
Adapting Motion Capture Data using Weighted Real-Time Inverse Kinematics

Michael Meredith & Steve Maddock
Department of Computer Science

University of Sheffield
United Kingdom

E-mail: { M.Meredith, S.Maddock} @dcs.shef.ac.uk

Abstract – In this paper we present a technique that enhances an
inverse kinematics (IK) solver such that when the results are
applied to a computer character we can generate a level of
individualisation tailored to both the character and the
environment, e.g. a walking motion can become ‘stiffer ’ or can
be turned into a limping motion. Since the technique is based on
an IK solver , we also have the desirable effect of solving
retargetting issues when mapping motion data between
characters. As the individualisation aspect of our technique is
very tightly coupled with the inverse kinematics solver , we can
achieve both the individualisation and retargetting of characters
in real time.

I. INTRODUCTION

One of the main issues in using motion capture data to
animate human figures is the problem of retargetting. This is
the issue of applying motion data captured from one person
to a virtual person of a different size. Since such data is
usually in the form of joint angles relating a hierarchy of
pieces, a person with different limb lengths driven by the
same angles will have a different end limb point. This is
perhaps most clearly illustrated when the feet of characters
appear to slide across the floor or penetrate it.

A simple solution would be to capture data from a real person
of the same size as the virtual character. However, this is
inflexible and would not work for some games characters,
e.g. monsters. Thus we need a more flexible approach. This
is offered by Inverse Kinematics (see [16] for a general
introduction to IK), which can be used to adjust a motion.
The use of inverse kinematics in the field of character
animation is not a new idea; however it is only recently being
exploited in real-time applications such as games.

In additional to the retargetting properties that come with an
IK solver, we have further enhanced the use of our IK
technique to incorporate a level of stylisation control over the
character that comes at no extra computation cost. We can
transform a single base motion to a character of different
physiological build, and we can further adapt the motion in
real time to simulate the appearance of injuries. Thus a
character in a game could receive an injury and change his
motion accordingly in real time using our techniques for
adapting existing normal motion.

The following section gives a review of current approaches to
adapting character motion. Then, after presenting the details

of our technique, we demonstrate the principle by applying it
to a single walking motion that we adapt to demonstrate both
individualisation and injury simulation.

II. RELATED WORK

There are two general approaches to acquiring base motions
for character animations. One way of obtaining the data is to
record the motion of a live subject using motion capture
technology (mocap) [15], while the other technique requires
the motion to be simulated. The latter can itself be further
broken down into several different techniques that including
keyframing, inverse kinematics [12, 17] and dynamics [1]
algorithms.

In many cases, it is desirable to adjust motions to meet
specific environmental constraints or properties of the
computer character. Generally speaking, adaptations are
added onto the base motions, or variations of the simulation
algorithm are used, rather than creating completely new
algorithms to generate such changes. One of the first changes
that generally needs to be done is to retarget the motion to a
character that may have different dimensions. This is done to
eliminate visual artefacts that result from motion mapping
and has been successfully tackled in the past with a variety of
different techniques include IK [3], spacetime constraints [4]
and dynamics [5]. The former techniques tend to be less
computational expensive than the latter ones and in
particular, the IK algorithm we use in this paper has the
ability to perform real-time retargetting in addition to the
individualisation we present.

Beyond the task of retargetting characters lies the field of
adapting motions to portray more complex stylisation
attributes such as physiological build (individualisation) and
emotion. In the past, much of the work into introducing
different physiological builds into character motions has been
based on dynamics and biomechanics [6, 7]. These
techniques demonstrate good realism in the results, however
this is at the cost of a large computational cost that would not
be available in real-time applications which is where our
technique demonstrates its potential.

Another area of interest for adding stylisation to base motions
is in simulating a level of visible emotion. Various
techniques have been used to achieve this goal including the
use of Fourier principles [8, 13, 14], energy consumption [11]

and emotional posturing [2]. The latter technique introduces
an emotional appearance to the character by constraining
joint angles based on the emotional state of the character.
Although we do not investigate this in our paper, it would be
possible to incorporate this into our work to enhance the
individualisation we demonstrate later in this paper, further
adding value to our design.

In the following section we describe the technique that allows
us to adapt an existing motion captured animation that is
retargeted to both the environment and the character and to
add extra richness to the motion in the form of
individualisation, including injuries. All of this is achieved
in real time unlike many of the existing techniques that
currently rely on complex dynamics to achieve the same aim.

III. CHARACTER INDIVIDUALISATION

Our system, MovingIK SE, is comprised of three independent
modules that communicate accordingly using a level of
parameterisation that allows flexible control over the
generated motions. The system’s modular design is outlined
in Fig. 1.1.

The Control Module is the top-level component whose
purpose is to generate a set of values for the parameterised
motion. The Control Module determines the
parameterisation based upon Control Sources that are fed into
the module as well as its stylisation state. It is the stylisation
state that gives the character its individualisation. The
parameterisation of the Control Module, which encapsulates
the information required to produce a motion, is passed on to
the Animation Module. The Animation Module takes the
parameterisation as input and using knowledge about how the

motion is performed, which is obtained from the Data
Module, it postures the hierarchical structure of the character
over time.

For the system we describe in this paper, we will be using the
motion of a two-legged humanoid gait. However, with the
level of abstraction we have imposed on the system, this can
easily be replaced with an alternative type of motion as
discussed at the end of the paper. The roles of each of the
modules within MovingIK SE are discussed next.

A. Control Module

The parameterisation of our system is split into two
subgroups. The first subgroup specifies the control
parameters of the motion, while the second subgroup
influences the behaviour of the inverse kinematics solution
used by the Animation Module.

The control parameters of the motion are derived from a user-
controlled analogue joystick whose inputs are used to initially
determine the stride length, speed, and direction of travel.
The Control Module subsequently adjusts these basic motion
parameters in order to simulate the character’s stylisation
state. This, for example, could be to linearly reduce the
maximum speed and stride length in order to simulate the
fatigue of a character. The way in which the stylisation state
affects the parameterisation is discussed later.

The second subgroup of parameters is weighting values that
stiffen up joints so they move less compared to surrounding
limbs. This gives rise to a basic difference in visual
appearance between characters of varying weighted values.
These parameters are determined by the stylisation state of
the character only. The application of weighted parameters is
discussed further under the Animation Module section of this
paper.

The stylisation state of the Control Module can be
dynamically changed in response to the system’s Control
Sources. These can take a variety of different forms
including responses to environmental events or an AI engine.
For our demonstration of producing stylised motions, we
invoke the different states by keyboard input.

As well as the basic control parameters and the weighting
values, we have control over hip swing parameters for the
walking motion we demonstrate. The first of these
parameters controls the amount of rotation there is about the
vertical axis of the hips. This gives the visual appearance of
swaying from side to side, with larger values resulting in the
character swaying its hips more. The second hip parameter
determines the amount of travel there is along the vertical
axis where an increase of this parameter produces a more
bouncy looking character.

Data Module

• Key-framed
• Procedural
• Mocap

Control Module

• Read input from Control Sources to
determine a set of values for
parameterisation

• Maintain a character state to adjust
stylisation parameters

Animation M odule

• Use inverse kinematics to generate
character animation based on
parameterisation:

o Performs retargetting
o Eliminates foot sliding
o Removes limb penetration
o Generate stylised motion including

injuries

Control
Sources

Fig. 1.1: Control Structure of MovingIK SE.

It is the combination of the control and weight parameters
that gives rise to realistic individualisation of the character.

B. Data Module

The Data Module provides knowledge, in the form of limb
Degree-of-Freedom (DOF) values, about how to perform an
action to the Animation Module. The output format allows
us to model the data using a range of techniques including
key-framed data, procedural models and motion-captured
data, without affecting the behaviour of the other modules in
the system. This allows us to choose the optimal data
representation for the given scenario, for example, the use of
motion capture data for high detail where storage space is not
an issue, compared to procedural models for background
characters.

In a previous paper we discussed how to adapt a procedural
walk model [10]. In this paper, we use motion capture data,
which gives a more realistic basis. To do this the Data
Module extracts the DOF values direct from a motion capture
file. The motion of the upper part of the body, from the hips
upward, remains essentially unaltered except for a
time-warping factor that is used to synchronise the upper and
lower body motions.

The motion of the lower body, i.e. the legs down, is generated
based on an adaptation of the original motion data. In our
example, we are not just retargetting the walk motion to a
new character but we are also giving our character the ability
to change various parameters such as stride length, speed and
direction. To achieve this we refine the leg motion into a
synthesis problem whereby given a flight path for which the
foot should travel, we calculate the unknown hierarchical
joint angles using an inverse kinematics solution. However
as we have the original motion data, we make use of this to
determine the desired flight path.

Our approach of retrieving the flight path from the motion
capture data is primarily based on a gradient analysis
technique where, over the course of the original motion, we
analyse the height value of one of the character’s feet. The
first target we are looking for is a switch from a negative to a
positive gradient on a frame that is within 10% of the global
minimum height for the foot. This gives us the start of the
foot flight where the foot is just about to leave the ground.

From the first target, we progress along the original flight
path until we meet a second gradient change from positive to
negative which is on a frame whose height value is within
10% of the global maximum. This second target is the peak
of our flight height. Continuing along the original path, the
third and final target we locate via one last gradient switch

0.35

0.4

0.45

0.5

0.55

0 10 20 30 40 50 60 70 80 90 100

+ve
+ve

-ve -ve +ve

+ve

-ve

-ve

0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30

Original Foot Motion Curve Normalised extracted flight path
Frame No: Frame No:

H
ei

gh
t i

n
y-

ax
is

First Target

Second Target

Third Target

Fig. 1.2: Gradient-based extraction of foot flight from motion capture data

from negative to positive whose frame height is again within
10% of the global minimum. This technique is demonstrated
pictorially in Fig. 1.2.

We include 10% threshold values when determining the
target points to reduce the chances of failing to find a
complete stride cycle because using local gradients alone
would fail where the motion data temporarily plateaus or the
motion data has a little ‘blip’ . For example, in Fig. 1.2, near
frame 25, the motion data introduces what is almost a
stationary point and, had the gradient actually changed at this
point, the gradient-analysis technique would have determined
this to be the third target which is obviously not the case.

Having found all three targets, we take the flight curve to be
that which is described between the first and third target
points. We subsequently normalise the height values so that
they can be mapped onto the new character based on a ratio
between the new and original character’s leg lengths. We
further use this ratio between the leg lengths of the characters
to initially determine the stride length control parameter.

C. Animation Module

Through a combination of information from the control
parameters and examination of the surrounding terrain, the
Animation Module determines the extents of the motion to
perform. Using knowledge about the motion, the
end-effector locations are interpolated over time between the
extremities and thus produce the retargeted motion. The
interpolation follows a modified path whose original is
obtained from the Data Module where the end-effectors are
positioned along the path through the use of an inverse
kinematics solver. This technique allows us to manoeuvre
over uneven terrain including climbing and descending steps.
The way in which we adjust the base motion for a walking
character is briefly outlined in the following subsection.

The use of an inverse kinematics solution to configure the
character’s structure allows us to precisely position

end-effector locations. This has the immediate benefit of
eliminating visual problems that are apparent when playing
pre-scripted animations. However pre-scripted animations
are computational cheap to display therefore to compete we
need to keep the resource demand for the IK solution as low
as possible. To this end, we utilise a half-Jacobian-based
solver [9], which allows for a more efficient and quicker
solution time for IK chains over the traditional, full Jacobian
solver. While the full Jacobian IK solver can operate in
real-time, the half-Jacobian has a reduced footprint in terms
of processor usage and hence gives a more attractive online
animation technique.

The use of a Jacobian-based inverse kinematics solver has the
additional benefit of allowing us to take this algorithm and
embed a set of dynamic weighting values. These values are
the weighting parameters that the Control Module determines
and passes down to this module. The purpose of the
weighting values is to give us additional control over the
solution that the algorithm produces which visually generates
different inter-limb movements for the same end-effector and
root nodes positions. In effect, we can make use of the
inverse kinematics technique to produce a level of character
individualisation at no additional cost to the core algorithm.
This technique is further discussed in the Weighted Inverse
Kinematics subsection.

Changing the Base Motion
There are two cases under which the character can move
forward: walking in a straight line or turning. The Control
Module uses input from the Control Sources to determine the
way the character moves. If there is no sideways movement
then the walking forward technique is used otherwise a
turning action is executed.

We split a complete walking cycle into two discrete
movements. The first is the actual flight of the foot as the
character performs a stride, while the second is a post-flight
stage that rolls the foot from a heel supporting phase to a
complete foot supporting phase. The post-flight phase of the

TABLE 1.1
 Illustration of the 2-stage walk cycle where the initial configuration is with the left foot in front and the right foot

behind the body.
Stage Description (a) (b)

Starting Configuration
• Left Foot Both heels and toes are planted on

the floor
Toes are planted on the floor

• Right Foot Toes are planted on the floor Heel is planted on the floor

Movement 1. Hips move forward,
2. Right heel is advanced

forward through the air,
3. Only the left toes remain

planted.

1. Hips move forward,
2. Right toes are gravitated

towards the floor,
3. Left toes remain planted to

the floor

walking cycle increases the realistic-looking nature of the
resulting animation and gives us the ability to model the
complete foot as opposed to just the heel. An overview of
this procedure is outlined in Table 1.1 and Fig. 1.3, where a
detailed approach of how we control the character is given in
[9].

Weighted Inverse Kinematics
At the centre of the Animation Module, is an inverse
kinematics engine that postures a character using end-effector
locations. The algorithm we use is the half-Jacobian-base
technique [9]. Due to the nature of Jacobian-based inverse
kinematic solvers, we are able to predictably modify how
much different DOFs change when configuring a posture
thereby resulting in subtle but individualised results. This,
for example, allows us to favour the rate of angle change for
the knee over the hip joint.

The Jacobian, J, at the core of the algorithm is determined
from the equation of forward kinematics, given by (1), where
θ represents the set of orientation values for a structure and X
is the global position of an end-effector in the hierarchy.

)(θfX = (1)

Taking partial derivatives of (1):

 θθ
����� ��

= (2)

where �
�� � �
	

∂
∂

= (3)

Rearranging (2):

dXJd 1−=θ

Using these equations, we can describe the complete inverse
kinematics solver as follows:

1) Calculate the difference between the goal position and

the actual position of the end-effector:

XXdX g −=

2) Calculate the Jacobian matrix using the current joint
angles: (using (3))

3) Calculate the pseudo-inverse of the Jacobian:
11)(−− = TT JJJJ

4) Determine the error of the pseudo-inverse

dXJJIerror)(1−−=

(a) Start of walk cycle (b) Final part of walk (c) Start walk cycle again on other foot

Fig. 1.3: Demonstration of the cycles implementing in our system. Each frame represents the start of the cycle with the
arrows pointing in the direction of travel the node will take until it reaches the start of the next part of the cycle. The red

triangles represent plants of the character’s limbs.

5) If error > e then
2/dXdX =

restart at step 4
6) Calculate the updated values for the joint orientations

and use these as the new current values:

dXJ 1−+= θθ (4)
7) Using forward kinematics determine whether the new

joint orientations position the end-effector close enough
to the desired absolute location. If the solution is
adequate then terminate the algorithm otherwise go back
to step 1.

For our purposes, it is step 6 of the above algorithm that we
are interested in which is the stage of the algorithm that
updates the joint angles within the hierarchical structure. The
algorithm, as illustrated above, will distribute the angle
changes needed to meet the desired end-effector location
evenly over the chain. However we have rewritten this stage
to include a set of dynamic weights that redistribute the
contribution each degree of freedom (DOF) has in the
resulting motion. We therefore replace (4) with (5) in our
implementation, where W is a weighting vector.

dXWJ 1−+= θθ (5)

The weighting vector, W, contain real values between 0 and 1
where smaller values result in less significant changes in
angle compared to larger values in W that correspond to
bigger angle changes. This principle is illustrated in Fig. 1.4
where the IK solver is applied to a simple hierarchical

structure of different weighting values. In Fig. 1.4, we have
reduced the weighting parameter for the first joint angle,
which is at the root, and compared this with an even
distribution. As the illustration demonstrates, the joint angle
which has a reduced weighting moves less therefore other
joints in the chain have to move more to meet the desired
end-effector position. This is compared to the evenly-
weighted IK chain in which each of the angles involved in the
chain are changed relatively equally.

Although we have only applied a weighting change to one of
the angles in Fig. 1.4, the principle of relatively stiffening up
joints within an IK chain equally applies when changing
multiple weighting values. However, as it can be seen from
the graph of Fig. 1.4, reducing a weighting on one joint has
the effector of indirectly increasing the weights of the
remaining joints because the difference needs to be resolved.
This cause and effect result needs to be considered when
applying weighting values to an IK chain. We have found
through our experiments that as long as these values are
specified relative to each other, the results obtained from the
solution exhibit the desired properties intended. If the
weights are not determined in a relative manner but instead
along an absolute scale, the visual results obtained would not
necessarily follow that which is expected based on the
weighting parameters.

Changing Weight Parameters to Individualise Characters
We harness the property of weighed IK chains in the
Animation Module to assist in the production of motions that
are individualised to characters based on the stylisation state

-100

-50

0

50

100

150

200

1 21 41 61 81 101 121

Even 1
Even 2
Weighted 1
Weighted 2

Frame Number

A
ng

le
 in

 D
eg

re
es

Weighted

Even
Root

End-effector

Fig. 1.4: Application of weighted IK chains on a simple articulated structure. Top: Comparison of even (lighter colour chain) and

weighted (darker colour chain) distribution update of angles – the root node angle has a reduced weighting value over the rest of the
chain. Bottom: Graph of the first two angles in the IK chain working from the root node outwards.

determined by the Control Module. Although this technique
can be applied to a variety of different motions, we will
demonstrate how the method lends itself to individualisation
where limb masses/muscle tone can be taken into account to
determine the weighting values. As an additional effect of
individualisation, our technique shows good results when
applied to simulating injuries as we demonstrate in the next
section.

For the subtle changes involved in individualising a character
performing a normal motion, we change the weighting
parameters only slightly. This has the effect of simulating
limb build within the model. For example, large limbs with
low muscle tone would have low weights to simulate a
sluggish movement while muscular limbs of the same size
would have higher weightings to account for the strength of
the muscle.

In order to simulate injuries, as well as adjusting the control
parameters, we stiffen up the corresponding limb by
decreasing the weighting value associated with it. This
reflects the fact that the character changes the movement in
the part of their body where a restriction is introduced by the
infliction or in order to reduce the resulting pain that would
result from using the limb in normal motion.

The results of applying different weighting and control
parameters to a single base motion are discussed and
illustrated in the next section.

IV. RESULTS & DISCUSSION

To illustrate our technique of applying individualisation
characteristics in real-time to characters based on motion
capture data, we produced a range of different motions by
changing only the parameterisation that is determined by the
Control Module. The results are obtained by running
MovingIK SE on a Pentium 4 1.4GHz with a GeForce2 Ultra
graphics card. The demonstration animations are achieved in
real time running 4 characters simultaneously in response to
the same user input.

Figure 1.5(a)1 shows how changing the weighting parameters
of a character can be used to produce a slight deviation in the
normal walking motion and hence result in an individualised
motion. The adapted motions of Fig. 1.5(a) are portrayed
with the skeleton bodies while the original motion capture
data is visible as a stick character to the right of the skeletons.
Each of the three skeletons in Fig. 1.5(a) are subject to the
same control parameters however the weighting vector
applied to the inverse kinematics solver varies over the
skeletons. The red skeleton has an evenly weighted

1 Animations of the stills of Fig 1.5 are available at
http://www.dcs.shef.ac.uk/~mikem/research/ik.html

distribution, i.e. all the values are 1, whereas the green and
blue skeletons have weighting vectors that stiffen the hip and
knee joints respectively. In the case of the unevenly
weighted skeletons, we have decreased the respective
weightings for the joints by 80% and 20% and left the rest of
the weighting values the same as for the red skeleton.

From the joint angle graph of Fig 1.5(a), the hip angle for the
blue skeleton can still be seen to reach a similar maximum
and minimum angular measurement as the evenly distributed
red character, however it follows a different path over time to
achieve this. The effect of using the weighting reduces the
rate of angular change for the knee joint for the blue character
and hence the hip angle is changed differently to compensate.
In comparison, the green skeleton has a stiffened hip joint
therefore, as can be seen from the joint graph of Fig. 1.5(a),
the amount of change for this part of the body is much
reduced. In this case, extra movement in the knee joint
compensates for the reduced angular change that can be seen
in the green skeleton’s hip.

As the IK chains get close to being completely extended, as it
does at the extents of the walking cycle, the blue weighted
version takes on a similar configuration to that of the evenly
distributed red one. This is because the possible solutions the
IK solver can generate are more tightly packed into a smaller
spatial configuration area so the results look similar in either
case. As you would expect, at the start and end of the walk
cycles, the postures of the characters appear a close match.

Despite the solution looking similar at the beginning and end
of the cycle for the red and blue skeletons (the green one too
is very similar but slightly more divergent from the other
two), we argue that the differences during the walking phase
are enough to demonstrate an individualisation of the
character, which is achieved by purely applying weighting
vectors to the character. The end configurations could be
further diversified if we were to adjust the control
parameterisation and skeletal limb lengths. However, in the
results we have tried to keep as many parameters constant as
possible to demonstrate the potential of weighted IK chains.
Furthermore, our Data and Animation Modules are additional
contributing factors to the similar looking configurations at
the extremities of a cycle because we have specified how a
character lands using a two-stage process as shown in
Fig. 1.3, thereby limiting the possible configuration space.

By changing the weighting parameters alone we are able to
generate many individual motions. However, we have found
that the most natural-looking motions tend to be linked with
low variances in the weight vector used. Larger variances in
the weight vector lead to noticeable exaggeration in the
resulting motion because joint angles are not updated
significantly until there is no choice in order to meet an
end-effector location. This can be seen by comparing the

green and blue skeletons from Fig. 1.5(a) where the former
character has an 80% reduction in its weighting value
compared to 20% for the blue character. The motions
generated with high-variance weighted vectors could account
for normal motion in defined cases however we found it
tends to lend itself better to motions that, with a slight
adaptation in the other control parameters, simulate the
appearance of injuries.

The generation of an injured walking motion is illustrated in
Fig. 15(b), with both the use of weighted and even
distribution over the IK chains. In the case of each of the
skeletons of Fig. 1.5(b), the weighting parameters are similar
to that used in Fig. 1.5(a) however the weights have only
been applied to the left leg which is the one we make limp
and the control parameters have been adjusted constantly
over the characters. The control parameters are adjusted for
the left stride in order to decrease the maximum flight height
by 50%, reduce the stride length by 50% and increase the
speed with which the stride is undertaken by 30%.

Comparing the red skeleton of Fig. 1.5(a) and Fig. 1.5(b) it is
clear from the motion trails that simply adjusting the control
parameters is enough to visually change the appearance of the
walking motion. This is most visually apparent when
comparing the motion trails for the limping red character’s
feet. Here the left hand side trail barely skims over the
ground whereas the right hand side trail contains much more
clearance. Furthermore, the trail for the right foot is much
smoother and travels further per stride than the limping left
foot; a trait that can be seen in all of the limping skeletons of
Fig. 1.5(b). An additional visual effect that is not
demonstrated in the stills of Fig. 1.5(b) is that the speed with
which the stride cycle is undertaken is faster for the injured
leg than for the normal walking motion.

As illustrated, by only adjusting the control parameters of the
walking motion we can produce a limping motion. However
the realism can be enhanced by additionally adjusting the
weighting parameters. Similar to the weightings we applied
to the normal walking motion, we have applied weighting
parameters to the green skeleton to stiffen the left hip joint
while the blue skeleton’s left knee joint is made stiffer via the
weighting values. As the joint angle graphs of Fig. 1.5(b)
illustrates, the effect of applying these weightings are to
noticeably reduce the amount of movement in the limb
compared to the evenly distributed limp motion. This is most
noticeable for the hip joint of the green skeleton because it is
this angle that is graphed.

As was the case for the normal working motions, the effect of
stiffening a joint is to make the remaining angles move more
to compensate. This translates into the ability to identify
which part of the leg is suffering from the injury. For

example, the weighting vector used to simulate the motion of
the blue skeleton is tailored to produce an animation that
depicts a knee injury. However when we reset the weight
values and decrease the weight value associated with the hip
joint, we are able to simulate a hip injury as with the green
skeleton.

The injury position is achieved by maintaining the control
parameters, which like the basic process of individualisation,
demonstrates the usefulness of the weighting values in
generating subtle differences between base motions thereby
customising the resulting motion for a specific stylisation.
This makes it possible to determine where the injury is being
simulated along the leg.

As the results demonstrate, the additional factor of weighted
IK chains provides a good level of differentiation between the
changes in joint angles within the character which visually
introduces subtle changes for motions that have the same
control parameters. This allows us to spawn many motions,
each individualised towards a specific character’s attributes,
at no extra computational cost to the core IK algorithm.

V. CONCLUSIONS & FUTURE WORK

The use of real-time inverse kinematics to adapt existing
motion-captured animation has the primary advantage of
reducing visual artefacts associated with such animations, i.e.
the motion is successfully retargeted to the new character and
environment. Through the use of weighted IK chains, we
have demonstrated an enhancement to the technique that
produces richer visual realism at no extra computational cost.
Using weighting values, we have shown that it is possible to
take a single motion-captured animation and to adjust the
motion to different characters, thereby demonstrating a
computationally-cheap mechanism for producing new
retargeted and individualised character animations from a
single motion-captured data file. Taking the technique a step
further, we have further shown how the same base
representation can be adapted to simulate injury stylisation by
adding in discrete visual differences.

From the results, we have found that weighting vectors that
have small variance values over their elements produce
normal but subtly different motions suitable to the
individualisation of character motions. This level of
individualisation allows us to control the relative build of the
character by assigning comparatively smaller weights to
those joints we would expect to change less than others due
to muscle structure. This is due to the direct relationship
between the amount of angular change performed during the
IK algorithm and the weighting values.

(a) Individualised Walk Motion

(b) Injury simulation – limping left leg

Fig. 1.5: Application of MovingIK SE to adapt original motion capture data to (a) individualise and (b) simulate injury to three
different characters of different IK weighting vectors.

Going beyond the basic character individualisation, the use of
larger variances within the weighting vectors generates
exaggerated motions that we have used to depict an injured
motion. The simulation of injuries is enhanced through the
use of changes in the control parameters and although this
has the effect of fundamentally changing the resulting
motion, the weighting values give further control in
producing a good-looking motion.

We have demonstrated this technique specifically on
character gaits. However the idea of adapting the IK result
based on weighted chains can apply to any form of posturing
using IK. At the heart of this technique, the effect of
applying weighting values within the IK chains is to directly
affect the rate of change in joint angles. This is a
mathematical adjustment on the IK solver itself therefore
anything that makes use of the algorithm can utilise this
work. Turning to the field of character animation, weighted
IK has most potential where computational costs need to be
kept minimal but enhanced realism is desirable in the
resulting motions.

The next application of this technique is to posture the upper
body limbs where it would be reasonable to assume that the
same arguments we have presented to demonstrate the
application on the legs would also hold for the arms. The
application of this algorithm to the upper body would
probably produce a much more varied visual result than with
the legs because of the increased number of DOFs available
to manipulate with the algorithm. An extended area of
application that this algorithm would be well suited to is that
of performing real-time full body motion retargeting and
individualisation.

We acknowledge that this technique will not produce
individualisation to a level of realism that dynamics-based
techniques can, however we propose that this technique can
give a good approximation to the desired results whilst being
computational cheaper. Whilst our technique, like any IK
solution, is more computationally expensive than directly
applying an unadapted, pre-scripted motion to a character, its
advantages, namely individualisation and stylisation, are
certainly worth appreciating.

REFERENCES

[1] Brogan, D. C., Metoyer, R. A., and Hodgins, J. K.,

“Dynamically Simulated Characters in Virtual
Environments” , IEEE Computer Graphics and Applications,
Vol. 15, No. 5, p. 58-69, 1998

[2] Densley, D.J., Willis, P.J., “Emotional Posturing: A Method
Towards Achieving Emotional Figure Animation” ,
Computer Animation 1997.

[3] Fedor, M., “Application of Inverse Kinematics for Skeleton
Manipulation in Real-Time” , Computer Graphics and
Interactive Techniques, p. 203-212, 2003

[4] Gleicher, M., “Retargetting Motion to New Characters” ,
International Conference on Computer Graphics and
Interactive Techniques, p. 33-42, 1998

[5] Hodgins, J. K., Pollard, N. S., “Adapting Simulated
Behaviours for New Characters” , ACM Siggraph 97,
Computer Graphics Proceedings, p. 153-162, 1997

[6] Hodgins, J. K., Wooten, W. L., Brogan, D. C., O’Brien, J.
F., “Animating Human Athletics” , ACM Siggraph 95,
Computer Graphics, p. 71-78, 1995

[7] Komura, T., Shinagawa, Y., “Attaching Physiological
Effects to Motion-Captured Data” , Graphics Interface 2001,
p. 27-36, 2001

[8] Kraus, M., “Human Motion and Emotion Parameterization” ,
Central European Seminar on Computer Graphics, 2004

[9] Meredith, M., Maddock, S., “Real-Time Inverse
Kinematics: The Return of the Jacobian” , Technical Report
No. CS-04-06, Department of Computer Science, The
University of Sheffield, 2004

[10] Meredith, M., Maddock, S., “ Individualised Character
Motion Using Weighted Real-Time Inverse Kinematics” ,
Game-On’ 2004, 2004

[11] Park, J., Kang, Y. Kim, S., Cho, H., “Expressive Character
Animation with Energy Constraints” , Compugraphics 97, p.
260-268, 1997

[12] Tolani, D., Goswami, A., Balder, N.I., “Real-Time Inverse
Kinematics Techniques for Anthropomorphic Limbs” ,
Graphics Models, Vol. 62, No. 5, p.353-388, 2000

[13] Unuma, M., Takeuchi, R., “Generation of Human Motion
with Emotion” , Computer Animation 93, p. 77-88, 1993

[14] Unuma, M., Aniyo, K., Takeuchi, R., “Fourier Principles
for Emotion-Based Human Figure Animation” , Computer
Graphics and Interactive Techniques, p. 91-96, 1995.

[15] Vicon Motion Systems Ltd, http:// www.vicon.com, 2004
[16] Watt, A., Watt, M., “Advanced animation and rendering

techniques” , Addison-Wesley, 1992
[17] Zhao, J., Badler, N. I., “ Inverse Kinematics Positioning

Using Nonlinear Programming for Highly Articulated
Figures” , ACM Transactions on Graphics, Vol. 12, No. 4, p.
313-336, 1994

