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Abstract
An audio-visual localisation and tracking system for meeting
scenarios is presented which draws its inspiration from neu-
robiological processing. Meetings are recorded by a KEMAR
binaural manikin and a single camera placed directly above the
manikin. Source localisation from the binaural audio and face,
object and motion locations from the video frames are used as
input to two linked neural oscillator networks. The strength of
the connections between the two networks determines the map-
ping between activity at a particular audio azimuth and activity
at a particular visual frame column. A Hebbian learning rule is
used to establish the connection strengths. The combined net-
work segments the video and audio features and then produces
audio-visual groupings on the basis of common spatial location.
The audio-visual groupings are tracked through time using a
mechanism based upon that of the human oculomotor system
which incorporates smooth pursuit and saccadic movement.

1. Introduction
In order to produce a representation of an object, the brain must
provide a solution to the binding problem: how does the brain,
confronted with many features, encoded in many different re-
gions, draw them all together to form a perceptual whole? This
problem arises in regard to feature combination within a sin-
gle modality (e. g. the binding of edges, textures and colours
to form a visual image). However, the binding problem also
concerns the broader issue of how to link features in different
modalities, such as the association of a sound with a visual ob-
ject and possibly even a smell.

One solution to the binding problem lies in the concept of
an assembly: a large number of spatially distributed neurons
[1]. An individual neuron can be a member of several assem-
blies (each representing a different perceptual object) and hence
a mechanism is needed for identifying which cells belong to
which assemblies. von der Malsburg [2] suggests that different
assemblies could be distinguished by temporal synchronisation
of the responses of their constituent neurons. In this scheme,
segregation of perceptual objects is represented by the desyn-
chronisation of different assembly responses, and each assem-
bly is identified as a group of synchronised neurons. The ad-
vantage of synchronisation is that the extra dimension of phase
allows many simultaneous assemblies, each being desynchro-
nised with the others. In order to avoid the computational com-
plexity of assessing spike train synchronicity, von der Malsburg
and Schneider proposed a mechanism in which the mean dis-
charge response of a pool of cells is represented by an oscilla-
tor [3]. In this manner, groups of features form wholes if their
associated oscillators are synchronised and the oscillations of
unrelated wholes are desynchronised.

Although a large number of computational studies have
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e 1: Cross-correlogram of a 155 Hz complex tone spa-
d to the right by 45 degrees. The vertical line indicates
sition of the ‘spine’.

nstrated the use of neural oscillators for segregation and
ing of objects within a single modality (for a review see
few have examined their utility in computational models
ross-modality binding. In light of this, the current paper
tigates the use of neural oscillators for audio-visual group-
ing a localisation and tracking problem. The audio-visual
as collected as part of the M4 (multimodal meeting man-

project1, which is concerned with the automatic analysis
etings. Audio information is acquired from a KEMAR
ral manikin and visual cues from a single camera, placed
ly above the manikin. The goal of the system is to deter-
the spatial location of an individual participant and track
articipant through time. Four cues are extracted from
ta per frame: azimuth of the dominant audio source and

s for faces, objects and motion in the video frame.

2. Feature extraction
Audio localisation

coustic inputs to each ear of the binaural manikin are
led at a rate of 48 kHz and are processed by a model of
ditory periphery. The frequency selectivity of the basi-

embrane is modelled by a bank of 64 gammatone filters
hose centre frequencies are spaced on the equivalent rect-
ar bandwidth (ERB) scale [6] between 50 Hz and 8 kHz.
uditory nerve response is approximated by half-wave rec-
g and square root compressing the output of each filter.
teraural time difference (ITD) is an important cue used by
man auditory system to determine the direction of a sound

e [7]. The conventional technique for estimating the ITD
ignal is by calculating a cross-correlation function using

ttp://www.m4project.org



the left and right channels in each frequency band:

C(i, t, τ ) =
N−1X
k=0

al(i, t − k)ar(i, t − k − τ )w(k). (1)

Here, τ is the delay and ae(i, t) is the simulated auditory nerve
activity in channel i at time t for ear e ∈ {l, r}. The cross-
correlation for channel i is computed using a 80 ms rectangular
window w(t) with lag steps equal to the sampling period (20.8
µs), up to a maximum lag of ±1 ms. We note that this approach
is equivalent to the neural coincidence model of Jeffress [8].

Computing C(i, t, τ ) for each channel i gives a cross-
correlogram, which is computed at 40 ms intervals resulting in
a frame rate of 25 fps to match the video input. Since there
may be small time differences between sounds reaching the two
ears, channels dominated by a particular source will exhibit a
peak at a correlation lag related to the azimuth of the source.
For example, Fig. 1 shows the cross-correlogram for a 155 Hz
complex tone which has been spatialised to the right by 45 de-
grees. When the sound source dominates a number of frequency
channels, a characteristic ‘spine’ can be observed at the source
azimuth. This can be enhanced by summing across frequency;
the largest peak in the summary function then corresponds to
the azimuth of the sound source.

2.2. Video features

Since the meetings are conducted in a relatively unchanging en-
vironment (i.e., the cameras are stationary and the lighting is
consistent), a number of simple (and computationally efficient)
video features are employed. The video frame is digitally cap-
tured and encoded using the 24 bit RGB colour model. For each
pixel, 8 bits each are used for red, green and blue.

Visual objects are detected by calculating the difference be-
tween the current frame and a reference frame (usually found at
the beginning of a recording when the room is still empty) and
motion is detected by calculating the difference between adja-
cent frames. These difference images are thresholded to pro-
duce binary masks. In order to produce a binary mask for face
regions, we identify those pixels whose RGB values satisfy the
following function [9]:

R > 95 ∧ G > 40 ∧ B > 20 ∧ ∆RGB > 15

∧|R − G| > 15 ∧ R > G ∧ R > B (2)

where ∆RGB = max(R,G, B) − min(R, G, B). In each of
the three masks, spurious pixels are discarded by using a re-
gion growth algorithm in which a pixel is only kept if its eight
immediate neighbours are also ‘on’. These candidate regions
can still, however, be of any size and shape. To eliminate small
regions, all groups whose area is less than a given size are dis-
carded (300 pixels for skin-coloured regions and 3000 pixels
for all others). An additional stage is included to produce the
final face mask. To ensure that only face shaped (oval) regions
remain, the length to breadth ratio is determined and used to
discard non-oval regions.

3. Audio-Visual localisation
Two neural oscillator networks represent visual activity (2D net-
work) and audio azimuth activity (1D network). The audio net-
work has 181 nodes each representing an integer azimuth from
-90 degrees to 90 degrees; the video network consists of a grid
of 720 × 576 nodes in which each node represents a particu-
lar pixel of the binary input mask. The three video features are
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e 2: System schematic. The cross-correlogram provides
th input to the audio network and a combination of the
video features provide input to the video network. The
-visual object locations are then used as input to the track-
stem.

ined to produce a single binary input mask. If a face region
bject region overlap then only the face region is included
final mask (the object region is discarded). This ensures

ace regions take priority over other region types. All re-
ng regions are included in the input mask. Fig. 2 shows a
atic of the system.

ach network consists of an array of oscillators based upon
ON [10]. Within LEGION, oscillators are synchronised
cing local excitatory links between them. Additionally, a

l inhibitor receives excitation from each oscillator, and in-
every oscillator in the network. This ensures that only one
of synchronised oscillators can be active at any one time.

e, separate blocks of synchronised oscillators (segments)
through the action of local excitation and global inhibi-
Thus, within-network segmentation emerges as a property
work dynamics.
order to fuse related audio and video activity, the two net-
are linked by a number of excitatory connections (placed

en azimuth nodes and video columns). The strengths of
A-V connections are determined by a two-stage process.
rst stage uses a Hebbian learning rule [11] during a train-
ase in which repeated, simultaneous video activity at col-

and audio azimuth A strengthens the link between audio
rk node A and video network column V . However, since

nlikely that the training phase will contain enough activity
erate weights for every possible audio-video pair, the sec-
hase fits a sigmoidal function to the sparse A-V mapping
sing the simplex search method [12] (see Fig. 3).
he building block of the network is a single oscillator,
consists of a reciprocally connected excitatory unit and

itory unit whose activities are represented by x and y, re-
ively

ẋ = 3x − x3 + 2 − y + Io + ρ (3)

ẏ = ε

»
γ

„
1 + tanh

x

β

«
− y

–
. (4)

ere ε, γ, and β are parameters, Io represents the input to
cillator and ρ is a noise term which assists desynchronisa-
mong different oscillator blocks. The input Io to oscillator
mbination of four factors: external input Ir, intra-network



Figure 3: Audio-visual mapping function with coincident
audio-visual activity superimposed. Grayscale value represents
probability of occurrence.

activity, inter-network activity and global inhibition

Io = Ir+
X

k∈N(j)

WjkS(xk, θx)+
X

q∈M(j)

WjqS(xq, θx)−Wzz.

(5)
Here, Wjk is the connection strength between oscillators j and
k, N is the intra-network coupling neighbourhood (four nearest
neighbours for video, two nearest neighbours for audio), M is
the inter-network coupling neighbourhood (determined by the
A-V mapping) and xk is the activity of oscillator k. An oscilla-
tor j is stimulated (Ir = 0.2) if its corresponding binary mask
input is ‘on’, otherwise it is unstimulated (Ir = −5).

The parameter θx is a threshold above which an oscillator
can affect others in the network and Wz is the weight of inhibi-
tion from the global inhibitor. S is a squashing function which
compresses oscillator activity to be within a suitable range,

S(m, θ) =
1

1 + exp(−K(m− θ))
(6)

where K determines the steepness of the sigmoidal function.
The activity of the global inhibitor is defined as

ż = σ∞ − z (7)

where σ∞ = 1 if xk ≥ θz for at least one oscillator k, and
σ∞ = 0 otherwise. If σ∞ = 1, z → 1.

Following a short period of time required for the networks
to converge on a stable segmentation result, the individual A-
V groupings can be determined. Any audio and video network
activities which occur at the same time (i. e., their oscillators are
synchronised) are said to be grouped (forming ‘A-V objects’).
Remaining audio or video activity which occurs independently
is said to be ungrouped. Any A-V objects are candidates for
object tracking.

4. Audio-Visual tracking
Object tracking is implemented using a model inspired by the
human oculomotor system. Smooth pursuit eye movements al-
low primates to follow moving objects with the eyes and are
controlled by visual feedback. Such movements are relatively
slow (eye velocity usually less than 50 deg/s). In contrast, sac-
cades are fast eye movements (maximum eye velocity greater
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Figure 4: Video frame from the evaluation sequence.

500 deg/s) that allow primates to shift gaze between sta-
y targets. However, due to delays in the visual pathway,
ccasionally necessary to combine smooth eye movements
catch-up’ saccades to catch a moving target.
the model, smooth pursuit initiation occurs when the de-

velocity estimate increases above 1 deg/s. Similarly, ter-
ion occurs when the delayed velocity estimate drops be-
deg/s. The smooth pursuit system is modelled using a

integrator to represent the velocity of an object

Ë(t) = g
“
İ − Ė(t)

”
(8)

İ = (T (t − ∆t) − T (t − ∆t − δ)) fs (9)

Ė = Ė(t − δ) + Ë(t)δ (10)

T is target position in degrees, Ė is eye velocity in deg/s
is the target velocity in deg/s. t is the time in seconds, fs
sampling rate and δ is the sampling period (1/fs). ∆t

sents the delay due to the visual pathway (100 ms in this
l). In psychophysical studies, the decay of eye velocity
the termination of pursuit has been shown to be charac-
d by an exponential with a time constant of about 90 ms
Thus, the decay time constant of the leaky integrator was
approximately 90 ms (g = 11 in Equation 8). The maxi-
eye velocity is limited to 100 deg/s.
he saccade latency (the delay before a saccade occurs after
cision has been made to trigger one) is set to 125 ms [14,
48]. However, in addition to this, a check is made imme-
y prior to the saccade occurring to confirm that a saccade
l required. Without this check, small and unnecessary sac-
were observed. The saccade duration was fixed to be 74

5, p. 1778].
saccade is triggered when the retinal slip (relative motion
target with respect to the fovea) is less than 5 deg/s and
sitional error is greater than 1 deg (RS < 5∧PE > 1.1).
g a saccade, Equation 10 becomes

Ė = Ė(t − δ) + Ë(t)δ + J̇ (11)

= PE/SD represents the saccade velocity where PE
positional error when the saccade is initiated and SD is
ccade duration. Behavioural studies have shown that the
th motor command is not interrupted during catch-up sac-
but is linearly combined with the saccade [15]. Thus, we

he saccade velocity J̇ and the smooth pursuit velocity. In



Figure 5: Tracking position over time compared with manually
transcribed groundtruth position.

order to correct for the relatively large positional errors which
occurred at fixation (the correction of which is impossible in a
velocity-only model during fixation), saccades were permitted
during fixation.

Information about target position is obtained from the A-
V object closest to the current tracking position (if one exists).
This is used to update the internal representation of the target
motion (velocity and acceleration) and in turn the position of
the tracking focus. During the lifetime of an object track, it
is unlikely that audio localisation information will always be
available: for example, binaural audio localisation is not ro-
bust (especially in reverberant environments) and speakers tend
to make frequent pauses during speech. In this situation, the
tracking algorithm ‘backs off’ to tracking the nearest video fea-
ture until audio information (and hence an A-V object) becomes
available.

5. Evaluation
The system was evaluated using a recording of a single partici-
pant who moved around the room uttering a short phrase at 10
degree intervals. A representative frame is shown in Fig. 4. Fig.
5 shows the groundtruth and the audio-visual tracker positions
for the frames in which the participant was visible. It is evi-
dent that the system tracks the participant with high accuracy;
indeed, the mean error per frame across the entire sequence was
only -9.8 pixels — much less than the width of a face (26 to 46
pixels depending on the distance from the camera). It should
be noted that the relatively large errors at the beginning and end
of the sequence are largely due to part of the participant’s body
and/or face being beyond the edge of the frame. In this situ-
ation, the automatic tracker ‘backs off’ to tracking the centre
of the remaining body parts whereas the groundtruth shows the
position of the visible portion of the face.

6. Conclusions
A neurobiologically plausible approach to participant localisa-
tion and tracking has been presented. A number of features
are extracted from the audio-visual data which are then seg-
mented and subsequently grouped by two, linked, neural os-
cillator networks on the basis of the features having originated
from the same spatial position. Such A-V objects are then
tracked through time using a mechanism which draws heavily
on the neurobiological and psychophysical behaviour of the hu-
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culomotor system. The results presented for a single par-
nt show a high degree of accuracy in the system’s tracking
y and hence, implicitly, its object detection and localisa-
We also intend to use the system to track individual par-
nts in multi-participant environments and current work is
ating its performance in such situations. Preliminary re-
are encouraging.
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