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Abstract

This paper presents a method for segmenting bone
in magnetic resonance images. The starting point is
the formulation of a Gradient Vector Flow (GVF)
snake extended to include statistical shape infor-
mation. This method exploits the diffusion process
used by the GVF snake and improves its capacity
to deal with occlusion problems by adding a shape
term to the traditional scheme. A dataset of coro-
nal MR images of the Visible Human Project is
used to extract an outline of the skull region. The
results of the segmentation are compared with a
segmentation of bone areas taken from CT scans of
the same individual. For the MR data, the addition
of a shape term improves on the results obtained
by using a GVF snake alone.
Index Terms: parametric snakes, active contours,
shape analysis, skull segmentation.

1 Introduction

In the area of forensic cranio-facial reconstruction,
a key element to produce reliable facial estimations
is the knowledge of the relation between the facial
soft tissue and the underlying skull. All the cur-
rent craniofacial reconstruction systems (i.e. man-
ual and computer-assisted) are based on this knowl-
edge [16]. Due to the complexity of the facial
configuration, this relationship is currently known
only at a discrete set of points on the skull and
face. These points are known as anthropometric
landmarks. This data is usually collected by hand
and from individuals of a specific ethnic group. In

this work, we investigate the possibility of using
3D cross-sectional magnetic resonance (MR) im-
ages for establishing a reference database where the
skull and face surfaces can be studied in a more ex-
tensive manner. The skull surface will be extracted
by bi-dimensionally segmenting a set of images of
an MR volume. The extracted contours will be
used to create a 3D skull model. Figure 1 shows
the multiple slice structure of an MR dataset. The

Figure 1: The magnetic resonance male dataset
from the VHP project [2, 13, 14]. Left: a typi-
cal MR scan image. Right: the structure of the
volume.

segmentation process we propose is made up of two
components. The first component is an active con-
tour directed by image features which ‘blindly’ tries
to enclose skull areas. The second component is a
shape term which adds statistical knowledge of the
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likely shape to find. Specifically, for this work, a
gradient vector flow (GVF) snake approach is ex-
tended to include the shape term proposed by Cre-
mers et al. [6, 7]. This shape term was originally
designed to be used with a Mumford-Shah func-
tional and a dynamic potential force. In our ap-
proach, these two components are used to make an
active contour to evolve towards a minimum within
the static potential field calculated from the gradi-
ent information. Our algorithm differs from Cre-
mers et al.’s version in the type of potential force
used for controlling the snake evolution. Cremers
et al. use a dynamic criteria for calculating the po-
tential depending on the snake neighborhood and
the image homogeneity, whilst we use a static po-
tential force based on the gradient information.

For this work, we will use the Magnetic Reso-
nance (MR) 3D dataset of the male head from the
Visible Human Project [2, 13, 14]. A Computer To-
mography (CT) volume of the same person is also
available and will be used to validate the results.
Figure 2 shows an example of these two modalities
for a given region.

Segmenting the skull in a CT image is relatively
easy because bone areas are well defined in this scan
modality. However, its use is limited because of the
involved radiation dose [16]. In contrast, MRI is a
safer option for scanning live individuals. Neverthe-
less, in this modality the chemical composition of
the bone presents low response to magnetic stimu-
lus. This property causes bone areas to be partially
defined in some portions of the image, and mixed
with distinct tissues and air in others, which makes
the skull segmentation difficult. This is the prob-
lem our approach attempts to solve. To assess the
performance of our proposed algorithm, the results
of the MR segmentation will be compared with the
results of segmenting the same bone area in a CT
image.

Section 2 provides an overview of the general ac-
tive contour terminology. In Section 3, the gradi-
ent vector flow (GVF) snake and its potential field
is introduced. Section 4 describes the inclusion of
statistical shape knowledge to the active contour
formulation. Section 5 presents the experimental
results and, finally, in section 6 the conclusions are
presented.

2 Active Contours

Active contours (or snakes)1 are widely used for
boundary detection in the field of image segmen-
tation and computer vision [1, 10]. The classical
approach is based on deforming an initial contour
Co towards the boundary of the object to be de-
tected, making this contour converge to an optimal
final state (i.e. a curve at the contour of the desired
object) from an arbitrary initial state (i.e. shape
and position). The deformation is obtained by min-
imizing a functional designed so that its minimum
is obtained at the boundary of the object [5]. The
functional consists of two main components. One
component controls the smoothness of the curve
and the other attracts the curve toward the image
features. These two components are known as the
internal and external forces, respectively [15, 11].

Two types of active contour models are common
in the literature: parametric active contours [11]
and geometric contours [4, 12]. In our work we
use an extension to a parametric active contour,
defined as a parametric curve moving toward de-
sired features (edges) under the influence of poten-
tial forces. A potential force is a bi-dimensional
function assigning to all the pixels in the image do-
main a magnitude and a direction of influence. In
our work, this function is derived from the image
gradient and accounts for the influence of the image
data on the snake.

In general, the problems which must be overcome
with the application of active contours are:

• Initialization: The range of capture of tradi-
tional potential forces is small. The range of
capture is the area around an image feature
where a force potential is defined to attract
the active contour (see figure 3).

• Concave regions: Difficulties can occur when
progressing the curve into concave boundary
regions.

• Occlusion Problems: Sometimes it is necessary
to deal with missing information in the image.

A traditional formulation for a snake is a curve
x(s) = [x(s), y(s)], s ∈ [0, 1] that moves through

1The terms active contour and snake will be used inter-

changeably in this document.
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Figure 2: A slice of a human head (from the VHP dataset) showing the same anatomical region, ap-
proximately at the level of the eyes with a view from above the head. (a) The CT scan version and (b)
the MR version.

the spatial domain Ω of an image in order to mini-
mize the following functional [5]:

Et =

1
∫

0

(
1

2
(α |x′(s)|

2
+ β |x′′(s)|

2
+ Eext(x(s)))ds

(1)
where x′(s) and x′′(s) stand for the first and sec-
ond derivative of the curve x with respect to s, and
α and β are weighting parameters that control the
active contour tension and rigidity [11]. The ex-
ternal energy Eext is obtained from the image and
reaches its lower values at interest features such as
boundaries. The next section introduces the par-
ticular kind of active contour we use.

3 Gradient vector flow active

contours

Gradient vector flow (GVF) active contours are
curves under the influence of a potential force called
gradient vector flow [18]. The gradient vector flow

is an external force computed as a diffusion of the
gradient vectors of the image. This force is used to
attract the snake towards the edges in the image.
The evolution of a GVF snake can be formulated
by solving equation (1). This solution can be ob-
tained by minimizing the following Euler equation:

αx′′(s) + βx′′′′(s) −∇Eext = 0 (2)

which is equivalent to the following system of
forces:

Fint + Fext = 0 (3)

with Fint = αx′′(s) + βx′′′′(s) and Fext = −∇Eext

The term Fint accounts for the geometric restric-
tions of the snake itself (tension and rigidity) and
the second term Fext accounts for the evolution to-
wards image features. The external forces Fext can
be divided into two classes: static and dynamic [17].
Static forces are computed from the image data and
do not change as the snake progresses. Dynamic
forces are those that change as the snake deforms.
We use a static GVF force, which is a type of static
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Figure 3: Capture range of an elliptic object. In
this example the contour S1 is under the influence
of the border of the ellipse C1 while S2 is not. In
this case, the contour S2 will not be deformed.

external force independent of the time and the po-
sition of the snake.

To find a solution to equation (2) the snake is
made dynamic by treating x as a function of time t

as well as the spline parameter s. i.e. x(s, t). Then a
partial derivative of x with respect to t is set equal
to the left side of equation (2) as follows:

xt(s, t) = αx′′(s, t) + βx′′′′(s, t) −∇Eext (4)

When the solution x(s, t) stabilizes, the term
xt(s, t) gradually disappears and we achieve a so-
lution for equation (2).

To complete the definition of a GVF active con-
tour it is necessary to define the potential force in-
fluencing the curve evolution. This potential force
is called the gradient vector flow and it is defined
over an edge map of the image. This concept will
be introduced in the next subsections.

3.1 Edge Maps and GVF field for-

mulation

To define potential external forces acting on the
active contour, two traditional formulations are

widely used:

∇E1

ext(x, y) = − |∇I(x, y)|
2

(5)

∇E2

ext(x, y) = − |∇(Gσ(x, y) ∗ I(x, y))|2 (6)

Here, Gσ(x, y) is a two dimensional Gaussian
function with standard deviation σ and ∇ is the
gradient. I(x, y) represents the image intensity at
a point (x, y). In equation (6), the standard devia-
tion is frequently used to control the capture range
of the image features (in this case edges.) Setting
higher values for σ is used to increase the capture
range of the gradient forces, but it tends to blur
and distort the edges [18]. An edge map can be
defined as a bi-dimensional function f as follows:

f(x, y) = −Ei
ext(x, y) (7)

for i = 1, 2 (equations (5) and (6)).
In our work, we use E1

ext as the external poten-
tial for all the calculations. Using this definition of
an edge map the term ∇f represents a field with
vectors pointing toward the edges. The gradient
vector flow is defined as a potential force with a
vector field v(x, y) = (u(x, y), v(x, y)) that mini-
mizes the energy functional:

ε =

∫

µ(u2

x + u2

y + v2

x + v2

y)+ |∇f |
2
|v −∇f |

2
dxdy

(8)
where µ is a regularization parameter controlling
the compromise between the first and second terms
of the integral. This definition of ε guarantees that
when ∇f is near to zero (uniform regions), the sec-
ond term will vanish and the field will be dominated
by the squares of the partial derivatives of u and v,
and it will vary in a very smooth way. If ∇f has a
high value, then the functional will be dominated
by the second term and minimized when ∇f ≈ v.
In other words, this functional will have the effect
of keeping v nearly equal to the gradient of the edge
maps when ∇f is the most important component
and varying in a smooth way in regular regions.

Using calculus of variations it is known [18] that
the GVF field can be found by solving the following
Euler equations:

µ∇2u − (u − fx)(f2

x + f2

y ) = 0 (9a)

µ∇2v − (v − fy)(f2

x + f2

y ) = 0 (9b)
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where ∇2 is the Laplacian operator. Equations
(9a) and (9b) are known as the generalized diffusion
equations. Note that in homogeneous regions, the
second term of both equations is zero (because the
gradient of f(x, y) is zero). These equations can be
solved by treating u and v as functions of time and
solving:

ut(x, y, t) = µ∇2u(x, y, t) − (u(x, y, t) − fx(x, y))

·(fx(x, y)2 + fy(x, y)2) (10)

vt(x, y, t) = µ∇2v(x, y, t) − (v(x, y, t) − fy(x, y))

·(fx(x, y)2 + fy(x, y)2) (11)

A stable finite difference implementation for solv-
ing the steady-state of these equations is given in
detail in [17]. The calculated field v, after the
minimization process, replaces the potential force
∇Eext in equation (4). Figure 4(a) shows a CT im-
age of an area around the right eye socket and in
4(b) its potential forces derived from the edges of
the object (image features).

4 Including shape knowledge

in the segmentation process

In our work, an additional term is included in the
GVF snake formulation in order to incorporate
knowledge about the shape to segment in a sta-
tistical way. The shape term is an adaptation of
the one proposed by Cremers et al. [6, 7]. The
central point of our proposal consists of combining
image information and previously acquired shape
information in a variational framework.

For a contour C = x(s) we will consider the fol-
lowing extended energy :

E = Et + γEc(C) (12)

where the term Et is the energy contribution of a
GVF active contour, Ec benefits contours with sim-
ilar shapes to the one acquired in a shape training
process, and γ is a factor to regulate the amount
of influence of the shape term.

In general terms, the training process consists of
collecting a set of similar shaped objects. We will
adopt the concept of shape defined by Dryden [8],
who defines the shape of an object as all the ge-
ometric features of the object that are unchanged

when it is translated, rescaled and rotated in an
arbitrary coordinate system. In this work, the set
of geometric features corresponds to a set of points
placed along the object contour. The labelling of
the control points can be done manually or auto-
matically and the main objective is to create a ref-
erence set of control points to model the statistical
shape variation.

The effect of combining Et and Ec is twofold.
First, it augments the capture range of potential
field forces (which leads to less sensitivity to ini-
tialization). Second, it improves the capacity of
the snake to deal with occlusion problems.

The following subsections describe the derivation
of the Ec term of equation (12) which accounts for
pre-established shape information.

4.1 Incorporating statistical shape

information

In our work, the active contour C is represented
with a quadratic B-spline curve given by [9]:

C : [0, 1] → Ω, C(s) =

n
∑

i=1

piBi(s) (13)

where s is the parameter of the spline, pi is the
set of control points, and Bi(s) are the quadratic
periodic B-spline basis functions [9, 3].

A 2D object shape z is represented by a set of
n pairs of control points {(xi, yi)}i=1...n defining
the curve. The shape z can be referred to as a
unidimensional vector with the following structure:

z = (x1, y1, ..., xn, yn)T (14)

The main idea behind the shape formulation is
the assumption that each trained shape will have
the same number of related control points n and
that the spatial position of each control point i can
be modelled with a gaussian distribution. Figure 5
shows an example of this configuration for a four-
shape training set. From this configuration we can
obtain some parameters for the family of shapes as
the mean shape µ and the covariance Σ of the set.

The covariance matrix Σ defines a probability
measure for the shape space. If the covariance ma-
trix is full rank, its inverse Σ−1 exists and the Gaus-
sian probability distribution of the shape z is :
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Figure 4: A portion of the skull around the right eye socket. (a) Original gray level CT image. (b) GVF
field of the image and the rectangular marked area enlarged to the right. The black line represents a
portion of the object boundary and the blue arrows the direction of the GVF potential forces.

ρ(z) ∝ exp(−
1

2
(z − µ)T Σ−1(z − µ)) (15)

Here ∝ denotes direct proportionality between
the left and right expressions and µ is the average
shape of the training set. The requirement for Σ to
be full rank is only accomplished by having at least
2n different training shapes. In practical terms,
this can be a strong limitation. To solve this prob-
lem, a technique of covariance regularization must
be applied in order deal with a number of training
shapes less than 2n.

4.2 Regularizing the covariance

In general, regularizing a covariance matrix is not
a trivial process. We follow the approach from [6]
to propose an approximation to the solution. The
covariance matrix can be expressed as a decompo-
sition into eigenvalues and eigenvectors in the fol-
lowing way: Σ = V DV T where D is the diagonal
matrix of non-zero eigenvalues σ1 ≥ ... ≥ σr > 0,
V is the matrix of corresponding eigenvectors and
V T is the transpose of V . The covariance matrix is

regularized by replacing all the zero eigenvalues by
a constant σ⊥ > 0.

Thus, the new regularized covariance Σ⊥ is ob-
tained by means of:

Σ⊥ = V D⊥V T (16)

with D⊥ = D + σ⊥(I − eve
T
v ) (17)

where ev is an orthonormal basis of the matrix
V of eigenvectors, and I is the identity matrix. For
this work, as suggested in [6], σ⊥ is given by:

σ⊥ =
σr

2
(18)

This expression guarantees that every possible vari-
ation in the shape space will have a corresponding
value of probability ρ(z) covered by the new co-
variance matrix. Better yet, equation (15) will be
differentiable on the full space, associating a finite
non-zero value with any shape z. Equation (15)
can be rewritten as:

ρ(z) ∝ exp(−
1

2
(z − µ)T Σ−1(z − µ)) ≈

ρ(z) = k exp(−
1

2
(z − µ)T Σ−1(z − µ)) (19)
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Figure 5: The figure shows control points
i=1,20,30,40,60 of four trained shapes and their re-
lated centroids. Each of the shapes is defined by 80
sampled points. The lines in blue show each shape
trained after alignment.

for an arbitrary proportionality constant k. Apply-
ing the logarithm function to both sides of equa-
tion (19) and using the product rule for logarithms
gives:

log(ρ(z)) = log(k) −
1

2
(z − µ)T Σ−1(z − µ) (20)

Rearranging, equation (20) can be expressed in
terms of a function of the shape z :

Ec(z) = log(ρ(z))+const = −
1

2
(z−µ)T Σ−1

⊥
(z−µ)

(21)
with const = −log(k).With this algebraic develop-
ment it is shown that the Gaussian probability in
equation (15) corresponds to the quadratic energy
in equation (21) [7].

4.3 Incorporating invariance in the

shape term

So far, the term Ec in equation (12) is not invari-
ant with respect to similarity transformations of the
shape z. For an invariant scheme, the shape of the
active contour z is first centered and then aligned

with respect to the regularised shapes of the train-
ing process. The term representing the centered
shape version zc can be obtained with :

zc = (I2n −
1

n
Γ) · z (22)

where I2n denotes the identity matrix of size 2n,
n is the number of control points and the 2n × 2n

matrix Γ is given by:

Γ =











1 0 1 0 . . .

0 1 0 1 . . .

1 0 1 0 . . .
...

...
...

...
. . .











(23)

The aligned shape vector ẑ is obtained by means of
the following expression:

ẑ =
Mzc

|Mzc|
(24)

with:

M = In ⊗

(

µT zc −µT × zc

µT × zc µT zc

)

(25)

where I2n is the identity matrix with 2n rows
and the ⊗ is the Kroenecker product. For more
details of how to obtain these equations see [8] and
[7]. The minimization of the shape functional Ec

of the aligned and centered shape ẑ is obtained by
deriving the shape term with respect to the shape
z using the chain rule:

dEc(ẑ)

dz
=

dEc(ẑ)

dẑ
·
dẑ

dz
=

dEc(ẑ)

dẑ
·

dẑ

dzc

·
dzc

dz
(26)

Each component is solved separately. From equa-
tion (21) and applying the product rule of a deriva-
tive:

dEc(ẑ)

dẑ
= (Σ−1

⊥
(z − µ))T (27)

This term represents the gradient of the original
shape energy Ec evaluated for the aligned shape ẑ.

From equation (22), deriving with respect to z :

dzc

dz
= (I2n −

1

n
Γ) (28)

This term reflects the change of the centered
shape zc with the the input shape z. The term dẑ

dzc
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accounts for the influence of changes in the centered
shape zc onto the aligned shape ẑ, and is expressed
with the following equation:

dẑ

dzc

=
M ′zc + M

‖Mzc‖
−

(Mzc)(Mzc)
T (M ′zc)

‖Mzc‖3
(29)

where M is the matrix defined in equation (25)
and M ′ denotes the tensor of rank 3 given by:

M ′ =
dM

dzc

An algorithmic construction for M ′ and the de-
tail of the derivation of this term can be consulted
in [7].

5 Results

To test our algorithm, we have designed two groups
of experiments: experiments with synthetic images
and experiments with real images. The first group
uses designed binary images which are synthetic im-
ages created with simple geometric objects. This
design facilitates comparisons betwen the expected
results and the outcomes of our segmentation ap-
proach. For the second category, the experiments
were carried out with MR images from the VHP
male dataset2 [2, 13, 14]. These MR images were
selected from areas of the head with different levels
of difficulty in segmenting the skull. The training
shape procedure is similar for both groups of ex-
periments and will be described in the following
subsection.

5.1 Training set creation

In all the experiments, the training set consists of
six object shapes, which are in turn made up of a
fixed number of sampled points taken along the ob-
ject’s perimeter at equal distances from each other.
This number of control points is 40 for synthetic
images and 80 for real images. Figure 6 shows an
example of the training shapes acquired.

The trained shapes were acquired with a man-
ual labelling process. The user is presented with
an image containing one outline of one object. As

2Each of these is a gray-level image with a resolution of

256x256x16 bits.

the initial step, the user selects with the mouse a
number of points on the object contour. The shape
of the object is reconstructed from these points by
means of a quadratic B-spline interpolation. The
resulting curve is resampled and the control points
are stored in the same order and number for each
shape. This process is repeated six times for each
object. The object outlines labelled were one el-
lipse and one rectangle for the experiment with
synthetic images, and two anatomical contours for
the experiment with real images. In the case of
experiments with real images, since there is only
one image for each anatomical region, the train-
ing process consists of manually labelling the skull
area in the CT image (equivalent to the MR im-
age to be segmented). Even though it seems like
a lot of work for the synthetic images, the man-
ual segmentation is useful to simulate the variation
of the shape distribution. For real images there
may be tens or hundreds of images to segment hav-
ing similar shaped regions, and labelling just six
is worthwhile if it gives better results for the rest
of the images. Better yet, the results for the rest
can then be fed back into the statistical model to
improve it.

5.2 Synthetic images

For this group of experiments, two synthetic bi-
nary images were created. The object to segment
in these images was represented as a closed region
of pixels with constant intensity value of zero. The
first image shown in figure 7(a) is an ellipse with
outliers along its contour. The second image shown
in figure 7(b) contains an object created with an
ellipse and a rectangle superimpossed to simulate
an occlusion problem. Two experiments were de-
signed in this group to show the functionality of
the algorithm: one for segmenting a simple object
in an image and one for segmenting different ob-
jects contained in the same image.

In the first experiment the objective was to show
the capability of our algorithm to recover the un-
derlying elliptic shape of the image in figure 7(a).
This problem can be considered similar to the one
of eliminating the ‘outliers’ of the elliptic shape.
The results of this experiment for two sets of pa-
rameters are shown in figure 8.

In figure 8, each row represents the result of the
algorithm for different γ values.
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Figure 6: Examples of one element of each training set.(a) Ellipse with 40 control points. (b)Rectangle
with 40 control points and (c) A portion of the skull represented with 80 control points. The first column
shows one element of each training set. The second column shows the six shapes acquired for each object,
and the third column shows a detail of the distribution of the control points in the squared area marked
in the image of the second column.
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Figure 7: Two synthetic images created for seg-
menting simple objects.

For the first row, with γ = 0 (no shape com-
ponent considered), we would expect a segmenta-
tion driven by the image features, with the resulting
contour and the feature map being approximately
the same. The result in the right column of the
first row corroborates our expectations.

The second row shows that it is possible to ex-
tract an approximation of the underlying ellipse ac-
cording to the image features present and the statis-
tics contained in the training shape set. Here, a
value of γ = 100 was used to incorporate the shape
component in the segmentation process.

With these two results, it can be shown that, de-
pending on the specific requirements, we can con-
trol the behaviour of the algorithm with the shape
parameters.

The second experiment consists of two stages. In
the first stage, an elliptic shape object will be recov-
ered from the image in figure 7(b). In the second
stage, the rectangular object will be extracted. The
aim of this experiment was to demonstrate the ca-
pability of our algorithm to include statistical shape
knowledge for different trained shapes as well as to
demonstrate how the shape parameter affects the
results for different values.

Figure 9 presents three results of our algorithm
applied to the image in figure 7(b). As in figure 8
each row represents the outcomes of the algorithm
for different γ values. The parameter combination
is presented in table 1. As expected, setting γ = 0
results in the whole contour of the composed ob-
ject being detected. For γ = 20, an acceptable ap-
proximation to the elliptic shape is obtained, even

though the final shape is not as smooth as a ‘per-
fect’ ellipse. For γ = 200, the resulting shape is
almost a ‘perfect’ smooth ellipse at the cost of less
fidelity to the image features, as shown in the sec-
ond column of the third row.

Row Shape Tension, Rigidity Trained
# term and influence shape
1 γ = 0 α = β = µ = 0.5 Ellipse
2 γ = 20 α = β = µ = 0.5 Ellipse
3 γ = 200 α = β = µ = 0.5 Ellipse

Table 1: Parameters for segmenting the image in
figure 7(b) using an elliptic trained shape.

Figure 10 shows the results for the second stage
of this experiment which considers a rectangular
training shape. In this case similar results to the
ellipse segmentation were obtained. The first row
shows the whole contour coinciding with the final
snake. The second row shows a contour ‘trapped’
between the forces of the GVF potential and the
shape potential. In this case, the contour con-
verges to a bad solution with just some portion
of the rectangular shape detected. In the third
row, the shape term of the snake is high enough
to deform the active contour towards the borders
of the rectangular contour. Finally, the last row
shows an almost rectangular shaped result. It is
important to bear in mind that the rounded cor-
ners of the ‘rectangular’ shape are due to the small
quantity of sampled points and the interpolation
used to represent the shape models, and this effect
can be reduced by increasing the number of control
points and modifying the restriction of the uniform
distribution of the control points.

Row Shape Tension Trained
# term Rigidity shape
1 γ = 0 α = β = µ = 0.5 Rectangle
2 γ = 10 α = β = µ = 0.5 Rectangle
3 γ = 80 α = β = µ = 0.5 Rectangle
4 γ = 100 α = β = µ = 0.5 Rectangle

Table 2: Parameters for segmenting the image in
figure 7(b) using a rectangular trained shape.
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Figure 8: Two results of segmenting the image in figure 7(a). The parameters used in the first row are
γ = 0, α = β = 0.5 and the parameters used in the second row are γ = 100, α = β = 0.5.The first
column displays the active contour evolution at each iteration (red lines) overlaid on the feature map
(gray pixels). The evolution of the active contour illustrates the action of the GVF field in attracting
the snake towards the feature map. The central column shows a comparison between the final state of
the snake and the feature map (gray line). The rightmost column of this figure displays the resulting
detected contour.
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Figure 9: Extracting an elliptic shape from image in figure 7(b). Table 1 gives the parameters used for
each row. The first column displays the active contour evolution at each iteration (red lines) overlaid
on the feature map (gray pixels). The central column shows a comparison between the final state of
the snake and the feature map (gray line). The rightmost column of this figure displays the resulting
detected contour.
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Figure 10: Extracting a rectangular shape from the image in figure 7(b). Table 2 gives the parameters
used for each row.The first column displays the active contour evolution at each iteration (red lines)
overlaid on the feature map (gray pixels). The central column shows a comparison between the final
state of the snake and the feature map (gray line). The rightmost column of this figure displays the
resulting detected contour.
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Figure 11: Segmenting an MR image with homogeneous pixel inteinsities for the bone regions. (a) The
CT image showing clearly the area to be considered as bone for this slice level.(b) The MR image to
segment. The yellow line represents the resulting active contour. (c) A comparison between the CT
(blue) and the MR (green) segmentation.

5.3 Real images

In this category of experiments the objective was
to segment a portion of the skull in a gray-level
MR image. Two experiments were conducted for
two different areas of the head. These areas were
chosen in order to illustrate the functionality of our
algorithm under extreme conditions: an easy area
containing an homogeneous bone region and a more
complicated region where the skull intensities are
not completely homogeneous. The CT versions of
the same areas of the MR images are available and
are used for evaluating the results of the MR seg-
mentation. In both experiments the values for α, β

and µ were fixed to 0.5, and the threshold was fixed
to 0.3Imax (where Imax = maximum intensity of the
image).

The first experiment consists of segmenting the
area of the head shown in figure 11. The figure
shows the MR image to segment as well as the ref-
erence CT scan used to train the shape and evaluate
the results. The area of the head in the images is
a region slightly above the eye cavities with a view
from above the head. As in the case of the syn-
thetic images, the procedure described in section
5.1 was used to create the training set. In our pro-
posed approach, if parameter γ is set to zero the
segmentation process will be governed just for the
image features present in the image which leads to

a pure data driven segmentation. In this case, only
the dark areas of the image in fig. 11(b) are taken
into account.

The result of the MR segmentation is shown with
a green line in figure 11(c). For this area, given
the smooth variation of the skull and the homo-
geneity of its defining pixels in the MR image, we
expect to get good results by neglecting the shape
term in our algorithm. The comparison between
the MR segmentation (green line) and the CT seg-
mentation (blue line) shown in fig. 11(c) presents
evidence of this. The average error between the cor-
rect segmentation and the final active contour ob-
tained from the MR segmentation is ē = 1.97 pix-
els with a standard deviation σ = 0.87 pixels. This
error rate is calculated by averaging the distances
between the control points from the CT segmenta-
tion and the control points from the resulting MR
segmentation and assuming that the CT segmen-
tation represents the correct shape at the correct
position.

The second experiment of this group consists of
segmenting the bone area shown in figure 12 includ-
ing shape information. This area corresponds to a
portion of the MR image shown in figure 2 selected
around the right eye cavity. Figure 12(a) shows the
CT gray-level image of this region and figure 12(b)
shows the MR image of the same region of the head.
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The objective of this experiment was to illus-
trate the difference between a “blind” segmentation
method and one using knowledge about the shape
to be segmented. The selected region contains a
skull area difficult to segment given the pixel in-
tensity variations of the bone regions.

Figure 12: Area of the head around the right eye
cavity. (a) A portion of the CT scan. The yellow
line shows the contour used as a reference for the
labelling task in the training process. (b) The same
region scanned with a MR scan.

Figure 13 displays some results for different γ val-
ues. If the γ value is increased, the shape informa-
tion influences the outcome resulting in a scheme
directed by the shape. This will compensate for the
missing information of bone components of high in-
tensity in the MR image. A very high value of γ

will conduct the resulting segmentation to a shape
configuration within the distribution of the trained
shapes.

As can be seen in figure 14(a) the result of a
pure feature driven segmentation in this area gives
a poor segmentation of the expected shape because
of the variability of pixel intensities in bone regions.
This figure shows with a yellow line the final con-
tour obtained when no shape information is added.

Figure 14(b) shows the result (with a black line)
of incorporating a high shape component by setting
a threshold value of 0.3 and γ = 4.0 × 107. This
figure shows the final state of the snake after 40
iterations.

Figure 14(c) shows a comparison between a CT

Figure 13: Results of the MR segmentation for dif-
ferent shape parameters. (a) Initialization. Re-
sult for: (b) γ = 1 × 107 (c) γ = 2 × 107 and (d)
γ = 5 × 107

image segmentation and the result of segmenting
the MR image of 12(b) with the shape component
included. The resulting shape (green line) is very
close in dimensions to the desired ideal segmenta-
tion (blue line) for these parameters. The resulting
contour presents an average error ē = 10.75 pixels
and a standard deviation of σ = 6.3 pixels. This
error rate is calculated in the same way as in the
previous experiment.

6 Conclusions

This work has presented a gradient vector flow
(GVF) snake extended to include statistical shape
information. The algorithm proposed can be used
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Figure 14: Results of segmenting the area shown in figure 12. (a) Pure feature driven segmentation. The
yellow line shows the final contour after 100 iterations (no shape information included). (b) Segmenting
including a shape component. Here, the black line shows the final result. (c) Comparison between a CT
segmentation (blue line) and the MR segmentation of the same area of the head (green line).

to deal with problems of outliers and occlusion. Its
application was tested for segmenting bone areas
in MR images. The experiments reported in this
document show that it is possible to create approx-
imations to the external surface of the skull in a
continuous way and with low error rates. In gen-
eral the behaviour of the algorithm can be con-
trolled by tuning some of the parameters. The
strength of the shape force has to be adjusted for
each dataset because of the requirements that it
must be large enough to overcome weak edges and
noise, but small enough so it doesn’t overwhelm
legitimate edge forces.

The current approach can be used to remove out-
liers and noise in areas with smooth shape varia-
tions. Given the properties of the skull, some areas
appear partially defined in the MR scan images.
Our method can be trained to compensate for in-
formation about the skull regions that could be dif-
ficult to separate in an MR image, exploit the in-
formation present and estimate the missing parts.
This method was implemented in 2D. However it
could be extended to 3D to segment the complete
skull by treating the set of MR scans as a volume
rather than separate scans.

To improve the algorithm, the deformation at a
given contour level in the skull dataset could be
restricted by taking into account the skull shape
variation with respect to the previous contour level.

Furthermore, the current proposal could be ex-
tented to incorporate knowledge about an approx-
imated skull shape variation obtained from the as-
sociated face layer (which is easily extractable from
the MR datasets).

M.S. acknowledges CONACyT-Mexico for the
scholarship support.
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