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Abstract – In this paper we present a technique that enhances an 
inverse kinematics (IK) solver  such that when the results are 
applied to a computer  character  we can generate a level of 
individualisation tailored to both the character  and the 
environment, e.g. a walking motion can become ‘stiffer ’  or  can 
be turned into a limping motion.  Since the technique is based on 
an IK  solver , we also have the desirable effect of solving 
retargetting issues when mapping motion data between 
characters.  As the individualisation aspect of our  technique is 
very tightly coupled with the inverse kinematics solver , we can 
achieve both the individualisation and retargetting of characters 
in real time. 
 

I. INTRODUCTION 
 
One of the main issues in using motion capture data to 
animate human figures is the problem of retargetting.  This is 
the issue of applying motion data captured from one person 
to a virtual person of a different size.  Since such data is 
usually in the form of joint angles relating a hierarchy of 
pieces, a person with different limb lengths driven by the 
same angles will have a different end limb point.  This is 
perhaps most clearly illustrated when the feet of characters 
appear to slide across the floor or penetrate it. 
 
A simple solution would be to capture data from a real person 
of the same size as the virtual character.  However, this is 
inflexible and would not work for some games characters, 
e.g. monsters.  Thus we need a more flexible approach. This 
is offered by Inverse Kinematics (see [16] for a general 
introduction to IK), which can be used to adjust a motion.   
The use of inverse kinematics in the field of character 
animation is not a new idea; however it is only recently being 
exploited in real-time applications such as games. 
 
In additional to the retargetting properties that come with an 
IK solver, we have further enhanced the use of our IK 
technique to incorporate a level of stylisation control over the 
character that comes at no extra computation cost.  We can 
transform a single base motion to a character of different 
physiological build, and we can further adapt the motion in 
real time to simulate the appearance of injuries.  Thus a 
character in a game could receive an injury and change his 
motion accordingly in real time using our techniques for 
adapting existing normal motion. 
 
The following section gives a review of current approaches to 
adapting character motion.  Then, after presenting the details 

of our technique, we demonstrate the principle by applying it 
to a single walking motion that we adapt to demonstrate both 
individualisation and injury simulation. 
 

II. RELATED WORK 
 
There are two general approaches to acquiring base motions 
for character animations.  One way of obtaining the data is to 
record the motion of a live subject using motion capture 
technology (mocap) [15], while the other technique requires 
the motion to be simulated.  The latter can itself be further 
broken down into several different techniques that including 
keyframing, inverse kinematics [12, 17] and dynamics [1] 
algorithms. 
 
In many cases, it is desirable to adjust motions to meet 
specific environmental constraints or properties of the 
computer character. Generally speaking, adaptations are 
added onto the base motions, or variations of the simulation 
algorithm are used, rather than creating completely new 
algorithms to generate such changes.  One of the first changes 
that generally needs to be done is to retarget the motion to a 
character that may have different dimensions.  This is done to 
eliminate visual artefacts that result from motion mapping 
and has been successfully tackled in the past with a variety of 
different techniques include IK [3], spacetime constraints  [4] 
and dynamics [5].  The former techniques tend to be less 
computational expensive than the latter ones and in 
particular, the IK algorithm we use in this paper has the 
ability to perform real-time retargetting in addition to the 
individualisation we present. 
 
Beyond the task of retargetting characters lies the field of 
adapting motions to portray more complex stylisation 
attributes such as physiological build (individualisation) and 
emotion.  In the past, much of the work into introducing 
different physiological builds into character motions has been 
based on dynamics and biomechanics [6, 7].  These 
techniques demonstrate good realism in the results, however 
this is at the cost of a large computational cost that would not 
be available in real-time applications which is where our 
technique demonstrates its potential. 
 
Another area of interest for adding stylisation to base motions 
is in simulating a level of visible emotion.  Various 
techniques have been used to achieve this goal including the 
use of Fourier principles [8, 13, 14], energy consumption [11] 



and emotional posturing [2].  The latter technique introduces 
an emotional appearance to the character by constraining 
joint angles based on the emotional state of the character.  
Although we do not investigate this in our paper, it would be 
possible to incorporate this into our work to enhance the 
individualisation we demonstrate later in this paper, further 
adding value to our design. 
 
In the following section we describe the technique that allows 
us to adapt an existing motion captured animation that is 
retargeted to both the environment and the character and to 
add extra richness to the motion in the form of 
individualisation, including injuries.  All of this is achieved 
in real time unlike many of the existing techniques that 
currently rely on complex dynamics to achieve the same aim. 
 

III. CHARACTER INDIVIDUALISATION 
 
Our system, MovingIK SE, is comprised of three independent 
modules that communicate accordingly using a level of 
parameterisation that allows flexible control over the 
generated motions.  The system’s modular design is outlined 
in Fig. 1.1. 
 
The Control Module is the top-level component whose 
purpose is to generate a set of values for the parameterised 
motion.  The Control Module determines the 
parameterisation based upon Control Sources that are fed into 
the module as well as its stylisation state.  It is the stylisation 
state that gives the character its individualisation.  The 
parameterisation of the Control Module, which encapsulates 
the information required to produce a motion, is passed on to 
the Animation Module.  The Animation Module takes the 
parameterisation as input and using knowledge about how the 

motion is performed, which is obtained from the Data 
Module, it postures the hierarchical structure of the character 
over time. 
 
For the system we describe in this paper, we will be using the 
motion of a two-legged humanoid gait.  However, with the 
level of abstraction we have imposed on the system, this can 
easily be replaced with an alternative type of motion as 
discussed at the end of the paper.  The roles of each of the 
modules within MovingIK SE are discussed next.  

 
A. Control Module 
 
The parameterisation of our system is split into two 
subgroups.  The first subgroup specifies the control 
parameters of the motion, while the second subgroup 
influences the behaviour of the inverse kinematics solution 
used by the Animation Module.   
 
The control parameters of the motion are derived from a user-
controlled analogue joystick whose inputs are used to initially 
determine the stride length, speed, and direction of travel.  
The Control Module subsequently adjusts these basic motion 
parameters in order to simulate the character’s stylisation 
state.  This, for example, could be to linearly reduce the 
maximum speed and stride length in order to simulate the 
fatigue of a character.  The way in which the stylisation state 
affects the parameterisation is discussed later. 
 
The second subgroup of parameters is weighting values that 
stiffen up joints so they move less compared to surrounding 
limbs.  This gives rise to a basic difference in visual 
appearance between characters of varying weighted values.  
These parameters are determined by the stylisation state of 
the character only.  The application of weighted parameters is 
discussed further under the Animation Module section of this 
paper. 
 
The stylisation state of the Control Module can be 
dynamically changed in response to the system’s Control 
Sources.  These can take a variety of different forms 
including responses to environmental events or an AI engine.  
For our demonstration of producing stylised motions, we 
invoke the different states by keyboard input. 
 
As well as the basic control parameters and the weighting 
values, we have control over hip swing parameters for the 
walking motion we demonstrate.  The first of these 
parameters controls the amount of rotation there is about the 
vertical axis of the hips.  This gives the visual appearance of 
swaying from side to side, with larger values resulting in the 
character swaying its hips more.  The second hip parameter 
determines the amount of travel there is along the vertical 
axis where an increase of this parameter produces a more 
bouncy looking character. 

 

Data Module 

• Key-framed 
• Procedural 
• Mocap 

Control Module 

• Read input from Control Sources to 
determine a set of values for 
parameterisation  

• Maintain a character state to adjust 
stylisation parameters 

 

Animation M odule 

• Use inverse kinematics to generate 
character animation based on 
parameterisation: 

o Performs retargetting  
o Eliminates foot sliding 
o Removes limb penetration 
o Generate stylised motion including 

injuries 
 

Control 
Sources 

 
Fig. 1.1: Control Structure of MovingIK SE. 



 
It is the combination of the control and weight parameters 
that gives rise to realistic individualisation of the character.  
 
B. Data Module 
 
The Data Module provides knowledge, in the form of limb 
Degree-of-Freedom (DOF) values, about how to perform an 
action to the Animation Module.  The output format allows 
us to model the data using a range of techniques including 
key-framed data, procedural models and motion-captured 
data, without affecting the behaviour of the other modules in 
the system.  This allows us to choose the optimal data 
representation for the given scenario, for example, the use of 
motion capture data for high detail where storage space is not 
an issue, compared to procedural models for background 
characters. 
 
In a previous paper we discussed how to adapt a procedural 
walk model [10].  In this paper, we use motion capture data, 
which gives a more realistic basis.  To do this the Data 
Module extracts the DOF values direct from a motion capture 
file.  The motion of the upper part of the body, from the hips 
upward, remains essentially unaltered except for a 
time-warping factor that is used to synchronise the upper and 
lower body motions. 
 

The motion of the lower body, i.e. the legs down, is generated 
based on an adaptation of the original motion data.  In our 
example, we are not just retargetting the walk motion to a 
new character but we are also giving our character the ability 
to change various parameters such as stride length, speed and 
direction.  To achieve this we refine the leg motion into a 
synthesis problem whereby given a flight path for which the 
foot should travel, we calculate the unknown hierarchical 
joint angles using an inverse kinematics solution.  However 
as we have the original motion data, we make use of this to 
determine the desired flight path. 
 
Our approach of retrieving the flight path from the motion 
capture data is primarily based on a gradient analysis 
technique where, over the course of the original motion, we 
analyse the height value of one of the character’s feet.  The 
first target we are looking for is a switch from a negative to a 
positive gradient on a frame that is within 10% of the global 
minimum height for the foot.  This gives us the start of the 
foot flight where the foot is just about to leave the ground.   
 
From the first target, we progress along the original flight 
path until we meet a second gradient change from positive to 
negative which is on a frame whose height value is within 
10% of the global maximum.  This second target is the peak 
of our flight height.  Continuing along the original path, the 
third and final target we locate via one last gradient switch 
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Fig. 1.2: Gradient-based extraction of foot flight from motion capture data 



from negative to positive whose frame height is again within 
10% of the global minimum.  This technique is demonstrated 
pictorially in Fig. 1.2. 
 
We include 10% threshold values when determining the 
target points to reduce the chances of failing to find a 
complete stride cycle because using local gradients alone 
would fail where the motion data temporarily plateaus or the 
motion data has a little ‘blip’ .  For example, in Fig. 1.2, near 
frame 25, the motion data introduces what is almost a 
stationary point and, had the gradient actually changed at this 
point, the gradient-analysis technique would have determined 
this to be the third target which is obviously not the case. 
 
Having found all three targets, we take the flight curve to be 
that which is described between the first and third target 
points.  We subsequently normalise the height values so that 
they can be mapped onto the new character based on a ratio 
between the new and original character’s leg lengths.  We 
further use this ratio between the leg lengths of the characters 
to initially determine the stride length control parameter. 
 
C. Animation Module 
 
Through a combination of information from the control 
parameters and examination of the surrounding terrain, the 
Animation Module determines the extents of the motion to 
perform.  Using knowledge about the motion, the 
end-effector locations are interpolated over time between the 
extremities and thus produce the retargeted motion.  The 
interpolation follows a modified path whose original is 
obtained from the Data Module where the end-effectors are 
positioned along the path through the use of an inverse 
kinematics solver.  This technique allows us to manoeuvre 
over uneven terrain including climbing and descending steps.  
The way in which we adjust the base motion for a walking 
character is briefly outlined in the following subsection. 
 
The use of an inverse kinematics solution to configure the 
character’s structure allows us to precisely position 

end-effector locations.  This has the immediate benefit of 
eliminating visual problems that are apparent when playing 
pre-scripted animations.  However pre-scripted animations 
are computational cheap to display therefore to compete we 
need to keep the resource demand for the IK solution as low 
as possible.  To this end, we utilise a half-Jacobian-based 
solver [9], which allows for a more efficient and quicker 
solution time for IK chains over the traditional, full Jacobian 
solver.  While the full Jacobian IK solver can operate in 
real-time, the half-Jacobian has a reduced footprint in terms 
of processor usage and hence gives a more attractive online 
animation technique. 
 
The use of a Jacobian-based inverse kinematics solver has the 
additional benefit of allowing us to take this algorithm and 
embed a set of dynamic weighting values.  These values are 
the weighting parameters that the Control Module determines 
and passes down to this module.  The purpose of the 
weighting values is to give us additional control over the 
solution that the algorithm produces which visually generates 
different inter-limb movements for the same end-effector and 
root nodes positions.  In effect, we can make use of the 
inverse kinematics technique to produce a level of character 
individualisation at no additional cost to the core algorithm.  
This technique is further discussed in the Weighted Inverse 
Kinematics subsection. 
 
Changing the Base Motion 
There are two cases under which the character can move 
forward: walking in a straight line or turning.  The Control 
Module uses input from the Control Sources to determine the 
way the character moves.  If there is no sideways movement 
then the walking forward technique is used otherwise a 
turning action is executed. 
 
We split a complete walking cycle into two discrete 
movements.  The first is the actual flight of the foot as the 
character performs a stride, while the second is a post-flight 
stage that rolls the foot from a heel supporting phase to a 
complete foot supporting phase.  The post-flight phase of the 

TABLE 1.1 
  Illustration of the 2-stage walk cycle where the initial configuration is with the left foot in front and the right foot 

behind the body. 
Stage Description (a) (b) 

Starting Configuration   
• Left Foot Both heels and toes are planted on 

the floor 
Toes are planted on the floor 

• Right Foot Toes are planted on the floor Heel is planted on the floor 
 

Movement 1. Hips move forward, 
2. Right heel is advanced 

forward through the air, 
3. Only the left toes remain 

planted. 

1. Hips move forward, 
2. Right toes are gravitated 

towards the floor, 
3. Left toes remain planted to 

the floor 
 



walking cycle increases the realistic-looking nature of the 
resulting animation and gives us the ability to model the 
complete foot as opposed to just the heel.  An overview of 
this procedure is outlined in Table 1.1 and Fig. 1.3, where a 
detailed approach of how we control the character is given in 
[9]. 
 
Weighted Inverse Kinematics 
At the centre of the Animation Module, is an inverse 
kinematics engine that postures a character using end-effector 
locations.  The algorithm we use is the half-Jacobian-base 
technique [9].  Due to the nature of Jacobian-based inverse 
kinematic solvers, we are able to predictably modify how 
much different DOFs change when configuring a posture 
thereby resulting in subtle but individualised results.  This, 
for example, allows us to favour the rate of angle change for 
the knee over the hip joint. 
 
The Jacobian, J, at the core of the algorithm is determined 
from the equation of forward kinematics, given by (1), where 
θ represents the set of orientation values for a structure and X 
is the global position of an end-effector in the hierarchy. 
 

)(θfX =     (1) 
 

Taking partial derivatives of (1): 
 

 θθ
����� ��

=    (2) 

where �
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∂
∂

=     (3) 

Rearranging (2): 
 

dXJd 1−=θ  
 
Using these equations, we can describe the complete inverse 
kinematics solver as follows: 
 
1) Calculate the difference between the goal position and 

the actual position of the end-effector: 

XXdX g −=  

2) Calculate the Jacobian matrix using the current joint 
angles: (using (3)) 

3) Calculate the pseudo-inverse of the Jacobian: 
11 )( −− = TT JJJJ  

4) Determine the error of the pseudo-inverse 

dXJJIerror )( 1−−=  

 
(a) Start of walk cycle            (b) Final part of walk          (c) Start walk cycle again on other foot 

Fig. 1.3:  Demonstration of the cycles implementing in our system.  Each frame represents the start of the cycle with the 
arrows pointing in the direction of travel the node will take until it reaches the start of the next part of the cycle.  The red 

triangles represent plants of the character’s limbs. 



5) If error > e then  
2/dXdX =  

restart at step 4 
6) Calculate the updated values for the joint orientations 

and use these as the new current values: 

dXJ 1−+= θθ    (4) 
7) Using forward kinematics determine whether the new 

joint orientations position the end-effector close enough 
to the desired absolute location.  If the solution is 
adequate then terminate the algorithm otherwise go back 
to step 1. 

 
For our purposes, it is step 6 of the above algorithm that we 
are interested in which is the stage of the algorithm that 
updates the joint angles within the hierarchical structure.  The 
algorithm, as illustrated above, will distribute the angle 
changes needed to meet the desired end-effector location 
evenly over the chain.  However we have rewritten this stage 
to include a set of dynamic weights that redistribute the 
contribution each degree of freedom (DOF) has in the 
resulting motion.  We therefore replace (4) with (5) in our 
implementation, where W is a weighting vector. 
 

dXWJ 1−+= θθ    (5) 
 
The weighting vector, W, contain real values between 0 and 1 
where smaller values result in less significant changes in 
angle compared to larger values in W that correspond to 
bigger angle changes.  This principle is illustrated in Fig. 1.4 
where the IK solver is applied to a simple hierarchical 

structure of different weighting values.  In Fig. 1.4, we have 
reduced the weighting parameter for the first joint angle, 
which is at the root, and compared this with an even 
distribution.  As the illustration demonstrates, the joint angle 
which has a reduced weighting moves less therefore other 
joints in the chain have to move more to meet the desired 
end-effector position.  This is compared to the evenly-
weighted IK chain in which each of the angles involved in the 
chain are changed relatively equally.   
 
Although we have only applied a weighting change to one of 
the angles in Fig. 1.4, the principle of relatively stiffening up 
joints within an IK chain equally applies when changing 
multiple weighting values.  However, as it can be seen from 
the graph of Fig. 1.4, reducing a weighting on one joint has 
the effector of indirectly increasing the weights of the 
remaining joints because the difference needs to be resolved.  
This cause and effect result needs to be considered when 
applying weighting values to an IK chain.  We have found 
through our experiments that as long as these values are 
specified relative to each other, the results obtained from the 
solution exhibit the desired properties intended.  If the 
weights are not determined in a relative manner but instead 
along an absolute scale, the visual results obtained would not 
necessarily follow that which is expected based on the 
weighting parameters. 
 
Changing Weight Parameters to Individualise Characters 
We harness the property of weighed IK chains in the 
Animation Module to assist in the production of motions that 
are individualised to characters based on the stylisation state 
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Fig. 1.4: Application of weighted IK chains on a simple articulated structure.  Top: Comparison of even (lighter colour chain) and 

weighted (darker colour chain) distribution update of angles – the root node angle has a reduced weighting value over the rest of the 
chain.  Bottom: Graph of the first two angles in the IK chain working from the root node outwards. 



determined by the Control Module.  Although this technique 
can be applied to a variety of different motions, we will 
demonstrate how the method lends itself to individualisation 
where limb masses/muscle tone can be taken into account to 
determine the weighting values.  As an additional effect of 
individualisation, our technique shows good results when 
applied to simulating injuries as we demonstrate in the next 
section. 
 
For the subtle changes involved in individualising a character 
performing a normal motion, we change the weighting 
parameters only slightly.  This has the effect of simulating 
limb build within the model.  For example, large limbs with 
low muscle tone would have low weights to simulate a 
sluggish movement while muscular limbs of the same size 
would have higher weightings to account for the strength of 
the muscle. 
 
In order to simulate injuries, as well as adjusting the control 
parameters, we stiffen up the corresponding limb by 
decreasing the weighting value associated with it.  This 
reflects the fact that the character changes the movement in 
the part of their body where a restriction is introduced by the 
infliction or in order to reduce the resulting pain that would 
result from using the limb in normal motion. 
 
The results of applying different weighting and control 
parameters to a single base motion are discussed and 
illustrated in the next section. 
 

IV. RESULTS & DISCUSSION 
 
To illustrate our technique of applying individualisation 
characteristics in real-time to characters based on motion 
capture data, we produced a range of different motions by 
changing only the parameterisation that is determined by the 
Control Module.  The results are obtained by running 
MovingIK SE on a Pentium 4 1.4GHz with a GeForce2 Ultra 
graphics card.  The demonstration animations are achieved in 
real time running 4 characters simultaneously in response to 
the same user input. 
 
Figure 1.5(a)1 shows how changing the weighting parameters 
of a character can be used to produce a slight deviation in the 
normal walking motion and hence result in an individualised 
motion.  The adapted motions of Fig. 1.5(a) are portrayed 
with the skeleton bodies while the original motion capture 
data is visible as a stick character to the right of the skeletons.  
Each of the three skeletons in Fig. 1.5(a) are subject to the 
same control parameters however the weighting vector 
applied to the inverse kinematics solver varies over the 
skeletons.  The red skeleton has an evenly weighted 

                                                 
1 Animations of the stills of Fig 1.5 are available at 
http://www.dcs.shef.ac.uk/~mikem/research/ik.html 

distribution, i.e. all the values are 1, whereas the green and 
blue skeletons have weighting vectors that stiffen the hip and 
knee joints respectively.  In the case of the unevenly 
weighted skeletons, we have decreased the respective 
weightings for the joints by 80% and 20% and left the rest of 
the weighting values the same as for the red skeleton. 
 
From the joint angle graph of Fig 1.5(a), the hip angle for the 
blue skeleton can still be seen to reach a similar maximum 
and minimum angular measurement as the evenly distributed 
red character, however it follows a different path over time to 
achieve this.  The effect of using the weighting reduces the 
rate of angular change for the knee joint for the blue character 
and hence the hip angle is changed differently to compensate.  
In comparison, the green skeleton has a stiffened hip joint 
therefore, as can be seen from the joint graph of Fig. 1.5(a), 
the amount of change for this part of the body is much 
reduced.  In this case, extra movement in the knee joint 
compensates for the reduced angular change that can be seen 
in the green skeleton’s hip. 
 
As the IK chains get close to being completely extended, as it 
does at the extents of the walking cycle, the blue weighted 
version takes on a similar configuration to that of the evenly 
distributed red one.  This is because the possible solutions the 
IK solver can generate are more tightly packed into a smaller 
spatial configuration area so the results look similar in either 
case.  As you would expect, at the start and end of the walk 
cycles, the postures of the characters appear a close match.  
 
Despite the solution looking similar at the beginning and end 
of the cycle for the red and blue skeletons (the green one too 
is very similar but slightly more divergent from the other 
two), we argue that the differences during the walking phase 
are enough to demonstrate an individualisation of the 
character, which is achieved by purely applying weighting 
vectors to the character.  The end configurations could be 
further diversified if we were to adjust the control 
parameterisation and skeletal limb lengths.   However, in the 
results we have tried to keep as many parameters constant as 
possible to demonstrate the potential of weighted IK chains.  
Furthermore, our Data and Animation Modules are additional 
contributing factors to the similar looking configurations at 
the extremities of a cycle because we have specified how a 
character lands using a two-stage process as shown in 
Fig. 1.3, thereby limiting the possible configuration space. 
 
By changing the weighting parameters alone we are able to 
generate many individual motions. However, we have found 
that the most natural-looking motions tend to be linked with 
low variances in the weight vector used.  Larger variances in 
the weight vector lead to noticeable exaggeration in the 
resulting motion because joint angles are not updated 
significantly until there is no choice in order to meet an 
end-effector location.  This can be seen by comparing the 



green and blue skeletons from Fig. 1.5(a) where the former 
character has an 80% reduction in its weighting value 
compared to 20% for the blue character.  The motions 
generated with high-variance weighted vectors could account 
for normal motion in defined cases however we found it 
tends to lend itself better to motions that, with a slight 
adaptation in the other control parameters, simulate the 
appearance of injuries. 
 
The generation of an injured walking motion is illustrated in 
Fig. 15(b), with both the use of weighted and even 
distribution over the IK chains.  In the case of each of the 
skeletons of Fig. 1.5(b), the weighting parameters are similar 
to that used in Fig. 1.5(a) however the weights have only 
been applied to the left leg which is the one we make limp 
and the control parameters have been adjusted constantly 
over the characters.  The control parameters are adjusted for 
the left stride in order to decrease the maximum flight height 
by 50%, reduce the stride length by 50% and increase the 
speed with which the stride is undertaken by 30%. 
 
Comparing the red skeleton of Fig. 1.5(a) and Fig. 1.5(b) it is 
clear from the motion trails that simply adjusting the control 
parameters is enough to visually change the appearance of the 
walking motion.  This is most visually apparent when 
comparing the motion trails for the limping red character’s 
feet.  Here the left hand side trail barely skims over the 
ground whereas the right hand side trail contains much more 
clearance.  Furthermore, the trail for the right foot is much 
smoother and travels further per stride than the limping left 
foot; a trait that can be seen in all of the limping skeletons of 
Fig. 1.5(b).  An additional visual effect that is not 
demonstrated in the stills of Fig. 1.5(b) is that the speed with 
which the stride cycle is undertaken is faster for the injured 
leg than for the normal walking motion. 
 
As illustrated, by only adjusting the control parameters of the 
walking motion we can produce a limping motion.  However 
the realism can be enhanced by additionally adjusting the 
weighting parameters.  Similar to the weightings we applied 
to the normal walking motion, we have applied weighting 
parameters to the green skeleton to stiffen the left hip joint 
while the blue skeleton’s left knee joint is made stiffer via the 
weighting values.  As the joint angle graphs of Fig. 1.5(b) 
illustrates, the effect of applying these weightings are to 
noticeably reduce the amount of movement in the limb 
compared to the evenly distributed limp motion.  This is most 
noticeable for the hip joint of the green skeleton because it is 
this angle that is graphed. 
 
As was the case for the normal working motions, the effect of 
stiffening a joint is to make the remaining angles move more 
to compensate.  This translates into the ability to identify 
which part of the leg is suffering from the injury.  For 

example, the weighting vector used to simulate the motion of 
the blue skeleton is tailored to produce an animation that 
depicts a knee injury.  However when we reset the weight 
values and decrease the weight value associated with the hip 
joint, we are able to simulate a hip injury as with the green 
skeleton.   
 
The injury position is achieved by maintaining the control 
parameters, which like the basic process of individualisation, 
demonstrates the usefulness of the weighting values in 
generating subtle differences between base motions thereby 
customising the resulting motion for a specific stylisation.  
This makes it possible to determine where the injury is being 
simulated along the leg.   
 
As the results demonstrate, the additional factor of weighted 
IK chains provides a good level of differentiation between the 
changes in joint angles within the character which visually 
introduces subtle changes for motions that have the same 
control parameters.  This allows us to spawn many motions, 
each individualised towards a specific character’s attributes, 
at no extra computational cost to the core IK algorithm. 
 

V. CONCLUSIONS & FUTURE WORK 
 
The use of real-time inverse kinematics to adapt existing 
motion-captured animation has the primary advantage of 
reducing visual artefacts associated with such animations, i.e. 
the motion is successfully retargeted to the new character and 
environment.  Through the use of weighted IK chains, we 
have demonstrated an enhancement to the technique that 
produces richer visual realism at no extra computational cost.  
Using weighting values, we have shown that it is possible to 
take a single motion-captured animation and to adjust the 
motion to different characters, thereby demonstrating a 
computationally-cheap mechanism for producing new 
retargeted and individualised character animations from a 
single motion-captured data file.  Taking the technique a step 
further, we have further shown how the same base 
representation can be adapted to simulate injury stylisation by 
adding in discrete visual differences. 
 
From the results, we have found that weighting vectors that 
have small variance values over their elements produce 
normal but subtly different motions suitable to the 
individualisation of character motions.  This level of 
individualisation allows us to control the relative build of the 
character by assigning comparatively smaller weights to 
those joints we would expect to change less than others due 
to muscle structure.  This is due to the direct relationship 
between the amount of angular change performed during the 
IK algorithm and the weighting values. 
 
 



 

 

 

(a) Individualised Walk Motion 

(b) Injury simulation – limping left leg 
  

Fig. 1.5: Application of MovingIK SE to adapt original motion capture data to (a) individualise and (b) simulate injury to three 
different characters of different IK weighting vectors. 

 



Going beyond the basic character individualisation, the use of 
larger variances within the weighting vectors generates 
exaggerated motions that we have used to depict an injured 
motion.  The simulation of injuries is enhanced through the 
use of changes in the control parameters and although this 
has the effect of fundamentally changing the resulting 
motion, the weighting values give further control in 
producing a good-looking motion.  
 
We have demonstrated this technique specifically on 
character gaits.  However the idea of adapting the IK result 
based on weighted chains can apply to any form of posturing 
using IK.  At the heart of this technique, the effect of 
applying weighting values within the IK chains is to directly 
affect the rate of change in joint angles.  This is a 
mathematical adjustment on the IK solver itself therefore 
anything that makes use of the algorithm can utilise this 
work.  Turning to the field of character animation, weighted 
IK has most potential where computational costs need to be 
kept minimal but enhanced realism is desirable in the 
resulting motions.   
 
The next application of this technique is to posture the upper 
body limbs where it would be reasonable to assume that the 
same arguments we have presented to demonstrate the 
application on the legs would also hold for the arms.  The 
application of this algorithm to the upper body would 
probably produce a much more varied visual result than with 
the legs because of the increased number of DOFs available 
to manipulate with the algorithm.  An extended area of 
application that this algorithm would be well suited to is that 
of performing real-time full body motion retargeting and 
individualisation. 
 
We acknowledge that this technique will not produce 
individualisation to a level of realism that dynamics-based 
techniques can, however we propose that this technique can 
give a good approximation to the desired results whilst being 
computational cheaper.  Whilst our technique, like any IK 
solution, is more computationally expensive than directly 
applying an unadapted, pre-scripted motion to a character, its 
advantages, namely individualisation and stylisation, are 
certainly worth appreciating.   
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