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ABSTRACT

A novel extension to recurrent timing neural networks

(RTNNs) is proposed which allows such networks to exploit

a joint interaural time difference-fundamental frequency

(ITD-F0) auditory cue as opposed to F0 only. This extension

involves coupling a second layer of coincidence detectors to a

two-dimensional RTNN. The coincidence detectors are tuned

to particular ITDs and each feeds excitation to a column in

the RTNN. Thus, one axis of the RTNN represents F0 and

the other ITD. The resulting behaviour allows sources to be

segregated on the basis of their separation in ITD-F0 space.

Furthermore, all grouping and segregation activity proceeds

within individual frequency channels without recourse to

across channel estimates of F0 or ITD that are commonly

used in auditory scene analysis approaches. The system has

been evaluated using a source separation task operating on

spatialised speech signals.

Index Terms— Speech processing, Speech enhancement,

Neural network architecture, Auditory system

1. INTRODUCTION

Bregman [1] has proposed that the human auditory system

analyses and extracts representations of the individual sounds

present in an environment in a manner similar to scene analy-

sis in vision. Such auditory scene analysis (ASA) takes place

in two stages. Firstly, the signal is decomposed into a number

of discrete sensory elements. These are then recombined into

streams on the basis of the likelihood of them having arisen

from the same physical source in a process termed percep-
tual grouping. The auditory system uses a number of group-

ing cues such as common periodicity, common onset/offset,

proximity in frequency as well as knowledge of commonly

experienced acoustic stimuli.

1.1. Harmonicity and location as grouping cues

One of the most powerful grouping cues is harmonicity. Lis-

teners are able to identify both constituents of a pair of si-
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multaneous vowels more accurately when they are on differ-

ent fundamental frequencies (F0s) rather than on the same

F0 (e.g., [2]). On the basis of such studies, it has been pro-

posed that a F0-guided segregation strategy is used to sepa-

rate, and subsequently identify, simultaneous sounds. A num-

ber of computational models of auditory perception exploited

this approach (e.g., [3]). For example, it is common to per-

form bandpass filtering at a number of centre frequencies (to

simulate cochlear filtering) followed by periodicity analysis

of each channel. Periodicity estimates are merged across fre-

quency to generate an overall estimate of the dominant pitch.

Two distinct groups of channels are then created using the

dominant pitch estimate: one set consists of all the channels

which exhibit a peak at the pitch period and the other set con-

tains the remaining channels.

However, listener performance in such a task may not be

due to across-frequency grouping but rather the exploitation

of other signal properties such as spectral modulation [4]. In-

deed, it has also been shown that although listeners’ recog-

nition performance for concurrent speech improves with in-

creasing F0, they only take advantage of across-frequency

grouping for separations greater than 5 semitones [5].

There is also mounting evidence that across-frequency

grouping does not occur for interaural time difference (ITD)

either. ITD is an important cue used by the human auditory

system to determine the direction of a sound source [6]. For

sound originating from the same location, its constituent

energies at different frequencies will share approximately the

same ITD. Thus, across-frequency grouping by ITD has been

employed by a number of computational models of voice sep-

aration (e.g., [7]). However, recent studies have drawn this

theory into question; Edmonds and Culling [8] studied this

using target and interferer pairings each of which had been

low- and high-pass filtered. Even when the low-pass portion

of the target and the high-pass portion of the interferer were

placed at the same ITD and the remaining portions placed

at a different ITD, listeners performed as well as when both

target portions were presented at a consistent ITD. When both

target and interferer are placed at the same ITD, performance

was significantly reduced. This suggests that the auditory

system exploits differences in ITD independently within each

frequency channel.
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Fig. 1. (a) Coincidence detector with recurrent delay loop. (b)

A group of coincidence detectors with recurrent delay loops

of increasing length form a recurrent timing neural network

(RTNN). Note that all nodes in the RTNN receive the same

input.

1.2. Neural mechanisms

Despite strong evidence that harmonicity and ITD are ex-

ploited by the auditory system for grouping and segregation

(see above), it remains unclear as to the precise mechanism

(the ‘neural code’) by which this occurs. Recently, Cariani

has shown that recurrent timing neural networks (RTNNs) can

be used as neurocomputational models of how the auditory

system processes temporal information to produce stabilised

auditory percepts [9, 10]. Indeed, [10] showed that such a rel-

atively simple network was able to successfully separate up

to three concurrent synthetic vowels. In the study presented

here, we extend this work to operate on natural speech and

extend the network architecture such that interaural time de-

lay is also represented within the same network. This novel

architecture allows a mixture of two or more speech signals

to be separated on the basis of a joint F0-location cue without

need for across-frequency grouping.

2. RECURRENT TIMING NEURAL NETWORKS

The building block of an RTNN is a coincidence detector in

which one input is the incoming stimulus response and the

other input is from a recurrent delay line (Figure 1(a)). The

output of the coincidence detector is fed into the delay line

and re-emerges τ milliseconds later. If a coincidence between

the incoming signal and the recurrent signal is detected, the

amplitude of the circulating pulse is increased by a certain

factor.

Pitch analysis approaches employ a one dimensional net-

work, similar to the one shown in Figure 1(b), in which each

node has a recurrent delay line of increasing length. As pe-

riodic signals are fed into the network, activity builds up in

nodes whose delay loop lengths are the same as that of the

signal periodicity; activity remains low in the other nodes.

Furthermore, multiple repeating patterns with different peri-

odicities can be detected and encoded by such networks: a

property exploited by Cariani to separate concurrent synthetic

vowels [10] (see also [11]).

We develop this type of network in two ways. Firstly, the

network is extended to be two dimensional and, secondly, an

x (t)R

x (t)L

ITD

Pitch
Period

Coincidence Detector
Layer

RTNN Layer

Fig. 2. RTNN (bottom) with coincidence detector layer (top)

allowing joint estimation of pitch period and ITD. Each node

in the coincidence detector layer is connected to every node

in the corresponding RTNN column. Downward connections

are only shown for the front and back rows. Recurrent delay

loops for the RTNN layer are omitted for clarity. xL(t) and

xR(t) represent signals from the left and right ears respec-

tively. Solid circles represent activated coincidence detectors.

additional layer of coincidence detectors are placed between

the incoming signal and the RTNN nodes. This allows the

network to produce a simultaneous estimate of ITD and F0.

Figure 2 shows a schematic of the new network.

The first layer receives the stimulus input (with each ear’s

signal fed into opposite sides of the grid) and is equivalent

to the neural coincidence model of Jeffress [12]. This layer

acts as the first stage of stimulus separation: the outputs of

each node represent each of the constituent, spatially sepa-

rated, mixture sources. The RTNN layer is expanded to be

two dimensional to allow the output of every ITD sensitive

node from the top layer to be subject to the pitch analysis of

a standard one-dimensional RTNN such as the one shown in

Figure 1(b). The activity of the RTNN layer, therefore, is a

two-dimensional map with ITD on one axis and pitch period

on the other. The example in Figure 2 shows the RTNN (bot-

tom) indicating that the source nearest the right side of the

head has a large pitch period, while the source towards the

left side of the head has a small pitch period. Note that a

source to the left of the head will exhibit a response in the

right side of the ITD coincidence detector layer and, hence,

also the RTNN (and vice versa).

The advantage of this approach is the joint representa-

tion of F0 and ITD within the same ‘feature map’. Multi-

ple sources tend to be separated on this map since it is un-

likely that two sources will exhibit the same pitch and loca-

tion simultaneously. Indeed, given a static spatial separation

of the sources, there is no need for explicit tracking of F0

or location: we simply connect the closest activity regions

over time. A further advantage is that source separation can

proceed within-channel without reference to a dominant F0

or dominant ITD estimate as required in an across-frequency

grouping technique. Provided there is some separation in one

or both of the cues, two activity regions (in the case of two si-

multaneous talkers) can be extracted and assigned to different

sources.
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3. THE MODEL

3.1. Auditory periphery

The frequency selectivity of the basilar membrane is mod-

elled by a bank of 20 gammatone filters [13] whose centre

frequencies are equally spaced on the equivalent rectangu-

lar bandwidth (ERB) scale [14] between 100 Hz and 8 kHz.

Since the RTNN is only used to extract pitch information,

each gammatone filter output is low-pass filtered with a cutoff

frequency of 300 Hz using a 8th order Butterworth filter.

3.2. RTNN

For a node with a recurrent delay loop duration of τ whose in-

put xθ(t) is received from the ITD node tuned to an interaural

delay of θ, the update rule is:

C(t) = αxθ(t) + βxθ(t)C(t− τ) (1)

Here, C(t) is the response which is just about to enter the

recurrent delay loop and C(t−τ) is the response which is just

emerging. The weight α is an attenuator for the incoming sig-

nal which ensures some input to the recurrent delay loop re-

quired for later coincidence detection but is sufficiently small

that it does not dominate the node’s response (α = 0.2). The

second weight β determines the rate of adjustment when a

coincidence is detected and is dependent on τ such that co-

incidences at low pitches are de-emphasized [10]. Here, β
increases linearly from 3 at the smallest recurrent delay loop

length to 10 at the largest.

In the complete system, there are 20 independent net-

works, each consisting of an ITD coincidence layer coupled

to a RTNN layer (as shown in Figure 2), for each frequency

channel. The state of each channel’s RTNN is assessed every

5 ms using the mean activity over the previous 25 ms; this

is used to make an estimate of source activity: highly active

nodes indicate that the talker at that F0-ITD combination is

active. For example, if the node representing 90 Hz and an

ITD of -200 μs is active, it is likely that there is a low-pitched

voice situated to the left of the listener. Talker activity can

be grouped across time frames by associating the closest ac-

tive nodes in F0-ITD space (assuming the two talkers don’t

momentarily have the same ITD and F0).

4. EVALUATION

The system was evaluated on a number of speech mixtures

drawn from the TIdigits Corpus [15]. From this corpus, a

set of 100 randomly selected utterance pairs were created,

all of which were from male talkers. For each pair, three

target+interferer separations were generated at azimuths of

-40◦+40◦, -20◦+20◦ and -10◦+10◦. Note the target was al-

ways on the left of the azimuth midline. The signals were spa-

tialised by convolving them with head related transfer func-

tions (HRTFs) measured from a KEMAR artificial head in an

anechoic environment [16]. The two speech signals where

then combined with a signal-to-noise ratio (SNR) of 0 dB.

The SNR was calculated using the original, monaural, signals

prior to spatialisation.

Once the system had processed each mixture, a time - fre-

quency binary mask for the target talker was created from the

RTNN output. A time-frequency mask unit was set to 1 if the

target talker’s activity was greater than the mean activity for

that frequency channel, otherwise it was set to 0. However,

RTNNs cannot represent nonperiodic sounds; in order to seg-

regate unvoiced speech, a time-frequency unit was also set to

1 if there was high energy at the location of the target but no

RTNN activity.

The evaluation techniques described below require a num-

ber of resynthesized signals. To achieve this, the gammatone

filter outputs are divided into 25 ms time frames with a shift

of 5 ms to yield a time-frequency decomposition correspond-

ing to that used when generating the mask. These signals are

weighted by the binary mask and each channel is recovered

using the overlap-and-add method. These are summed across

frequencies to yield a resynthesized signal. The percentage

of target speech excluded from the segregated speech (PEL),

and the percentage of interferer included (PNR) are defined

to be [17, p. 1146]:

PEL =
∑
n e2

1(n)
∑
n I2(n)

(2)

PNR =
∑
n e2

2(n)
∑
nO2(n)

(3)

Here, I(n) is the clean target signal which has been resyn-

thesized using an a priori binary mask. The a priori binary

mask is formed by placing a 1 in any time-frequency units

where the energy in the mixed signal is within 1 dB of the

energy in the clean target speech (the regions which are dom-

inated by target speech), otherwise they are set to 0. O(n)
is the clean target signal which has been resynthesized using

the RTNN produced mask (the actual separated signal pro-

duced by our system). e1(n) is the clean target signal which

has been resynthesized using a mask in which 1s are present

at all time-frequency points which are 1 in the a priori bi-

nary mask and 0 in the RTNN produced mask (the portions

of the signal which ought to be present but are missing in the

system’s separated signal). e2(n) is the opposite of this; in

other words, e2(n) is the clean target signal which has been

resynthesized using a mask in which 1s are present at all time-

frequency points which are 1 in the RTNN produced mask and

0 in the a priori binary mask (the portions of the signal which

are present but should not be: remaining interferer).

An alternative approach for evaluating separation per-

formance was also employed which involved resynthesizing

the target and noise signals using the RTNN generated tar-

get mask. This allows the calculation of SNR (an easily

understood metric) before and after processing.
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Table 1. Separation performance for concurrent speech at dif-

ferent interferer azimuth positions in degrees; ‘pre’ denotes

SNRs before processing; ‘RTNN’ denotes SNRs after pro-

cessing and ‘a priori’ denotes ‘optimal’ SNR improvement.

±10◦ ±20◦ ±40◦ AVERAGE

SNR (dB) pre 1.64 3.13 5.19 3.32

SNR (dB) RTNN 7.60 9.45 12.51 9.90

SNR (dB) a priori 12.35 13.27 14.49 13.37

Mean PEL (%) 7.21 7.58 6.91 7.24

Mean PNR (%) 11.13 9.32 6.83 9.09

Table 1 shows SNR before and after processing, PEL and

PNR for each separation. For comparison, the SNR achieved

using the a priori binary mask is also shown. These values

are calculated for the left ear (the ear closest to the target).

Although the speech signals were mixed at 0 dB relative to

the monaural signals, the actual SNR at the left ear for the

spatialised signals will depend on the spatial separation of the

two talkers. The SNR metric shows a significant improvement

at all interferer positions (on average, a threefold improve-

ment). This is supported by low values for PNR indicating

good levels of interferer rejection. We note that performance

approaches the a priori SNR values at wider separations. Fur-

thermore, we predict that an increased sampling rate would

produce improvements in performance at smaller separations

due to the higher resolution of the ITD sensitive layer (see

Discussion).

5. DISCUSSION

A novel extension to Cariani’s original pitch analysis recur-

rent timing neural networks has been described that allows

the incorporation of ITD information to produce a joint F0-

ITD cue space. Unlike Cariani’s evaluation using synthetic

static vowels, our approach has been evaluated using a much

more challenging paradigm: concurrent real speech mixed at

an SNR of 0 dB. The results presented here indicate good

separation and the low PNR values confirm high levels of in-

terferer rejection, even for periods of unvoiced target activity.

Informal listening tests found that target speech extracted by

the system was of good quality.

Relatively wide spatial separations were employed here

by necessity of the sampling rate of the speech corpus: at 20

kHz an ITD of one sample is equivalent to an angular sepa-

ration of approximately 5.4◦. To address this issue, we have

collected a new corpus of signals using a binaural manikin at

a sampling rate of 48 kHz and work is currently concentrating

on adapting the system to this much higher sampling rate (and

hence significantly larger networks). In addition, we will test

the system on a larger range of SNRs and larger set of inter-

ferer positions. Our eventual goal is to use the system as a

front-end for automatic speech recognition (ASR).
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