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Abstract

We present a method for extracting skull and face models from MRI datasets and show how the resulting dataset is

used in a craniofacial reconstruction (CFR) system. Datasets for 60 individuals are used to produce a database of

3D skull-face models, which are then used to give faces to unknown skulls. In addition to the skull-face geometry,

other information about the individuals is known and can be used to aid the reconstruction process. The results of

the system were evaluated using different criteria providing the system with different combinations of age, gender,

body build and geometric skull features. Based on a surface to surface distance metric, the real and estimated

faces produced were compared using different head models from the database with a leave-one-out strategy. The

reconstruction scores obtained with our CFR system were comparable in magnitude (average distance less than

2.0 mm), to other craniofacial reconstruction systems. The results suggest that it is possible to obtain acceptable

face estimations using MRI based skull-face information sources in a CFR system.

1. Introduction

Craniofacial reconstruction techniques are used in forensic
applications when other methods of identification cannot
be applied [Evi00]. In these situations, a forensic artist us-
ing skull-face anthropometric data creates facial estimations
based on her experience, the biological information deduced
from the skull and other external sources of information such
as in situ evidence. Usually, the data about the skull-face
relation is based on anthropometric tables containing tissue
depth measurements at a discrete set of points distributed in
prominent areas of the skull and face. When manual recon-
struction techniques are used, due to the subjectivity intro-
duced by the artist and the limited information on the skull-
face relation, the results are difficult to reproduce and evalu-
ate. Computational techniques can also be used for produc-
ing face estimations. However, the results are limited when
only anthropometric tables are used due to the amount and
type of data available. Modern 3D scanning technologies,
which are able to produce detailed data can be used to gen-
erate new information sources. We present a technique for
creating accurate skull and face models from MRI data, and
show the benefits of using these models in CFR.

Extracting the face layer is relatively straightforward for
MRI data using the marching cubes isosurfacing technique
[LC87], since only the border of the head volume needs to
be identified. Extracting the skull is more difficult. Section 2
will describe previous attempts to do this and present our ap-
proach, which is based on a 3D deformation model guided
by features in the MRI volume and statistical skull shape
information. Section 3 will present the craniofacial recon-
struction process that we have developed, based on the skull-
face models extracted from the MRI datasets. Section 4 will
present the results, with Section 5 presenting conclusions.

2. Skull extraction

2.1. Previous work

MRI skull segmenation has been a research topic for several
years [RBH∗00, DSL05, MMB06, RBH∗00]. Previous work
has tried to conduct this segmentation process by consider-
ing homogeneity properties of bone regions. Assuming that
skull voxels possess specific attributes allowing their classi-
fication in terms of intensity, colour, texture or movement,
most of the approaches provide acceptable results only in
certain areas of the head. Separability assumptions of tis-
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sue types are difficult to meet when presented with skull
regions in MRI. The air and the skull voxels have practi-
cally no difference in intensity, colour or texture attributes.
The only difference is the spatial position of each voxel rel-
ative to the global structure of the skull. Another property
difficulting the skull extraction process is the high inten-
sity variation in regions of bone where fat concentrations
are found. Mathematical Morphology, a method of image
analysis used for extracting image components providing a
quantitative description of geometrical structures have been
used for extracting the skull [DSL05, JTP01]. In some re-
gions of the skull (e.g. the upper part) these techniques pro-
vide accepatble results but fail in the frontal area. Proba-
bilistic approaches which have been used succesfully for
classifying tissue types in medical images [CSB07, BA07]
have also been used for skull segmentation with similar re-
sults in the frontal area of the skull [DSL05]. With models
of parameterised distributions for each type of tissue, they
try to solve the partial volume problem in order to produce
adequate voxel classifications [LMVS03, LFB98, HED∗97].
Deformable models based methods guided by voxel intensi-
ties are another type of technique that have been used. The
works of Rifai [RBH∗00], Mang [MMB06], and Ghadimi
[GAMK∗08] are examples of these techniques. Again, these
techniques rely on separability and regularity assumptions
of the materials to segment. The method proposed by Shan
[SHJ∗07] for segmenting the skull combines CT and MRI in
a registration approach. A set of skull models generated from
CT segmentations is used for segmenting skull data in MRI
modalities. The main drawback of combining CT and MRI
technologies is that they require a number of CT scans in or-
der to produce the initial skull models. CT scans produce a
high radiation dose that can be harmful. Also the segmenta-
tion produced is simply a collection of isolated voxels that in
a second stage have to be integrated to create a skull model.
Based on several deformable skull templates defined at dif-
ferent resolutions, Luthi et. al. combine a deformable model
approach with a shape restriction term generated of training
skull shapes [LLA∗08]. The results of each deformed model
are combined to produce a segmentation. The approach re-
quires several skull samples to make the skull shape term
robust. In contrast, our method requires a unique initial de-
formable model and a small set of sampled skull shapes.

2.2. Our approach

In this research, a probabilistic method to approximate a 3D
skull model from an MRI volume of the head is presented.
The method uses a deformable model which iteratively ad-
justs its shape to fit the skull embedded in a MRI volume.
Shape changes in the deformable model are defined combin-
ing two elements: information provided by the MRI volume
and knowledge about the 3D structure of a skull shape. The
influence of these two components is modelled as a Bayesian

energy formulation:

E(M) = Evolume( f ,V )+ γEshape(M) (1)

where E is the energy provided by the deformable model M,
V is the MRI volume, f is a set of features associated with
the volume V , Evolume is an energy function of the features
and Eshape is the energy contribution of the shape. The term
Evolume is defined considering a 3D Gradient Vector Flow
(GVF) field acting on the volume V . A GVF for the field
v(x) is defined as the equilibrium solution for the vector
diffusion equation [XP00]:

ut = g(| ▽ f |)▽2
u−h(| ▽ f |)(u−▽ f ) (2a)

u(x,0) = ▽ f (x) (2b)

The term h(| ▽ f |) will produce a smoothly varying vector
field. The term (u−▽ f ) encourages a vector field u to be
close to ▽ f (gradient) computed from the data. The weight-
ing functions g and h are used to controll the influence of
each term in the result. The shape term used in this research
Eshape is defined as follows:

Eshape(s) = −
1

2
(s−µ)T Σ−1

⊥ (s−µ) (3)

In this equation, s is a shape descriptor of model M defined
by a set of control points, µ is the average of the training
set and Σ⊥ is the covariance matrix of the training set. The
shape of the skull is modelled with a Gaussian distribution
of control points associated with a skull model.

2.3. Alignment of Training Shapes

To conduct the statistical shape analysis of the skull it is nec-
essary to provide a common reference system for the skull
models to be compared. Taking the definition of shape given
by D.G. Kendall [DM98] which states that "Shape is all the
geometrical information that remains when location, scale
and rotational effects are filtered out from an object", we
can achieve this by means of an alignment process on the
skull models. Given a set of m training vectors χ = {si}i=1..m

which are centered and normalised, we are interested on
finding an optimal alignment for dealing with the scale and
pose estimation of the shapes [DM98], [KBCL99]. An opti-
mal alignment of two shapes s and ŝ with respect to rotations,
translation and scaling (known as full Procrustes fit [DM98])
requires the following distance to be minimsed:

D
2(s, ŝ) =‖ ŝ−βsΓ−1kγT ‖2 (4)

where D is the distance between the two shapes, β >= 0 is a
scaling factor, Γ is a rotation matrix, 1k is a vector of ones (k
x 1) vector, and γ a vector accounting for translations. Setting
the corresponding derivatives to zero, the solution for the
optimal parameters β̂, γ̂, and Γ̂ are the following expressions
[KBCL99], [Sma96]:

γ̂ = 0 (5)

Γ̂ = UV
T (6)
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The rotation term Γ̂ is defined in terms of the matrices U and
V derived from a single value decomposition of the matrix

product ŝT s
‖s‖‖ŝ‖

as follows:

ŝT s

‖ s ‖‖ ŝ ‖
= V ΛU

T (7)

It can be shown that the best rotation estimator β̂ can be ob-
tained by the following ratio [DM98]:

β̂ =
trace(ŝT sΓ̂)

trace(sT s)
(8)

and finally, the expression defining the best alignment for the
shape ŝ is:

ŝ = β̂scΓ̂+1k γ̂T +
√

D2(sc, ŝ) (9)

where sc is the centered version of shape s. The energy can
be minimised by applying the chain rule on the gradient de-
scent equation:

ds

dt
= −

dEshape(s)

ds
= −

dEshape(ŝ)

dŝ
·

dŝ

dsc
·

dsc

ds
(10)

with:

dEshape(ŝ)

dŝ
= (Σ−1

⊥ (s−µ))T (11)

dsc

ds
= (I3n −

1

n
Γ) (12)

dŝ

dsc
=

d(β̂scΓ̂+1k γ̂T +
√

D2(sc, ŝ))

dsc
(13)

The terms D, γ̂, Γ̂, and β̂ in equation 13 are all functions of
the aligned shape ŝ using the results of equations 4-8.

2.4. Deformable Model Algorithm

The algorithm to control the skull template evolution is
shown in figure 2. It deforms the skull template to find
a skull model that best fits the information provided by a
noisy skull volume created in a pre-processing stage. The
pre-processing stage receives as input the MRI volume and
generates as output a nosiy volume containing a skull ap-
proximation and a vector field associated to this approxi-
mation. The initial approximation is generated by a semi-
automatic region growing process [LJZ03] applied the MRI
dataset [SM09]. Used as an initial guess, the noisy skull
contains information about approximate proportions of the
skull, position and orientation. This information that is used
to reduce the search space of the solution (see figure 1). The
deformation is conducted by changing the positions of a set
of control points defined in the deformable model according
to the volume features and the shape restrictions. The stop
condition used is a fixed number of iterations.

At each iteration, the deformable model control points are

Figure 1: Skull Template initialisation. A noisy skull approx-

imation Ns is used to initialise the skull template model To

by means of a registration step using a robust point match

algorithm [CR00]

moved towards the direction of the most probable skull con-
figuration. The displacement of the control points is stored
in 1-dimensional vectors d1, d2 and d3. Vectors d1 and d2

accounts for changes when volume features are taken into
account. d1 has values when the deformable model is near
to the noisy skull model, and it is zero when it is far from
the noisy skull. d2 stores the contribution of the Gradient
Vector Flow when a control point is far from the noisy vol-
ume. Vector d3 stores displacements originated by the shape
term. The deformation function used to update the positions
of the control points is based on a Radial basis function with
a Thin-Plate-Spline base [CBC∗01]:

fk(x) = pm(x)+
n

∑
i=1

αiφi(‖ x−xi ‖) (14)

The value of the function φi depends only on the distance
of the point x to each of the control points xi (The xi points
are called centers). The weights of the basis functions αi are
found by placing the centres back into fk(x) and solving the
resulting set of linear equations. The polynomial term pm is
included to allow a certain degree of polynomial precision.
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Figure 2: Template deformation algorithm.

Figure 3: The resulting surface models for the skull and face

of the first individual of the database.

The MRI dataset used in this work was created at the Uni-
versity of Sheffield (footnote giving details of who created
the data and when). It consists of a set of scans of the head
and neck of 60 subjects, and their corresponding biograph-
ical information: age, sex, ancestral affiliation (ethnicity).
Additionally, information of whether the individuals rela-
tives were also volunteering was also recorded. Each volume
contains 200 gray-scaled 256 x 256 pixel sagittal images.
The format of each image is 16 bit per pixel raw data with
information of approximately the aorta level and up.

The algorithms described in the previous sections are used
to segment this data. Figure 3 shows an example of the skull
and face models generated with the extraction process. Us-
ing our extraction algorithm, a database of 60 skull-face
models were generated and the 40 best models were used
in the CFR system described in the next section.

3. Craniofacial Reconstruction System

The craniofacial reconstruction system consists of three
main elements: Skull Examination, Template Construction
and Face Construction. In the first stage, an input skull is
analysed and a set of main features extracted. Combining
these features with information about the skull-face relation-
ship, and a spatial deformable technique, this system creates
possible face estimations for the input skull. The anthropo-
metric information is provided by the database of head mod-
els presented in section 2. The reconstruction technique is
based on a template deformation approach. A head template
(skull-face pair) is created by combining several heads mod-
els from the database. These models are selected with simi-
lar features to the unknown subject. The age, sex, body con-
stitution, PCA coefficients, and geometric properties of the
unknown skull are used as selection conditions. The head
template is deformed to fit the unknown skull to produce
face estimation. The deformation approach used is based on
a Radial basis function approach with a thin plate spline base
(see equation 14). A set of head models is chosen from the
database considering matching criteria in terms of the un-
known skull features. The use of spatial deformation allows
the facial tissues (skull, muscle, etc.) to be dealt with as a
single component, freeing the procedure from the problem
of placing and interpreting anthropometric landmarks asso-
ciated with soft tissue depth tables [MC96, VVMN00]. Fa-
cial soft tissues should change in response to the changes in
the skull, and therefore the face is not merely a mask de-
pending on a small number of soft tissue depth points, as is
the case, for example, in [CVG∗06]. The k reference head
(skull-face) models whose facial models are F i

r (i = 1 . . .k),
are combined for producing a face estimation are contained
in the set Hb:

Hb = {H
1
r ,H

2
r . . .H

k
r} = {{S

1
r ,F

1
r },

{S
2
r ,F

2
r }, . . .{S

k
r ,F

k
r }} (15)

For example, if the criterion is the minimum procrustes dis-
tance d between the skull shapes [DM98], the set Hb of se-
lected head models is defined as:

Hb = {{S
i
r,F

i
r} | i ∈ { j | d(S

j
r ,Su)

< ε, j ∈ {1 . . .n}}} (16)

where n is the number of elements of the database, S
j
r is a

reference skull model of the jth database entry, and ‖Hb‖ =
k for some threshold value ε accounting for a limit for the

difference in procrustes distance d between models S
j
r and

Su. Using a leave-one-out strategy [VCL∗06], a skull Su ∈
Hu will simulate the skull whose face will be reconstructed
and its skin layer Fu will then be used to evaluate the results.

The process of face estimation is shown schematically in
figure 4. In this stage, a deformation function f will be cal-

culated between Su and each of the reference skulls S
j
r ∈ Hb
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Figure 4: The template selection process.

:

f j(S
j
r) = Su (17)

This mapping function f j will be used to estimate a de-

formed face F̂
j

u for each of the j reference models, by ap-

plying this function to the corresponding reference face F
j

r

as follows:

F̂
j

u = f j(F
j

r ) (18)

The resulting reconstructed face F̂u is then the average of the

F̂
j

u elements:

F̂u =
k

∑
j=1

F̂
j

u

k
(19)

The functions f j are based on the Radial Basis Function de-
formation approach [CBC∗01]. The set of matching control
points between the source and target models are obtained di-
rectly from the realtion between the vertices of both models
(they share a common vertices structure because were origi-
nated with the skull template deformations scheme presented
in section 2.4).

4. Results

The results of the CFR system are obtained by means of a
comparison between the reconstructed face and the real face
surface evaluated by using a surface to surface metric ( The
average difference between both surfaces). The system was
tested with 27 different combination of biological and ge-
ometrical features. Table 1 shows the criteria used for gen-
erating the craniofacial reconstructions. Negated attributes
mean that different features were used to select models from
the database (e.g. Sex means that the models used were of
the opposite genre to the sex of the unknown skull). Negated
criteria were included to quantify the impact of choosing the
wrong features in the CFR system and to corroborate that
positive criteria give better reconstructionn results that nega-
tive criteria. Figure 5 shows the skull 18 of the UOS dataset.
Figure 6 shows 6 facial reconstructions for the skull of sub-
ject 18 of the UOS dataset. In this case, the third row shows
the best face reconstruction of the group (i.e. the one with
lowest average distance between surfaces) and it was ob-
tained using models of individuals with similar age as the
unknown skull t2). Figures 7 and 8 show the best recon-
struction generated. In the graph shown in figure 9 the aver-
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Figure 5: Skull model 18 of the UOS dataset.

age distances fom the reconstructed faces sorted by criteria
used are shown. Criteria t0 to t14 show that, when adding in-
formation to the CFR system about the unknown skull, the
CFR system implemented give results with less than 2.0 mm
with respect to the real face. Using negative criteria, the av-
erage error was not greater than 2.5mm. An in general, as
expected, positive criteria produced better results that nega-
tive criteria.

Using a leave-one-out strategy, 850 facial reconstruc-
tions were generated using different criteria based on fea-
ture matching using the sex, age, body build and geometric
features of the input skull. The results obtained were com-
parable to other techniques using evaluation criteria based
on surface to surface distance metrics obtaining average dis-
tances of less than 2.0 mm.

5. Conclusions

We have presented a novel approach to extracting skulls
from MRI datasets, based on a probabilistic approach for
guiding a 3D deformable template evolution. By incorporat-
ing shape knowledge of the skull, our approach is able to
cope with uncertainty problems in regions where it is diffi-
cult to establish skull boundaries. This property is useful to
overcome the strong homogeneity restrictions exposed in the
methods presented in section 2.1 (most of them based only
in one intensity criteria to separate skull elements).

The extraction process, in conjunction wth the use of the
marching cubes algorithm [LC87] for face extraction from
the MRI dataset, has been used to create a database of skull-
face models for use in a craniofacial reconstruction (CFR)
system. The CFR results obtained are comparable to other
CFR approaches, and offer the advantage of more consis-
tent reconstructions, with each stage being easier to control
and evaluate, removing the subjectivity of artist-driven ap-
proaches. In addition, since MRI datasets can be readily ob-
tained, the database could be easily extended. M.Salas ac-

Figure 6: An example of five results of the CFR system for

the skull of the subject 18 of the UOS dataset. Each row rep-

resents a criteria for the reconstruction (t0-t5)
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Figure 7: An example of the best reconstruction for skull

model 18 of the UOS dataset. The figure shows the recon-

structed face on the base skull (left) and the real head model

of the skull (right). The best reconstruction score was ob-

tained applying criterion t6 based on sex and age.

Figure 8: Facial surface reconstructed of the example in fig-

ure 7. Again, the reconstructed face (left) and original face

(right). The results corresponds to criterion t6 (Sex & Age)

with d = 1.42 mm and RMS = 1.98 mm.

Figure 9: Average distances of reconstruction for criteria

presented in table 1

Test Feature criteria

t0 All the database (the universal set)

t1 Sex

t2 Age band

t3 PCA band

t4 Proc distance

t5 BMI band

t6 Sex & Age

t7 Sex & Age & PCA

t8 Sex & Age & Proc

t9 Sex & Age & BMI

t10 Sex & Age & PCA & BMI

t11 Sex & Age & Proc & BMI

t12 Sex

t13 Age

t14 PCA

t15 Proc

t16 BMI

t17 Sex & Age

t18 Sex & Age & PCA

t19 Sex & Age & Proc

t20 Sex & Age & PCA

t21 Sex & Age & Proc

t22 Sex & Age & BMI

t23 Sex & Age & PCA & BMI

t24 Sex & Age & Proc & BMI

t25 Sex & Age & PCA & BMI

t26 Sex & Age & Proc & BMI

Table 1: Criteria used for the facial reconstructions.
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