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Abstract: Current XML/RDBMS storage models and query processing technologies are reviewed in this paper, 
leading to the identification of query expressiveness and performance limitations. A novel serialized XML 
query processing framework is proposed to address these. The proposed query processor (called PACD) is 
based on a bitmap representation for XML’s structural relationships. XPath axes, plus their extension (i.e. 
“next” axis) for accessing the document order, are translated to sparse matrices allowing data compression, 
query complexity reduction and XML updates relaxation. Experimental results, outlined in this paper, show 
promising performance improvements over conventional techniques in a wide range of query types.

1 INTRODUCTION 

Current performance limitations of native XML 
technology (Abiteboul et al. 2000) determine that 
XML-encoded data sets are mainly stored and 
manipulated using the more mature relational 
technology (e.g Amer-Yahia et al. 2004, DeHaan et 
al. 2003, and Rys 2005).  This poses the challenge of 
devising methods of utilising relational technology 
to manage XML data sets, such that query 
performance is comparable to that achieved for 
conventional tabular data.  

Our survey of storage models and query 
processing techniques for native and relational 
representations of XML data identifies current 
limitations with respect to performance and query 
expressiveness. To address these, a novel storage 
model for mapping XML data into a bitmap 
representation and an associated query processor are 
proposed. Additionally we implemented and 
evaluated our framework as a new XML-to-RDBMS 
mapping technique. Our experiment has 
demonstrated support for a wider range of 
XPath/XQuery (Schmidt et al. 2001) queries, greater 
potential for optimisation through parallel 
processing of query components, reduced resource 
overheads, and reduced complexity of XML updates 
compared to alternatives in the literature.  

The rest of this paper is organized as follows. 
Section 2 reviews XML/SQL related work. The new 
framework is introduced in Section 3 while Section 
4 describes our implementation of the proposed 
framework as an XML-to-RDBMS mapping 
technique, which is evaluated in Section 5. Finally, 
Section 6 concludes the paper and suggests paths for 
future work. 

2 RELATED WORK 

Technologies for managing XML data sets are either 
native XML (e.g. Fiebig et al. 2002, and Sipan et al. 
2004) or extensions to relational technology (e.g. 
Amer-Yahia et al. 2004, Rys 2005, and Abdel-Kader 
et al. 2008). Of the latter, SQL/XML is the 
mainstream approach, and extends the SQL standard 
by including XML types, XPath and XQuery 
capabilities (e.g. Rys 2005), and transformation 
between XML and relational representations (Amer-
Yahia et al. 2004; Abdel-Kader et al. 2008). XML-
to-RDBMS mapping inherits the advantages of 
established relational database engines for storing, 
querying and indexing XML data; and is widely 
used because of immaturity and poor performance of 
native XML technology (Sipan et al 2004). 
Therefore, relational storage models for XML data 



(such as in-lining/Edge (Florescu and Kossmann 
1999) and ShreX (Amer-Yahia et al. 2004)) with 
their associated query processors remain a focus for 
research. There is an ongoing need for more 
comprehensive performance evaluation of these 
techniques. Such research must address complexities 
introduced by storing irregular and deeply structured 
XML data in the orderly and shallow structures 
inherent in the relational model. Problems include 
path navigation, representation of sequence within 
XML data structures and associated query 
optimisation. 

An approach to support path navigation that 
resonates with the database approach is to directly 
model XML structures within the database design. 
Within the relational model this can be achieved 
through storage of XML paths in fixed (Jiang et al. 
2002; Lau and Ng 2004) or dynamic (Amer-Yahia et 
al. 2004) pre-defined relations in order to preserve 
the XML structure (e.g. parent/child and 
ancestor/descendant relationships). This is an 
attractive approach, since it avoids overheads 
incurred by alternative approaches, such as parsing 
the XML schema and/or data to determine structure 
(Sipan et al 2004; Rys 2005). However, dynamic 
pre-defined mapping schemas become insufficient 
when the XML schema is missing or changes 
frequently. On the other hand, fixed pre-defined 
mapping schemas introduce inefficiencies for certain 
classes of query (e.g. twig-queries (Choi et al. 
2003)), particularly when expensive recursive joins 
must be computed.  

The inherent sequence of XML structures poses 
additional complexity for relational database 
technology, since relational data is un-sequenced. 
This is addressed in many models by node labelling 
approaches; prefix-based and region-based. In the 
former, the label of a child node contains its parent’s 
label (Tatarrinov et al. 2002; Wong et al 2003), 
whereas in the later; labels identify each node’s 
descendants (DeHaan et al. 2003; Yoshikawa et al. 
2001). However, existing node numbering 
algorithms suffer from high or unpredictable storage 
size for node labels, and/or complex label update 
processes. Solutions, such as interval-labelling (i.e. 
using gaps) and the use of floating point numbering 
instead of integers, defer the re-labelling process, but 
do not avoid it completely ( Yu et al. 2005; Li et al. 
2004).   

Finally, existing XML-to-RDBMS techniques 
predominantly translate XPath/XQuery queries into 
a single SQL-SELECT statement (Yoshikawa et al. 
2001; Jiang et al. 2002). However, this is 
problematic in three respects: queries are restricted 

to what can be expressed in a single SQL-SELECT; 
path navigation necessitates a potentially large 
numbers of self-joins, even for simple path queries; 
and the query translation process itself can be 
complex, resulting in long SQL statements which 
might not be supported by many existing RDBMSs 
and which present complex optimisation challenges. 
It is therefore not surprising that recent performance 
analyses have demonstrated that using only XML 
types and XQuery or XPath can lead to poor query 
performance, with exponential query speed 
deterioration for some classes of query as the 
database size increases (Krishnamurthy et al. 2004; 
Abdel-Kader et al. 2008).  However, understanding 
of the trade-offs between different XML and 
XML/Relational technologies is limited since 
performance studies, such as (Florescu and 
Kossmann 1999), have considered only query 
execution time, while ignoring other resources, such 
as memory and CPU usage and IO-Read Operations.  

In summary, the above review has identified 
three main problems in existing XML data-storages 
and query optimization techniques. These are; the 
large storage requirement for representing XML data 
or its indexes, the high computational cost during 
querying and updating XML data, and the 
restrictions in the query processor domain incurred 
by the XML data/index representation. The 
following section hypothesises a novel bitmap 
framework to overcome these limitations.  

3 SYSTEM DESIGN 

To address the issues identified in Section 2, we 
propose a framework, called PACD (Parent-
Ancestor/ Child-Descendant relationships) for 
storing and querying XML databases. PACD can be 
implemented natively or as a XML-to-RDBMS 
mapping technique.  This section initially motivates 
the new system and then describes its main 
components. Sections 4-5 discuss the design of an 
XML/relational model based on the proposed 
system.  

3.1 Motivation  

PACD is designed to address issues identified in the 
above literature by exploitation of the concept of 
transitive closures, as implemented in XPath axes 
(Wang et al. 2006).  The set of transitive closures 
(described in Section 3.2) are utilised as indexes to 
achieve efficient XML querying and manipulation. 
Firstly, these indexes provide an abstraction of path 



information that can be compressed using sparse-
matrix compression techniques, thus allowing 
memory-based index processing, which in turn 
speeds up query execution. Secondly, the PACD 
data model reduces the high computation/storage 
cost associated with the document’s order while 
querying and updating. Instead of using the 
expensive following-sibling/preceding-sibling axes, 
the document’s order is represented by an extended 
XPath axis (called ‘next’ axis) which is encoded in 
the ‘nextOf’ index in the PACD’s design. Also, by 
abstracting out path and sequence information into 
the matrices, PACD supports low cost operations for 
updating index structure when the XML data is 
updated (e.g. adding and deleting nodes). Finally, we 
propose a query processor for PACD which 
decomposes the XML query into multiple sub-
queries, thus avoiding the complexities associated 
with executing long and complex XML queries, and 
providing potential for parallel processing. 

A further advantage of PACD is that the number 
and type of matrices can be configured for specific 
applications, in order to increase or decrease the 
XPath/XQuery coverage. For example, for most 
data-centric (Abiteboul et al. 2000) XML databases, 
where document order is irrelevant, childOf and 
descOf matrices are sufficient to answer XML 
queries (Pettovell and Fotouhi 2006). The PACD’s 
data model and query processor are described next. 

3.2 The PACD Data Model 

The PACD system consists of two main operations; 
the Index Builder (IB) and its Query Processor (QP). 

IB initially translates XML data into a list of the 
nodes, called nodeSet, and translates the structural 
relationships into a set of sparse matrices. This is 
done using a single SAX parsing operation (SAX 
Project 2004). The nodeSet is a set of node 
desciptions, each comprising a node’s name, type, 
identifier and value. Each matrix represents an 
XPath axis (W3C 2007), i.e. nextOf, childOf, and 
descOf, as follows. The matrix is coordinated by 
node identifiers and each of its elements, <x,y> say, 
indicates whether the x node is related to the y node 
by the associated XPath axis relationship. Thus, for 
example, if y is a child of x, the element <x,y> of 
the childOf matrix will be 1; otherwise 0. 

This representation is illustrated in Figure 1 and 
Figure 2, which respectively depict an example of 
XML data and its tree structure, and its ‘nodeSet’ 
and ‘nextOf’ matrix representations.  

To reduce the storage requirement, the IB 
incorporates a Data Compression/De-compression 

model (DCD) which compresses the underlying 
matrices using established sparse-matrix 
compression techniques so that the compressed data 
can reside in the main memory. DCD is also used to 
decompress the stored data during the query 
processing phrase. The storage-space requirement, 
without using any DCD model; of the childOf and 
nextOf matrices require no more than O(n) storage-
unit, whereas the maximum size of the descOf 
matrix is O(n2).  

 

 
Fig 1: An Illustrative XML Example 

 
Fig 2: The PACD Sub-representation of Fig 1 

3.3 Query Processor 

During query processing (QP), XML queries are 
decomposed into sub-queries in order to reduce the 
complexity of the query evaluation process. This is 
achieved by following the approach in (Choi et al. 
2003; Vagena et al. 2004; Chen et al. 2006) whereby 
the XPath query is graphically represented as a twig-
tree, and twig queries are executed using a Finite-
State-Machine (FSM). In the FSM execution; a 
transition from one state to another returns a subset 
of the original node-set, while the current state’s 
node-set becomes the input node-set for the 
following transition(s) to the next state(s). The final 
result is generated by joining the respective node-
sets of all paths in the FSM at the final state. 

An advantage of using such an execution plan is 
that a decision about a NULL result-generation can 
be made early in the process when a transition from 
one state to another returns an empty node-set. 
PACD query processor exploits this feature as part 
of its query processing optimisation. Also, whereas 
existing FSM-based query processors use the stack, 



TwigStack (Vagena et al. 2004) to accumulate 
intermediate states’ results, the PACD processor 
frees its stack at every state transition. This allows 
more free memory resource for other computations. 

4 PACD MAPPING TECHNIQUE 

The previous two sections have overviewed the 
XML data representation and query processing 
strategy deployed by PACD. Here we demonstrate 
their application using a worked example, in which 
PACD is implemented using an RDBMS. 

The mapping schema consists of four base 
relations, each of which corresponds to an IB’s 
component (underlining denotes the use of RDBMS 
indexes):  

nodeSet(UID, Typel, Name, Value) 
childOf(childID, parentID) 
descOf(descID, anceID) 
nextOf(nextID, prevID) 

This relational implementation of IB applies the 
simplest form of sparse-matrix compression 
technique, i.e., Zero-element Removal algorithm 
(Bell and McKenzie 1998). Based on this, the 
PACD’s relations include one record per each non-
zero element of structure-based matrices.  The QP 
then translates an XML query into multiple SQL-
SELECT statements. 

An illustrative example is provided in Figure 3 
and Table 1, which respectively present the example 
Xquery and associated FSM, and the resulting set of 
SQL sub-queries. 

 

 
 

Fig 3: An XQuery Example and its FSM Execution Plan. 

Tab 1: An SQL Translation of XQuery in Fig 3. 

a:: SELECT childID AS dblp FROM childOf c, nodeSet n  
        WHERE (c.parentID=-1) & (c.childID=n.uid) & 
        (n.name="dblp") &  (n.type="E") 
b:: SELECT childID AS phdthesis FROM childOf c, s1,     
       nodeSet n  WHERE (c.parentID=s1.dblp) & 
       (c.childID=n.uid) & (n.name="phdthesis") & (n.type="E") 

… 
e:: SELECT n.value FROM nodeSet n, s2i, s3 WHERE 
(s2i.title=s3.title) & (n.uid=s3.title) 

 
Using the DBLP database, the XQuery example 

displays the title of a PhD thesis identified by 

‘phd/white94’. The execution plan starts at S0 and 
proceeds to finish at FS whenever there is a 
transition from a state Si to Si+1 via the marked labels 
(e.g. ‘dblp’ and ‘title’). A separate SQL statement is 
generated for every transition. (Table 1 lists the first 
(a), second (b) and last SQL (e) of the generated 
SQL sub-queries. 

5 A PERFORMANCE STUDY 

5.1 Experiment Setup 

The comparative performance of PACD has been 
evaluated against the Edge (Florescu and Kossmann 
1999) and XParent (Jiang et al. 2002) techniques. 
The latter two techniques were selected bacause; a) 
both are schema-oblivious, like PACD, b) Edge is a 
single-relation mapping schema while XParent 
represents multi-relations mapping techniques, and 
c) unlike PACD, Edge and XParent use node-
labelling algorithms to support XML order.  

We considered eight database functionalities 
(extracted from the XMark project (Schmidt et al. 
2001)), listed in Table2. 

Tab 2: Query-set. 

Q1: Shallow Exact Matching→ Return the name of the item with ID 
‘item?????’ registered in North America? 
Q1B: Deep Exact Matching→ Return all text elements for the 
category with ID ‘category0’? 
Q2: Order Access→Return the initial increase of all open 
auctions? 
Q3: Regular Path Expression using “*”→ How many items are 
listed on all continents? 
Q3B: Regular Path Expression using “//”→ How many text 
elements are listed under all items from all continents? 
Q4: Joins on Values→ How many emails sent about each item in 
Asia and Europe at every date? 
Q5: Path Traversal→ Print the text in annotations of closed 
auctions? 
Q6: Missing Elements→ Which person does not have a 
homepage? 
Q7: Sorting→ Give an alphabetically ordered list of all items along 
with their location? 
Q8: Aggregation→ Group customers by their incomes and output 
the cardinality of each group? 

 
 The query-sample tests critical aspects of 

processing XML databases over relational databases, 
in line with the XMark benchmark, and other 
performance studies (e.g Li et al. 2004; DeHaan et 
al. 2003). Table 3 summarises features of the XML 
databases used. Our experiment was designed to 
determine the impacts of the depth and breadth of 
XML structure on system performance. Four 
performance variables were measured; Execution 
Time, Memory Usage, CPU Usage, and IO-Read 



Operations. Due to space limitation, only the 
execution-time is discussed in this paper. Ninety 
queries were executed by the FoxPro®9.0 database 
engine installed on a stand-alone PC (Pentium®4, 
3.60GHz dual processor, 1GB physical memory, 
160GB HD) running Windows XP SP2.0.   

5.2 Results Discussion 

Experimental results are represented in Figures 4-6 
and summarised in Table 4. 

PACD vs. Edge: Results shown that PACD 
outperforms Edge for queries; Q3 (TreeBank & 
DBLP), Q3B (TreeBank & XMark), and Q4 
(TreeBank). Comparing to Edge, PACD was ≈0.16 
and ≈5.5 times faster in the 1st case; ≈0.5 and ≈8.5 
times faster in the 2nd case; and ≈0.07 times faster in 
the 3rd case. The superiority of PACD against Edge 
is valid for 10%, 33.4% and 10% of the query-
sample over the DBLP, TreeBank and XMark 
databases respectively. These low-percentages, in 
terms of execution-time, are ameliorated by a better 
performance in terms of other measurements such as 
memory-usage. On the negative side, PACD was 
extremely slow for Q1 over the DBLP and TreeBank 
databases and for Q3 over the XMark database. 

PACD vs. XParent: PACD outperformed 
XParent for queries; Q1B-Q8 (XMark≡80%), Q1B-
Q2 and Q5-Q7 (TreeBank≡50%), and Q2 and Q6-
Q8 (DBLP≡40%). The best performance in the 1st 
case was for Q3 and Q8 where PACD was more 
than 6 times faster than XParent; while in the 2nd 
case, it was ≈7.5 times faster for Q5, and in the 3rd 
case was ≈8.6 times faster for Q7. In contrast, the 
worst performance of PACD against XParent was in 
Q1 (≈140 times slower) and Q1B (≈58.5 times 
slower) over the DBLP databases.  

Our experiment shows that, Edge and XParent 
failed to execute Q3B and Q8 using single-SQL 
translations. Overall, PACD is more suitable for 
depth-oriented XML databases for most XQuery 
types.    

6 CONCLUSION  

In this paper we have introduced a novel XML 
processing framework which is based on a bitmap 
data representation and serialized query processing. 
The new framework aims to overcome three major 
problems identified in the existing XML storage-
models and optimization techniques.   

Tab 3: Characteristics of the Tested Dataset 

DB Name Nodes 
Value 
Nodes Level 

Size 
(MB) 

XMARK 2,437,669 1,547,337 10 153.627 

DBLP 2,439,294 2,166,223 6 85.344 

TREEBANK 2,437,667 1,392,833 36 84.065 

 
 

Fig 4: Execution Time over DBLP Database 

 
Fig 5: Execution Time over XMARK Database 

 
Fig 6: Execution Time over TREEBANK Database 

Tab 4: Result Summary (Execution Time) 

 Q1 Q1B Q2 Q3 Q3B* Q4 Q5 Q6 Q7 Q8* 
PACD vs. Edge - - - B, D A, D D - - - - 
PACD vs. XParent - D B, A, D A A A A, D B, A, D B, A, D B, A 
[D=Depth-oriented, B=Breadth-oriented, A=Average-oriented],           * Edge and/or XParent’s fail to satisfy this query; multiple-SQL were used instead 



The large storage-size problem is addressed by 
employing sparse-matrix compression techniques 
while the query-domain is increased by using a 
special serialized query processor that acts on the 
proposed XML data representation. In terms of 
order-access, the storage and update problems are 
solved by extending XPath axes to include the 
“next” axis as described in Section 3.  

We have evaluated our framework as an XML-
to-RDBMS mapping technique (also called PACD). 
Our preliminary results show several enhancements 
in terms of query-coverage, query processing and 
storage management. Table 4 summaries our 
experimental results.  

On the other hand we are less successful in 
handling complex ordering-queries and achieving 
optimum performance for some query types. Our 
ongoing research investigates optimizing the use of 
the ‘next’ axis to address the first issue and the use 
parallelism to address the second. We are also 
aiming to achieve better storage performance by 
testing more sophisticated data compression 
techniques.  
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