
 

Synfire chains as a neural mechanism for auditory grouping

 

Technical Report CS-99-11

 

November 1999

 

Stuart N Wrigley

 

s.wrigley@dcs.shef.ac.uk

 

Supervisor: Dr Guy J Brown

 

g.brown@dcs.shef.ac.uk

 

Speech and Hearing Research Group,
Department of Computer Science,

University of Sheffield



 

SynÞre chains as a neural mechanism for auditory grouping

 

i

 

Contents

 

CHAPTER 1

 

Introduction

 

1

 

CHAPTER 2

 

Literature Survey

 

5

 

Auditory Scene Analysis

 

5

 

Solutions to the binding problem

 

6

 

Oscillatory solutions

 

8

 

Evidence for oscillatory-based feature binding

 

12

 

Other solutions

 

12

 

Summary and discussion

 

14

 

CHAPTER 3

 

Auditory Periphery

 

19

 

The auditory periphery

 

19

 

The External Ear

 

19

 

The Middle Ear

 

21

 

The Inner Ear

 

23

 

The Auditory Nerve

 

26

 

Summary

 

32

 

CHAPTER 4

 

Auditory Periphery Model

 

35

 

Introduction

 

35

 

Outer and middle ear resonances

 

35

 

Basilar membrane Þltering

 

36

 

Inner hair cell transduction

 

37

 

Auditory nerve spike generation

 

38

 

Summary

 

45



 

Contents

 

SynÞre chains as a neural mechanism for auditory grouping

 

ii

 

CHAPTER 5

 

Neuron Models

 

47

 

Neuron attributes

 

47

 

The equilibrium potential

 

47

 

The action potential

 

48

 

MacGregor point neuron model (ptnrn10)

 

49

 

Integrate and Þre neuron model

 

53

 

Summary

 

55

 

CHAPTER 6

 

SynÞre Chain Network

 

57

 

Synchronous transmission

 

57

 

SynÞre chain network

 

58

 

Network topology

 

60

 

Grouping by frequency proximity

 

61

 

Summary

 

63

 

CHAPTER 7

 

Conclusions

 

65

 

CHAPTER 8

 

Future Work

 

69

 

Auditory attention

 

69

 

Short term memory

 

71

 

Time plan

 

72

 

CHAPTER 9

 

References

 

73



 

SynÞre chains as a neural mechanism for auditory grouping

 

1

 

CHAPTER 1

 

Introduction

 

In typical situations, a mixture of sounds reach the ears. For example, a party with
multiple concurrent conversations in the listenerÕs vicinity, a musical recording or
simply walking along a busy road. Despite this, the human listener can attend to a
particular voice or instrument, implying they can separate the complex mixture.

Bregman (1990) has convincingly argued that the acoustic signal is subject to a
similar form of scene analysis as vision. Such 

 

auditory scene analysis

 

 takes place in
two stages. Firstly, the signal is decomposed into a number of discrete sensory

 

elements

 

. These are then recombined into 

 

streams

 

 on the basis of the likelihood of
them having arisen from the same physical source.

The perceptual grouping of sensory elements into streams can occur by two
methods: 

 

primitive grouping

 

 and 

 

schema-driven grouping

 

. Primitive grouping is
data-driven whereas schema-driven grouping employs knowledge acquired through
experience of varied acoustic environments. Bregman explains primitive grouping
in terms of Gestalt principles of perceptual organisation (e.g. Koffka, 1936). For
example, the relationship between frequency proximity and temporal proximity has
been studied extensively using the two tone streaming phenomenon (see Bregman,
1990 for a review). The closer in frequency two tones are, the more likely it is that
they are grouped into the same stream. Similarly, the proximity of two tones in 

 

time

 

,
determines likelihood of streaming. As presentation rate increases, tones of similar
frequency group together.

Additional Gestalt grouping factors include 

 

good continuation

 

: sounds which tend
to change smoothly in frequency intensity and spatial location are likely to form a
single stream; and 

 

common fate

 

 whereby elements which change in the same way at
the same time tend to group together. Common fate properties include common
onset/offset, common amplitude modulation (AM) and common frequency
modulation (FM).
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Attempts to create computer models that mimic auditory scene analysis has led to a
new Þeld of study known as computational auditory scene analysis (CASA). There
has been work varying from the simple voice separation techniques of Denbigh and
Zhao (1992) to the broader CASA research of Cooke (1993), Brown (1992) and
Ellis (1996). However, such techniques are functional in approach: some form of
time-frequency analysis generally followed by a high-level inference engine to
group elements into perceptual streams. 

The difÞculty involved in producing a computational solution is related to the
mismatch between theories of perception, such as BregmanÕs, and the
physiological processing substrate. Consider the two tone streaming stimulus
(Þgure 1). Theories of perception are implied from experimental observations.
Applying such mechanisms to Þgure 1, one can conclude that as 

 

d

 

f

 

 decreases, it is
more likely that the tones will be grouped together. Similarly, as 

 

TRT

 

 decreases,
sequential tones will also be more likely to group. 

However, the neurophysiological mechanisms underlying auditory stream
formation are poorly understood and it is not known how groups of features are
coded and communicated within the auditory system. What does it mean to talk of
Ôfrequency proximityÕ or Ôtemporal proximityÕ? The human brain relies solely on
time varying electrical impulses with no ÔsymbolicÕ input as suggested by
BregmanÕs theory.

The primary objective of this study is to create a physiologically based account of
auditory scene analysis. If such a model can be shown to produce data with a high
correlation to psychoacoustic experiments, it would provide evidence that the
model is indeed processing sound in a similar way to the human auditory system.
In essence, the goal of this work is to generate insights into the nature of the
auditory system and to improve the effectiveness of current CASA technology.

A long term objective of this Þeld of study is to improve the performance of
automatic speech recognition (ASR) systems. Most systems rely on the incoming
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Figure 1. Portion 
of a two tone 
streaming stimulus 
consisting of high-
low-high pure 
tones. 
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speech having been pre-segregated or consisting of only one speaker. In a realistic
environment, this is not possible and so the process requires automation. A
successful computational auditory scene analysis implementation would produce a
considerable improvement in current ASR technology. 

Due to the scale of the problem, the work presented here will concentrate on
modelling stream segregation by frequency proximity. The next section introduces
some of the key terms associated with auditory scene analysis and will also discuss
a number of contrasting approaches to producing a computational solution. A key
stage of all computational models is the representation of the auditory periphery.
Chapters 3 and 4 describe the physiology of the auditory periphery and the
associated computational models. Chapter 5 describes two neuron models, one of
which is used in the snifÞer chain network described in chapter 6. Chapter 7
concludes the report.
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CHAPTER 2

 

Literature Survey

 

BregmanÕs (1990) book 

 

Auditory Scene Analysis

 

 drew together a wealth of
perceptual information on how the auditory system is thought to separate multiple
sounds into perceptual objects. During the past three decades, physiologists and
computer modellers have sought to ÔsolveÕ the ASA problem using such information.
Unfortunately, this task proved to be extremely difÞcult and the computer models
produced have only had limited success. This chapter introduces the key elements of
ASA and provides an overview of some of the proposed solutions.

 

2.1. Auditory Scene Analysis

 

An understanding of the key principles involved in the processing of sound is
required before the construction of a 

 

computational

 

 model of hearing. At the heart
of BregmanÕs (1990) account of Auditory Scene Analysis is the formation of

 

streams

 

: a perceptual unit that represents a single acoustic source (Þgure 2). The
word 

 

sound

 

 is insufÞcient as it is essential that the perceptual unit be able to
incorporate more than one acoustic event. For example, the perception of a piano
being played is a single experiential event which is made up of numerous individual
sounds - notes. In this example, there is only one 

 

source

 

: the piano. A source is the
physical generator of a sound. It is usual for a sequence of sounds originating from
the same source to be perceived as a stream. However, it is also possible for a
number of sources to contribute to one stream - for example in the perception of
music. As mentioned in the introduction, the initial stage of auditory scene analysis

Figure 2. The 
relationship between 
a sound source and its 
mental perception - 
the stream.

source stream
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is the decomposition of a sound into a collection of sensory elements -

 

segmentation

 

. The second stage of processing is stream formation and segregation.
The mechanism by which these sensory elements are combined is termed grouping.

 

Primitive

 

 grouping (bottom-up processing) encompasses the data-driven

 

simultaneous

 

 and 

 

sequential

 

 perceptual organisations of sound. Simultaneous
organisations correspond to grouping by sound source onset and offset.

 

Harmonicity

 

 is also important in explaining how related sounds belong together,
for example vocal tract sounds. In contrast, sequential organisations make use of
continuity and proximity constraints across time.

Prior knowledge is also used to group sounds into streams. In the case of the
cocktail party problem (Cherry, 1953) the listener has the task of attending to one
conversation in the presence of many other voices and sounds. In this situation,
grouping exploits 

 

semantics

 

 and 

 

pragmatics

 

. The former allows the listener to
analyse the sounds for meaning and direct her attention to the most interesting
conversation. The practical knowledge of how language is used also enables a
degree of prediction to aid the maintenance of the conversation stream. This use of
experience and knowledge in the formation of streams is referred to as 

 

schema-
driven

 

 grouping.

Both primitive and schema-driven grouping are concerned with combining
individual sound elements into a perceptual stream. The issue of 

 

how

 

 grouping is
implemented at the physiological level - the 

 

binding problem

 

 - has been the focus
of much research by both physiologists and computer modellers. 

 

2.2. Solutions to the binding problem

 

Even simple stimuli evoke highly fragmented and widely distributed responses in
the auditory nervous system. Thus a particular acoustic stimulus will generate
responses in a large number of spatially segregated neurons, each of which only
encodes a small part of the acoustic object. 

In the early 1970s a revolution in how the neuron was considered took place. The
neuron had previously been thought of as a noisy indication of more basic and
reliable processes involved in mental operations - the much higher reliability of the
nervous system as whole was explained by the supposed redundancy in neural
circuits and averaging processes within the system. The advent of improved signal
detection technology allowing physiologists to analyse the activity of single
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neurons dispelled this view. Neurons were no longer noisy indicators but the prime
substrate of mental processes (Barlow, 1972).

With the evidence that the activity of a single neuron can play an important role in
perception, new theories of brain function at the neuron level emerged. One
popular proposal was that neural activity is organised hierarchically with
progressively higher levels of processing being performed by increasing fewer
active neurons (Barlow, 1972). At the lowest level, neurons deal with the ÔrawÕ
sensory data. This information then converges on neurons with a higher level of
perceptual 

 

abstraction

 

. This continues until the activity of one neuron simply states
the presence of a particular feature or pattern. Using BarlowÕs example, the activity
of a low-level neuron can be thought of as the occurrence of a letter, that of a high-
level neuron being the occurrence of a word. 

Although conceived in the visual domain, such a theory can be applied to acoustic
perception - with the same deÞciencies. Singer (1993) discusses a selection of the
limitations. First, cells at higher processing levels are often less selective than those
at lower levels. Additionally, the upper levels of BarlowÕs hierarchy correspond to
particular features. An extreme example is that of the hypothetical 

 

grandmother
cell

 

 (Barlow, 1972; see also Sherrington, 1941) which responds well to all views of
grandmotherÕs face. How would this cell indicate that it shares features with all
other faces? Perceptions are not isolated; various aspects overlap giving a richness
and relation to other perceptions which isolated events cannot convey. Apart from
cells that respond preferentially to faces, no other feature-speciÞc cells have been
found. Such hierarchies are unlikely to occur simply due to scale - it is not thought
that there are enough neurons in the brain if all objects and all their possible views
are to be each represented by one top-level neuron. Even if some more economical
form of representation were to exist, no site has been found which is large enough
to accommodate the ultimate site of convergence (see also Damasio, 1989). To
exacerbate the problem, a large ÔreservoirÕ of uncommitted cells would be required
for all the unseen objects which would have to maintain latent input connections
from all feature-selective neurons at lower levels as well as consolidate the new
perception instantaneously. 

The alternative mechanism of grouping is based on the concept of an 

 

assembly

 

: a
large number of spatially distributed neurons. The major advantage of the scheme
over a hierarchical approach is the beneÞt of neuron ÔoverloadingÕ: an individual
cell can participate in the representation of multiple perceptual objects. Thus
assembly coding is relational because the signiÞcance of an individual neuronÕs
response depends entirely on its context. 
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With a distributed representation it is necessary to be able to distinguish a neuron
as belonging to one assembly or another. Therefore, the responses of related
neurons must be labelled as such. This may be achieved by reciprocal connections
between assembly members. Additionally, if the connections are dynamic, then the
system can adapt its assembly structures and learn new objects.

2.2.1. Oscillatory solutions

It was proposed by von der Malsburg (1981; von der Malsburg and Schneider
1986; see also Milner, 1974) that the means of labelling different assemblies is by
temporal synchronisation of the responses of assembly members. Their system
used neural oscillations for expressing segregation. Thus, each assembly is
identiÞed as a group of synchronised neurons. The advantage of synchronisation is
that the extra dimension of phase allows many simultaneous assemblies, each
being desynchronised with the others. In this manner, groups of features form
streams if their oscillators are synchronised and the oscillations of additional
streams desynchronise. Using this technique von der Malsburg and Schneider
constructed a network of fully connected oscillators (E-cells), each receiving input
from one frequency band of the auditory periphery and inhibition from an H-cell.
In this framework, the global inhibitor simulates the thalamus which is known to
have mutual connections with the cortex. Connections between E-cells can be
modiÞed on a fast timescale according to their degree of synchronisation. E-cells
which receive simultaneous inputs synchronise through strengthened excitatory
connections and desynchronise with other cells due to inhibition. Hence, this
model simulates stream segregation based upon onset synchrony. 

Despite this success it was still of limited use. Their feature representations had no
spectral relationship whereas stream segregation clearly depends relationships such
as proximity in time and frequency - Gestalt grouping principles. A simple example
of this relationship is two tone streaming (Bregman and Campbell, 1971; van
Noorden, 1975). This demonstrates the trade-off between tone presentation rate
and frequency separation. As presentation rate increases, the frequency difference
between the tones required to generate two streams decreases. 

The stream segregation occurring in Þgure 3 cannot be simulated by von der
Malsburg and SchneiderÕs model. 

Singer (1993) suggested that coherent oscillations in the visual cortex resulted
from lateral connections within the cortex. Phillips and Singer (1997) re-iterated
their belief in synchronisation as a neuro-physiological mechanism of grouping



Literature Survey

SynÞre chains as a neural mechanism for auditory grouping 9

and also included the inßuence of contextual interaction. Recent work by a number
of researchers (Lui et al., 1994; Wang, 1996; Brown and Cooke, 1997; Brown and
Wang, 1999; Wang and Brown, 1999) has extended the oscillator-based stream
segregation model with some success. 

The approach of Wang and colleagues uses a two-dimensional network of
relaxation oscillators with lateral excitation connections forming synchrony and a
global inhibitor aiding desynchronisation. The global inhibitor receives excitation
from each oscillator, and inhibits in turn each oscillator of the network. Once an
group of oscillators ÔjumpÕ up to the active phase, it triggers the global inhibitor,
which then inhibits the entire network, thus suppressing the activity of other groups
of oscillators. As the ÔfrequencyÕ of the global inhibitor activity in relation to that
of the network oscillators is dictated by the total number of groups in the network,
this activity also forms a useful cue in determining how many groups exist and
which oscillators belong to them. 

time
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Figure 3. Spectrogram of 
six alternating tones. 
When stream segregation 
occurs, the high tone 
sequence and the low tone 
sequence form separate 
streams (indicated by the 
feint lines).

Figure 4. Temporal 
activities of the oscillator 
grid. The upper three 
traces show the combined 
temporal activities of the 
oscillator blocks 
representing the three 
streams. The bottom trace 
shows the temporal 
activity of the global 
inhibitor. Adapted from 
Wang (1996) Figure 5G.
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Using this network, grouping is performed on a time-frequency pattern input: the
network works on a pseudo-spectrogram with a time resolution of 40ms. It is
hypothesised that the time axis is produced by a system of delay lines. Oscillators
are connected by both permanent and dynamic weights. The permanent weighting
between oscillators falls off exponentially with increasing distance. The dynamic
weights change according to the degree of synchronisation in the network. When
presented with binary input, the network quickly achieves a stable state in which
groups of oscillators representing streams Ôpop outÕ one after the other. 

Despite the dynamics being closely based on biological neurons and the networkÕs
ability to simulate streaming effects of repeated tones, WangÕs oscillator model
incorporates a number of unrealistic details. Most importantly is the use of a time-
frequency grid on which to perform grouping. There is no physiological evidence
for such extended delay lines; in fact they may be theoretically impossible. If
WangÕs topology is taken literally, the precise timing of responses required for
grouping is unlikely to be preserved due to variability in synaptic processes
(Abeles, 1991). However, the topology can also be considered to be an abstraction
whereby each oscillator and each delay line represents a subnetwork such as a
synÞre chain (see chapter 6). In this case, loss of spike timing information would
not occur. Additionally, at each time step, the continuous-time input is ÔfrozenÕ
while the network oscillators achieve a stable state. This second time dimension
(the oscillations in the segmentation process) exacerbates the time representation
problem. Secondly, the input is sampled at 40ms intervals and at each time, the
active oscillators are phase-randomised. In essence, the network produces a
snapshot of the streams present at 40ms intervals. How such snapshots are
integrated to give a time-varying estimate of stream content is not elaborated.
Finally, WangÕs model originates from his work in the Þeld of visual object
segregation. The usefulness of this analogue is dubious. In the visual domain, the
temporal dimension can be regarded as separate from the spatial dimension.
However, it is unlikely that such separation is possible in the auditory domain.

Although dealing with vowel recognition, the recognition aspect of Lui et alÕs
(1994) 3 layer model can be considered to be a form of schema-driven grouping.
The Þrst level of the system encodes peaks in the linear prediction coefÞcients
(LPC) input: a peak is represented by a group of active oscillators. The
intermediate layer encodes the ÔtemplateÕ peak structure for each of the selection of
vowels to be recognised in a manner similar to that of Wang et al. (1990). This
form of associative memory consists of mutually connected oscillators with the
coupling strengths determining the exact pattern to be represented. The use of
reciprocal connections between the Þrst 2 layers results in synchronised
oscillations. The Þnal layer then analyses this activity to produce a vowel category.
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Desynchronisation is caused by inhibitory connections between next nearest
neighbours in the intermediate layer.

The grouping mechanisms employed by Wang and Lui et al. have used lateral
connections over a limited distance. This is useful for proximity grouping in the
visual domain. It is less important in the auditory domain; in fact it is essential that
features widely distributed across frequency can be grouped. In contrast to this
approach, Brown and Cooke (1995) use global connectivity such as that used by
von der Malsburg and Schneider. However, it does not produce oscillations by
excitatory and inhibitory mechanisms as the above models do. The neural network
model uses chaotic oscillators allowing a large number of groups to be represented.
Unfortunately, the close match to human performance to two-tone streaming is
overshadowed by the expensive cross-correlation process required to evaluate
network synchronisation. In contrast, the model of Wang and colleagues requires
only the application of a simple threshold.

In contrast to the above solutions, Baird (1996) implements a theory of attention
and grouping based on adaptive synchronisation of 30-80 Hz oscillations.
Rhythmic attention in audition (Jones, 1976) is modelled by coupled subsets of
oscillatory associative memories analysing rhythmic frequencies of between 0.5
Hz and 10 Hz. Their activity, which is in the range of 30-80 Hz, is then integrated
into the primary stream forming model. This model is a fast learning rule which
reduces the coupling between frequency channels that do not exhibit the same
activity at the same time. This reduction in coupling therefore reduces the
synchrony between non-related channels and hence segregating channels which do
not exhibit Gestalt common fate. Coupling gradually recovers between onsets, the
rate of which can be adjusted to yield a qualitative match to van NoordenÕs (1975)
two tone streaming data. Close frequency channels tend to excite each otherÕs
channel Þlters and so after stimulation of a particular channel subsequent stimuli of
a non-rhythmic nature is captured due to the coupling change. However, with
rhythmic stimuli, the expectancy system becomes an additional streaming factor.
The oscillatory associative memories form a background (default) and a
foreground stream. Suggested oscillatory frequencies are 35 Hz and 40 Hz
respectively. Input conforming to the expected rhythm is synchronised with the
attentional oscillators. However, the occurrence of a rhythmic mismatch causes the
deviant activity to be boosted above the background frequency and is forced to
synchronise with the attention stream thus modelling stimulus-driven attentional
pop out.
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2.2.2. Evidence for oscillatory-based feature binding

Oscillatory activity in the brain was Þrst observed 70 years ago from recordings
made from the scalp. However, neural information was thought to be deÞned
purely by amplitude and provenance. Hence, timing received little attention and
was 'averaged out' of many studies. Further work using the electroencephalogram
(EEG) has revealed prominent activity, especially in the b and g frequency range.
These so-called 40 Hz oscillations proved to be one of the most widely recognised
but least understood electrophysiological activities of the cerebral cortex. Barth
and MacDonald (1996) reported that stimulation of the acoustic thalamus
modulated cortex-based g oscillations and suggest coupling of sensory processing
between these cortical zones. A study by Joliot et al. (1994) conÞrmed that 40 Hz
oscillatory activity was involved in human primary sensory processing and also
suggested that it forms part of a solution to the binding problem. In their tests, one
or two acoustic clicks were presented at varying times (3-30 ms interstimulus
intervals) while a magnetoencephalograph (MEG) was used to study the auditory
area of the brain. Analysis showed that at low interstimulus intervals (less than 12-
15 ms) only one 40 Hz response was recorded and subjects reported only
perceiving a single click. At longer intervals, each stimulus evoked its own 40 Hz
response and listeners perceived two separate clicks. The wide range of animals in
which 40 Hz activity has been observed suggests that it is fundamental to neural
processing. 

2.2.3. Other solutions

In parallel to the development of oscillatory solutions, work has been conducted
using a much more functional approach. Beauvois and Meddis (1991; 1996)
contend that perceptual principles could prove to be the emergent properties of a
simple low-level system. Their system is aimed speciÞcally at the two-tone
streaming problem and is intended to provide an explanation for two general
principles: the perceptual accentuation of the attended stream and the apparently
spontaneous shifts in attention between streams. These were investigated using a
three-channel model with two centre frequencies at the tone frequencies and the
other at their geometric mean. Noise is added to the output of the hair cell model
for each channel in proportion to its activity. This is then used as the input to a
leaky integrator. Finally, the dominant channel is selected and the activities of the
other two channels are attenuated by 50%. The decision between streaming and
temporal coherence is made on the basis of the ratio of activity in the tone
channels: equal activity signiÞes temporal coherence, otherwise streaming. 
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Beauvois and Meddis showed that temporal coherence occurs when tone repetition
times (TRT) are low due to the inability of the system to generate a random walk:
long periods of silence prevent the build up of activity-related noise input. In this
case the tone channels have equal activity. However, when the TRT is high, the
random noise bias has little time to decay and so random walks are more likely and
so, in turn, is the occurrence of streaming. Temporal coherence will also occur
when the tone frequency difference is low due to the overlap of channel activation
causing each tone to stimulate both its own Þlter and that of the other tone. In this
case, the activities are equal. When the frequency difference is large, the
combination of attenuation and random walk makes streaming more likely. 

Despite the relative simplicity of the model, it is shown to behave consistently with
a range of phenomena including grouping by frequency and temporal proximity as
well as demonstrating the build up of streaming over time (Anstis and Saida,
1985). However, the model cannot simulate cross-channel grouping phenomena.

The model of Beauvois and Meddis (1991) was used as a starting point for the
multichannel streaming model of McCabe and Denham (1997). Instead of using
attenuation of the non-dominant channel to produce streaming, McCabe and
Denham employ inhibitory feedback signals which produce inhibition related to
frequency proximity. The model also proposes that streaming occurs as a result of
spectral associations and so the input to the system is represented by a multi-modal
Gaussian rather than temporal Þne structure as in Beauvois and MeddisÕ. The
model consists of two interacting arrays of neurons: a foreground array and a
background array. These terms are simply used for convenience as the system is
symmetrically connected. Each array receives the excitatory tonotopic gaussian
input pattern. In addition to this, the foreground array receives inhibitory input
reßecting the activity of the background array and the inverse of the foreground
activity. The background array receives similar inhibition. The inhibitory input to
each array serves to suppress responses to those frequencies that the second array is
responding to and also to suppress weak responses from itself. The streaming /
temporal coherence decision is based upon the correlation between the output of
the foreground array and that input. A high correlation to an input tone will mean
that the tone is also present in the foreground array response. If successive tones
elicit similar responses then the signal is said to be coherent; if one tone elicits a
much larger response than another then streaming has occurred.

The interplay of frequency dependent inhibition and the time course of previous
array activity successfully produces the two tone streaming effect and produced a
good match to experimental data. Although included in the model architecture, the
authors acknowledge that the role of attention was not addressed in the model
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processing and remark that the inßuence of schema-driven grouping should not be
ignored. In line with the work of Wang and Brown, McCabe and Denham Þnally
suggest that the time constants required to simulate human perception were of a
magnitude more consistent with cortical-based processing rather than peripheral-
based as argued by Beauvois and Meddis (1991).

An alternative approach to explain the two tone streaming phenomena is
demonstrated by Todd (1996). His physiologically-motivated model computes an
amplitude modulation (AM) spectrum at each tonotopic frequency. From these, a
cross-correlation matrix is calculated in which neighbourhoods of high correlation
indicate temporal coherence. When streaming occurs distinct areas of low
correlation are present. Frequency proximity grouping is simulated for stimuli
which are sufÞciently close in frequency have similar temporal characteristics. The
mechanism can also account for temporal proximity grouping due to the interaction
of AM harmonics. At low repetition rates the AM fundamental(s) may not be
represented. In this case the cross-correlation process relies on the fundamentalÕs
harmonics, some of which may coincide, thus increasing the cross-correlation
measure. At higher repetition rates, the repetition frequency and its harmonics are
well separated which produces a lower cross-correlation measure.

2.3. Summary and discussion

It should be emphasised that while oscillatory activity and synchronisation often
occur together, they do not depend on one another. Individual neurons can engage
in oscillatory activity whilst not synchronised with other cells and similarly, cells
can exhibit synchronisation without the presence of oscillations. Consider
oscillatory activity favouring synchrony. The occurrence of an activity burst during
oscillation predicts, with some degree of conÞdence, the occurrence of a
subsequent activity burst. It is this predictability which is needed to synchronise
spatially distant cell clusters with zero phase lag, despite the considerable delays in
the coupling connections. Hence, oscillations may not carry stimulus information
but be instrumental in the establishment of synchrony over large distances.
Alternatively, oscillatory activity may simply be an emergent property of
synchrony. An assembly of interconnected cells Þring in synchrony will produce a
burst of activity followed by a pause (due to cell refractoriness) followed by
another burst. This burst-pause process is likely to be repeated a number of times,
thus generating oscillations. Additionally, Abeles et al. (1994) have shown that
synchronous transmission in synÞre chains (Abeles, 1991) can generate oscillatory
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activity due to the interaction of excitatory and inhibitory feedback and not simply
due to periodic cell activation (see later).

The existence of oscillations has been claimed to arise purely as a by-product of the
experimental procedures and not from feature binding (Horikawa et al., 1994).
Many studies use anaesthetics which are known to stimulate rhythmic neural
activity. However, it is unlikely that oscillations do not occur as a result of binding
as such oscillations have also been recorded from awake animals (Singer, 1993).

The presence or absence of oscillatory activity neither proves nor disproves the
presence of synchrony between spatially distant cells. Hence study of oscillations
alone cannot elucidate the temporal code. Synchrony and its dependence on the
stimulus must be used which can only be accurately assessed from simultaneous
recording of multiple cells. Oscillations are a useful indicator of organised activity
and can guide the search for synchronisation.

The simplest temporal code - synchronous Þring - plays an important role in all of
the models described in section 2.2.1. In an alternative temporal code, HopÞeld
(1995) proposes that the relative timing of spikes between cortical neurons can
convey important information about sensory cues. The model neurons exhibit an
oscillatory subthreshold variation of membrane potential. In the absence of input,
no action potentials occur due to the subthreshold nature of the oscillation. When
the combined input current and membrane potential exceed threshold, an action
potential is elicited. The relative timing of the action potential relative to the
oscillatory maximum is determined by the input current strength. 

HopÞeld suggests that if the logarithm of a sensory cueÕs strength in encoded by
some relative time advance in Þring, then this information can be transferred
quickly, in a scale-invariant form. There is currently very little data to support this
temporal code and hence its applicability to the binding problem is yet to be seen.

The majority of models discussed here simulate a limited set of stimulus
conÞgurations - groups are formed on the basis of frequency and time proximity. A
danger of this is that the models become overly adapted to solving one particular
problem and cannot be extended to incorporate new features. Although it is
currently highly unlikely that a single solution can explain all grouping cues,
consideration must be paid to the extendability of a model. Ideally, models should
simulate grouping by common amplitude modulation, common onset and offset,
harmonicity, spatial location and timbre in addition to temporal and frequency
proximity. Indeed, Bregman (1997) has commented,
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ÒWe have so far concerned ourselves with models that attempt to solve the ASA
problem directly. There is, however, another approach: trying to model the data that
comes out of the perception laboratory. This is a dangerous mission and again
requires a wide knowledge of ASA phenomenon. Without it, a researcher may
invest a lot of effort to develop a model that offers a parsimonious account of a
very limited subset of laboratory phenomenon. Consequently, while the model may
be very parsimonious in accounting for a few perceptual effects, it may turn out to
be so speciÞc to that small set of phenomena that it is helpless when a wider range
of laboratory effects has to be explained. Again, an early stage in the development
of a model of this type should be to ask whether it is too narrowly focused.Ó

A further inadequacy of current models is their representation of time. The models
of von der Malsburg and Schneider (1986) and Liu et al. (1994) both use spectral
inputs but do not allow responses at different times to be compared. As noted
above, WangÕs (1996) model fails to represent time in a physiologically plausible
manner. In fact, his use of a pseudo-spectrogram with the time axis represented by
delay lines may even be theoretically impossible. On a related issue, the manner in
which parts of the pseudo-spectrogram are ÔconnectedÕ is physiologically
implausible. In WangÕs model, input to an oscillator from another oscillator, no
matter how distant in frequency or time, occurs instantaneously. However, time
delays are inevitable in neuronal signal transmission. In an attempt to remedy this,
Campbell and Wang (1996) included time delays in the inter-oscillator
connections. Although this impaired the ability of the network to produce perfect
synchronicities, it was still able to form synchronous groups.

Furthermore, WangÕs model rapidly forms streams within n cycles for a stimulus
containing n streams. Although such efÞcient synchronisation may be important for
engineering applications, this is contrary to psychophysical evidence that stream
segregation can take up to many seconds to appear (Anstis and Saida 1985). Other
models (Brown and Cooke, 1997; Beauvois and Meddis, 1991, 1996; McCabe and
Denham, 1997) successfully simulate the build up of streaming over time. 

The segregation decision at a particular time instant should be based not only on
the auditory information at that time but also the segregation decisions made in the
recent past. To achieve this, a form of short-term memory is required. Horn and
Usher (1992) present a model in which potentiation is used to sustain oscillations
after the input is turned off. In this framework, the oscillatorÕs threshold rises
normally due to accommodation. However, when the stimulus ceases, the cell
threshold decreases and falls below its resting level (potentiation). This causes
oscillations to persist without external cell activation. Horn and Usher suggest that
their model is also simulates the experimentally observed limited capacity of short
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term memory (7±2). Lisman and Idiart (1995) also show the 7±2 capacity of short
term memory using nested oscillations similar to those recorded in the brain. Each
memory is stored in a 40 Hz subcycle of a low frequency (5 - 12 Hz) oscillation.

Almost all input to the cortex passes through the thalamus. Crick (1984; Crick and
Koch, 1990) has suggested that part of the thalamus (the thalamic reticular
complex) may be involved in selective attention. The attentional searchlight is
produced by rapid bursts of Þring. When this activity synchronises with a group of
neurons, that group becomes the attentional foreground and the remainder become
the background. Although many researchers acknowledge the importance of an
attentional searchlight, few have actually implemented one. For example, McCabe
and Denham (1997) incorporate an attentive input into their model but concede that
it is Ônot generally usedÕ and simply offers a way in which higher cognitive
processes can inßuence the data-driven streaming process. Similarly, the
attentional searchlight formed a component of the Brown and Cooke (1997) model
but was not implemented in the computational simulation. 

In summary, there are three areas which need to be addressed before satisfactory
models of feature binding can be constructed. Firstly, and possibly most
importantly, is the issue of time representation. A physiologically based
representation is needed to allow comparisons of auditory activity at different
times. Related to this is the role of short term memory. Segregation should be based
on a contextual decision rather than being independently made thus allowing, for
example, binding by temporal proximity. Finally, the role of attention and schema
driven grouping has been the subject of little work by modellers. 
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CHAPTER 3 Auditory Periphery

Before a computational model of acoustic feature binding such as those discussed in
the previous chapter can be produced, a detailed understanding of the physiology of
the auditory periphery is essential. For example, it has been argued that when we
listen to a complex tone, it is easier to Ôhear outÕ the fundamental and lower partials
than it is to hear out higher partials (Plomp, 1964). This is explained by the fact that
harmonics are linearly spaced in frequency whereas the mapping of frequency onto
the basilar membrane is logarithmic. Hence, lower harmonics are spaced further
apart and so have a higher perceptual ÔresolutionÕ. In terms of auditory grouping,
this phenomenon is seen in the relative ease by which a preceding tone can capture
lower harmonics of a complex in comparison to higher harmonics.

3.1. The auditory periphery

The auditory periphery, which extends as far as the auditory nerve, can be divided
into three compartments: the external, middle, and inner ear (figure 5). Brief
descriptions of these structures follow. However, more detailed treatment can be
found in Pickles (1988).

3.1.1. The External Ear 
The external ear comprises the pinna and the external auditory meatus (duct or canal,
some 2.7cm long). Sound waves are funnelled by the pinna into the meatus to
impinge on the elastic tympanic membrane that separates the external and middle ear
compartments. The tympanic membrane is vibratile and held under tension. The
effect of the outer ear on the incoming sound has been analysed from two
approaches. One is the property of pressure gain and the other is sound localisation.
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3.1.1.1. Pressure gain
The external auditory meatus acts as a resonator (similar to an organ pipe) with a
resonance of approximately 2 to 7kHz. The resonant frequency of an oscillating
system is that frequency at which a minimum energy input is required to maintain
the oscillation, i.e. the system is maximally sensitive at that frequency. This
enhancement property of the external auditory meatus serves to ensure reliable
transmission of the major sound frequency components of normal speech.

The convolutions and cavities of the pinna, concha and meatus combine to increase
the sound pressure of some frequencies and decrease the sound pressure of other
frequencies at the tympanic membrane. Figure 6 shows the average pressure gain
(in decibels) in man provided by the outer ear over a range of frequencies. The
functions in figure 6 are called transfer functions. 

Outer Middle Inner

Figure 5. Anatomy of 
the ear showing the 
three compartments. 
From Pickles (1988).
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3.1.2. The Middle Ear 
The middle ear space is a gas pocket, closed to the outside world except for the
Eustachian tube which opens into the pharynx behind and to one side of the tongue.
Normally this tube is closed, which prevents one from being ÔdeafenedÕ by the
sound of oneÕs own breathing and voice. This tube opens intermittently (for
example, during yawning) to allow pressure equilibration between the external and
middle ear environments. 

Mechanical impedance can be defined as the total resistance of an object or
substance to movement. The middle ear acts as an impedance matching, or energy-
coupling, device. Its purpose is to transfer, without significant loss, sound vibrations
in the air (tympanic membrane) to vibrations in the much denser, liquid medium of
the inner ear. This is accomplished via a chain of three ossicles (bones) which are
interposed between the tympanic membrane and the membrane of the oval window:
namely the malleus (hammer), incus (anvil) and stapes (stirrup). 

The first two ossicles are joined relatively rigidly so that when the tympanic
membrane is deflected, the force is transferred to the stapes. The stapes is attached
to the oval window which is a flexible membrane in the wall of the cochlea.

Figure 6. Average 
pressure gain of the ear 
in man. Pressure gain at
the eardrum with 
reference to free Þeld is
plotted as a function of 
frequency. Zero degrees
is straight ahead and 
positive angles are 
ipsilateral to the ear. 
From Pickles (1988).
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This ossicular chain amplifies the sound pressure it conveys by two means: 
1. By a mechanical lever arm action;   
2. By pressure amplification: the force at the tympanic membrane is transferred to
the much smaller oval window.

The total pressure gain in the middle ear is approximately 22. This ensures efficient
transfer of sound energy from the air to the much denser (and therefore more
resistant) liquid medium in the inner ear.

The three middle ear ossicles form a vibrating system, having elastic and inertial
components. Consequently, they have (as a vibrating system), a resonant or natural
frequency. For the ossicles this frequency range is about 500 to 2,000 Hz. Thus the
combined resonant frequencies of the external ear (2,000 - 5,000) and the middle ear
(500 - 2,000), largely explain the high sensitivity of the average ear between 500 to
5,000 Hz. It should be noted that there are two small muscles in the inner ear (the
tensor tympani and the stapedius) that are reflexly activated (contracted) by very
loud sounds (greater than 80dB above threshold), which function to reduce the
amplification generated via this system and prevent the inner ear structures from
being over loaded.

Figure 7. The 
ossicles which are 
interposed between 
the tympanic 
membrane and the 
membrane of the 
oval window. From 
WWW (1999).
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3.1.3. The Inner Ear 
The inner ear, or cochlea, is a coiled passage in the temporal bone of the head (it is
shown uncoiled in figure 8). Structurally the cochlea is subdivided into three
components or ducts (the Scala Vestibuli, the Scala Media, and the Scala Tympani)
separated by two membranes (ReisnerÕs membrane and the basilar membrane
respectively). The Scala Vestibuli and Scala Tympani both contain perilymph
which is similar in composition to extracellular fluid; while the Scala Media
contains endolymph which is similar to intracellular fluid.

The cochlea contains the structures which translate sound vibrations into electrical
neural signals. This mechanism is found in the organ of Corti which is located on
top of the basilar membrane within the Scala Media. At the end of the cochlea,
closest to the middle ear cavity, the basilar membrane is relatively stiff and narrow.
The membrane becomes more elastic and wider as it extends throughout the cochlea
towards the apex.

When pressure waves push on the tympanic membrane, the chain of ossicles, in
turn, push the stapes against the oval window membrane. Next, the pressure on the
oval window produces a wave of pressure in the liquid filled inner scala vestibuli.
Most of this pressure wave is transmitted to the elastic basilar membrane. Since the
fluids of the inner ear are incompressible, the pressure variations set up at the oval
window will be further transmitted to the round window membrane which acts as a
pressure release valve.

Figure 8. The 
unwound cochlea. 
From Pickles 
(1988).
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The stiff portion of the membrane closest to the middle ear cavity (base) vibrates
immediately in response to pressure changes transmitted to the oval window. The
vibrations from the base then travel along the basilar membrane toward its apex (the
wide end) - a travelling wave is formed. However, the position of maximal
displacement of the travelling wave varies with sound frequency. The properties of
the membrane nearest the oval window (base) are such that it resonates optimally
(under goes the largest deformation) with high frequency tones; the more distant
(wider) regions of the membrane (near the apex) vibrate maximally in response to
low frequency sounds. Thus, the frequencies of incoming sound waves are ÔsortedÕ
along the basilar membrane: each frequency has its characteristic place (figure 9).
Note, however that very low frequencies (less than 200Hz) are compressed on to a
relatively limited section at the apical end of the membrane. 

Figure 9. Frequency 
place coding on the 
Basilar Membrane. 

Figure 10. Cross-
section through a 
cochlear tube 
showing the Basilar 
Membrane (left) and 
Organ of Corti 
(right).
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The organ of Corti, which contains the ciliated receptor cells, extends from the base
to the apex of the cochlea. The base of each hair cell is attached to the flexible basilar
membrane, while its cilia are firmly attached at the ends to the tectorial membrane
(a structure which forms a roof over the basilar membrane). The groups of hair cells
are arranged in rows of inner and outer hair cells the functional significance of
which will be further discussed below. 

The actual transduction process (change from mechanical to electrical energy) at the
receptor cell level is well understood. Where the displacement of the basilar
membrane is a maximum, the stimulation of the receptors (hair cells) which sit upon
the membrane is greatest. The mechanism for this is shown in figure 10, which
represents a cross-section through the cochlear tube. As described above, the base
of each hair cell is attached to the flexible basilar membrane, while its cilia are
firmly attached at the ends to the rigid tectorial membrane. Consequently, when a
given section of the basilar membrane is displaced by sound waves, this
arrangement imposes a shearing (or bending) force on the cilia, which in turn,
causes a receptor potential in the cells. This mechanism is extremely efficient, since
each individual hair cell itself is also tuned to generate its maximum receptor
potential in response to a shearing force occurring at the frequency which
corresponds to its position on the basilar membrane. 

The outer and inner hair cells also perform different functions. Outer hair cells are
active. When the basilar membrane vibrates, outer hair cell stereocilia are deflected
causing K+ ions to move into the cells. This causes the outer hair cells to contract
and lengthen as the basilar membrane vibrates which feeds extra movement into the
basilar membrane, making the vibrations bigger - a positive feedback loop (figure
11).

Figure 11. Basilar 
membrane response 
enhancement by outer 
hair cells. From 
Pickles (1988).
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The important consequence of this enhancement is that without outer hair cells, the
auditory system would be about 40 dB less sensitive to sounds. Outer hair cells also
sharpen frequency selectivity because they increase basilar membrane vibrations.

Inner hair cells are, on the other hand, passive. As in the outer hair cells, when the
basilar membrane vibrates, inner hair cell stereocilia are deflected causing K+ ions
move into the cells. This causes the release a neurotransmitter onto the auditory
nerve fibres at their base which stimulates the nerve fibres and causes action
potentials. The increased vibration of the basilar membrane produced by the outer
hair cells, results in the inner hair cells moving more. The inner hair cells passively
turn the vibrations of the basilar membrane into action potentials. 

In the transduction process, the louder the sound, the greater the amplitude of basilar
membrane vibration at a given location, the larger the bending of the cilia, the
greater the receptor potential, the more transmitter release, and the higher the action
potential frequency in the sensory nerve fibres.

Inner hair cells may provide sharp tonotopic pitch discrimination, while outer hair
cells (many of which are converging from a large area of basilar membrane upon a
single afferent fibre) may provide more broadly tuned auditory sensations. In
addition, hair cells receive (centrally originating) efferent innervation which may
reduce or suppress hair cell excitation.

3.1.4. The Auditory Nerve
In man, approximately 30,000 nerve fibres, whose cell bodies are contained within
the Spiral Ganglion, form the direct connection between the cochlea and the
cochlear nucleus. 95% of these fibres are directed to the inner hair cells and only 5%
receive information from the outer hair cells. 

As is shown in figure 12, the auditory nerve fibres connect to the inner hair cell
closest to the fibreÕs point of entry to the cochlea. In contrast, the fibres connecting
to outer hair cells travel basally before terminating. Each inner hair cell fibre
connects to one and only one cell whereas the fibres connecting to outer hair cells
branch and connect to up to ten cells. About 20 fibres connect to each inner hair cell
but only 6 connect to outer hair cells.
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In the absence of stimulation, nerve fibres discharge at their spontaneous rate.
When stimulated, the nerve fibres continue to fire at their spontaneous rate unless
the stimulus intensity exceeds the nerve fibreÕs firing threshold. Above threshold,
the firing rate increases almost linearly with intensity until such a level is reached
that the nerve fibre does not increase its rate of firing when the stimulus intensity is
increased. The nerve fibre is said to be saturated.

3.1.4.1. Frequency selectivity
Fibres are responsive to single tones and, if presented in isolation, the tones are
always excitatory. The standard way of showing these responses is the post-stimulus
time histogram (PSTH). This is built up by presenting the stimulus many times and
for each action potential that occurs, incrementing the count for the bin
corresponding to the time after the beginning of the stimulus. A tone burst causes a
sharp onset response which rapidly decays over the first 10-20ms and then more
slowly to a steady state over a period of 20-100ms. This property is known as
adaptation and can be seen in figure 13. At stimulus offset, firing activity falls
below the spontaneous firing rate. After a brief recovery period, the firing rate then
returns to the spontaneous rate.

Figure 12. The 
majority (95%) of 
auditory nerve 
Þbres connect with 
the inner hair cells. 
From Pickles 
(1988).
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The nerve fibres can also be characterised by their firing threshold with respect to
frequency. The intensity of the tone burst is adjusted until an increase above the
spontaneous firing rate is just detectable. This is then repeated for a range of
stimulus frequencies until a tuning curve is built up (figure 14). These curves exhibit
a low threshold at a specific frequency - the fibre is highly sensitive at this specific
frequency. This frequency is called the fibreÕs best or characteristic frequency (BF
or CF). 

 
The variation in curve shape is also visible in figure 14. Low frequency fibres are
broadly symmetrical but at higher frequencies the curves become asymmetric with
a sharp characteristic frequency trough and a long tail extending to the lower
frequencies (The slight increase in sensitivity in this tail at approximately 1kHz is
due to the power enhancement of the middle ear). A single auditory nerve fibre,
therefore, behaves as a non-linear asymmetric bandpass filter. The frequency
selectivity of the fibres is almost certainly derived from the basilar membrane and
hair cell frequency selectivity.

Work by Liberman (1982) has shown that the population of auditory nerve fibres
can be split into three broad groups based upon their spontaneous firing rate and also
their associated firing threshold. Fibres with high spontaneous rates (greater than 18
spikes per second) have low thresholds and fibres with low spontaneous (less than
0.5 spikes per second) rates have high thresholds. Fibres with intermediate
spontaneous firing rates have intermediate threshold levels. This distribution can be
seen in figure 15.

Figure 13. Response 
of an auditory nerve 
Þbre to the 
presentation of a tone 
burst. The initial sharp 
onset and subsequent 
decay is clear. From 
Pickles (1988).
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Figure 14. Tuning 
curves for six 
different frequency 
ranges. In each plot, 
the responses from 
two Þbres of similar 
characteristic 
frequency and 
threshold are shown. 
From Pickles (1988).

Figure 15. Distribution 
of low, intermediate 
and high spontaneous 
Þring rate Þbres and 
their associated Þring 
threshold values. From 
Pickles (1988).
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An alternative method of measuring firing rate as a function of intensity which
produces rate-intensity functions (figure 16). The functions are sigmoidal in shape
and have a dynamic range of 20 - 50dB. 

Rate-intensity curves display the firing rate - intensity combinations for constant
frequency. Similarly, the combination of intensity and frequency can be displayed
for constant firing rates. These iso-rate tuning curves (figure 17) show that the
frequency selectivity of the fibre generally improves as a higher firing rate (and
hence higher intensity) is used, although it later deteriorates as the fibre saturates.

Figure 16. Rate-
intensity functions 
for one auditory 
nerve Þbre (CF 
2.1kHz) at different 
frequencies. From 
Pickles (1988).

Figure 17. Tuning 
curves constructed 
at different Þring 
rates for two Þbres 
of differing centre 
frequency. From 
Pickles (1988).
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3.1.4.2. Phase locking
At frequencies above 5kHz, the auditory nerve fibre fires with equal probability in
every part of the stimulating waveform cycle. Below this frequency, the firing of the
nerve fibre is locked to a particular phase of the stimulating waveform. Although the
fibre may not fire every period, when it does fire, it will do so only in one phase of
the stimulus. This characteristic occurs because the inner hair cells only initiate
nerve firings during the upward deflection of the basilar membrane. 

Phase locking can be shown using a period histogram. It is created by plotting the
occurrence in time of every auditory nerve spike but resetting the time axis every
period. It is evident from such period histograms that the response of the fibre is a
half-wave rectified version of the stimulating waveform. Figure 18 demonstrates the
half-wave rectification property and its preservation as intensity increases.

The loss of phase locking as the stimulating waveform frequency approaches 5kHz
can be seen in figure 19.

Figure 18. Phase 
locking preservation 
at increasing 
intensities. Note that 
the Þring is saturated 
above 70dB but the 
phase locking 
remains unaffected. 
From Pickles (1988).
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The distribution of intervals between successive auditory nerve events - an
interspike interval histogram - is sharply polymodal. As can be seen from figure 20,
the peak of each partial distribution is very close to an integer multiple of the
waveform period and the population is always larger than the following one. This
serves to reinforce the fact the fibre will not fire every period but when it does fire,
it will do so only in one phase of the stimulus.

3.2. Summary

The auditory periphery consists of three main areas: the outer, middle and inner ears.
Sound travels down the auditory canal and causes the tympanic membrane to
vibrate. The ossicles then transfer this energy to the cochlea. The combination of the

Figure 19. Period 
histograms 
demonstrating the loss 
of phase locking as 
the stimulating 
frequency approaches 
5kHz. From Rose et 
al. (1967).

Figure 20. Interspike 
interval histogram. 
Dots below the abscissa 
indicate integral values 
of the stimulating tone 
period. Adapted from 
Rose et al. (1967) Þg 1.
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outer and middle ear resonances explain the increased hearing sensitivity in the 500
- 5000 Hz range. Sound energy at different frequencies is converted to mechanical
motion of the basilar membrane which in turn stimulates the activity of hair cells in
contact with the membrane. This activity is transmitted to the brain via the spiral
ganglion. The next chapter will introduce a number of computational models which
simulate this process.
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CHAPTER 4 Auditory Periphery 
Model

As discussed in the previous chapter, a detailed understanding of the auditory
periphery can allow a number of perceptual phenomenon to be explained. Similarly,
if computational models are to explain as wide a range of perceptual experiences as
possible, they must incorporate an accurate simulation of this peripheral processing.
This chapter describes a number computational solutions which model the various
stages of the auditory periphery.

4.1. Introduction

The auditory periphery can be divided up into four main functional areas for the
purposes of computational modelling: outer and middle ear resonances, basilar
membrane response, inner hair cell transduction and auditory nerve spike generation.
The models presented here are existing models which are in close agreement with the
experimental data.

4.2. Outer and middle ear resonances

The resonances of the outer and middle ear are essentially linear for low to medium
intensity sounds and can be modelled using a simple high-pass Þlter of the form

(1)

where x[t] is the amplitude of the input at time t. 

Another means of simulating the outer and middle ear resonances is to use a hearing
threshold curve as a weighting function. Figure 21 shows the gain across frequency
of a hearing threshold curve detailed by Fay (1988).

y t[ ] x t[ ] 0.95x t 1Ð[ ]Ð=
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The work presented in this report uses a single frequency channel of the basilar
membrane and so no relative tuning of the frequency channels is required. 

4.3. Basilar membrane Þltering 

The frequency selectivity of the basilar membrane is modelled by a gammatone
filterbank in which the output of each filter represents the frequency response of the
membrane at a specific position. Any filter can be completely characterised by its
response to a brief click - the impulse response. The filterbank is based on an
analytical approximation to physiological measurements of auditory nerve impulse
responses obtained by the reverse correlation technique of de Boer and de Jongh
(1978). The gammatone filter of order n and centre frequency f0 Hz is given by

(2)

where f represents the phase, b is related to the bandwidth and u[t] is the unit step
(Heaviside) function

(3)

The name gammatone comes from the fact that the envelope of the filter impulse
response (figure 22) is the statistical gamma function and the fine structure of the
impulse response is a tone of frequency f0 and phase f.
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the Fay hearing 
threshold curve.
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Although the gammatone filter is linear and cannot simulate any non-linearities and
also has a symmetrical magnitude response, its amplitude characteristic exhibits a
very good fit to the roex(p) function commonly used to represent the magnitude
characteristic of the human auditory filter shapes (Patterson and Moore, 1986). This
property justifies its use to model auditory frequency selectivity.

4.4. Inner hair cell transduction

Within the cochlea, the movement of the basilar membrane is converted in to
electrical signals by the inner hair cells located within the organ of Corti. As noted
above, this leads to properties such as phase locking, adaptation and saturation.

There has been extensive work conducted on creating a computational model that
will explain the non-linearities that occur at the junction between hair cells and the
auditory nerve (Meddis, 1988; Schroeder and Hall, 1974). The model used here is
the multiple-reservoir scheme proposed by Meddis (1986, 1988). In a review of
eight hair cell transduction models, Hewitt and Meddis (1991) concluded that their
model exhibited the closest fit to physiological data and was also computationaly
efficient. When presented with the response of the basilar membrane from the
gammatone filter, the model returns the probability of a spike occurring in the
auditory nerve. 

The model can be understood in terms of the production, movement and dissipation
of transmitter substance in the vicinity of the hair cell-auditory nerve fibre synapse
(figure 23).

Figure 22. Impulse 
response of the 
gammatone Þlter.



Auditory Periphery Model

SynÞre chains as a neural mechanism for auditory grouping 38

The model parameters are based on those described in (Meddis, 1988) with only
small number of changes to improve the modelÕs match to experimental data (see
table 1).

4.5. Auditory nerve spike generation

The aim of this modelling work is to produce auditory nerve spikes for use in
modelling higher level brain processes. This final stage of the periphery model
converts the probabilistic output of the inner hair cell model into discharge times
based upon a process proposed by Carney (1993). The spike generator is a Poisson

Parameter Meddis (1988) value New value

A 5 2
B 300 300
g 1000 2000
y 11.11 8
l 1250 2500
r 16667 6580
x 250 66.31

Figure 23. Flow 
diagram for 
transmitter substance 
and differential 
equations deÞning 
the model. From 
Meddis (1986) 
model B Fig 10.

Table 1: Inner hair cell 
transduction model 
parameters.
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process which takes as its input the Meddis model output and combines terms for
both absolute and relative refractory periods. After an absolute refractory period of
0.75ms, the effect of the refractoriness, also called the discharge-history effect,
gradually decays to zero over a period of approximately 40-50ms. The time course
of the history effect is given by

(4)

       for (t-tl) ³ RA

(5)

       for (t-tl) < RA

where t-tl is the time interval since the previous spike and Hmax determines the
maximum threshold increase due to a previous discharge.

The discharge history effect, H, is shown in figure 24.

Given the discharge history effect, H, the instantaneous spiking rate of the AN fibre
is modified from that of the Meddis model output (sk) to

(6)

The firing decision is made by the firing probability T(rk), where T is the sampling
period. For each sampling period, a random number qk, uniformly distributed
between 0 and 1, is produced by a standard random number generator. If T(rk) ³ qk,
a spike is generated; otherwise no spike is generated. The spiking decision is used
to update H(t) and the simulation for spike generation proceeds until the input
stimulus to the model terminates.

H t( ) Hmax c0e
t tlÐ RAÐ s0¤Ð

c1e
t tlÐ RAÐ s1¤Ð

+( )=

H t( ) 0=

Figure 24. Discharge 
history effect showing 
absolute (0.75ms) and 
relative (40-50ms) 
refractory periods. 
From Carney (1993).

rk sk H t( )Ð=
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The hair cell output shown in figure 25 (left panel) is the probability of a spike being
generated. The spike generation process involves a certain degree of randomness
and so the output in terms of auditory nerve discharge times will vary slightly for
each presentation. Therefore, to obtain an accurate description of this response, a
post-stimulus time histogram (PSTH) is produced from a number of presentations
to the spike generator (see section 3.1.4.1). The PSTH for the tone used to produce
the probabilistic hair cell response is also shown in figure 25 (right panel). The
PSTH exhibits the fundamental characteristics of the experimental PSTH (figure
13): a sharp onset response which drops rapidly over the first 10-20 ms and then
more slowly. The recovery period after tone offset is evident.

The firing rate as a function of intensity can be used to show how the hair cell
response varies with intensity. The rate-intensity curve of the model is shown in
figure 26. The function has the expected sigmoidal shape (c.f. figure 16) and
saturates at an acceptable 50dB above the threshold.
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Similarly, the combination of intensity and frequency can be displayed for constant
firing rates (figure 27). These iso-rate tuning curves show that the frequency
selectivity of the fibre generally improves as a higher firing rate is used. Although
the basic shape of these tuning curves agrees well with the observed data, the nature
of the gammatone filter is evident in the symmetrical tuning curves it produces.

 
As explained in section 3.1.4.2, auditory nerve fibres exhibit phase locking: the
nerve fibre firing is locked to a particular phase of the stimulating waveform. A
period histogram can be used to demonstrate the half-wave rectification of the
stimulating waveform. A second method of evaluating the extent of phase-locking
is by calculating the vector strength of each period histogram as used by Goldberg
and Brown (1969). The vector strength is a normalised estimate of the probability
of firing at a particular phase in the stimulating waveform. The vector strength r is
given by

(7)

where K is the number of bins in the period histogram and Rk is the magnitude of
the k th bin. When the spike discharge is uniformly distributed across the histogram,
r equals zero. In the extreme case of perfect phase locking, r equals 1.
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Figure 28 shows a period histogram for the 300ms 1kHz tone with preservation of
phase locking at varying intensities. Figure 29 shows the associated vector strength
function which confirms the improvement of phase locking with increasing
intensity. It is also evident that the strength of the phase locking begins to decrease
at high intensities. On examination of the period histograms in figure 28, this is due
to a broadening of the histogram peak: increased response to the other phase of the
stimulating waveform. Although the strength of the phase locking deteriorates, it is
still significantly phase locked and this behaviour is just evident in the physiological
period histograms of figure 18. 
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Figure 30 shows that as the centre frequency of the fibre approaches 5 kHz, phase
locking deteriorates although this is not as pronounced as would be expected from
physiological data (figure 19).

As with the probabilistic output of the Meddis model, period histograms can be
produced to confirm that phase-locking properties are preserved after the spike
generation process. As can be seen in figure 32, phase-locking is indeed preserved. 
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Figure 33, shows the distribution of intervals between successive auditory nerve
events. This shows that the model is correctly simulating phase-locking: responses
only occur in a particular phase of the stimulus. This is evident by the event intervals
being clustered around integer multiples of the stimulating tone period.
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4.6. Summary

This chapter has discussed the four main modelling areas involved in simulating the
behaviour of the auditory periphery. The Fay (1988) weighting function provides a
good approximation to the outer and middle ear resonances. Simulation of place
coding is achieved using the gammatone filter which exhibits a very good fit to the
human auditory filter shapes. The Meddis (1986, 1988) hair cell model in
combination with a spike generation process based on one proposed by Carney
(1993) is the final stage of the computational model. This not only provides a good
approximation to experimental PSTH shapes but also captures the phenomenon of
hair cell phase locking. 

Such cochlear nerve activity is then transmitted to neurons within the brain. The
next chapter discusses the behaviour of a ÔtypicalÕ neuron and describes two models
of differing complexity which simulate neuron performance.
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CHAPTER 5 Neuron Models

The neuron is the basic processing substrate of the animal brain. In mammals, all
regions of the neocortex contain approximately 800 million synapses, 4 km of axons
and 0.5 km of dendrites per cubic mm; neural densities are as high as 10,000 cells
per cubic mm in deep layers of the human motor cortex (Abeles et al., 1994). This
gives an indication of the sheer scale of the animal brain. This chapter introduces
the key attributes of the neuron, such as the action potential, in terms of biochemical
changes that occur within the cell. Bearing in mind the network sizes required, the
second half of the chapter looks at two computational models of increasing
simplicity. 

5.1. Neuron attributes

5.1.1. The equilibrium potential

Most cell membranes exhibit a potential difference, with the inside of the cell being
negative in relation to the exterior. This is denoted by using a minus sign. For
example, the membrane resting potential of a stellate cell is approximately -65mV.
This potential difference is due to the varying concentrations of ions in the
extracellular and intracellular fluids.

The ions with most influence are Na+, K+ and Cl-. The extracellular concentration of
Na+ and Cl- ions is in the order of ten times that of the intracellular concentration.
This ratio is reversed for K+ ions. Cell membranes are virtually impermeable to
protein and organic anions. However, they are moderately permeable to Na+ and
more freely permeable to K+ and Cl-. In fact, up to 500 times more permeable. These
ions do not simply cross the membrane via pores but through specific protein ion
channels. Each ion has its own set of channels. In the soma, these channels (and
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hence the amount of ion diffusion) are voltage-dependent according to the level of
the membrane potential.

The varying ionic concentrations and charges in the extracellular and intracellular
fluids leads to two types of diffusion gradient: the concentration gradient and the
electrical gradient. Chloride ions, as stated above, have a higher extracellular
concentration and so tend to diffuse along the concentration gradient into the cell.
However, the cell interior is negatively charged (the cell resting potential) and so the
negatively charged chloride ions experience electrical repulsion along the electrical
gradient out of the cell. Equilibrium occurs at the point at which Cl- efflux and influx
are equal. The situation for K+ is similar but reversed. The concentration gradient is
directed out of the cell and the electrical gradient is directed into the cell. Na+

diffusion is different again. As is expected, the concentration gradient is directed
into the cell, as for chloride ions. However, the electrical gradient is also directed
into the cell. As neither of the Na+ or K+ ionic transfers are at equilibrium, it would
be expected that Na+ would continue to enter the cell and K+ would leave. This does
not happen and the intracellular concentrations of these two cations remain constant.
This is due to the presence of active transport of ions against one or both of its
diffusion gradients.

5.1.2. The action potential

A slight decrease in resting potential leads to increased K+ influx and Cl- efflux in
order to restore the cellÕs membrane resting potential. Due to the fact that the ion
channels act in a voltage-dependent manner, a unique change occurs in the cell once
depolarization exceeds approximately 7mV. At this point, Na+ permeability begins
to rise and continues to do so as the level of depolarization reaches the firing level.
Once the firing level is reached, Na+ permeability is so great that the influx of
sodium cations swamps the replolarizing process and a runaway depolarization
occurs: a spike potential. The Na+ ions attempt to reach their equilibrium potential
of +60mV. However, the Na+ permeability is short-lived. Na+ permeability tends
towards its resting level during the rising phase of the spike potential and is even
decreased during the falling phase. In addition to the change in permeability, the
electrical gradient begins to work against the influx of sodium ions once the cell
enters the overshoot phase of the spike potential and the interior of the cell becomes
positively charged.

In the same manner, K+ permeability also increases in a voltage-dependent manner,
although the onset is slightly later than that for Na+. K+ permeability reaches a
maximum during the falling phase of the spike potential. As the intracellular
concentration of K+ is much higher than the extracellular concentration, K+ defuses
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out of the cell. The net transfer of positive charge out of the cell completes
repolarization. Na+ efflux hyperpolarises the cell until equilibrium is restored.

Although not as important as Na+, K+ and Cl-, it is worth mentioning the role of
Ca2+ in the action potential. As with Na+, Ca2+ electrical and concentration
gradients are directed into the cell. It is thought Ca2+ enters the cell via the Na+ ion
channels although in much smaller amounts. The early phase of Ca2+ influx is
blocked by the poison tetrodotoxin (TTX) which blocks Na+ channels without
affecting the K+ channels. Later Ca2+ influx is thought to occur via different
voltage-sensitive pathways. Not only does Ca2+ play an important role in the
secretion of synaptic transmitters, it also aids the depolarization of the cell prior to
the spike potential.

5.2. MacGregor point neuron model (ptnrn10)

The MacGregor point neuron model (MacGregor, 1987 p458) produces relatively
realistic firing properties for a neuron with basic accommodation properties. In fact,
figure 34 was produced by the model. The model describes the simplified processes
that occur in a neuron in terms of the cellÕs membrane potential E, potassium
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conductance Gk and its firing threshold Th. The cell behaviour is described by three
linked differential equations:

(8)

(9)

(10)

(11)

(12)

Variable Function Typical 
Value

Units

E Transmembrane potential. - mV
V Stimulating voltage from an applied electrode as a 

function of time.
- mV

Gk Potassium conductance above resting level. - S
Ek Equilibrium potential of the potassium conductance. -10 mV

tmem Membrane time constant. 5-11 ms
Th Time-varying Þring threshold. - mV
Th0 Resting threshold of the cell. 10-20 mV

c Accommodation constant. 0-1 -
tTh Accommodation time constant. 20-25 ms
s Spiking variable. 0 or 1 -
b Potassium conductance rise constant. 4 nS

tGk Potassium conductance decay time constant. 3-10 ms
P Cell output. - mV

dE
dt
-------

EÐ V Gk Ek EÐ( )+ +

tmem
-----------------------------------------------------=

dTh
dt

----------
T h0 ThÐ cE+

tTh
-----------------------------------=

s
1 E Th³

0 E Th<î
í
ì

=

dGk

dt
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GkÐ bs+

tGk

-----------------------=

P E s 50 EÐ( )+=
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The important aspect of the equations is that they describe the rate of change of a
particular variable. Therefore, the description will be made in terms of rate of
change.

At equilibrium, the rate of change of each variable will be zero. On application of a
steady current, the rate of change of E will increase due to the V term in equation 11.
The rate of this change is determined by the value of tmem, the membrane time
constant. The smaller this value, the faster the rate of change of the cell membrane
potential. The increase is rapid at first due to the relatively large difference between
the cell membrane potential of the applied potential. However, as this differences
reduces, so too does the rate of change. This exponential rise in cell membrane
potential can been seen in figure 36. 

As the membrane potential E increases, the threshold rate of change begins to
increase due to the cE term in equation 9. Once again, the rate of this change is
regulated by a time constant. In this case, tTh. However, the threshold should not
continue to increase in proportion to the value of E. As the value of the threshold
increases above its resting level Th0, the rate of change of Th is encouraged to
diminish due to the Th0-Th term. The model used to create figure 36 included a high
level of accommodation and so threshold rise is evident (see also figure 35).

If the membrane potential exceeds the cell threshold, a spike potential is generated
(denoted by assigning 1 to the value of s).

It is known from the function of real cells that shortly after a spike potential is
initiated, the level of potassium conductance increases. The use of bs in equation 11
ensures that the potassium conductance increases. As shown in figure 36 the rate of
decay back to its equilibrium value is exponential with a time constant tGk. 

Table 2. Point neuron 
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The increased level of Gk causes E to drop due to the Gk(Ek-E) term in equation 8.
Note that E, the membrane potential, is not the same as the output potential, P.
While Gk is in an elevated state, the transmembrane potential E rapidly drops
towards its equilibrium value. However, as Gk diminishes, the applied current to the
cell again begins to dominate and causes E to rise. E surpasses the threshold Th and
a second action potential is elicited causing another rise in Gk. As Gk drops the
potential E goes back up, and if the firing threshold has risen to a level higher than
the equilibrium potential of the cell associated with the value of the applied current,
no further firing occurs. The model used in figure 36 has strong accommodation and
so the threshold increase is evident. This type of response illustrates on-response to
a steady step current. 

In figure 34, the applied current has also been removed by the falling phase of the
spike potential and so the reduction of E overshoots the cell equilibrium potential
and causes hyperpolarization which slowly returns to the resting potential.

Figure 36. Behaviour 
of the state variables 
for repetitive Þring 
with strong adaptation.
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5.3. Integrate and Þre neuron model

The MacGregor point neuron model represents a useful simplification of the
Hodgkin and Huxley (1952) model but is still computationally expensive if large
networks are to be simulated. When considering the simple network described in
chapter 6, the computational expense of this neuron model becomes unacceptable.
The integrate and fire neuron (leaky neuron) model is simplistic - the behaviour of
the cell is determined by two properties: the membrane potential and the non-
adaptive membrane threshold. Input to the cell is in the form of spikes which are
represented as binary values.

(13)

where

and 

Variable Function Typical Value Units
Et Membrane potential - mV
Er Resting membrane potential -60 mV

Ethresh Threshold potential -50 mV
Eref Refractory potential -70 mV
V Input potential (per spike) 8 mV
m Decay time constant 10 ms
Ts Sampling period - ms

Tref Refractory period 3 ms
Ot Cell output - mA

Et Et 1Ð e

T sÐ

m
--------
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--------
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Table 3. Integrate and 
Þre neuron model 
variables and their 
typical values.

if spike input occurs at time t

otherwise

if Et ³ Ethresh

otherwise
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At equilibrium, the cell membrane potential rests at Er. On receiving a spike, the cell
membrane potential is raised by V. If the new value of Et is below the cell threshold,
Ethresh, no action potential is generated. Provided no further spike input is received,
Et decays back towards Er with a time constant of m.

If Et exceeds the cell threshold, an action potential occurs (signified by Ot being set
to 1) and the cell enters a period of absolute refractoriness. During this period, the
cell membrane potential is fixed at Eref for a period of Tref. Eref is typically below
the cell resting potential. Subsequently, the cell enters a period of relative
refractoriness during which the cell membrane potential decays back to the resting
potential with a time constant of m. 

Figure 37. Behaviour 
of the integrate and Þre 
neuron in response to a 
train of three spikes. In 
the middle panel, the 
cell threshold is shown 
in green.
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5.4. Summary

Two models of neuron behaviour have been described. Despite the accuracy if
MacGregorÕs model and its close relation to the chemical transfers involved real
neurons, it is still too computationally expensive for any network of more than a few
cells. The integrate and fire neuron provides an extremely simple mechanism to
simulate neuron behaviour while maintaining a large degree of accuracy.

The next chapter describes how the integrate and fire neuron model is incorporated
into the synfire chain network. 
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CHAPTER 6 SynÞre Chain Network

The synfire chain network is a form of two-dimensional neural network whose
connections are organised in a feedforward manner. The cell model used for the
network is the integrate and fire cell described in the previous chapter. This chapter
describes the key terms associated with synfire transmission and then describes in
more detail the network topology and output assessment criterion. Finally, the
ability of the network to bind features according to frequency proximity is
considered.

6.1. Synchronous transmission

The long delays encountered in reaction-time experiments can be explained by the
hypothesised structure of the processing substrate. Long delays are accounted for by
assuming that information processing occurs in a serial manner: spikes travel from
one neuron to another along a chain of n neurons (figure 38a).

However, this assumption is flawed. If one neuron in the chain becomes damaged or
dies, the entire chain becomes inoperative. This is significant because neurons are
constantly dying and cannot be replaced - between the ages of twenty and eighty

(a)

(b)

(c)

Figure 38. Alternative 
connections between 
neurons. (a) serial; (b) 
parallel serial; (c) 
diverging/converging. 
After Abeles (1991), 
Þgure 6.1.1.
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years, an average human loses one third of their cortical cells (Gerald, Tomlinson
and Gibson, 1980) without significant loss in information processing ability.
Therefore, some form of redundancy is required in such systems. The use of parallel
serial chains (figure 38b) provides this. Unfortunately, an inordinate number of
neurons is required to maintain system functionality over an extended period (e.g.
the life span of a human). A network of neurons connected using diverging and
converging pathways (figure 38c) simply incorporates redundancy while limiting
the number of neurons required.

Abeles (1991) contends that information transmission in the cortex is likely to occur
between sets of neurons connected by such diverging and converging pathways.
There are two possible mechanisms of transmission: synchronous and
asynchronous. In asynchronous transmission, cells of the ÔsendingÕ node begin to
fire at a high rate. Due to spatial and temporal summation, this causes cells of the
ÔreceivingÕ node to fire. Synchronous transmission relies on the cells of the sending
node firing in synchrony. The receiving node cells experience a synchronised volley
of spikes causing them to also fire in synchrony. This form of transmission assumes
that the synapses are strong enough to ensure synchronous firing and that there is
sufficient allowance for the jitter in spike timings.

A special case of synchronous transmission is that of synfire transmission. For the
pathways between two nodes to be a synfire link, the following conditions must
hold,

¥ Whenever n cells of the sending node become synchronously active, at least k 
cells of the receiving node must become synchronously active.

¥ k must not be smaller than n.

For a network of neurons connected with diverging/converging (feedforward)
pathways to be a synfire chain, the following condition must hold,

¥ All connections between nodes must be synÞre links such that the receiving 
node of one link is also the sending node of the following link.

6.2. SynÞre chain network

The role of frequency proximity plays an important part in auditory feature binding
and has been the subject of a number of perceptual experiments. In addition to the
two tone streaming phenomenon documented by van Noorden (1975), Bregman and
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Pinker (1978) used a similar experiment to demonstrate the influence of frequency
proximity. The experiment consisted of a repeating cycle formed by a pure tone A
and a two pure-tone complex of B and C (see figure 39). An important result from
the study was that the frequency proximity of the tones A and B influenced how the
sequence was perceived. The closer A and B were in frequency to one another, the
greater the likelihood of them forming a stream separate from tone C. 

Vicario (1982) has also reported an effect consistent with frequency proximity
grouping. In his study, Vicario used the stimulus shown in figure 40. A pure tone M
was sounded for a short period and was then joined by another two tones H and L.
After the tones H and L ceased, tone M continued for a short period. 

Vicario found that the perception of tone M as a distinct entity was not reduced by
increasing the number of tones it has to pass through. He concluded that it was only
the local proximity of tones H and L that made tone M harder to hear as they became
closer in frequency.

It is this form of feature binding that the synfire chain network aims to simulate: as
the frequency separation of two stimuli increases, the likelihood of binding should
decrease. Thus, as separation increases, the synchronisation of the two centre
frequencies should decrease (figure 41).
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(1982).
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6.2.1. Network topology

The synfire chain was 5 neurons long and received input from 50 frequency
channels (figure 42). It should be pointed out that although the input is referred to
in terms of frequency channels, the current network does not possess an auditory
periphery model. 

Activation of different centre frequencies is represented by random spike trains with
an interspike interval of no less than 1 ms (absolute refractoriness). Synapse
strengths vary with distance in a gaussian fashion (figure 43).
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Figure 41. Desired 
synÞre chain 
network response to 
spectrally distant 
stimuli (a) and 
spectrally close 
stimuli (b). 
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6.2.2. Grouping by frequency proximity

The nature of the local feedforward connections give rise to grouping by frequency
proximity; spatially close inputs give rise to synchronised activity, whereas spatially
distant inputs do not. The degree of synchronisation between centre frequencies is
assessed by the correlation of their outputs X and Y,

      

(14)

where  is the mean of X(t).

In the experiment, two centre frequencies were stimulated with random spike trains.
Each activated frequency band had a width of 5 channels (see figure 44). This
experiment was repeated for a range of 20 channel separations. Additionally, the
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experiment was performed with a number of connectivities ranging from 3 to 15
connections on each side of the centre frequency.

As expected, as frequency separation increased, the correlation and hence
synchronisation between the outputs of the centre frequencies would decrease and
increased connectivity delayed the decrease in synchronisation (figure 45). It is
evident in the networkÕs response to the 20 channel separation example (figure 44)
that a number of intermediate channels are synchronised to both frequency bands.
In order to determine the synchronicity between the two bands, only the correlation
between the two centre frequencies is calculated. Physiologically, this can be
thought of as peripheral activity weighting the channel binding decision.

centre frequency correlation: 0.79

centre frequency correlation: 0.04

Figure 44. Example 
inputs to the synÞre 
chain network. Two 
bands of random spike 
input are present with 
a frequency separation 
of 8 (top) and 20 
(bottom) channels. An 
increase in centre 
frequency separation 
reduces centre 
frequency channel 
synchronisation.
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6.3. Summary

The model shows behaviour that is consistent with grouping by frequency
proximity. However, to fully model the perception of alternating tone sequences, the
model must incorporate grouping by temporal proximity as well. There is no
mechanism to perform temporal grouping in the current model. This will be
discussed in the next chapter.
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CHAPTER 7 Conclusions

As discussed in chapter 2, primitive grouping encompasses the data-driven
simultaneous and sequential perceptual organisations of sound. Simultaneous
organisations correspond to grouping by sound source onset and offset, harmonicity
and frequency proximity. In contrast, sequential organisations make use of
continuity and proximity constraints across time.

Despite the goal of simulating two tone streaming effects, the synÞre chain model
described in chapter 6 cannot perform sequential grouping. The next stage of
development needs to concentrate on implementing a form of short-term memory
(STM). Grossberg (1996) suggested a form of channel resonance in which channel
stimulation produces a build of activity which continues after the stimulus has
ceased. Over time, the resonance decays away. 

Temporal proximity grouping could be achieved by using channel resonance to link
successive stimuli: if a second tone occurs within some time period of the Þrst tone,
the later tone ÔaccessesÕ the resonance and the two stimuli are grouped (Þgure 46a).
If the second stimulus occurs after the resonance has decayed away, the two stimuli
are not grouped temporally (Þgure 46b). 

An alternative STM mechanism is the use of time-delayed feedback connections.
Such connections would increase the channelÕs mean activity thus increasing its

(a)

(b)

Figure 46. Channel 
resonance grouping. 
Top trace shows 
channel stimulus; 
bottom trace shows 
channel activity. (a) 
two stimuli are 
grouped temporally. 
(b) two stimuli are 
not grouped 
temporally.
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ability to group a subsequent stimulus in a similar manner to GrossbergÕs
resonances. These two methods will be investigated, along with others, in future
work.

The implementation of short term memory is related to the representation of time
within the network. Previous work by von der Malsburg and Schneider (1986) and
Liu et al. (1994) both use spectral inputs but do not allow responses at different
times to be compared. 

Related to this, is the time course of stream formation and segregation. For
example, it may take up to ten seconds for a sequence of alternating tones to
segregate into two perceptual streams (Anstis and Saida 1985). Other models
(Brown and Cooke, 1997; Beauvois and Meddis, 1991, 1996; McCabe and
Denham, 1997) successfully simulate the build up of streaming over time. If the
network presented here is to achieve its objective of being physiologically
plausible, it too must be able to simulate this build up. 

The role of attention in auditory grouping has been acknowledged by previous
modellers (e.g. McCabe and Denham, 1997; Brown and Cooke, 1997) but has not
been implemented. Crick (1984; Crick and Koch, 1990) has suggested that part of
the thalamus (the thalamic reticular complex) may be involved in selective
attention. Until recently, it was thought stream formation such as that involved in
the two tone streaming phenomenon was passive in nature: streaming occurred
whether attended to or not. Attention was considered useful only in guiding a
particular stream into the attentive ÔforegroundÕ. However, recent work by Carlyon
et al. (1999) suggests that attention does indeed play an important role in stream
formation.

In CarlyonÕs experiment, a 21s sequence of A and B pure tones alternating in an
ABA-ABA sequence was presented to the left ear. In the ÔbaselineÕ condition, no
stimulus was presented to the right ear. Subjects were instructed to indicate
whether they heard a galloping rhythm or two separate streams. In the Ôtwo-taskÕ
condition, a series of bandpass Þltered noise bursts were presented to the right ear
for the Þrst 10s of the stimulus. The noise bursts were labelled as either
approaching (linear increase in amplitude) or departing (the approaching burst
reversed in time). For the initial 10s, subjects were instructed to ignore the tones in
the left ear and simply concentrate on labelling the noise bursts. After 10s the
subjects switched to the streaming task. In the Ôone-task-with-distractorÕ condition
the noise bursts were presented to the right ear as in the two-task condition, but 
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subjects were told to ignore them and to perform the streaming task on the tones in
the left ear throughout the 21s sequence. Consistent with Anstis and Saida (1985)
subjects heard a single stream at the beginning of each sequence, with an increased
tendency to hear two streams as the sequence progressed in time. However, for the
two-task condition the amount of streaming after ten seconds is similar to that at
the beginning of the baseline sequence - in the absence of attention, streaming had
not built up. 

The Þndings of Carlyon et al. suggest that attention is crucial for the build-up of
auditory streaming. The implications of this will be studied further in future work.

In summary, the nature of the synÞre network described elegantly simulates feature
binding based on frequency proximity. In order to incorporate a physiologically
plausible short term memory, the representation of time within the network needs
to be addressed. In addition to this, the role of attention in stream formation needs
to be reviewed. 
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CHAPTER 8 Future Work

The next stages of modelling involve incorporating a mechanism that will allow
sequential grouping to be performed: a form of short term memory. In addition to
this, recent work has called into question the role of auditory attention in stream
segregation. Both of these areas will be studied with the intention of producing a new
model of auditory stream segregation.

8.1. Auditory attention

When thinking about how auditory features are grouped, it is natural to enquire how
such arguably primitive mechanisms relate to other aspects of perception such as
attention. Consider the cocktail party effect (Cherry, 1953) in which a listener has the
task of following a conversation in a noisy environment. It is undoubtedly true that
the process of selective attention is assisted by the speakerÕs voice having some
acoustic properties which separate it from the other voices. Because these factors are
similar to ones involved in primitive stream segregation - for example, differences in
pitch - it can be argued that stream segregation is a form of selective attention.
Bregman (1990) rejects this view; rather, he regards stream segregation as being
largely the result of grouping by a pre-attentive mechanism. In support of this,
Bregman cites an experiment by Bregman and Rudnicky (1975) in which the central
part of the stimulus was a four tone pattern FABF (figure 48). 
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Rudnicky (1975).
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Listeners were given the task of judging whether A and B formed an ascending or
descending pair. In the absence of tones F, listeners found the task easy. However,
in the presence of tones F, the pattern formed a single stream and the AB subpattern
was found very difficult to extract. When a sequence of capturing tones C were
included preceeding and following and F tones, they captured the latter into a new
stream. Thus, tones A and B were separated into a different stream and their relative
ordering was again found easy to judge. Bregman and Rudnicky argued that even
though the stream of captor tones C was not attended to (listeners were
concentrating on the occurrence of tones A and B) it was still able to capture tones
F: stream segregation without attention. 

Recent work by Carlyon et al. (1999) brings this theory into question. Carlyon et al.
performed a number of experiments in which listeners were presented with a
different stimulus to each ear: a repeating tone sequence and a repeating noise burst
sequence. The results show that when listeners concentrated on describing the
nature of the noise bursts, stream segregation of the tone sequence did not occur.
Furthermore, a second experiment required listeners to assess the nature of the tones
which made up the sequence - ÔfastÕ or ÔslowÕ amplitude modulation - in order show
that the lack of steam segregation in the first experiment was not a result of attending
to a different ear. Again, stream segregation did not occur in the presence of the
attended auditory task.

It can be argued that the Bregman and Rudnicky (1975) experiment was flawed as
the listener did not have a competing attentional task to perform: despite the listener
having been instructed to only concentrate on the A and B tones, there was no other
task to distract the listeners attention from the C tones. Indeed, Carlyon et al. note
that Òit seems likely that listeners were in fact attending to the C tones, as they were
the only sounds present at the time, and there was no other task competing for
attention.Ó 

In summary, evidence produced by Carylon et al. (1999) suggests that the long
standing role of attention may be incorrect. Instead of being a mechanism for
bringing an existing stream to the perceptual foreground, it may be an essential part
of stream segregation. Therefore, in order to produce an accurate simulation of
stream segregation, the mechanism of attention needs to be reviewed.
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8.2. Short term memory

Anstis and Saida (1985) have shown that streaming decisions are not instantaneous.
When assessing the time course of the stream formation and segregation process,
listeners demonstrate that it can take up to ten seconds for a sequence of alternating
tones to segregate into two different perceptual streams. The initial state of
streaming is always temporal coherence: only one stream exists. This is then altered
over a period of time. Beauvois and Meddis (1991, 1996) implement this by
incorporating a random bias at every time step into their model which stimulates
increased segregation over time. In order to create a complete model, this build up
of streaming must be included. 

As discussed in the previous chapter, a form of short term memory is also required
to account for sequential grouping. A suggested mechanism for this process is that
of resonance (Grossberg, 1996) which allows the activity within a channel to be
sustained for a period of time. A subsequent tone which occurs within the time
period is able to ÔaccessÕ the resonance and be grouped with the previous tone
(figure 46). However, this solution does not fully explain some aspects of the
auditory induction phenomenon. 

Figure 49 shows two situations in which a tone is followed by a broadband noise
burst (Miller and Licklider, 1950). When the tone-noise sequence is immediately
followed by a second tone of the same frequency as the first, a single tone is
perceived to travel through the noise burst (figure 49a). This can be easily explained
by GrossbergÕs resonance theory: the second tone ÔaccessesÕ the first toneÕs
resonance. However, the second example cannot be explained in this manner. If the
tone-noise sequence is not followed by a second tone, the first tone is not perceived
to continue through the noise burst (figure 49b). The resonance of the first tone will
still occur and continue activity in that channel though the noise burst. GrossbergÕs
theory does not explain how this resonance is suppressed. 

For the model to provide a plausible explanation of stream segregation using a form
of short term memory and auditory attention, it must take into account the factors

(a)

(b)

stimulus percept

Figure 49. Auditory 
induction on tone-
noise sequences.
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described above. This work is a computational modelling study with the eventual
goal of producing a model which will increase our understanding of the role of
auditory attention and also cast light on the behaviour of short term memory. 

8.3. Time plan

* I shall attend the Neural Information Processing Systems (NIPS) Conference in November
/ December 19991. It is envisaged that I will attend the next two annual British Society of
Audiology Short Papers meetings2 and also NIPS 20003.

The feasibility study for the Defence, Evaluation and Research Agency (DERA)
aims to apply CASA techniques to signal-to-noise enhancement problems involving
sonar signals. Work on this part time project will be completed at the end of
February 2000.

The remaining two years are split evenly between research on short term memory
and auditory attention. Although these two topics have been scheduled to run
sequentially, it is expected that a certain amount of overlap will occur due to
possible interaction between the two Þelds of study. Each work package will involve
a detailed literature review of physiological data and perceptual experiments
followed by the construction of a computational model. It is expected that such
models will be based upon the synÞre chain network described in this report,
although the use of relaxation oscillators (e.g. Wang, 1996) has not been ruled out.
Each work package will end with an evaluation of the computational model.

Four months has been allocated to writing the final thesis. I plan to submit by 1
October 2001.
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