics. Surfaces exhibit-
ing complex topologies, i.e. with many holes or disconnected pieces, can be easily
modelled in implicit form. The same thing cannot be said for explicit surface repre-
sentations, either with polygon meshes or bicubic patches. For this reason, implicit
surface models have traditionally been used to represent complex objects like hu-
man characters [Wilhelms and Van Gelder 1997], fluids [Foster and Fedkiw 2001],
amorphous substances [Desbrun and Gascuel 1995] or, perhaps more importantly,
scientific and medical datasets [Whitaker 1998]. What is more, implicit surface
representations handle animated surfaces, that undergo topological change through
time, in a trivial way. Attempting to do the same with an explicit surface repre-
sentation would require reparameterization of the surface every time a topological
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change occurred. It is, therefore, not surprising that a wealth of different rendering
algorithms for implicit surfaces have been developed over the years.
Rendering algorithms for implicit surfaces can be broadly divided into two dis-

tinct categories:

—Meshing algorithms.

—Ray casting algorithms.

Meshing algorithms convert an implicit surface to a polygonal mesh format, which
can be subsequently rendered in any way desired [Lorensen and Cline 1987; Bloo-
menthal 1988; Velho 1996]. The first meshing algorithm for computer graphics was
proposed by Wright and Humbrecht [1979]. The advantage of a meshing algorithm
is that an implicit surface is converted to a format which is ubiquitous in computer
graphics: a mesh of triangles. Once the meshing step is performed, the implicit
surface can be, for example, visualized in real time with modern GPU graphics
boards. There are problems associated with mesh generation that make robust
meshing algorithms for implicit surfaces difficult to implement. Firstly, the polyg-
onal mesh should have the same topological structure of the implicit surface, with
no pieces becoming connected after meshing or vice-versa [Stander and Hart 1997].
Secondly, the distance to the camera should be taken into account while generating
the mesh. This insures the mesh will be optimal for a given viewing position, with
no triangles that are either too large or too small. The mesh, however, will have to
be regenerated if the camera changes position and popping effects might become
visible during an animation.
Ray casting algorithms bypass mesh generation entirely and compute instead

the projection of an implicit surface on the screen by casting rays from each pixel
into three-dimensional space [Roth 1982; Hin et al. 1989]. The first application
of a ray casting approach to implicit surfaces was presented by Blinn [1982]. The
intersection point between a ray and the implicit surface is found, along with the
normal at that point, and this is used to compute the luminous intensity at the
pixel. In its simplest form, a ray casting algorithm marches along a ray, trying to
find the first intersection with the surface. If the surface is very irregular, it may
happen that some wrong intersections will be found or even that no intersections
will be found for some rays that are actually intersecting the surface. This results in
the familiar "surface acne" problem, which can potentially crop up in all rendering
algorithms that rely on ray-surface intersection tests. Over the years, more robust
ray casting algorithms have been developed to address this deficiency. Robust ray
casting algorithms use concepts like Lifchitz bounds [Kalra and Barr 1989; Hart
1996] or interval arithmetic [Mitchell 1990] to obtain a confidence estimate that an
intersection point will be found within some range of distances along the ray.
This work develops a ray casting algorithm for implicit surfaces generated from

procedural noise functions. Our ultimate goal is to generate procedural planets,
modelled as implicit surfaces. Ray casting was chosen over mesh generation be-
cause it is an elegant method that can handle easily the wide range of viewing
distances that are required when visualizing a planet. Implicit surfaces based on
procedural noise functions are typically very irregular and exhibit complex topolo-
gies. They require, therefore, an algorithm that is guaranteed to find all correct
ray intersections. Failure to provide such a guarantee would amplify the surface
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acne problem to a point that would make the final image nearly useless. Our algo-
rithm evolves from the work of Mitchell [1990] where interval arithmetic was used
to obtain estimates on the variation of the implicit surface’s function along the ray.
However, we replace interval arithmetic (IA) with affine arithmetic (AA) since the
later is a more recent technology that is able to provide much tighter estimates for
the aforementioned variation [Comba and Stolfi 1993].
Ray casting with affine arithmetic has already been presented in the literature

[Junior et al. 1999]. When comparing AA against IA, Junior et al. [1999] reported
mixed results for implicit surfaces generated from several textbook mathematical
functions that do not find much application in computer graphics. Our work fo-
cuses, instead, on implicit surfaces generated from Perlin-like procedural noises
whose usefulness to computer graphics is without question [Ebert et al. 2003]. We
have found that a direct implementation of AA, as proposed by Junior et al. [1999],
was less efficient than the IA implementation of Mitchell [1990] for ray casting
implicit procedural noises. This motivated our work in obtaining a reduced rep-
resentation for AA, which is as accurate as the original one, while being more
efficient. It is this reduced AA representation for ray casting implicit surfaces that
is described in the remainder of this paper.
In Section 2, a more precise formulation of the ray casting problem is presented.

The approach to solving this problem with interval arithmetic is also given. Sec-
tion 3 gives a brief discussion of affine arithmetic models in general. Affine arith-
metic is then applied to the ray casting problem in Section 4, after our reduced AA
representation has been derived. Section 5 shows results and presents a comparison
between reduced AA, standard AA, and IA for ray casting surfaces defined from
procedural noise functions. Section 6 presents the conclusions that we have reached
with this work.

2. RAY CASTING IMPLICIT SURFACES

Consider a function f(x) from R3 to R, which is continuous everywhere. This func-
tion, when applied to any point in three-dimensional space, returns a scalar value.
The exact interpretation to give to this scalar is irrelevant. What is important
to us here is the sign of f(x). We say that, if f(x) > 0, we are on the outside
of some volume. Conversely, when f(x) < 0, we are on the inside. The points
where f(x) = 0 are then on the interface between the inside and the outside of the
volume1. Formally, the set S of all such points defines a surface (more precisely, a
two-dimensional manifold) in R3 given by:

S =
{

x ∈ R3 : f(x) = 0
}

. (1)

Because we can only know if a point x belongs to the surface after f(x) has been
evaluated, we say that S is an implicit surface. By changing the function f(x),
we change the shape of the surface. For example, if we want to obtain a spherical
surface of unit radius, centered at the origin, we can use f(x) = ‖x‖2 − 1.

1The choice of positive f(x) for the outside and negative f(x) for the inside is entirely arbitrary.
The opposite would have been equally valid.
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Enter ray casting. We seek to obtain a visualization of S as seen through a
virtual camera placed somewhere in R3. To do so, we shoot a ray from every pixel
in the camera’s screen space into three-dimensional space and try to determine if
and where this ray will intersect with S. A ray r(t) will be represented in explicit
form as a semi-infinite line, parameterized by the distance t:

r(t) = o+ td, with t ≥ 0. (2)

In (2), the position vector o is the starting point of the ray and is also the location
of the camera in R3. Vector d is the ray direction. It is usual, though not necessary,
for d to be normalized (‖d‖ = 1). If d is indeed normalized then t gives the correct
euclidean distance for any point along the ray. To find if the ray intersects the
surface, plug (2) into (1) and try to find a solution for t:

f(o+ td) = 0. (3)

If we define the auxiliary function g : R 7→ R, such that g(t) = f(o + td), it
becomes clear that we are dealing with a non-linear root-finding problem in one
dimension:

g(t) = 0. (4)

Only real roots of (4) have meaning in the context of ray casting. If there is no
such root, the ray does not intersect the surface. If there are multiple real roots of
(4), the ray intersects the surface multiple times along its way. In this later case,
we are interested in the solution with the smallest root t, since this will correspond
to the intersection point that is visible from the camera. Some roots can also have
a multiplicity of two, for rays that are only tangent to the surface at some point.
Such roots can be ignored if we arbitrate that a ray tangent to the surface does not
create an intersection point.
Traditional numerical methods for root finding are not of much help because,

if (4) has multiple roots, these methods provide very limited control (if any) over
which root will be returned [Corliss 1977]. The root or roots must first be bracketed
inside some suitable interval [ta, tb] before root finding takes place. With traditional
methods, the only way one can be certain that the smallest root will be returned
is to make sure that [ta, tb] contains this and only this root. Such root bracketing
is very difficult to achieve in a general way for any given g(t) function.
Enter interval arithmetic. An IA representation t̂ = [ta, tb] expresses our limited

knowledge about the value of the quantity t. All we are able to say with this
representation is that ta ≤ t ≤ tb. It is possible to derive an algebra for IA, similar
to the algebra of real numbers, by replacing all real arithmetic operations with
equivalent operations working on interval quantities [Moore 1966]. For example,
if û = [ua, ub] and v̂ = [va, vb] are two intervals, their sum ŵ = û + v̂ is given by
ŵ = [ua + va, ub + vb]. What is more, the transcendental functions in R can also
be generalized to receive intervals as arguments and return intervals. It is perfectly
reasonable, therefore, to write something like g(t̂ ) = sin t̂.
The one problem with IA is its over-conservativeness. The radius |t̂ | = (tb − ta)/2

of an interval t̂ = [ta, tb] can be used as a measure of this conservativeness in IA
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computations. Consider the subtraction t̂− t̂ of an IA quantity t̂ with itself. Nat-
urally, the result should be zero. Strict application of the IA rules for subtraction
lead, however, to the result [ta − tb, tb − ta]. The correct result of zero is indeed
contained in the interval but its radius |t̂ − t̂| = tb − ta is much larger than it
needs to be. This is because IA was not able to recognize that the two operands
to the subtraction are correlated (in fact, they are the same in this example) and
had to apply conservative rules to ensure the resulting interval would enclose every
possible answer.
Returning to the ray casting problem expressed by (4), it is now possible to obtain

an interval estimate g(t̂ ) for the variation of the implicit function when the distance
t along the ray ranges over some interval t̂ = [ta, tb]. The IA quantity g(t̂ ) is always
an estimate, to some degree, of the true variation along t. Interval arithmetic
guarantees that an estimate g(t̂ ) will contain the set ḡ(t̂ ) =

{

g(t) : t ∈ t̂
}

of all
values returned by g(t) for the range [ta, tb]. Trying to know how tightly the estimate
g(t̂ ) encloses ḡ(t̂ ) takes us back to the over-conservativeness problem of IA. What
always happens is that, as the number of IA operations required to compute g(t̂ )
increases, this later estimate becomes progressively conservative, to the point of
ceasing to give any more useful information about ḡ(t̂ ). For a sufficiently complex
implicit surface we will have, in the limit, |g(t̂ )| → +∞ and g(t̂ ) will converge to
the whole real line.
How can we know if a root of (4) is contained in some interval t̂ = [ta, tb]? We

evaluate g(t̂ ) with IA and check to see if this estimate contains the value zero.
Keeping in mind the conservative properties of interval arithmetic, two outcomes
can result from this test:

The estimate g(t̂ ) contains zero. The fact that 0 ∈ g(t̂ ) does not necessarily
imply that 0 ∈ ḡ(t̂ ). Nothing can be concluded in this case. The best thing to do
is to split the interval t̂ into two smaller intervals and try again.

The estimate g(t̂ ) does not contain zero. Since g(t̂ ) ⊇ ḡ(t̂ ), it is true that
0 /∈ g(t̂ ) ⇒ 0 /∈ ḡ(t̂ ). The interval t̂ can be discarded because no root of (4) can
possibly exist inside it.

A simple recursive subdivision procedure can be implemented, using the rationale
just explained. It starts with an initial range of distances [ta, tb], known to bound
all possible roots for ray intersection. This initial range is obtained by intersecting
the ray with a bounding object that is guaranteed to enclose the implicit surface. A
stack data structure is used to store intervals waiting to be tested for the existence
of roots. The procedure, which will be called RayIntersect, is listed in Figure 1.
The recursion stops either when a small enough interval bounding a root has been

found or when the stack becomes empty. The later scenario occurs in situations
where a ray does not intersect the surface. The order with which the two subinter-
vals are pushed onto the stack, in the case where both may contain a root, is not
arbitrary. By pushing t̂r first and then t̂l the nearest intersection is guaranteed to
be found.
If properly implemented, a ray casting algorithm with interval arithmetic is al-

ready robust in the sense that all correct ray intersections with the implicit surface
will be found. The problem with such an algorithm, however, is that it is not effi-
cient. A large number of iterations is required before the position of the first root
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push initial [ta, tb] onto stack;

while stack not empty

pop 
t = [ta, tb] from the stack;

if |
t | < ε
return ta;

let ti = (ta + tb)/2;
let 
tl = [ta, ti] and 
tr = [ti, tb];

if g(
tr ) 3 0
push 
tr onto stack;

if g(
tl ) 3 0
push 
tl onto stack;

Fig. 1. The RayIntersect algorithm.

along each ray can be tracked down with sufficient accuracy. This is ultimately due
to the aforementioned over-conservativeness problem of IA.

3. AFFINE ARITHMETIC

To overcome the deficiencies of interval arithmetic, Comba and Stolfi [1993] pro-
posed a different representation for quantities involving uncertainty, which they
called affine arithmetic. The representation of some quantity with affine arith-
metic (AA) tries to model the uncertainties about that quantity so that it is always
bounded inside a known interval. The advantage over the simpler interval arith-
metic framework is that AA tries to keep correlations between quantities, calculated
along some arbitrarily long chain of computations. AA keeps correlations between
similar quantities through the use of error symbols. A quantity t̂ in AA is rep-
resented as a central value t0 plus a sequence of error symbols ei, each with its
associated error coefficient:

t̂ = t0 + t1e1 + t2e2 + · · ·+ tnen. (5)

The error symbols lie in the interval [−1,+1] but are otherwise unknown and the
coefficients ti express the contribution of each symbol to the AA quantity. Error
symbols can be shared among several AA quantities and that is how correlation
information can be kept among related quantities. The sequence of error symbols in
(5) is typically sparse, with many of the coefficients ti being zero. This is because,
if the uncertainty associated with some error symbol ei of an AA quantity is not
shared with any other AA quantities, the later must all have their ti coefficients
null. When implementing AA, expensive book-keeping routines are often required
to manage the large but sparse sequences of error coefficients.

The computation of affine operations on AA quantities does not result in the
creation of any new error symbols. For two AA quantities û, v̂ and a scalar α, the
affine operations are:
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αû = (αu0) + (αu1)e1 + · · ·+ (αun)en,

û± α = (u0 ± α) + u1e1 + · · ·+ unen,

û± v̂ = (u0 ± v0) + (u1 ± v1)e1 + · · ·+ (un ± vn)en.
(6)

Application of the above rules to an operation like t̂ − t̂ produces a result of
exactly zero, something that, as we have seen, IA could not do.
For non-affine operations, like multiplication or square root, things are a bit

more complex. Because these operations cannot be expressed in affine form, a new
error symbol must be introduced to express the non-linearity of the operator. For
example, if ŵ = û · v̂, the result ŵ = w0 + w1e1 + · · · + wnen + wkek has the new
error symbol ek appended to it. The coefficients for the result are:

w0 = u0v0,

wi = u0vi + v0ui, for i = 1, . . . , n,

wk =
n
∑

i=1

|ui| ·
n
∑

i=1

|vi|.
(7)

As a sequence of AA operations progresses, quantities have an increasingly larger
number of error symbols, slowing down subsequent AA computations and increasing
the memory requirements. Still, AA overcomes the over-conservativeness problem
of IA and is able to produce much tighter bounds after long chains of operations.
This is quite useful for ray casting where the number of operations required to com-
pute g(t̂) is usually large. Because of its ability to maintain correlations among un-
certain quantities, AA has been shown to be potentially useful in several computer
graphics applications like the discretization of parametric curves [de Figueiredo
et al. 2003] or the ray tracing of displacement maps [Heidrich and Seidel 1998].

4. RAY CASTING IMPLICIT PROCEDURAL NOISES

We propose to model implicit surfaces based on an initial spherical surface, which
is subsequently modulated by one or more procedural noises. The general form for
our implicit surface generation function is (recall (1)):

f(x) = ‖x‖2 − 1 +
N
∑

i=1

ain(bix). (8)

We could equally well have used a geometric shape other than a sphere as the seed
to our implicit surface. However, we intend to model whole planets in a procedural
way in the future and so the choice of a sphere is appropriate. In the above equation,
N layers of a procedural noise n(x) are added to the implicit function, making the
surface of the sphere increasingly more corrugated as N increases. The parameters
ai and bi are used to scale the contribution of each layer of noise to the final surface.

There are several forms of procedural noises that have been developed in the
literature for computer graphics. In the most general way, a procedural noise
function can be written as:
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n(x) =
∑

i∈N (x)

hi(x− xi), (9)

where the hi(x) are kernel functions with a finite support in R3. Each kernel
function takes the influence of some node xi and spreads it throughout its support.
The influence that each node xi has on the final noise is expressed either as a random
value attributed to it, a random gradient vector, or both. Because the support of
the kernel functions is finite, only a small set N (x) of them will contribute to any
point x in three-dimensional space. If this was not so the evaluation of a procedural
noise would be computationally intractable.

Perlin procedural noises use nodes located at the vertices of an integer sized
lattice. The kernels are made of separable Hermite interpolation polynomials with
support on the interval [−1,+1] along each coordinate axis. This means that only
the eight nodes on the vertices of the lattice cell where the point x is located need
to be taken into account when computing (9). The kernels can either be cubic
or quintic interpolation polynomials [Perlin 1985; 2002]. Sparse convolution noises
use K nodes semi-randomly placed inside each lattice cell. For each point x in
space, 27K kernels need to be evaluated: K for the cell where x is contained plus
26×K for the twenty six surrounding cells. Sparse convolution noises are, therefore,
more expensive to compute than Perlin noises but they have much better spectral
characteristics [Lewis 1989]. Each kernel in a sparse convolution noise is a function
of the distance ‖x − xi‖ to its node and can be arbitrarily specified by the user,
subject only to the constraint of having support on the range of distances given
by the interval [0, 1]. Voronoi procedural noises are similar to sparse convolution
noises but use instead linear combinations of minimum distance functions as their
kernels [Worley 1996].
We use two bounding spheres, which are guaranteed to completely surround the

implicit surface given in (8), both from the inside and the outside. These spheres
are used to obtain the initial interval estimate t̂ = [ta, tb] for the distance along
a ray, the purpose of which has been explained in Section 2. Knowing that all
procedural noises return values in the range [−1,+1], the radii for the two spheres
are given by2:

rmax = 1 +
N
∑

i=1

|ai|,

rmin = 1−
N
∑

i=1

|ai|.

(10)

One of the following three situations will arise while performing the initial inter-
section tests between a ray and the two spheres:

— The ray does not intersect the outer sphere. In this case, the ray is simply
discarded and its originating pixel receives no light contribution.

2If the ai are large enough, the inner radius rmin may become negative. In this case we simply
ignore the inner bounding sphere.
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— The ray intersects the outer sphere going in and then again going out. This
will happen for grazing rays. Grazing rays are more expensive to compute than
other rays because they travel a greater distance inside the volume bounded by the
spheres.

— The ray intersects the outer sphere and then the inner sphere. This is the
most typical situation. There is another pair of intersections on the opposite side of
both spheres but this is never considered since an intersection will always be found
inside the first pair.

Once the initial interval estimate for intersection is known, the RayIntersect

algorithm can start either using IA or AA operations.

4.1 Reduced Affine Arithmetic

The arguments presented in Section 3 have motivated our development of a reduced
form of affine arithmetic for ray casting implicit surfaces based on procedural noises.
In a procedural noise of the form expressed by equation (9), each node xi has a
contribution to n(x) that is statistically independent from the contributions of all
other nodes. Correlations between the different i terms in the summation of (9)
are not expected to exist. The only correlation that will be maintained across all
AA quantities is related to the uncertainty along the length of the ray.

A reduced AA representation t̂ maintains only three parameters from the original
AA representation: the central value t0, the coefficient t1, expressing uncertainty
along the ray and a final coefficient t2, expressing uncertainties involved in the
computation of t̂ alone. The coefficient t1 is the only correlation that exists between
t̂ and other AA quantities. The expression for t̂ is:

t̂ = t0 + t1e1 + t2e2. (11)

The intervals t̂ = [ta, tb] bounding the position of roots along a ray and used in
the RayIntersect algorithm are written with:

t̂ =
tb + ta

2
+
tb − ta

2
e1. (12)

The error symbol e2 is not yet necessary for these intervals and, therefore, t2 = 0.
All subsequent quantities, computed during the evaluation of g(t̂ ), will have a
correlation with t̂ expressed through the coefficients of their e1 error symbols.

When performing AA operations, the contribution from any new error symbol is
accumulated, in modulus form, into the coefficient for e2 instead of being appended
to the representation. Consider again the example of multiplication between AA
quantities. If ŵ = û · v̂, the three parameters of ŵ will be:

w0 = u0v0,

w1 = u0v1 + v0u1,

w2 = |u0v2 + v0u2|+ (|u1|+ |u2|) · (|v1|+ |v2|) .
(13)

This is a reduction of the general rule for AA multiplication, as given by (7),
hence the name of reduced affine arithmetic. In (13), the terms w0 and w1 are
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Fig. 2. Comparison between the information conveyed by IA (left) and reduced AA (right) for
the behaviour of the implicit function g(
t) inside an interval 
t = [ta, tb].

the same as w0 and w1 from (7). The term w2 sums the modulii of the terms w2

and wk from (7) when n = 2. The rules for all other AA operations in reduced
form can be obtained in a similar way. With the representation (11), the time
required to compute an AA operation remains constant throughout the sequence
of computations. The storage size of a reduced AA quantity also remains constant.
The costly book-keeping procedures, necessary to handle the sparse sequences of
error symbols in standard AA, are no longer required for reduced AA.

4.2 Interval Optimization with Affine Arithmetic

The idea of optimizing the size of the interval bounding the first root of (4) was
first presented in Junior et al. [1999]. We present it here again in the framework of
reduced affine arithmetic.

When using IA to bracket an intersection point along the ray, nothing is known
about the behaviour of the implicit surface inside the interval where the point lies.
The only possible strategy, while trying to converge to the intersection point, is to
split the bounding interval in half and test each of the halves in turn. With AA,
however, it is possible to reduce the size of the interval before performing a split
by taking advantage of the extra information provided by the AA representation.
Figure 2 compares the type of information conveyed by an IA representation of
the implicit function g(t̂ ) inside some interval t̂ = [ta, tb] along the ray and the
information conveyed by a reduced AA representation over the same interval.

We seek the point where the graph of the function crosses the horizontal axis.
The IA representation is graphically equivalent to a bounding box that spans the
minimum and maximum values of the function inside t̂. The reduced AA repre-
sentation is equivalent to a parallelipiped, which bounds the function much more
tightly than the IA box. The bounding interval can be reduced to t̂′ = [t′a, t

′
b] before

performing any splitting. It is clear from the drawing that significant convergence
towards the root is achieved with just a single evaluation of the function in AA
form and before any further subdivision takes place.

The optimized interval t̂′ is obtained from the reduced AA representations for
the interval t̂ = t0 + t1e1 and the implicit function g(t̂ ) = g0 + g1e1 + g2e2 in the
following way:
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t′a = max

(

t0 −
g0
g1
t1 −

∣

∣

∣

∣

g2
g1

∣

∣

∣

∣

t1, ta

)

,

t′b = min

(

t0 −
g0
g1
t1 +

∣

∣

∣

∣

g2
g1

∣

∣

∣

∣

t1, tb

)

.

(14)

The RayIntersect algorithm is modified to push the optimized intervals t̂′l and
t̂′r onto the stack when t̂l or t̂r contain the value zero3. This interval optimization
strategy reduces significantly the number of iterations necessary to find the first
root of (4) by providing quadratic convergence instead of the linear convergence of
a strict recursive subdivision method.

5. RESULTS

Figure 3 shows two images of an implicit sphere, the surface of which has been
modified by the addition of a Perlin procedural gradient noise with quintic inter-
polants [Perlin 2002]. The image on the top of Figure 3 has only one layer of noise,
while the image on the bottom has three.
Correct implementation of both interval and affine arithmetic requires control

over the rounding direction of the processor to ensure that computed estimates are
always conservative. Changing the rounding direction on the fly is an expensive
operation for most modern processors. We have found, however, that using ε = 10−8

in RayIntersect did not require any rounding control because, for this epsilon,
the required accuracy is still much lower than the maximum accuracy of double
precision floating point numbers.
Tables I and II show some statistics that enable a comparison between all the

interval estimation techniques that have been presented. The rendering time was
obtained for a 800× 600 resolution image. The average number of function evalu-
ations per ray gives an indication of how often the algorithms needed to compute
bounds for the implicit function. The theoretical optimum value for this statistic
would be 1.0, for a perfect algorithm that could be capable of finding the intersec-
tion point by evaluating the implicit function only once. It turns out, surprisingly,
that, if the implicit function is polynomial, there does exist a bounding algorithm
capable of attaining the optimum value; more on this in the next section. When
computing the average number of function evaluations per ray, only rays that in-
tersected the outer bounding sphere and needed further testing were accounted for.
The rays that miss the bounding sphere entirely are trivially discarded.

As expected, the standard IA surface intersection algorithm needs a large number
of function evaluations due to the over-conservativeness of the IA representation.
Standard IA, however, compensates for this lack of accuracy by being quite fast,
which makes it competitive with some of the more advanced algorithms. Straight-
forward replacement of the IA operations with AA equivalents leads to a more
inefficient algorithm, due to the need to compute sequences of error symbol coeffi-

3When g1 → 0 the parallelogram on the right of Figure 2 tends toward the rectangle on the left.
In the limit, no optimization is possible and the original intervals tl or tr must be pushed onto
the stack.

Department of Computer Science, Memorandum CS – 05 – 04, April 2005.



12 · M. Gamito and S. Maddock

Table I. Statistics for an implicit sphere with one layer of noise.

Avg. Evals. p/ray T ime

Standard IA 57.18 3m27.8s
Standard AA 29.21 15m29.4s
Reduced AA 28.86 2m39.8s

Reduced AA+ Int. Opt. 11.92 1m06.4s

Table II. Statistics for an implicit sphere with three layers of noise.

Avg. Evals. p/ray T ime

Standard IA 82.04 20m20.3s
Standard AA 40.29 1h29m49.8s
Reduced AA 38.24 14m25.6s

Reduced AA+ Int. Opt. 22.25 8m31.8s

cients that grow progressively larger. Nevertheless, standard AA is able to reduce
the average number of function evaluations, which shows that AA does have the
potential to optimize ray-surface intersection algorithms, if only it can be imple-
mented in a more efficient manner.
The better performance of IA over standard AA for procedural noise models has

already been implicitly acknowledged in Heidrich et al. [1998]. In that work, IA
was used for computing the interval estimates of a Perlin noise. These interval
estimates were then converted into AA form for use in the rest of the application.
The authors do not state a reason for preferring IA over AA when computing a
Perlin noise but it is symptomatic that such a decision was taken in a paper whose
purpose was to propose AA as a better alternative to IA.
Efficiency with AA is obtained in the reduced AA representation, where a max-

imum of two error symbols per quantity are used. It is elucidating to see that the
number of function evaluations with reduced AA is essentially the same as with
standard AA, meaning that no accuracy was lost by constraining AA quantities
to two error symbols4. Reduced AA proves to be a more efficient representation
than standard AA by allowing significantly shorter rendering times and making it
slightly better than IA. The final optimization comes from reducing the size of the
intervals, as explained in Section 4.2. Now, both rendering statistics are much lower
than with any of the other bounding techniques.

6. CONCLUSIONS AND FUTURE WORK

Ray casting implicit surfaces with affine arithmetic becomes efficient only after a
reduced representation for uncertain quantities has been introduced. A reduced
affine arithmetic quantity uses a maximum of two error symbols. It has been
shown that without this reduced representation affine arithmetic would not be
able to compete against a simpler interval arithmetic representation. These results
were obtained while ray casting implicit surfaces generated from procedural noise
functions that are widely used in computer graphics. Procedural noise models
are based on the summation of several statistically independent terms. Only the
correlation related to the uncertainty in the position of the root along the ray needs

4In fact, Tables I and II show a little gain in accuracy with reduced AA. This comes from working
with the assumption that uncertainty about the position along the ray is always stored in the t1
parameter of the reduced AA representation.
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to be kept. It is for this reason that reduced affine arithmetic can achieve the same
results as standard affine arithmetic while being more efficient.
An interval bounding technique that could potentially be more efficient than

both interval and affine arithmetic represents uncertain quantities with truncated
Taylor polynomials followed by an interval that expresses the uncertainty in the
representation [Berz and Hoffstätter 1998]. An attractive feature of this technique
is the inherent scalability that comes from choosing the maximum order of the
Taylor polynomial. With an order zero polynomial, only the uncertainty interval
remains which is equivalent to an IA algorithm. An order one Taylor polynomial
gives a constant plus an interval, which is somewhat similar to AA with only one
error symbol. Still higher Taylor polynomials give progressively better estimates,
at the cost of having to compute increasingly higher derivatives of the implicit
function. If the implicit function is known to be a polynomial of order n then a
Taylor polynomial, also of order n, will provide the solution with a single evaluation
of the function and with no need for the additional uncertainty interval (except
where the interval might be necessary to account for the small precision errors of
the FPU hardware). One then only needs to compute the smallest root of an order
n polynomial, for which several stable numerical methods exist, to get the distance
along the ray to the intersection point.
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Fig. 3. An implicit sphere modulated with one layer (above) and three layers (below) of a Perlin
procedural gradient noise.
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