
PACD: A BITMAP-BASED FRAMEWORK FOR PROCESSING
XML DATA

Mohammed Al-Badawi1, Barry Eaglestone2, Siobhán North1
1 Department of Computer Science, The University of Sheffield, Sheffield, UK

m.badawi@dcs.shef.ac.uk,s.north@dcs.shef.ac.uk
2Department of Information Studies, The University of Sheffield, Sheffield, UK

b.eaglestone@sheffield.ac.uk

Keywords: XML Processing, XML Update, Mapping, Sparse-Matrix.

Abstract: Current XML/RDBMS storage models and query processing technologies are reviewed in this paper,
leading to the identification of query expressiveness and performance limitations. A novel serialized XML
query processing framework is proposed to address these. The proposed query processor (called PACD) is
based on a bitmap representation for XML’s structural relationships. XPath axes, plus their extension (i.e.
“next” axis) for accessing the document order, are translated to sparse matrices allowing data compression,
query complexity reduction and XML updates relaxation. Experimental results, outlined in this paper, show
promising performance improvements over conventional techniques in a wide range of query types.

1 INTRODUCTION

Current performance limitations of native XML
technology (Abiteboul et al. 2000) determine that
XML-encoded data sets are mainly stored and
manipulated using the more mature relational
technology (e.g Amer-Yahia et al. 2004, DeHaan et
al. 2003, and Rys 2005). This poses the challenge of
devising methods of utilising relational technology
to manage XML data sets, such that query
performance is comparable to that achieved for
conventional tabular data.

Our survey of storage models and query
processing techniques for native and relational
representations of XML data identifies current
limitations with respect to performance and query
expressiveness. To address these, a novel storage
model for mapping XML data into a bitmap
representation and an associated query processor are
proposed. Additionally we implemented and
evaluated our framework as a new XML-to-RDBMS
mapping technique. Our experiment has
demonstrated support for a wider range of
XPath/XQuery (Schmidt et al. 2001) queries, greater
potential for optimisation through parallel
processing of query components, reduced resource
overheads, and reduced complexity of XML updates
compared to alternatives in the literature.

The rest of this paper is organized as follows.
Section 2 reviews XML/SQL related work. The new
framework is introduced in Section 3 while Section
4 describes our implementation of the proposed
framework as an XML-to-RDBMS mapping
technique, which is evaluated in Section 5. Finally,
Section 6 concludes the paper and suggests paths for
future work.

2 RELATED WORK

Technologies for managing XML data sets are either
native XML (e.g. Fiebig et al. 2002, and Sipan et al.
2004) or extensions to relational technology (e.g.
Amer-Yahia et al. 2004, Rys 2005, and Abdel-Kader
et al. 2008). Of the latter, SQL/XML is the
mainstream approach, and extends the SQL standard
by including XML types, XPath and XQuery
capabilities (e.g. Rys 2005), and transformation
between XML and relational representations (Amer-
Yahia et al. 2004; Abdel-Kader et al. 2008). XML-
to-RDBMS mapping inherits the advantages of
established relational database engines for storing,
querying and indexing XML data; and is widely
used because of immaturity and poor performance of
native XML technology (Sipan et al 2004).
Therefore, relational storage models for XML data

(such as in-lining/Edge (Florescu and Kossmann
1999) and ShreX (Amer-Yahia et al. 2004)) with
their associated query processors remain a focus for
research. There is an ongoing need for more
comprehensive performance evaluation of these
techniques. Such research must address complexities
introduced by storing irregular and deeply structured
XML data in the orderly and shallow structures
inherent in the relational model. Problems include
path navigation, representation of sequence within
XML data structures and associated query
optimisation.

An approach to support path navigation that
resonates with the database approach is to directly
model XML structures within the database design.
Within the relational model this can be achieved
through storage of XML paths in fixed (Jiang et al.
2002; Lau and Ng 2004) or dynamic (Amer-Yahia et
al. 2004) pre-defined relations in order to preserve
the XML structure (e.g. parent/child and
ancestor/descendant relationships). This is an
attractive approach, since it avoids overheads
incurred by alternative approaches, such as parsing
the XML schema and/or data to determine structure
(Sipan et al 2004; Rys 2005). However, dynamic
pre-defined mapping schemas become insufficient
when the XML schema is missing or changes
frequently. On the other hand, fixed pre-defined
mapping schemas introduce inefficiencies for certain
classes of query (e.g. twig-queries (Choi et al.
2003)), particularly when expensive recursive joins
must be computed.

The inherent sequence of XML structures poses
additional complexity for relational database
technology, since relational data is un-sequenced.
This is addressed in many models by node labelling
approaches; prefix-based and region-based. In the
former, the label of a child node contains its parent’s
label (Tatarrinov et al. 2002; Wong et al 2003),
whereas in the later; labels identify each node’s
descendants (DeHaan et al. 2003; Yoshikawa et al.
2001). However, existing node numbering
algorithms suffer from high or unpredictable storage
size for node labels, and/or complex label update
processes. Solutions, such as interval-labelling (i.e.
using gaps) and the use of floating point numbering
instead of integers, defer the re-labelling process, but
do not avoid it completely (Yu et al. 2005; Li et al.
2004).

Finally, existing XML-to-RDBMS techniques
predominantly translate XPath/XQuery queries into
a single SQL-SELECT statement (Yoshikawa et al.
2001; Jiang et al. 2002). However, this is
problematic in three respects: queries are restricted

to what can be expressed in a single SQL-SELECT;
path navigation necessitates a potentially large
numbers of self-joins, even for simple path queries;
and the query translation process itself can be
complex, resulting in long SQL statements which
might not be supported by many existing RDBMSs
and which present complex optimisation challenges.
It is therefore not surprising that recent performance
analyses have demonstrated that using only XML
types and XQuery or XPath can lead to poor query
performance, with exponential query speed
deterioration for some classes of query as the
database size increases (Krishnamurthy et al. 2004;
Abdel-Kader et al. 2008). However, understanding
of the trade-offs between different XML and
XML/Relational technologies is limited since
performance studies, such as (Florescu and
Kossmann 1999), have considered only query
execution time, while ignoring other resources, such
as memory and CPU usage and IO-Read Operations.

In summary, the above review has identified
three main problems in existing XML data-storages
and query optimization techniques. These are; the
large storage requirement for representing XML data
or its indexes, the high computational cost during
querying and updating XML data, and the
restrictions in the query processor domain incurred
by the XML data/index representation. The
following section hypothesises a novel bitmap
framework to overcome these limitations.

3 SYSTEM DESIGN

To address the issues identified in Section 2, we
propose a framework, called PACD (Parent-
Ancestor/ Child-Descendant relationships) for
storing and querying XML databases. PACD can be
implemented natively or as a XML-to-RDBMS
mapping technique. This section initially motivates
the new system and then describes its main
components. Sections 4-5 discuss the design of an
XML/relational model based on the proposed
system.

3.1 Motivation

PACD is designed to address issues identified in the
above literature by exploitation of the concept of
transitive closures, as implemented in XPath axes
(Wang et al. 2006). The set of transitive closures
(described in Section 3.2) are utilised as indexes to
achieve efficient XML querying and manipulation.
Firstly, these indexes provide an abstraction of path

information that can be compressed using sparse-
matrix compression techniques, thus allowing
memory-based index processing, which in turn
speeds up query execution. Secondly, the PACD
data model reduces the high computation/storage
cost associated with the document’s order while
querying and updating. Instead of using the
expensive following-sibling/preceding-sibling axes,
the document’s order is represented by an extended
XPath axis (called ‘next’ axis) which is encoded in
the ‘nextOf’ index in the PACD’s design. Also, by
abstracting out path and sequence information into
the matrices, PACD supports low cost operations for
updating index structure when the XML data is
updated (e.g. adding and deleting nodes). Finally, we
propose a query processor for PACD which
decomposes the XML query into multiple sub-
queries, thus avoiding the complexities associated
with executing long and complex XML queries, and
providing potential for parallel processing.

A further advantage of PACD is that the number
and type of matrices can be configured for specific
applications, in order to increase or decrease the
XPath/XQuery coverage. For example, for most
data-centric (Abiteboul et al. 2000) XML databases,
where document order is irrelevant, childOf and
descOf matrices are sufficient to answer XML
queries (Pettovell and Fotouhi 2006). The PACD’s
data model and query processor are described next.

3.2 The PACD Data Model

The PACD system consists of two main operations;
the Index Builder (IB) and its Query Processor (QP).

IB initially translates XML data into a list of the
nodes, called nodeSet, and translates the structural
relationships into a set of sparse matrices. This is
done using a single SAX parsing operation (SAX
Project 2004). The nodeSet is a set of node
desciptions, each comprising a node’s name, type,
identifier and value. Each matrix represents an
XPath axis (W3C 2007), i.e. nextOf, childOf, and
descOf, as follows. The matrix is coordinated by
node identifiers and each of its elements, <x,y> say,
indicates whether the x node is related to the y node
by the associated XPath axis relationship. Thus, for
example, if y is a child of x, the element <x,y> of
the childOf matrix will be 1; otherwise 0.

This representation is illustrated in Figure 1 and
Figure 2, which respectively depict an example of
XML data and its tree structure, and its ‘nodeSet’
and ‘nextOf’ matrix representations.

To reduce the storage requirement, the IB
incorporates a Data Compression/De-compression

model (DCD) which compresses the underlying
matrices using established sparse-matrix
compression techniques so that the compressed data
can reside in the main memory. DCD is also used to
decompress the stored data during the query
processing phrase. The storage-space requirement,
without using any DCD model; of the childOf and
nextOf matrices require no more than O(n) storage-
unit, whereas the maximum size of the descOf
matrix is O(n2).

Fig 1: An Illustrative XML Example

Fig 2: The PACD Sub-representation of Fig 1

3.3 Query Processor

During query processing (QP), XML queries are
decomposed into sub-queries in order to reduce the
complexity of the query evaluation process. This is
achieved by following the approach in (Choi et al.
2003; Vagena et al. 2004; Chen et al. 2006) whereby
the XPath query is graphically represented as a twig-
tree, and twig queries are executed using a Finite-
State-Machine (FSM). In the FSM execution; a
transition from one state to another returns a subset
of the original node-set, while the current state’s
node-set becomes the input node-set for the
following transition(s) to the next state(s). The final
result is generated by joining the respective node-
sets of all paths in the FSM at the final state.

An advantage of using such an execution plan is
that a decision about a NULL result-generation can
be made early in the process when a transition from
one state to another returns an empty node-set.
PACD query processor exploits this feature as part
of its query processing optimisation. Also, whereas
existing FSM-based query processors use the stack,

TwigStack (Vagena et al. 2004) to accumulate
intermediate states’ results, the PACD processor
frees its stack at every state transition. This allows
more free memory resource for other computations.

4 PACD MAPPING TECHNIQUE

The previous two sections have overviewed the
XML data representation and query processing
strategy deployed by PACD. Here we demonstrate
their application using a worked example, in which
PACD is implemented using an RDBMS.

The mapping schema consists of four base
relations, each of which corresponds to an IB’s
component (underlining denotes the use of RDBMS
indexes):

nodeSet(UID, Typel, Name, Value)
childOf(childID, parentID)
descOf(descID, anceID)
nextOf(nextID, prevID)

This relational implementation of IB applies the
simplest form of sparse-matrix compression
technique, i.e., Zero-element Removal algorithm
(Bell and McKenzie 1998). Based on this, the
PACD’s relations include one record per each non-
zero element of structure-based matrices. The QP
then translates an XML query into multiple SQL-
SELECT statements.

An illustrative example is provided in Figure 3
and Table 1, which respectively present the example
Xquery and associated FSM, and the resulting set of
SQL sub-queries.

Fig 3: An XQuery Example and its FSM Execution Plan.

Tab 1: An SQL Translation of XQuery in Fig 3.

a:: SELECT childID AS dblp FROM childOf c, nodeSet n
 WHERE (c.parentID=-1) & (c.childID=n.uid) &
 (n.name="dblp") & (n.type="E")
b:: SELECT childID AS phdthesis FROM childOf c, s1,
 nodeSet n WHERE (c.parentID=s1.dblp) &
 (c.childID=n.uid) & (n.name="phdthesis") & (n.type="E")

…
e:: SELECT n.value FROM nodeSet n, s2i, s3 WHERE
(s2i.title=s3.title) & (n.uid=s3.title)

Using the DBLP database, the XQuery example

displays the title of a PhD thesis identified by

‘phd/white94’. The execution plan starts at S0 and
proceeds to finish at FS whenever there is a
transition from a state Si to Si+1 via the marked labels
(e.g. ‘dblp’ and ‘title’). A separate SQL statement is
generated for every transition. (Table 1 lists the first
(a), second (b) and last SQL (e) of the generated
SQL sub-queries.

5 A PERFORMANCE STUDY

5.1 Experiment Setup

The comparative performance of PACD has been
evaluated against the Edge (Florescu and Kossmann
1999) and XParent (Jiang et al. 2002) techniques.
The latter two techniques were selected bacause; a)
both are schema-oblivious, like PACD, b) Edge is a
single-relation mapping schema while XParent
represents multi-relations mapping techniques, and
c) unlike PACD, Edge and XParent use node-
labelling algorithms to support XML order.

We considered eight database functionalities
(extracted from the XMark project (Schmidt et al.
2001)), listed in Table2.

Tab 2: Query-set.

Q1: Shallow Exact Matching→ Return the name of the item with ID
‘item?????’ registered in North America?
Q1B: Deep Exact Matching→ Return all text elements for the
category with ID ‘category0’?
Q2: Order Access→Return the initial increase of all open
auctions?
Q3: Regular Path Expression using “*”→ How many items are
listed on all continents?
Q3B: Regular Path Expression using “//”→ How many text
elements are listed under all items from all continents?
Q4: Joins on Values→ How many emails sent about each item in
Asia and Europe at every date?
Q5: Path Traversal→ Print the text in annotations of closed
auctions?
Q6: Missing Elements→ Which person does not have a
homepage?
Q7: Sorting→ Give an alphabetically ordered list of all items along
with their location?
Q8: Aggregation→ Group customers by their incomes and output
the cardinality of each group?

 The query-sample tests critical aspects of

processing XML databases over relational databases,
in line with the XMark benchmark, and other
performance studies (e.g Li et al. 2004; DeHaan et
al. 2003). Table 3 summarises features of the XML
databases used. Our experiment was designed to
determine the impacts of the depth and breadth of
XML structure on system performance. Four
performance variables were measured; Execution
Time, Memory Usage, CPU Usage, and IO-Read

Operations. Due to space limitation, only the
execution-time is discussed in this paper. Ninety
queries were executed by the FoxPro®9.0 database
engine installed on a stand-alone PC (Pentium®4,
3.60GHz dual processor, 1GB physical memory,
160GB HD) running Windows XP SP2.0.

5.2 Results Discussion

Experimental results are represented in Figures 4-6
and summarised in Table 4.

PACD vs. Edge: Results shown that PACD
outperforms Edge for queries; Q3 (TreeBank &
DBLP), Q3B (TreeBank & XMark), and Q4
(TreeBank). Comparing to Edge, PACD was ≈0.16
and ≈5.5 times faster in the 1st case; ≈0.5 and ≈8.5
times faster in the 2nd case; and ≈0.07 times faster in
the 3rd case. The superiority of PACD against Edge
is valid for 10%, 33.4% and 10% of the query-
sample over the DBLP, TreeBank and XMark
databases respectively. These low-percentages, in
terms of execution-time, are ameliorated by a better
performance in terms of other measurements such as
memory-usage. On the negative side, PACD was
extremely slow for Q1 over the DBLP and TreeBank
databases and for Q3 over the XMark database.

PACD vs. XParent: PACD outperformed
XParent for queries; Q1B-Q8 (XMark≡80%), Q1B-
Q2 and Q5-Q7 (TreeBank≡50%), and Q2 and Q6-
Q8 (DBLP≡40%). The best performance in the 1st
case was for Q3 and Q8 where PACD was more
than 6 times faster than XParent; while in the 2nd
case, it was ≈7.5 times faster for Q5, and in the 3rd
case was ≈8.6 times faster for Q7. In contrast, the
worst performance of PACD against XParent was in
Q1 (≈140 times slower) and Q1B (≈58.5 times
slower) over the DBLP databases.

Our experiment shows that, Edge and XParent
failed to execute Q3B and Q8 using single-SQL
translations. Overall, PACD is more suitable for
depth-oriented XML databases for most XQuery
types.

6 CONCLUSION

In this paper we have introduced a novel XML
processing framework which is based on a bitmap
data representation and serialized query processing.
The new framework aims to overcome three major
problems identified in the existing XML storage-
models and optimization techniques.

Tab 3: Characteristics of the Tested Dataset

DB Name Nodes
Value
Nodes Level

Size
(MB)

XMARK 2,437,669 1,547,337 10 153.627

DBLP 2,439,294 2,166,223 6 85.344

TREEBANK 2,437,667 1,392,833 36 84.065

Fig 4: Execution Time over DBLP Database

Fig 5: Execution Time over XMARK Database

Fig 6: Execution Time over TREEBANK Database

Tab 4: Result Summary (Execution Time)

 Q1 Q1B Q2 Q3 Q3B* Q4 Q5 Q6 Q7 Q8*
PACD vs. Edge - - - B, D A, D D - - - -
PACD vs. XParent - D B, A, D A A A A, D B, A, D B, A, D B, A
[D=Depth-oriented, B=Breadth-oriented, A=Average-oriented], * Edge and/or XParent’s fail to satisfy this query; multiple-SQL were used instead

The large storage-size problem is addressed by
employing sparse-matrix compression techniques
while the query-domain is increased by using a
special serialized query processor that acts on the
proposed XML data representation. In terms of
order-access, the storage and update problems are
solved by extending XPath axes to include the
“next” axis as described in Section 3.

We have evaluated our framework as an XML-
to-RDBMS mapping technique (also called PACD).
Our preliminary results show several enhancements
in terms of query-coverage, query processing and
storage management. Table 4 summaries our
experimental results.

On the other hand we are less successful in
handling complex ordering-queries and achieving
optimum performance for some query types. Our
ongoing research investigates optimizing the use of
the ‘next’ axis to address the first issue and the use
parallelism to address the second. We are also
aiming to achieve better storage performance by
testing more sophisticated data compression
techniques.

REFERENCES

Abdel Kader, Y., Eaglestone, B., and North, S. (2008) ‘An
Analysis of Relational Storage Strategies for Partially
Structured XML’, WebIST’08, Madeira, Portugal, pp
165-170.

Abiteboul, S., Buneman, P., and Suci. D. (2000) Data on
the Web: From Relations to Semistructured Data and
XML, California: Morgan Kaufmann Publishers.

Amer-Yahia, S., Du, F., and Freire, J. (2004) ‘A
Comprehensive Solution to the XML-to-Relational
Mapping Problem’, In Proceedings of the 6th annual
ACM/IWIDM’04, Washington DC, USA, pp 31-38.

Bell, T., and McKenzie, B. (1998) ‘Compression of Sparse
Matrices by Arithmetic Coding’, ICDC’98, pp 23-32.

Chen, S., Li, H., Tatemura, J., Hsiung, W., Agrawal D.,
and Candan, K. (2006) ‘Twig2Stack: Bottom-up
Processing of Generalized-Tree-Pattern Queries over
XML Documents’, VLDB’06, Seoul, Korea, pp 283-
294.

Choi, B., Mahoui, M., and Wood, D. (2003) ‘On the
Optimality of Holistic Algorithms for Twig Queries’,
LNCS 2736, pp 28-37.

DeHaan, D., Toman, D., Consens, M., and Ozsu, M.
(2003) ‘A Comprehensive XQuery to SQL Translation
using Dynamic Interval Encoding’,
ACM/SIGMOD’03, San Diego, CA, USA, pp 623-634.

Fiebig, T., Helmer, S., Kanne, C., Moerkotte, G.,
Neumann, J., and Weld, R.. (2002) ‘Anatomy of a
native XML base management system’. VLDB
Journal, 11(4), pp 292-314.

Florescu, D., and Kossmann, D. (1999) ‘A Performance
Evaluation of alternative Mapping Schemas for
Storing XML Data in a Relational Database’,
TR:3680, May 1999, INRIA, Rocquencourt, France.

Jiang, H., Lu, H., Wang, W., and Yu, J. (2002) ‘XParent:
An Efficient RDBMS-Based XML Database System’,
ICDE’02, CA, USA, pp 1-2.

Krishnamurthy, R., Kaushik, R., and Naughton, J. (2004)
‘Efficient XML-to-SQL Query Translation: Where to
Add the Intelligence?’, VLDB’04, Toronto, Canada,
pp 144-155.

Lau, H., and Ng, V. (2004) ‘INode*: An Effective
Approach for Storing XML using Relational
Database’. Int’l Journal of WET, 1(3), pp 338-352.

Li, H., Lee, M., Hsu, W., and Chen, C. (2004) ‘An
Evaluation of XML Indexes for Structural Join’,
ACM/SIGMOD, 33(3), pp 28-33.

Pettovello, P., and Fotouhi, F. (2006) ‘MTree: An XML
XPath Graph Index’, ACM/Sym. on Applied
computing’06, Dijon, France, pp 474-481.

Rys, M. (2005) ‘XML and Relational Database
Management Systems: Inside Microsoft SQL Server
2005’, ACM/SIGMOD’05, Baltimore, Maryland, pp
958-962.

SAX Project. (2004) Simple API for XML (SAX).
[Online] Avail: http://sourceforge.net/projects/sax/
[20/09/2008].

Schmidt, A., Waas, F., Kersten, M., Florescu, D.,
Manolescu, I., Carey, M., and Busse. R. (2001) ‘The
XML Benchmark Project’, INS-R0103 Apr30, pp 1-18.

Sipan, S., Verma, K., Miller, J., and Aleman-Meza, B.
(2004) ‘Designing a high-performance database
engine for the ‘Db4XML’ native XML database
system’, The Journal of Systems and Software-69, pp
87-104.

Tatarrinov, I., Viglas, S., Beyer, K., Shanmugasundaram,
J., Shekita, E., and Zhang, C. (2002), ‘Storing and
Querying Ordered XML Using a Relational Database
System’, ACM/SIGMOD’02, Madison, Wisconsin, pp
204-215.

Vagena, Z., Moro, M., and Tsotras, V. (2004) ‘Twig
Query Processing over Graph-Structured XML Data’,
7th int’l workshop on the Web & Data., Paris, France,
pp 43-48.

W3C. (2007) XML Path Language (XPath) 2.0, [Online]
Avail: http://www.w3.org/TR/xpath20/ [30/10/2008].

Wang, H., He, H., Yang, J., Yu, P., and J Yu. (2006) ‘Dual
Labelling: Answering Graph Reachability Queries in
Constant Time’, ICDE’06, pp 75-86.

Wong, W., Jiang, H., Lu, H., and Yu, J. (2003) ‘PBiTree
Coding and Efficient Processing of Containment
Joins’, ICDE’03, Boston, USA, pp 391-402.

Yoshikawa, M., Amagasa, T., Shimura, T., and Uemura,
S. (2001) ‘XRel: A Path-based Approach to Storage
and Retrieval of XML Documents using Relational
Databases’, ACM/IT., 1(1), NY, USA, pp 110-141.

Yu, J., Luo, D., Meng, X., and Lu, H. (2005)
‘Dynamically Updating XML Data: Numbering
Scheme Revisited’, WWW, 8(1), pp 5-25.

