
THE 3D XML BENCHMARK

Mohammed Al-Badawi, Siobhán North, Barry Eaglestone
Department of Computer Science, The University of Sheffield, Sheffield, UK

m.badawi@dcs.shef.ac.uk,s.north@dcs.shef.ac.uk, b.eaglestone@sheffield.ac.uk

Keywords: XML Benchmark, XQuery Processing, Performance Evaluation.

Abstract: In the context of benchmarking XML implementations, several XML benchmarks have been produced to
either test the application’s overall performance or evaluate individual XML functionalities of a specific
XML implementation. Among six popular XML benchmarks investigated in this article, all techniques rely
on code-generated datasets which disregard many of XML’s irregular aspects such as varying the depth and
breadth of the XML documents’ structure. This paper introduces a new test-model called the “3D XML
benchmark” which aims to address these limitations by extending the dataset and query-set of existing XML
benchmarks. Our experimental results have shown that XML techniques can perform inconsistently over
different XML databases for some query classes, thus justifying the use of an improved benchmark.

1 INTRODUCTION

In the context of XML technology, an XML
benchmark is a tool for evaluating and comparing
the performance of new XML developments with
existing XML technology (Lu et al. 2005). Because
of the nature of XML databases and the variety of
different platforms used to store these databases (e.g.
RDBMS and OO-RDBMS), the benchmarking
process mainly examines the performance of the
underlying storage-model, the associated query
processor and the update handler (Lu et al. 2005). In
terms of query processing, the literature (Schmidt et
al. 2001) identified ten functionalities to be tested:
XML data bulk-loading, XML reconstruction, path
traversals, data-type casting, missing elements, order
access, reference navigation, joins, construction of
large results, containment and full-text searching.

Most of the existing XML benchmarks evaluate
the above functionalities using an XML application
scenario where a benchmark consists of one or more
interrelated XML documents with a limited variation
–in most cases- in terms of the database’s
dimensions including the depth, breadth and size.
The query-set pays little or no attention to the impact
of the document’s nested structure on the XML
querying/updating processes. This paper introduces
a new XML test-model (called “The 3D XML
Benchmark”) that extends the existing benchmarks’
design to include these features. Experiments,
discussed in Section 5, show that the performance of

an individual XML techniques is determined by two
main factors; the nature of the XML database
processed and the inclusion of these features (e.g.
the database’s three dimensions) in the XQuery
syntax.

The rest of this paper is organized as follows.
Section 2 reviews the XML benchmarking while the
new benchmark is introduced and tested in Sections
3 and 5 respectively. Section 4 describes a node-
based scaling algorithm used by the new benchmark
to reduce the size of the XML databases; and
Section 6 concludes the paper.

2 RELATED WORK

XML benchmarks can be divided into application
benchmarks and micro benchmarks. This section
reviews six most popular XML benchmarks from
both categories, showing their strengths and
weaknesses. The characteristics of these benchmarks
are summarised in Table 1.

XMark: this benchmark (Schmidt et al. 2002) is
widely used by the XML development community
because it generates XML databases of any size and
covers all XML query-able aspects identified in
(Schmidt et al. 2001). The underlying dataset
consists of a single, code-generated XML document
of a size controlled by a positive floating-point

scaling factor (SF=1.0 produces 100MB), and with a
depth which is always 12.

Although it simulates a real-life database
scenario, elements in the corresponding XML tree
tends to be evenly distributed at each level. This
feature omits several irregular aspects of the
underlying database such as the diversity in the
node’s fanouts. Using fixed-depth XML documents
is also an issue in this benchmark.

XOO7: This benchmark (Li et al. 2001) is the XML
version of the “OO7” (Carey et al. 1993), an
evaluation technique used to benchmark object-
oriented RDBMS. The benchmark’s dataset contains
a single document, translated from its base
benchmark. The XML file can be produced in three
versions: small, medium and large. Regardless its
size, the depth of any generated XML file is always
5.

Using code-generated, fix-depth, and only 3-
levels of document’s size make the benchmark
impractical for scalability tests and other irregularity
evaluation.

XBench: XBench (Yao et al., 2004) is another XML
benchmark which uses code-generated XML
documents. In XBench, the underlying dataset can
be one of four types: single-document/data-centric
(SD/DC), single-document/text-centric (SD/TC),
multiple-documents/data-centric (MD/DC) and
multiple-documents/text-centric (MD/TC). The size
of these documents varies from small (10MB),
normal (100MB), large (1BG) and huge (10GB); but
the depth ranges over a very limited domain.

Although it uses a template-based generation
algorithm which simulates some real database
scenarios, the features of the database produced are
restricted by the features encoded in the generation
templates. The benchmark also does not incorporate
the document’s depth-variation into the XML
querying process.

XMach~1: Among the benchmarks investigated in
this paper, XMach~1 (Böhme and Rahm 2003) is a
benchmark that targets multi-user environments
using a Web-based application scenario. This section
only discusses the structure of underlying dataset
and query-set.

The benchmark’s dataset can contain a huge
number (104 to 107) of XML documents with file-
size ranges from 2KB to 100KB. The interrelated
XML documents are generated by a parameterised
algorithm which controls the size of the document,
the number of elements and attributes, the length of
textual-contents, and the number of levels in each
document. The number of levels is restricted to 6
levels in all documents, and the variation in the
number of levels is not incorporated in the query-set
design.

Besides the depth-restriction, XML documents
generated by XMach-1 are very small, making the
benchmark inappropriate for evaluating large scale
implementations and/or scalability testing.
Furthermore, the query-set does not cover all XML
query-able functionalities identified in (Schmidt et
al. 2001); examples include path traversal, joins, and
aggregation.

Tab 1: A Comparison between different XML benchmarks

Benchmark

Dataset Query-set

Source
DB

Environment
(TC/DC)†

#of
Docs Size

Min/Max
Depth

#of
Search
Queries

#of
Update
Queries

Depth
Aware?

XMark Synthetic 1 TC
rest DC

1

Controlled
by SF: tiny
(KB)
to huge (GB)

12 20 0 No

XOO7 Synthetic
Majority DC
Few TC

1
Small
Medium
Large

5 23 0 No

XBench Synthetic Mixed Mixed

Small (10MB)
Normal(199MB)
Large(1GB)
Huge(10GB)

Limited
 variation

20 0 No

XMach~1 Synthetic
Mostly TC
Few DC

Multi
(104-107
docs)

2KB to 100KB
per document

 6 levels 8 3 No

Michigan
(MBench~v1)

Synthetic DC 1
Multiple of
728KB nodes
Max. 100 times

5 to 16 28 3 Yes

TPoX Synthetic
Mix of TC and
DC

3.6106
to

3.61011
3KB-20KB each

controlled
by

template
7 10 No

† TCDocument-centric DB, DCData-centric DB

MBench~v1: The Michigan Benchmark
(Runapongsa et al. 2006) is a micro benchmark used
to test individual system functionalities rather than
the overall system performance. It is the only
benchmark of this category; and it uses a single-
document database scenario.

The size of default XML document used by
XBench~v1 is 728103 nodes, and the number of
levels is 16. The size of the default XML database
can be doubled up to 100 times by varying the
node’s fanouts (2 to 13) at levels 5, 6, 7 and 8. Also,
the size and depth of the database can be controlled
by rooting the corresponding XML tree at different
levels between 5 and 16.

In the associated query-set, MBench~v1 supports
all XML query-types identified by (Schmidt et al.
2001). Unlike other techniques, the benchmark
incorporates a depth-dimension in the XML
querying process. This is done by scaling the XPath
expressions to match the database’s maximum
depth. MBench~v1 also provides three update
queries: inserting a node, deleting a set of nodes and
bulk-loading a new XML document into the
underlying database.

TPoX: “Transaction Processing over XML” (Nicola
et al., 2007) is another XML benchmark that targets
multi-user environments using an application-
oriented and domain-specific scenario.

The benchmark’s dataset is generated by the
ToXGene (Barbosa et al., 2002) XML generation
tool which uses templates to determine the
characteristics of the XML documents produced.
Three XML Schemas are used to control TPoX’s
generation process, producing millions of tiny XML
documents of size ranging from 3KB to 20KB
depending on the XML Schema used. Additionally,
an XML Schema controls the depth and breadth of
the XML files generated while element types are
preset to be, in general, data-centric with some
having large text values.

Unlike other benchmarks, TPoX query set is
concerned more with XML updates than search
query evaluations. It contains two queries to
insert/delete new/existing XML documents
respectively, and six queries to alter the contents of
existing documents. Seven search queries are used to
retrieve information from the underlying dataset
with no special attention paid to XML irregularities
such as varying the length of XPaths used and
testing missing element functionality.

Based on the above, the benchmark has no
obvious advantage over its predecessor (XMach~1)
in terms of dataset and query set specifications
although it simulates more real life business

transactions. This is also valid for a newer XML
benchmark proposed in (Cohen, 2009) which uses
the same sort of code-generated dataset as well as a
code-generated XPath query set (Wu et al., 2009).

In summary, the above review has identified
three main problems in existing XML benchmarks
(Mlynkova, 2008). These are: the use of synthetic
datasets which may exclude some real XML
irregularities, the use of single-source XML
databases which also restricts the diversity of XML
structures and the use of fixed-depth datasets and/or
query-set which prevents testing of the impact of the
nested XML structure. The following section
describes an XML test-model which aims to address
the above limitations.

3 THE 3D BENCHMARK

3.1 Motivation

The proposed test-model aims to address the
limitations identified above by using XML
documents from different resources, including
synthetic and real databases, so that a natural and
logical diversity in the databases dimensions (i.e. the
depth, breadth and size) is guaranteed. The proposed
test-model must also reflect these features in the
query-set design. So, the underlying dataset of the
proposed test-model should contain –at least- three
different XML databases simultaneously each of
which incorporates certain XML features. The
dataset and query-set designs are discussed in
Section 3.3 and Section 3.4 respectively. The
following section describes a framework for the
technique’s working-environment.

3.2 The Benchmark Architecture

The basic idea of the proposed test-model is to vary
three XML aspects of the underlying XML dataset:
the size of the database in terms of number of nodes,
the depth (i.e. number of levels) and the breadth (i.e.
average fanouts). Unlike most existing XML
benchmarks (e.g. XMark (Schmidt et al. 2002),
XOO7 (Li et al. 2001) and XBench (Böhme and
Rahm 2003)), varying the database’s depth in the
new test-model is based on using distinct XML
databases from different sources. This also allows
natural diverse irregularity aspects in the underlying
XML databases (see Section 3.3). By keeping the
size of the dataset members used almost constant
with a clear diversity in the number of levels, the

average-breadth degree of each XML database also
becomes diverse (Lu et al. 2005).

The 3D XML Benchmark adapts the XMark’s
(Schmidt et al. 2002) query-set which consists of
twenty queries. Each query (over XMark database)
is translated to match the schema of every XML
database included in the new dataset. For example,
the “Exact Matching” query of the XMark is
translated over the other two databases (i.e. DBLP
and TreeBank) to become three distinct queries (see
Fig 3). Then, each of these queries is reproduced for
the other two versions (i.e. reduced XML databases)
of each database to add another six queries to the
benchmark’s query-set. The total number of queries
in the entire query-set includes 2033 queries.

The framework is illustrated in Fig 1. The
illustration also shows that more XML databases can
be added to the underlying XML data-set to
represent other XML database scenarios.

The following two sections describe the design
of the benchmark’s dataset and query-set
respectively.

Fig 1: The working-environment for the 3D XML
benchmark

3.3 Dataset Design

The new test-model (also called the “3D XML
Benchmark”) uses multiple XML databases taken
from different sources to test the impact of three
XML structures (i.e. the depth, the breadth, and the
size in terms of the number of nodes). Of the XML
depth, it is well known (Lu et al. 2005, Runapongsa
et al. 2006) that the number of levels affects both the
length of the query-evaluation process and the
utilization of the underlying system resources (e.g.
memory-stack management, CPU usage, I/O devices
workload …etc). The memory-stack management is
also affected by the breadth of the XML tree due to
the nature of the pipelined querying process which
needs to spread over more branches (i.e. more paths)
at each navigational point (Beglund et al. 2007, Lu

et al. 2005). Finally, varying the number of nodes
during the XML benchmarking process is an
essential tool to test the scalability of any XML
implementation (Schmidt et al. 2002, Lu et al.
2005).

3.3.1 Dataset Selection

The base dataset of the 3D XML Benchmark
includes two real, single-document XML databases
and one synthetic, single-document database. The
databases are selected carefully from the existing
XML repositories (e.g. (Miklau 2009)) to reflect
different categories of the three XML dimensions;
that are the depth, breadth and size. At least one
database among dataset members must represent the
low, the average, and the high category for each
dimension respectively. This structure is illustrated
in Fig 2. The characteristics of the XML databases
selected are as follows (also see Tab 2):

DBLP Database: DBLP stands for Digital
Bibliography Library Project, and is a natural, large,
data-centric XML document which contains
bibliographic information about major computer
science publications including journals and
proceedings. The database is widely used in XML
technology evaluation experiments and is freely
downloadable at http://dblp.uni-trier.de/. The size of
this database is 609MB as of 21st June 2009 but the
version used in this study was 127MB and was
obtained from http://www.cs.washington.edu/
website.

XMark Database: This is a code-generated, single-
document XML database produced by the XMark-
generator (Schmidt et al. 2002) as the base XML
database for the XMark benchmarking process. The
database simulates an Internet auction application
for some dummy products from around the world.
The size of the XML documents generated, which
range from few kilobytes to hundreds gigabytes, is
controlled by a positive floating-point scaling-factor.
The majority of this database’s elements are data-
centric with one descriptive element containing
multiple long sentences about the items.

TreeBank Database: This is a single-document,
project-based XML database which stores thousands
of English sentences tagged to very deep levels. The
database is a part of The Penn Treebank Project
(PennProj 2009) which annotates naturally-
occurring text for linguistic structures. The
copyrighted text nodes have been encrypted without
affecting the overall XML structure of the database.
In addition, the deep recursive structure of this data

makes it an interesting case for many experiments
(e.g. Liefke and Suciu 2000, Härder et al. 2007). The
size of the database used is 82MB and it can be
downloaded from http://www.cs.washington.edu/
website.

Tab 2 provides statistical information about the
base XML databases used in the 3D XML
Benchmark.

Tab 2: XML databases used by the 3D XML benchmark

 DBLP
(dblp100)

XMark
(xmark100)

Treebank
(tree100)

Size (nodes) 2439294 2437669 2437667
#of Levels 6 10†† 30†††
Min Breadth† 2 2 2
Max Breadth 222381 34041 56385
Avg Breadth† 11 6 3
#of Elems 2176587 1927185 2437666
#of Attrs 262707 510484 1
† Calculations exclude leaf nodes
†† #of level is reduced from 12 while eliminating the text-based elements
††† #of levels is reduced from 36 to enable the database’s management
using the available system resources without affecting the dataset
specifications

3.3.2 Varying XML Dimensions

Tab 2 shows that the diversity in the depth and
breadth of the dataset is ensured by nature of the
databases selected. Rationally, the depth-dimension
and the breadth-dimension of an XML database are
orthogonal given that the database’s size (#of nodes)
is constant. So, in a three-point scale, low, average
and high, the DBLP database represents the low
depth and high breadth categories while the
TreeBank database does the opposite. Similarly,
XMark is a representative of both the average depth
and breadth.

In terms of the size-dimension variation
(essential for the scalability testing), the 3D XML
Benchmark scales down each base XML database
into two more versions: the first contains 50% of the
nodes of the base database and the second contains
25%. The base XML databases are reduced using a
node-based, structure-preserving scaling algorithm
described in Section 4.

Conventionally, the node’s reduction-percentage
is attached to the name of base database to define the
name of the reduced versions. For example, the
‘DBLP100’ is given to the base database of the
DBLP while the ‘DBLP050’ defines the halved
database and the ‘DBLP025’ defines the quarter-
ized database. Fig 2 shows the location of the nine
XML databases in the three-dimensional plane.

Fig 2: The benchmark’s dataset members in the 3D-plane

3.4 Query-set Design

The 3D XML Benchmark adapts the XMark’s
(Schmidt et al. 2002) query-set to produce nine
different query-sets each of which is executed over a
specific XML database of the benchmark’s dataset.
Using a set of twenty queries grouped into fourteen
categories, XMark covers all query-able aspects of
XML databases identified by (Schmidt et al. 2001).
This section highlights only the query translation
process while the complete query-set listing is
provided in further publications.

XML queries used by the XMark benchmarking
project are expressed using FLWR XQuery (Boag et
al. 2007) format. Each XQuery is composed of at
least one XPath expression (Beglund et al. 2007)
which navigates through the ‘auction’ XML
database (File: ‘auction.xml’) to reach the desired
XML nodes. In the XQuery example illustrated in
Fig 3(c, d), the XPath expression seeks the name of
an item labelled by ‘item20748’ which can be
purchased from the North of America (namerica)
region. So, the corresponding XQuery (shown in Fig
3(c, d)) tests two XPath expressions in order to
return the name of target item. The first XPath
expression “path 1” is used to locate the searched
item while the second XPath expression “path 2” is
used to return the name of the item that satisfies the
searching criteria.

In the new query-set, the same XQuey syntax
can be used over XMARK100, XMARK050 and
XMARK025 databases, but with different search
criteria in each case. The value of the item_id is
changed for each database version to ensure that the
item sought is found within approximately the same
distance from the root node (e.g. at distance of 27%
of the total number of nodes in the database). This is

important because the relative location of the target
data impacts on the overall querying process. For
other database categories (i.e. using DBLP or
TreeBank instead of XMARK), the length of each
XPath expression is scaled down/up to match the
depth of the new XML database, and the location-
steps are replaced with tag/attribute names from the
new database’s schema. The length of any XPath
expression under the TreeBank (or DBLP) databases
is kept (as much as possible) twice (or half) the
length of the corresponding expression in the XMark
database. Fig 3(a, b) and Fig 3(e, f) depict the
translation of the XQuery example in Fig 3(c, d) for
the DBLP and TreeBank databases respectively. In
these examples, the query returns the title of a PhD
thesis identified by the key ‘phd/White94’ in the
first case while in the second case the query returns

the textual contents of the element ‘NNS’ that is
located under the path
‘/FILE/EMPTY/ADJP/PP/NP/VP/PP/PP/NP’ where
the value of the child element ‘JJ’ is
“Had5yxWr+9m+82oVrszXXx==”.

4 A NODE-BASED SCALING
ALGORITHM (NBS)

The algorithm in Fig 4 was used by the 3D XML
benchmark to reduce the size of the dataset members
while keeping the underlying XML schema
unchanged. The algorithm can also be used to add
more XML databases to the base dataset. Because
XML databases can be added from any source
(synthetic or real), there will be conflicts in the size

Fig 3: An Example of XQuery Translations (Exact-matching)

Input: ‘s’ is the scaling-percentage (1-100%); ‘db1’ is an XML database of ‘n’ nodes
Output: db2 : an XML database of ‘m’ nodes where m sn/100
Parse ‘db1’ construct the path-set and the individual path’s node-set;
Consider ‘s%’ of each path’s node-set an XML tree ‘db2’ with some dangling nodes;
Add all ancestors of dangling nodes bigger XML tree ‘db2’ of ‘m’ nodes;
Repeat until m=(sn/100) d, where ‘d’ is a very small integer comparing to ‘n’
 Adjust ‘s’ according to the value of ‘m’;
 Consider ‘s%’ of each path’s node-set an XML tree ‘db2’ with some dangling nodes;
 Add all ancestors of dangling nodes bigger XML ‘db2’ tree of ‘m’ nodes;
End;
Return db2;

Fig 4: The node-based scaling algorithm

in terms of number of nodes. Therefore, the
algorithm is first used to bring the size of the new
databases to the scale of the existing dataset
members. Secondly, the algorithm is used to
reproduce two more versions of each new database.

The algorithm works as follows. Based on the
scaling-percentage “s”, the algorithm selects “s%” of
the node-sets of every path in the XML tree. The
sub-tree selected may then contain some dangling-
nodes (i.e. separated from the root node). The
ancestors of these dangling-nodes are then added to
the sub-tree. If the number of nodes in the new sub-
tree is outside acceptable limits around “s%”, the
scaling-percentage “s” is tuned to increase or
decrease the size of the sub-tree produced.

Fig 5 depicts the experimental results from a test
of the node-based scaling algorithm. Firstly, five
XML documents were produced by the XMark
(Schmidt et al. 2002) generator at scaling-factor (SF)
of 1.0, 0.8, 0.6, 0.4 and 0.2. The same number of
documents were produced using the new algorithm
which scales the base XML documents (produced by
XMark at SF=1.0) at 80%, 60%, 40% and 20%. The
other five XML documents were also produced by
the new algorithm but using the tuning mechanism.
The difference between the numbers of nodes for
similar documents was calculated and is presented in
the graph.

The experiment shows that the number of nodes
in the XML documents generated using the un-tuned
node-based scaling algorithms is usually less than
the number of nodes in the XMark’s documents.
However, by tuning the scaling-percentage, the size
of the documents is always within acceptable limits.

Fig 5: A Comparison between the document-size of XML
documents generated by XMark and NBS algorithm

Tab 3: Experiments’ Query-set

Q1: Shallow Exact Matching
Q1B: Deep Exact Matching
Q2: Order Access

Q3: RPE using ‘*’
Q3B: RPE using ‘//’
Q4: Joins on Values
Q5: Path Traversal
Q6: Missing Elements

5 A PERFORMANCE STUDY

5.1 Experiment Setup

To measure the impact of varying the database’s
dimensions on the XML querying process, an
experimental study was conducted to compare the
relative performance of two well-known mapping
techniques (Edge (Floescu and Kossmann 1999) and
XParent (Jiang et al. 2002) using the 3D XML
Benchmark. The experiment compares the
execution-time of eight queries that were executed
over the benchmark’s base databases. The discussion
of other experimental metrics (e.g. CPU usage) as
well as the results over the reduced database
versions is omitted from this paper due the space
limitation. Finally, a short description of the queries
used is given Tab 3 while results are discussed in the
following section.

5.2 Experimental Results

The result presented in Fig 7 show that the
performance of any XML technique was not always
consistent over the three XML databases for some
query-classes. In the “Shallow Exact Matching” for
example, XParent technique performed better than
Edge technique over the “DBLP100” and
“XMark100” databases but not the “TREE100”
database. The inconsistency was also found in the
“RPE using * Operator” query, the “RPE using //
Operator” query and the “Joins on Values” query.

6 CONCLUSION

This paper introduced a new test-model called the
3D XML benchmark which addresses several
limitations found in the existing XML benchmarks
by extending their datasets and query-sets. Rather
than relying on synthetic datasets, the extended
benchmark uses a combination of real and code-
generated XML databases to encounter more XML
structures that are inherited from both XML sources
such as a clear variety in the depth and the breadth
of the XML databases and wider range of irregular
XML structures. In addition, the extended model

provides a more realistic environment for testing the
scalability of XML implementations by preserving
the XML schema of the databases’ versions used.
Unlike other XML scaling algorithms which, for
example, discard some elements’ classes or
regenerate a fresh database in order to reduce its
size, the 3D test-model uses a node-based scaling
algorithm to proportionally reduce the fanouts at all
tree levels.

The experimental results (discussed in this paper)
have shown that some XML techniques, which were
tested against the new benchmark’s dataset, have
performed inconsistently over different database’s
classes for some query-set members.

REFERENCES

Berglund, A., Boag, S., Chamberlin, D., Fernández, M.,
Kay, M., Robie, J., and Siméon, J. (2007) XML Path
Language (XPath) 2.0, [Online] Avail:
http://www.w3.org/TR/xpath20/ [30/08/2009].

Boag, S., Chamberlin, D., Fernández, M., Florescu, D.,
Robie, J., and Siméon, J. (2007) XQuery 1.0: An XML
Query Language [Online] Avail:
http://www.w3.org/TR/xquery/ [30/08/2009].

Böhme, T. and Rahm, E., (2003) ‘Multi-User Evalaution
of XML Data Management Systems with XMach~1’,
EEXTT’02, pp 148-159.

Carey, M., DeWitt, D. and Naughton, J. (1993), ‘The OO7
Benchmark’, ACM/SIGMOD Record, 22(2), pp 12-21.

Cohen, S. (2008) ‘Generating XML Structure Using
Examples and Constraints’, PVLDB’08, pp 490-501.

Florescu, D., and Kossmann, D. (1999) ‘A Performance
Evaluation of alternative Mapping Schemas for
Storing XML Data in a Relational Database’,
TR:3680, May 1999, INRIA, Rocquencourt, France.

Harder, T., Haustein, M., Mathis, C., and Wagner, M.
(2007) ‘Node Labelling Schemes for Dynamic XML
Documents Reconsidered’. Int’l Journal of DKE,
60(1), pp 126-149.

Jiang, H., Lu, H., Wang, W., and Yu, J. (2002) ‘XParent:
An Efficient RDBMS-Based XML Database System’,
ICDE’02, CA, USA, pp 1-2.

Li, Y., Bressan, S., Dobbie, G., Lacroix, Z., Lee, M.,
Nambiar, U. and Wadhwa, B. (2001) ‘XOO7:
Applying OO7 Benchmark to XML Query Processing
Tool’, ACM/CIKM., Atlanta, USA, pp 167-173.

Liefke, H., and Suciu, D. (2000) ‘XMill: an efficient
compressor for XML data’, ACM/SIGMOD’00, pp
153-164.

Lu, H., Yu, J., Wang, G., Zheng, S., Jiang, H., Yu, G. and
Zhou, A. (2005) ‘What Makes the Differences:
Benchmarking XML Database Implementations’,
ACM/IT., 5(1), NY, USA, pp 154-194.

Miklau, G. (2009) UW XMLData Repository [Online]
Avail: http://www.cs.washington.edu/research/
xmldatasets/ [15/06/2009].

Mlynkova, I. (2008) ‘XML Benchmarking’, IADIS’08, pp
59-66.

Nicola, M., Kogan, I.., and Schiefer, B. (2007) ‘An XML
Transaction Processing Benchmark’,
ACM/SIGMOD’07, pp 937-948.

PennProj. (1999) The Penn Treebank Project [Online]
Avail: http://www.cis.upenn.edu/~treebank/
[21/06/2009].

Runapongsa, K., Patel, M., Jagadish, H., Chen, Y., and Al-
Khalifa. S. (2006) ‘The Michigan Benchmark:
Towards XML Query Performance Diagnostics’, Int’l
Journal of IS, 31(2), pp 73-97.

Schmidt, A., Waas, F., Kersten, M., Carey, D., Manolescu,
I., and Busse. R. (2002) ‘XMark: A Benchmark for
XML Data Management’, VLDB’02, Hong Kong,
China, pp 1-12.

Schmidt, A., Waas, F., Kersten, M., Florescu, D., Carey,
M., Manolescu, J. and Busse, R. (2001), ‘Why and
How to Benchmark XML Databases’,
ACM/SIGMOD’01, CA, USA, pp 27-32.

Yao, B. Özeu, M., and Khandelwal, N., (2004) ‘XBench
Benchmark and Performance Testing of XML
DBMSs’, ICDE’04, pp 621-632.

Wu, Y., Lele, N., Aroskar, R., Chinnusamy, S., and
Brenes, S. (2009) ‘XQGen-An Algebra-based XPath
Query Generator for Micro-Benchmarking’,
ACM/CIKM’09, pp 2109-2110.

Fig 7: Experimental Results Representation

