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Abstract

The aim of this work is to extract the outer skull
surface from an MRI volume. Based on a 3D ap-
proach, the technique proposed takes into account
the information of the skull contained in MRI vol-
umes of the head. Our main interest in extracting
the skull from MRI data is to create models of the
head in order to create a database of models where
the relationship between the skull and face can be
studied. The analysis of this dependence will sup-
port forensic craniofacial reconstruction methods in
producing more reliable face estimations.
The segmentation technique proposed makes use

of an explicit 3D deformable model of a skull evolv-
ing at each iteration considering two main aspects:
volume features and skull shape restrictions mod-
elled from statistical data.
Index Terms: mri skull segmentaion, deformable
models, shape analysis.

1 Introduction

In forensic applications the relationship between
the skull and face is a key aspect in creating fa-
cial models to identify missing people from their
skull remains [29] [28] [31], especially when other
methods for identi�cation cannot be applied. At
the present time, facial reconstruction techniques
rely on the hypothesis that the shape of the face
is de�ned in a straightforward way by the shape of
the underlying skull.
This skull-face relationship is usually condensed

in the form of anthropometric tables, giving tis-

sue depth measurements at a discrete set of points
distributed in prominent areas of the skull and
face (anatomical landmarks). These tables, to-
gether with personal experience, are used by foren-
sic artists to produce facial reconstructions. Our
research work is a �rst step towards creating more
comprehensive sets of data for creating 3D skull-
face models, thus improving the existing sources
of information for supporting forensic facial recon-
struction applications.

In this paper a novel method for segmenting
skull in MRIs is presented that incorporates sta-
tistical knowledge of the skull into a deformable
model. Our data source is a collection of MRI
volumes of the head from which we segment the
bone. First, candidate bone areas are separated
from background pixels and other tissue regions
based on their intensity values. Then, these re-
gions are re�ned using a deformable model which
evolves covering these regions according to a set
of constraints imposed by the image features and
skull shape statistics. The image features used cor-
respond to a gradient vector �ow �eld (GVF) de-
�ned on the initial volume to segment. On the
other hand, the skin layer is extracted from the
MRI data using the marching cubes algorithm [19].
The results are a set of 3D skull-face models where
the tissue depth is given at any point of the skull
surface.

The rest of this report is organised as follows: In
Section 2 the previous work and main approaches
related to the problem of skull segmentation in MRI
are described. Section 3 presents the Bayesian ap-
proach for image segmentation used in this research
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work. The key aspects related to representation
and shape modelling are introduced in section 4.
The 3D skull segmentation technique proposed and
the main results are presented in section 5. Finally,
the conclusions of this work are presented in section
6.

2 Previous work

In the area of image segmentation, previous work
has tried to extract the skull from MRI by con-
sidering intensity homogeneity properties of bone
regions. Mathematical Morphology is an spatial
technique based on set theory applied to image
analysis providing a quantitative description of geo-
metrical structures. This technique can provide
boundaries of objects, their skeletons, and their
convex hulls. The starting point of this technique
is the selection of a set of voxels representing possi-
ble skull regions. These regions are then processed
with morphological operators based on spanding
and shrinking operations [12].
Another type of algorithm commonly used to ex-

tract the information of medical images is based
on the analysis of separable patterns in the im-
age. Techniques in this category, assume that vox-
els possess speci�c homogeneous attributes allow-
ing their classi�cation in terms of intensity, colour,
texture or movement. With models of parame-
terised distributions for each type of tissue, they
focus to solve the partial volume problem [23] in
order to produce adequate classi�cations of pixels.
When the information in the image is di¢ cult to
classify, deformable models approaches are used to
deal with the problem of pixel classi�cation. In gen-
eral the idea of deformable models is to incorporate
additional information to the information provided
by the image features.
Generally, mathematical morphology techniques

work well for segmenting areas of the skull where
smooth variations occur in shape and topology.
However, the conditions assumed in these morphol-
ogy techniques related to the regularity of skull re-
gions can only be guaranteed in the upper part of
the skull (cranium), and for this reason, these al-
gorithms produce acceptable results only in that
area. Under this consideration the works of Salas
and Succar [24], Jere [14] and Dogdas [9] propose
methods for extracting the skull based on a spa-

tial processing of the volume using mathematical
morphology operators. These algorithms discard
irrelevant regions by removing background voxels1

and classifying other separable types of tissues such
as the scalp and the brain.
In contrast, the algorithm proposed in this re-

search produces models of the entire skull volume,
accounting for the most probable con�guration of
the skull regions provided by volume features.
The approach proposed in our work takes into

account probable skull components of the MRI vol-
ume in a holistic formulation, even if these compo-
nents are not connected with each other. Addi-
tionally, the skull models produced in our research
share a common structure (referred to the same
triangular mesh structure) which facilitates locat-
ing important features and conducting statistical
analysis of the models.
Whilst probabilistic approaches for classifying

tissue types have also been applied successfully to
segment body organs in medical images, their ap-
plication for the problem of skull segmentation in
MRIs has failed to produce acceptable results in
the frontal area of the skull. Examples of these ap-
proaches are the work of Leemput et. al. [17, 18],
Laindlaw [16] and Heinoen [13]. The main reason
for the limited results is because the separability
assumptions for di¤erentiate tissues are di¢ cult to
meet when presented with skull regions in MRI.
The air and the skull voxels have practically no
di¤erence in intensity, colour or texture attributes.
The only di¤erence between these two types of tis-
sue is the spatial position of each voxel with respect
to the global spatial structure the head. Figure 2.1
illustrates this situation. Also, there exist regions
of the skull with high variations in their intensity
values, especially in areas of the skull with high
concentrations of fat. In contrast to the intensity
properties of most of bony regions, fat produce vox-
els with very high intensity levels. In summary, in
the case of the skull, the homogeneous intensity re-
gion hypothesis may be strongly violated.
In this respect, the technique we propose is espe-

cially formulated to deal with this type of problem.
Our algorithm takes into account the spatial posi-
tion of candidate skull voxels with respect to the
structure of the probable skull they are describing,

1As pixel refers to picture elements, voxel refers to volume
elements.
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integrating relevant voxels in a single structure.
In our technique, during the segmentation

process, some of the candidate skull voxels may or
may not belong to the skull. To decide which voxels
are considered, our algorithm has a mechanism for
compensating missing parts of the skull but also re-
moving outliers and noise according to a statistical
model.

Figure 2.1: Binary images showing two examples
were traditional techniques of tissue classi�cation
fail to correctly detect skull areas. (Left) The pic-
ture elements in area (a) have exactly the same
intensity, colour and texture that picture elements
in regions (b) and (c). (Right). Even removing the
background regions (ignoring (b) and its connected
neighbours), it is not possible to di¤erentiate be-
tween skull and non skull picture elements from re-
gions (a) and (c). However, our knowledge of the
"shape of a skull" suggest us that there must be a
border in the neighbourhod of area (a).

Deformable methods guided purely by voxel in-
tensities have also been used for MRI skull segme-
nation. The work of Rifai [23, 22], Mang [20], and
Ghadimi [11] are examples of these techniques.
The main problem with these techniques is that

when considering only intensity information for
guiding the deformable model, it may be attracted
to incorrect boundaries. In addition, the results
are highly sensitive to the intitialisation of the de-
formable model. These techniques also rely on sep-
arability and regularity assumptions for the mate-
rials to segment, assumptions previously discussed
that are di¢ cult to guarantee in the case of skull
regions in MRI data.
Our approach addresses such problems using two

strategies: First, a registration step matching fea-
tures between a clean skull model and a rough noisy

volume to be segmented is used to initialise the
deformable model. Second, the deformable model
evolves at each step to incorporate the information
provided by the image features (GVF �eld) and the
statistically derived shape term.
The Shan�s mehtod [26] for segmenting the skull

belongs to another type of technique based on com-
bining CT with MRI information to extract the
skull. In Shan�s work, a set of skull models gener-
ated from CT segmentations is used for segmenting
skull data in MRIs. The method is used to model
the spatial positions of the skull voxels in an MRI
given the information provided by CT scans of the
same individual. Then this information is used to
estimate skull regions in MRI of di¤erent individ-
uals. In the work of Payan et. al. [21] a skull
approximation method is proposed to extract skull
information from MRI images for its use in cranio-
facial reconstructions. They use a set of statistical
models consisting of a sparse set of the skull-face
points obtained from CT data. The main short-
coming is that the estimation of the skull shapes is
modelled in terms of a limited set of points along
the face combined with tissue depths at these spe-
ci�c positions. They use this set of landmarks as
anchor points in order to produce rough approxi-
mations of new skull models embedded in MRI.
The main drawback of these techniques is that

they require a number of CT scans in order to pro-
duce the initial skull models. CT scans produce
a high radiation dose, and it can be harmful to
scan healthy people. Another disadventage is that
the segmentation produced is simply a collection of
isolated voxels that in a second stage have to be
integrated to create a skull model.
In contrast, the technique proposed in our work

only requires MRI to extract the skull which makes
the technique suitable to collect more data of live
people. MRI, an acquisition technique that is not
harmful, provides very detailed information of sev-
eral tissue types present in the head. Additionally,
as mentioned before, the result of our research is
complete skull models which can be considered as
a high level representation. These representations
provide �exible models with advantages such as the
capability to referring to speci�c anatomical parts
of the skull in an explicit way (if instead of a trian-
gular mesh, other primitives such as pixels, voxels
or point clouds were obtained, it would be neces-
sary an additional step to group the primitives in
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meaningful objects).

3 A Bayesian Approach For
Including Prior Knowledge

In this research work, the skull is extracted from an
MRI volume by �nding a set of 3D parameters of a
deformable model M which minimise a functional
of the form:

E(M) = Evolume(f; V ) + 
Eshape(M) (1)

where the term Evolume is the energy contribution
of a Gradient Vector Flow �eld de�ned in terms
of volume features, and Eshape bene�ts model con-
�gurations with similar shapes to the skull being
segmented. This shape term contains information
extracted from a set of training shapes.
The parameter 
 >= 0 is used to adjust the

amount of in�uence of the shape term in the equa-
tion.
The term Evolume relates to how well the de-

formable model M segments an input volume V ,
based on the intensity information provided by a
set of volume features f . The image feature se-
lection depends on a particular intensity threshold
value for grouping voxels with similar properties.
This selection forms a volume that is used to de-
�ne a vector �eld in its neighbour areas which is
used to attract the deformable model towards its
contouring regions.
The term 
Eshape, represents high-level knowl-

edge about the geometric properties of a skull which
is previously acquired in a learning stage.
The e¤ect of combining Evolume and Eshape is

twofold. First, it augments the capture range of
potential �eld forces, leading to an approach less
sensitive to initialisation. Second, it improves the
capacity of the deformable model to deal with oc-
clusion problems by adding knowledge of the shape
of the object to segment.
Minimising the energy in equation 1 is equiv-

alent to maximizing the Bayesian Inference term
P (M=f) de�ned by:

P (M=f) =
P (f=M)P (M)

P (f)
(2)

which means optimising the probability of a con-
�guration for a deformable model M given the ob-
served volume features f (i.e. obtaining the model
M that is the most probable according to the in-
formation in the image).
Usually, the term P (M) de�ned in deformable

model techniques, is used for modelling that large
surfaces are less probable [5]:

P (M) _ exp(�� jM j)
where j M j is a measure of the area of the model
M .
However, as will be shown in a later section, in

this paper we will use for our purposes a more elab-
orate shape dissimilarity measure de�ned with the
following formulation:

P (M j fMig)
with this expression representing the probability of
the current model M with respect to a set of m
training shapes fMigi=1::m: In the next section, the
main aspects related to representation and learning
of shapes will be presented in more detail.

4 Shape Representation and
Learning

In this research, an explicit model of a skull in the
form of a triangle mesh is used as the deformable
model.
Formally, the model M is de�ned with a pair of

sets (V;T), where V is a set of vertices v 2 R3, T
is a set of triplets of edges T � f(u; v; w) j u; v; w 2
E^u 6= v 6= wg de�ning triangular polygons, and E
is a set of edges between vertices E � f(s; t) j s; t 2

V^s 6= tg. The union of all the triangles
kS
i=1

ti 2 T

de�nes a continuous closed surface S(M).
The shape s associated with the deformable

model M is a set of N three-dimensional control
points de�ning the shape of a triangle meshM with
the control points set being a subset of the set of
vertices V.
For simplicity, the shape s of a skull model will

be represented as a vector of coordinates with the
following structure:

s = (x1; y1; z1:::; xN ; yN ; zN )
T (3)
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with xi, yi, zi being the coordinates of each control
point. The number N of control points is �xed
and the same for each corresponding shape. In our
case we use a shape model with N = 3000 control
points distributed along the surface of the skull,
using more points in the frontal area of the face.
Given the high detail of the triangular mesh used, it
is possible to obtain good approximations of normal
vectors practically at every point of the deformable
model.
Under this convention, the energy of the de-

formable model M in terms of its shape descriptor
s is the following:

�(s) / exp(�1
2
(s� �)T��1? (s� �));

and the energy term to minimise is:

Eshape(s) = log(�(s)) + const (4)

= �1
2
(s� �)T��1? (s� �) (5)

in these expresions, � represents the average
shape of the training sets.

4.1 Metrics of the Shape Models

Given two deformable models Ms and Mŝ de�ned
as presented in the previous subsection, a Taylor
expansion is used to approximate the distance met-
ric between them:

kMs �Mŝ k2� min
�

Z
Sm

(Ms �M�ŝ)
2 (6)

which accounts for all continuous an monotonous
reparametrisations of the models. In this work an
approximation of the Mahalanobis distance is used
by a simple Euclidean distance d between the con-
trol points of the polygons:

d(Ms;Mŝ) � (s� ŝ)T (s� ŝ) (7)

4.2 Alignment of Training Shapes

Given a set of m training vectors � = fsigi=1::m
which are centered and normalised, we are inter-
ested on �nding an optimal alignment for dealing
with the scale and pose estimation of the shapes
[10], [8]. An optimal alignment of two shapes s and

ŝ with respect to rotations, translation and scal-
ing (known as full Procrustes �t [10]) requires the
following distance to be minimsed:

D2(s; ŝ) =k ŝ� �s�� 1k
T k2 (8)

where D is the distance between the two shapes,
� >= 0 is a scaling factor, � is a rotation ma-
trix, 1k is a vector of ones (k x 1) vector, and 
 a
vector accounting for translations. Setting the cor-
responding derivatives to zero, the solution for the
optimal parameters �̂, 
̂, and �̂ are the following
expressions [8], [27] and [10]:


̂ = 0 (9)

�̂ = UV T (10)

The rotation term �̂ is de�ned in terms of the
matrices U and V derived from a single value de-
composition of the matrix product ŝT s

kskkŝk as follows:

ŝT s

k s kk ŝ k = V �U
T (11)

It can be shown that the best rotation estimator
�̂ can be obtained by the following ratio:

�̂ =
trace(ŝT s�̂)

trace(sT s)
(12)

and �nally, the expression de�ning the best align-
ment for the shape ŝ is:

ŝ = �̂sc�̂ + 1k
̂
T +

p
D2(sc; ŝ) (13)

where sc is the centered version of shape s.

4.2.1 Average Shape of the Training Set

In this research, we align the shapes of the training
set with respect to the Procrustes estimate of the
mean vector which is de�ned as:

�̂ = arg inf
�:S(�)=1

nX
i=1

sin2 �(si; �)

= arg inf
�:S(�)=1

nX
i=1

D̂2(si; �)

the point in shape space corresponding to the
arithmetic mean of the Procrustes �ts,

5



�s =
1

n

nX
i=1

sPi (14)

has the same shape as the full Procrustes mean [10].
The superscript P is used to denote the procrustes
super superimposition of shape si.

4.3 Gaussian Model For Represent-
ing Shapes

It is assumed that the training shapes are aligned as
de�ned in the previous subsection and distributed
according to a multivariate Gaussian distribution.
A statistcal shape model based on PCA is pro-

posed to model the shape variability of a given con-
�guration with respect to a set of trained shapes.
Here, the model proposed by Cremers for shape
learning [6] is extended to 3 dimensions.
Let � = fsi 2 R3Ngi=1::m be a set of training

shapes, aligned as presented in section 4.2 with
mean vector described in 14. The sample covari-
ance matrix is given by:

� =
1

m� 1

mX
i=1

(si � �s)(si � �s)T (15)

A principal component analysis can be applied
to this covariance matrix in order to obtain the
main sources of variation in the training set. PCA
is an orthogonal linear transformation that trans-
forms the data to a new coordinate system such
that the greatest variance by any projection of the
data comes to lie in the �rst coordinate (�rst com-
ponent), the second greatest variance in the second
coordinate and so on. PCA is the optimum trans-
form for given data in least square terms [15].
The matrix � can be diagonalised and a set of

�1:::�r eigenvalues can be obtained. The modes
of largest variation, given by the vectors ei; corre-
spond to the largest eigenvalues �i. A compact
lower-dimensional shape model can be obtained by
linear combination of these eigenmodes added to
the mean shape:

s(�1:::�r) = �s+
rX
i=1

�i
p
�ei

where r < m:

The factor
p
� has been introduced for normal-

isation and corresponds to the standard deviation
in the direction of the vector ei.
In general if the number of sampled elements is

smaller than the dimension of the underlying vec-
tor space (2N), the covariance matrix � will not
have a full rank and the probability density will
not be supported in the full 2N dimensional space.
This situation represents a problem for evaluating
equation 4 for shape con�gurations out of the space
de�ned by the training set (the probability distrib-
ution is unde�ned). To solve this problem, a tech-
nique of covariance regularisation is applied. The
following section presents a solution to this prob-
lem.

4.3.1 Regularising the Covariance

We use an approximation to the covariance ma-
trix in order to simplify the problem of invertibility.
The covariance matrix is expressed as a decompo-
sition in eigenvalues and eigenvectors having the
following structure:

� = V DV T (16)

where D is the diagonal matrix of non-zero eigen-
values �1 � ::: � �r > 0, and V is the matrix of
corresponding eigenvectors2 . The covariance ma-
trix is regularized by replacing all the zero eigen-
values by a constant �? > 0: With this strategy,
the space of all the shapes not considered in the
training set space are assigned a small probability
value.
Thus, the new regularized covariance �? is

formed replacing the original matrix D? by D :

�? = V D?V
T (17)

D? = D + �?(I � eveTv ) (18)

where evis an orthonormal basis of the matrix
V , and I is the identity matrix. For this work, as
suggested in [7], �? is given by:

�? =
�r
2

(19)

This expression guarantees that every possible vari-
ation in the shape space will have a corresponding

2Here we are using � to denote the sorted eigenvalues �:
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value of probability �(s) covered by the covari-
ance matrix �?. Better yet, equation 4 will be
di¤erentiable on the full space, associating a �nite
non-zero value with any shape s. This property be-
comes crucial when it is necessary to maximise the
probability.

4.3.2 Properties of the Shape Space
Spanned

In general , the number of samples needed to obtain
reliable statistics increases rapidly with the dimen-
sion of the input data [2, 1]. The covariance reg-
ularisation technique used in our research and de-
scribed in section 4.3.1 is a key aspetct allowing to
reduce the impact of having a small number of sam-
ples. We use complete models of the skull to create
the deformable model however the training set can
be divided to use some portions of the data to work
on especi�c areas of the skull. In general, the main
properties of the shape representation used in our
approach are:

� it is possible to focus on the low-dimensional
subspace de�ned by the training data

� it is possible to assign probabilities to data
even in orthogonal directions to the subspace
spanned by the training data

� as long as the number of samples increase, it
is expected to have more reliable estimates of
the mean and covariance matrix.

4.3.3 Invariance of the Shape Term in 3D

Since the training shapes are aligned to the mean
shape �, the energy term has to be calculated con-
sidering translation, rotation and scaling (to make
it correspond to an aligned shape). Also, this term
need to be normalised to have a unitary size (sec-
tion 4.2). On the other hand, the same process has
to be applied to the argument s before calculat-
ing the energy term presented in equation (4). The
energy for the aligned and centered shape ŝ is:

Eshape(ŝ) = �
1

2
(ŝ� �)T��1? (ŝ� �)

with ŝ as de�ned in equation (13). The term sc
which represents the shape centered (i.e. with
translation of the shape s eliminated) is obtained
by:

sc = (I3n �
1

n
�)s

with:

� =

0BBBBB@
1 0 0 1 0 0 � � �
0 1 0 0 1 0 � � �
0 0 1 0 0 1 � � �
1 0 0 1 0 0 � � �
...

...
...

...
...

...
. . .

1CCCCCA (20)

The energy can be minimised by applying the
chain rule on the gradient descent equation:

ds

dt
= �dEshape(s)

ds
= �dEshape(ŝ)

dŝ
� dŝ
dsc

� dsc
ds

(21)

with:

dEshape(ŝ)

dŝ
= (��1? (s� �))T (22)

dsc
ds

= (I3n �
1

n
�) (23)

dŝ

dsc
=
d(�̂sc�̂ + 1k
̂

T +
p
D2(sc; ŝ))

dsc
(24)

note that the terms D; 
̂; �̂; and �̂ in equation 24
are all functions of the aligned shape ŝ as expressed
in equations 8-12.

5 3D segmentation Algorithm

5.1 Overview of the 3D Skull Ex-
traction Process

This section describes the modules involved in the
process of skull extraction from MRI data pro-
posed. In general terms, this approach can be con-
sidered as a bootstraping technique. From an ap-
proximate description of the object of interest the
aim is to build better approximations of this ob-
ject iteratively, based on the initial con�guration
and the features found in the volume dataset.
The pre-processing module receives as input the

initial MRI volume and creates a �rst approxima-
tion of the skull volume together with a set of vol-
ume features associated to it. These features are
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then processed and a gradient vector �eld is ob-
tained from them. The initialisation of the de-
formable model is made by registering the pre-
segmented volume with an initial clean model of the
skull. Registration of these two models is accom-
plished by matching prominent features previously
identi�ed in these two models. Figure 5.1 shows
the initialisation of the deformable model using a
set of 3D curves to direct the matching process.
After this initialisation, the shape and image fea-

ture terms work together in order to control the
template deformation at each step of the algorithm.
The initial approximation of the skull volume is
processed and re�ned iteratively using volume fea-
tures, the skull template and the statistical infor-
mation about skull shapes provided by the statis-
tical module. The pre-processing and statistical
processing modules work together with the 3D seg-
mentation module in an iterative algorithm to pro-
duce a 3D skull surface. A diagram illustrating the
organisation of the modules is shown in �gure 5.2.
Figure 5.3 shows the �ow diagram of the iterative

process proposed to segment the skull shape. The
deformable model is initialised using a non-rigid
registration algorithm [4] based on matching a set
of curves in places of the skull with prominent cur-
vatures. The noisy pre-segmented volume and the
initial template are then make coincide their cor-
responding features. Figure 5.1 shows a schematic
example of this initialisation step.
For each control point, we calculate the in�uence

of the image features and shape terms and store
these in directional vectors d1; d2 and d3 (taking
into account each coordinate of the points). If these
control points are close enough (d1) to the noisy
approximation boundaries, a di¤erential quantity
in the direction of the nearest point of the noisy
skull surface is calculated. If the control point is not
near to the noisy volume (d2) then the information
of the GVF �eld is used to calculate a diferential
o¤set in the direction indicated by the vector �eld
in that point.
In a second stage, these control points are used

to deform the template considering the information
calculated for vectors d1 and d2 and the shape re-
strictions calculated from the whole set of control
points in their current state (calculating a displace-
ment vector d3). The deformation function used is
a Radial Basis Function - Thin Plate Spline (RBF-
TPS) [3]. The model is deformed in small quan-

tities with a simulated annealing strategy in order
to give more priority to the image features in the
�rst iterations and give more weight to the shape
term in the �nal iterations. This was implemented
with this strategy in order to preserve the topo-
logical properties of the deformable model mesh at
each step of the algorithm. Also, local processing
is possible in areas of the skull where more detail is
required to control correctly the shape term. The
local processing is also useful to account for possi-
ble peculiarities of the model being segmented.

Figure 5.1: Feature lines are extracted from both
the noisy pre-segmented skull Ns and the clean
skull template To. This gives a set of correspon-
dence features in form of surface curves, that can
be registered to de�ne the initial shape of the tem-
plate. With this pair of features a warping process
is de�ned using the relation between the surface
curves resulting in the initial skull template Ti.
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Figure 5.2: Elements of the 3D Segmentation process
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Figure 5.3: Flow Chart of the 3D segmentation algorithm.
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5.2 Results of the 3D Segmentation
Approach

Three main aspects are discussed in this section:

1. The behaviour of the segmentation algorithm
when its shape term is changed and how this
change a¤ects the result of the algorithm

2. The results of the segmentation algorithm
when the two main factors involved vary: the
image feature factor (IFF) and the shape fac-
tor (SF)

3. The evaluation of the results in terms of shape
quality, which means how near/far the result
is from an average shape in terms of the shape
energy calculated between these models.

5.2.1 E¤ect of the Shape Term Variation

To assess the results of the implemented algorithm,
an initial skull base model B was deformed using a
free form deformation algorithm (FFD) [30]. The
deformed modelD was created, modifying arbitrar-
ily the control point positions in the model B. The
model D is processed in order to deform it back to
a valid skull model, by means of applying our algo-
rithm with only the shape term acting on it. For
each parameter combination i; the resulting skull
models produced by the algorithm at each itera-
tion j will be referred as Dj

i . A target model T
was created as a reference model (used for the com-
parisons), by applying to the deformed model D
our shape recovering algorithm with a shape factor
(SF ) of 1.0 for 100 iterations.
Figure 5.4 shows the base (B) and deformed (D)

models used for this evaluation. Figure 5.5 shows
the di¤erence in mm between the source and target
models.
The graph in �gure 5.6 shows the distances be-

tween Dj
i and the reference model T at each itera-

tion j. The graph illustrates the behaviour of the
algorithm for the parameters: (i = 1, SF = 0:1),
(i = 2, SF = 1:0) and (i = 3, SF = 10:0) and 20
iterations.
The reason for varying the evolution of the de-

formable models in small amounts is because in this
way, properties of the deformable model, such as
the smoothness of the surface and the topology of
the mesh, are maintained.

Figure 5.4: Original target model B (Left) and an
arbitrarily deformed model D created by applying
a free form deformation (FFD) technique to the
model in the left.

Figure 5.5: Surface comparison between models
in �gure 5.4 left and right. The image shows a
coloured model in a BGYR colour scale. Blue rep-
resents nearest points while red represents points
with more that 20mm of di¤erence.
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Figure 5.6: Graph showing the behaviour of the
shape term result with respect to a pre-established
average model after 80 iterations.

Figure 5.7: Results of for the three shape parame-
ters described in graph 5.6 i=1, factor=0.1(left),
i=2, factor=1.0(middle), and i=3, factor=10.0
(right) after 80 iterations.

From �gure 5.6 it can be observed that, with
SF = 1:0, the resulting model converges towards
the solution (i.e. perfect match has a distance
d = 0:0) in a regular and smooth descending way
after 30 iterations. Also, the graph shows that by
reducing the shape factor to one tenth of the orig-
inal value (i.e. SF = 0:1) the distances curve de-
crease regularly at a slower rate. When a higher
shape factor is used (SF = 10:0), the algorithm
converges to a shape con�guration before the �rst
10 iterations. In this case, this solution is around
2.5 mm far from the base line de�ned by the ref-
erence model T . This behaviour is expected, and
the reason for it is because the shape term tends
to make the model converge to the nearest shape
con�guration with respect to the dimensions in its
current state. Also it can be noted that when the
factor is higher the �rst iterations present abrupt
changes before stabilising. These cases exemplify
the main situations found to be considered when
adjusting the shape parameter.

5.2.2 E¤ect of the Image Feature and
Shape Factor Variation in the Seg-
mentation Results

The segmentation algorithm proposed was tested
for a given skull model using di¤erent values for
the image feature and shape factors. The values
of the parameter combinations tested are shown in
table 1 and a graph illustrating the e¤ect in the
algorithm results is presented in �gure 5.8.
The graph shows the distance at each iteration j

of the resulting model Dj
i with respect to an aver-

age model �R. The average model �R was obtained
by applying the algorithm with SF = 1:0 and 100
iterations to the deformable used in the initialisa-
tion stage.

C a s e Im a g e S h a p e B e h av io u r

i Fe a t u r e s Fa c t o r o f t h e c u r v e

1 � = 1:0 
 = 0:0 u n sm o o t h a n d d iv e r g e n t

2 � = 1:0 
 = 0:1 u n sm o o t h c o n v e r g e n t

3 � = 1:0 
 = 1:0 sm o o t h a n d c o n v e r g e n t

4 � = 1:0 
 = 10:0 sm o o t h a n d c o n v e r g e n t

Table 1: Four image feature and shape factors ap-
plied for segmenting a skull model
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Figure 5.8: Evaluation of results for four combina-
tions of image feature and shape factors.

Case 1. In this case only image features were
used to direct the segmentation process (IFF =
1:0, SF = 0:0). After initialisation, the deformable
model evolves guided by image features de�ned by
edges of the noisy skull volume and the in�uence
of its gradient vector �ow �eld [25]. Regions of
the deformable model far from the skull volume
are pulled towards the borders of the noisy skull
model. As a result, the surface of the model gen-
erated after 20 iterations is apparently similar to
the surface of the skull volume in terms of surface
distance but it is a "poor result" in terms of shape.
The entire skull con�guration contained in the ini-
tial deformable model is distorted at each step of
the algorithm when there is no restrictions apart
from the image features. The deformable model
evolves blindly towards the borders of the volume
of interest.

It can be observed from the graph in �gure 5.8
that the algorithm converges towards a solution
near to the �nal volume, but as the number of it-
erations continue this model diverges from the so-
lution. It can be observed from image in �gure
5.9 (second row), that the left zygomatic bone has
an outlier due to noise components in the volume,
causing the skull shape to be distorted. Also, the
nasal aperture presents an unusual asymmetry due
to free deformation with no shape restrictions.

Case 2. In the segmentation process, the de-
formable model is now under the in�uence of a

small amount of the shape term. With respect to
case 1, this setting modi�es the behaviour of the
algorithm by imposing a restriction in the evolu-
tion of the deformable model. However, the amount
of shape in�uence is small compared to the image
feature amount (IFF = 1:0, SF = 0:1). The algo-
rithm gives more priority to the image feature term
resulting in a �nal con�guration that is still poor
in terms of shape.
Figure 5.9 (third row) shows a small improve-

ment in the �nal skull shape. This improvement
can be observed in the area of the back of the skull
(contours of the parietal bone area) and the zygo-
matic arch. The result is still having problems with
the noise in the left zygomatic bone area.
Case 3. When a balanced combination of image

features and shape factors is used, the results are
improved in terms of global shape parameters. Fig-
ure 5.9 (4th row) shows that the problem in the left
zygomatic bone has been corrected (the shape term
prevents the deformable model accepting such out-
liers). Also the area of the mandible is presented
with a more regular and smooth surface. The nasal
aperture maintains some symmetry and, further-
more, the area of the maxilla and specially the left
superior teeth area are also corrected with respect
to the previous con�gurations presented.
Finally for the 4th case 5.9 (row 5), when there

is a high shape factor, the deformable model gives
priority to the shape term, making the model con-
verge to the nearer average skull shape almost in-
dependently of the image features. This situation
is similar to the one exposed in pure shape term
variation in the previous section.
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Figure 5.9: Results of the segmentation process combining Image Feature Factor (IFF) and the Shape
Factor (SF)
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5.2.3 Evaluation of the results in terms of
shape quality

So far, we have described the results with some
degree of "shape correctness". This concept was
analysed in terms of visual evaluations. Observing
some general properties of a skull, such as symme-
try and the proportions of some of its components,
it can be assessed whether a result is correct in
shape or not.
In this section, a method to quantify the qual-

ity of a model in terms of its shape is proposed.
To illustrate this method, we consider the results
of three combinations of parameters exposed in the
previous section. The strategy was to calculate a
common average model as a reference. This model
�R was calculated with IFF = 1:0 and SF = 1:0
factors after 100 iterations from the original de-
formable model used in the initialisation stage.
Then, the di¤erence in position between the con-

trol points in model Ri with respect to the reference
model �R is assessed. Also the number of iterations
needed to stabilise the evolving deformable model
is counted.

Figure 5.10: Di¤erence in mm between the result-
ing deformable model Ri and the general average
model �R at each iteration. The y axis represent
a normalised di¤erence between 0.0 and 1.0 mm
calculated with the minimum and maximum di¤er-
ences found for the three models.

The graph in �gure 5.10 shows that for case 1
(IFF = 1:0, SF = 0:0), the model deformed at
iteration i (Ri) starts with a di¤erence around 0.5
mm in distance from �R and it diverges from �R at

each step. The height of the curve and the behav-
iour of its shape in terms of the di¤erence in dis-
tance from R should be noted. Initially, the curve
varies abruptly, and tends to diverge thereafter.

Case 2. IFF is 1:0, and SF is 0:1. The result is
similar to case 1, although seems to stabilise at a
value of 0.9mm

For case 3, the curve is smoothly varying, and
reaches a minimum at iteration 5. The distance
stays below a limit of 0.2mm after 19 iterations
and continues to vary smoothly.

6 Conclusions

We have presented a new method for segmenting
the skull in MRI data. The algorithm is based on
a deformable model technique. A shape term is
added to this technique to guide the segmentation
process with statistical data. The evolution of the
model is also based on the information provided by
a GVF �eld de�ned from image features. Several
tests were conducted to show the behaviour of the
shape term derived from the set of training shapes.
This shap term was used to control the correctness
of the �nal shape in a global way, but it can also
be used locally to recover speci�c areas of the head.
This can be acomplished by using a subset of the
training samples corresponding to an area of inter-
est.

The �nal skull models are referenced to a com-
mon structure (the same topology of the triangular
mesh) which is an important property in order to
conduct statistical studies on these models. To-
gether with the face models, the skull models will
be used for conducting and testing new craniofa-
cial reconstructions approaches based on complete
models of the skull and face.

The skull models generated will be used for cre-
ating a database of head models where the relation
between the skull and face can be modelled. Fig-
ure 6.1 shows a skull generated using the proposed
approach and the skin generated using marching
cubes and �gure 6.2 shows the two models super-
imposed.
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Figure 6.1: An entry of the database of head mo-
dles. Each head model consists of two 3D triangle
meshes representing the skull and face layers. The
skull model consists of 18,546 vertices and 36,710
triangles whilst the face model consists of 25,566
vertices and 49,128 triangles.

Figure 6.2: Superimposed layers of the skull and
face for the �rst individual of the database.
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