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Abstract
This paper proposes a novel speech-fragment based ap-

proach for processing binaural data to improve the estimation
of speech source locations in reverberant, multi-speaker record-
ings. The technique employs two stages. First, a robust multi-
pitch tracking algorithm is used to locate local spectro-temporal
‘speech fragments’ – regions where the energy in the mixture is
dominated by a single speech source. Second, robust localisa-
tion estimates are formed by integrating interaural time differ-
ence cues over each speech fragment. The technique is applied
to the analysis of more than five hours of two-party meetings
that have been constructed from a mixture of binaural man-
nequin recordings. It is shown that estimating location at the
speech fragment level produces better results than conventional
location-estimate smoothing techniques leading to a an increase
in relative frame accuracy rate of more than 35%.

Index Terms: binaural localisation, pitch cues, speech frag-
ment integration

1. Introduction
In typical listening conditions many different sound sources can
be simultaneously active. The task of listening is essentially
that of developing a description of the individual sound sources
from the mixed acoustic signals arriving at the ears. One of the
sound source properties that this unmixing process may exploit
is source location. Evidence that the auditory system exploits
source location when processing acoustic mixtures come from
studies of ‘spatial unmasking’ – the dependency of masking
level on the relative position of masker and target sound source
[1]. Spatial unmasking arises partly due to monaural energetic
masking effects but also largely due to binaural mechanisms.
The effects can be particularly strong in situations where signif-
icant informational masking is present [2], e.g. when the target
and masker are both speech signals with similar characteristics
[3].

Despite much study, there is little agreement about how
binaural information is used in the processing of simultane-
ous sources beyond the fact that it exploits two cues to sound
source location: interaural time difference (ITD), the direction-
dependent delay in the time of arrival of the sound at the ear
furthest from the source; and interaural level difference (ILD),
the direction-dependent level difference between the two ears
caused mainly by the manner in which the head shields the ear
which is turned away from the sound source.
A naı̈ve strategy for source separation would be to com-

pute ITD and ILD estimates within narrow frequency bands and
over small time windows, and then to cluster time-frequency re-
gions on the basis of these ITD/ILD features. However, ITD
estimates in narrow frequency bands are often ambiguous, par-
ticularly in quasi-periodic regions of the signal. Furthermore,
in most listening environments, reverberation renders instanta-

neous ITD/ILD estimates highly unreliable. Indeed, there is
evidence that the ear is unable to exploit ITD alone to group
energy across frequency bands [4]. It appears that only by pro-
cessing cues over extended spectro-temporal regions can ITD
cues provide reliable location estimates.

Another possibility is that location cues are exploited at a
more central level of auditory processing. Stern et al. suggest
that energy is first clustered using more robust grouping cues
and ITD is then used to segregate grouped components [5] .This
is consistent with the recent ‘glimpsing’ model of speech per-
ception [6] which suggests that speech perception is built upon
reliable ‘glimpses’ of the speech signal that occur in spectro-
temporal regions where the SNR is favourable. In such models,
location may be acting as a tag that enables the robust sequen-
tial grouping of acoustic fragments to form competing auditory
streams. Additionally, the location tags may be used by atten-
tional processes that monitor glimpses from a certain direction.

This paper investigates a speech fragment-based model of
source localisation and uses reverberant multi-speaker data for
evaluation. A robust multi-pitch tracking algorithm locates
pitch-track segments that are used to group spectro-temporal
speech fragments. ITD-based source location estimated by sys-
tems that exploit these fragments are compared to the estimates
of systems that process ITD cues in the absence of pitch infor-
mation. The rest of the paper is structured as follows: Section
2 describes the extraction of auditory cues and the speech frag-
ment generation which is followed by a discussion of the inte-
gration of cues in Section 3. Finally Sections 4, 5 and 6 provide
experimental details, results and conclusions.

2. Extraction of auditory cues

Both the pitch and localisation cues are based on an auditory
front-end simulating the cochlear frequency analysis of the hu-
man ear. The model is implemented using a filterbank consist-
ing of 64 overlapping bandpass gammatone filters, with cen-
tre frequencies spaced uniformly on the equivalent rectangular
bandwith (ERB) scale [7] between 50Hz and 8000Hz. The out-
put of the filterbank is used to generate correlograms. The lo-
calisation cues, an estimate of the ITD in each frequency band,
are obtained by cross-correlating the filtered left and right ear
signals and inspecting the cross-correlogram covering time lags
corresponding to the range −90◦ to +90◦ azimuth. The pitch
is estimated on the basis of an auto-correlogram of the average
left and right ear signals corresponding to a pitch period of up
to 15ms.

2.1. Binaural Localisation Cues

A running cross-correlation is computed on the output of the
gammatone filter. At a given time step t, the cross-correlation
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CC(i, τ, t) for channel i with a time lag τ is given by:

CC(i, τ, t) = L(i, t)∗R(i, t− τ )+K ∗CC(i, τ, t−1), (1)

where L(i, t) and R(i, t) are the left and right ear output of

filterbank i respectively. K = exp(−t/λ) and for the experi-
ments reported here, the exponential time constant, λ was set to
8ms, which was found to be a good trade off – long enough to
produce robust correlations and short enough to approximately
satisfy the assumption of stationarity over the correlation win-
dow.

2.2. Pitch-based fragment generation

The pitch-based fragments are generated from a signal produced
by averaging the left and right ear signals. After averaging, the
fragment generation procedure follows that of the system de-
signed for monaural signals presented by Ma et al. [8]. In brief,
the system first computes the auto-correlogram for the signal,
i.e. a running short-time autocorrelation is computed on the
output of each gammatone filter, using a 30 ms Hann window.
At a given time step t, the scaled autocorrelation A(i, τ, t) for
channel i with a time lag τ is given by

A(i, τ, t) =
1

K − τ

K−1X
k=0

g(i, t+k)w(k)g(i, t+k−τ )w(k−τ )

(2)
where g is the output of the gammatone filterbank and w is a
local Hann window of widthK time steps.
For periodic sounds, a frame of the auto-correlogram ex-

hibits symmetrical tree-like structures whose stems are located
on delays that correspond to multiples of the pitch period. When
multiple sources are present the stems for each source fall at
different delays, and the position of the stems within each fre-
quency band will indicate which source dominates at that par-
ticular frequency. From analysis of the overlapping stem pat-
terns, multiple local pitch estimates are computed. A simple
rule-based tracker is then used to form potentially overlapping
pitch track segments that extend through time. Each pitch track
is then used to recruit a spectro-temporal fragment. In each time
frame the frequency channels that have correlogram peaks cor-
responding to the pitch track value are recruited into that track’s
fragment. When more than one pitch track is simultaneously
active, channels are assigned to tracks according to which pitch
track best explains the auto correlogram peaks. Full details of
the pitch-fragment generation system can be found in [8].

3. Integration of auditory cues
The standard approach for determining ITDs is to look for
peaks in the summed cross-correlogram (e.g. Jeffress’ model
[9]). These techniques may be adequate in situations where one
source dominates the acoustic mixture – e.g. multiparty conver-
sations in quiet rooms where speakers are taking turns to speak.
However, in multi-source scenarios a more sophisticated analy-
sis of the cross-correlogram is needed to distinguish peaks cor-
responding to the different sources from peaks arising from a
fusion of the ITDs from multiple sources and reverberation.
Much recent work has focused on the analysis of simultane-

ous speech signals, exploring the idea that even in multi-speaker
scenarios, small time-frequency regions exists which are domi-
nated by just one speaker [6]. This idea was used by Faller and
Merimaa [10] who proposed an interaural coherence measure
which can be used to identify individual time-frequency points

that are dominated by a single speaker, and hence have reliable
ITD information. The approach explored in this paper is re-
lated to that of Faller and Merimaa, but instead of identifying
individual points, it locates extended spectro-temporal regions
of single source dominance. Also related is the recent work of
Wrigley and Brown who demonstrated the joint use of pitch and
localisation cues to improve sound source separation [11].

The experimental framework incorporates two systems,
each making use of the speech fragment information in dif-
ferent ways. The first system uses the fragment grouping on
a per-frame basis; i.e. information regarding the allocation of
the frequency channels to either source is used, and the cross-
correlogram is summed separately for channels believed to be
dominated by separate sources (IntFrame). If no fragments
are identified for a frame, the system reverts back to integrat-
ing cues across all frequency channels. The second system,
(IntFullFrag) makes use of the full spectro-temporal extent of
the speech fragment. That is, a single location estimate is ob-
tained for a particular fragment by integrating over the part of
the cross-correlogram corresponding to the spectro-temporal re-
gions of the fragment. In this scheme a fragment’s location es-
timate does not become available until the fragment has ended,
however, at the expense of a short latency, the technique remains
compatible with online processing. Like the IntFrame system,
in the absence of fragment information, this system integrates
over all frequency channels.

For comparison two baseline systems have been tested, both
of which are based only on localisation cues. The first baseline
system implements the standard approach of estimating the ITD
from the largest peak in the cross-correlogram summed over all
frequency channels (MaxSum). The second baseline system is a
leaky-integrated version of the first baseline system (LeakMax-
Sum) with a mean lifetime chosen to match the average length
of a fragment ∼ 30ms; hence the system is an ITD-only system
with a comparable amount of memory to that of the IntFullFrag
systems1.

4. Experimental framework
To simulate a natural environment with spatialised multi-
speaker scenarios, a set of binaural recordings of digit strings
was mixed into longer segments modelling different speaker in-
teraction behaviours.

4.1. Binaural data recordings

A subset of the TIdigits corpus was rerecorded in a standard,
office-style room of dimensions 4.09×3.35×2.35m using a
loudspeaker and a binaural mannequin [12]. No attempt was
made to reduce reverberation within the room apart from stan-
dard furnishing; the floor was covered with commercial carpet.

Two Brüel & Kjær (B&K) Type 4190 1/2-inch micro-
phones, each connected to a B&K Type 2669 preamplifier, were
mounted within a B&K Type 4128C head and torso simulator.
These were attached to a B&K Type 2690-0S2 Nexus condi-
tioning amplifier which was, in turn, attached to an M-Audio
Firewire Audiophile Mobile Recording Interface under the con-
trol of a laptop computer. Original TIdigit utterances were
played using a Denon PMA-250SE amplifier coupled to a Mis-
sion 760i 2-way reflex loudspeaker. The playback and recording

1In fact, the LeakMaxSum will have access to more ‘memory’ than
the IntFullFrag system which only makes use of temporally integrated
information when fragments are available and otherwise reverts back to
theMaxSum system.
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processes were controlled by inhouse software and the captured
audio data (sampled at a rate of 48 kHz) was saved directly to
hard disk. The laptop computer and external hard disk were
positioned outside of the room to limit noise.

The mannequin was placed on a padded office chair in the
middle of the room facing one wall. The loudspeaker was po-
sitioned along an arc, which maintained a constant distance of
1.5m from the mannequin, at each of the following azimuths:
0◦, ±5◦, ±10◦, ±20◦ and ±40◦. The loudspeaker was posi-
tioned at a height of 0.9m above the floor. Prior to recording at
each azimuth, a calibration recording was made for each micro-
phone using a B&K Type 4231 Sound Calibrator. Recordings
were made overnight to limit the amount of external noise.

4.2. Mixing multi-speaker segments

The binaural recordings of TIdigits were mixed into 1 minute
segments, each with two speakers. Different ‘configurations’
enabled the study of specific factors on localisation perfor-
mance such as speaker gender (male/female, female/female
and male/male) and inter speaker distance (either spread out
(‘broad’) or closer (’narrow’)).

Further, the segments were mixed according to one of three
different styles of speaker interaction: 1) ‘Turn taking’ style,
where each speaker takes it in turn to speak and there is no
speaker overlap. 2) ‘Simultaneous’ style, where both speakers
are active all the time and can be considered to be fully over-
lapping, and 3) ‘Overlapping’ style in which speakers take it
in turns but speaker turns partially overlap. Whereas the ‘turn
taking’ and ‘simultaneous’ styles described above have 0% and
100% overlap respectively, the ‘overlapping’ style segments
have periods with either one or two active speakers in approxi-
mately even distribution.

19 segments were mixed for each combination of style,
gender composition and speaker position giving a total of 342
(19× 3× 3× 2) minutes of data. For each segment, the choice
of speaker identities was randomised, as was the chosen digit
strings used to make the segments.

4.3. System evaluation and methodology

To evaluate the localisation performance of the system, a frame
level metric, denoted Acc is used. It is the number of frames,
where the estimated localisation angle, θ̂n, is close enough to
the true angle, θn, to be considered correct:

Acc =
1

N

NX
n=1

δ
∗(θn, θ̂n) (3)

where N is the number of frames. δ∗ is defined as

δ
∗(a, b) =

j
= 1 if |a − b| < B
= 0 otherwise

(4)

where B is a grace boundary around the true angle within which
the estimated angle is considered correct. This grace boundary
was fixed at 3◦.

5. Results and analysis
Figure 1 shows the results of testing the full range of systems
described above on the ‘turn taking’, ‘simultaneous’ and ‘over-
lap’ data in the condition with a male and a female speaker
placed at −40 and 40 azimuth respectively. The bars on the
far left represent the Acc score for the ‘turn taking’ data. The

most basic baseline system (MaxSum) has a frame accuracy of
just over 26%. However, when this system is augmented with
the frame-wise fragment cues, the accuracy drops to 24% (Int-
Frame). Although the IntFrame system is using fragment def-
initions to provide cross-frequency grouping, this information
does not help to improve the ITD estimates. The reason is that
there is only ever one active speaker in this condition. Compare
this to the ‘simultaneous’ segment case. Here the more difficult
task of assigning location estimates to two simultaneous speak-
ers leads to a reduced baseline frame accuracy for the MaxSum
system of just under 17%, but using the frame-level fragment
constraints now improves the accuracy significantly to above
28%. In the ‘overlapping’ data, the IntFrame system produces
significant but somewhat smaller improvements.

turn taking simultaneous overlapping 
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Figure 1: Acc results from applying the different localisation
methods to the ‘turn taking’, ‘simultaneous’ and the ‘overlap-
ping’ segments for the male/female condition at -40/40 azimuth.
All results are averaged over 19 segments for each condition,
and the error bars indicate standard error.

The IntFullFrag system, which makes use of the fragment
information in both frequency and time, significantly improves
the baseline performances for all data styles. For the ‘turn tak-
ing’ data accuracy increased to 36%. When tested on the ‘si-
multaneous’ and ‘overlapping’ data similar large improvements
are observed. This increase in accuracy can not be replicated by
smoothing across time in the absence of fragment knowledge,
as can be seen by examining the results of the LeakIntMaxSum
system. For all the data styles, LeakIntMaxSum outperforms
the MaxSum system, but it does not achieve as good a perfor-
mance as the system which integrates across fragments. There
was a consistent benefit of the IntFullFrag system over both the
MaxSum and LeakIntMaxSum systems when testing on all data
styles and on all gender and speaker position conditions.
Results of testing contrasting conditions were analysed in

more detail. A clearer picture of system performance can be
gained by examining the complete distribution of the localisa-
tion estimates for a given condition. Figure 2 shows the his-
tograms of the localisation estimates for two systems on two
different conditions: the MaxSum system and the IntFullFrag
system on the ‘broad’ and ‘narrow’ speaker position conditions;
all the histograms are for a male/female mixture.
By comparing the top row of Figure 2 (‘broad’) to the bot-

tom row (‘narrow’) it can be seen that when applying both
systems to the ‘narrow’ speaker positions, the localisation es-
timates become more narrowly distributed around the correct
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Figure 2: Histograms for location estimates for broad and nar-
row locations of speakers. All data from testing on 19 ‘simulta-
neous’ files for the condition using a male a female speaker are
represented.

positions. The associated frame accuracy scores increase from
22.5% to almost 42%.
The reliability of the pitch fragment generation is highly

dependent on the underlying multipitch tracking algorithm. For
this, it is important that the pitches of competing sources are
resolvable, and that unambiguous track continuations can be
found. One might suspect that mixtures with same gender
speakers would cause more confusion due to the higher occur-
rence of overlapping pitch regions. Surprisingly, as can be seen
in Figure 3, where the contours of the localisation histograms
for all ‘simultaneous’ segments with different gender compo-
sitions are plotted, gender composition does not have a large
effect on the distribution of the localisation estimates. The ac-
companying frame accuracies vary by less than 1%, and the
‘turn taking’ and ‘overlapping’ segments display a similar re-
sult.
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Figure 3: Histogram contours for location estimates for differ-
ent gender combinations. The curves are almost identical. All
data from testing on 19 ‘simultaneous’ files for the different gen-
der combinations are represented.

6. Conclusions
A novel speech-fragment based processing of binaural data has
been proposed to improve the estimation of speech source loca-
tions in reverberant multi-speaker recordings. The technique al-
lows robust location estimates to be produced from noisy cross-
correlogram ITD cues by integrating over spectro-temporal re-
gions which are dominated by a single source. We have shown
that such speech fragments provide information which, when

taken into account when extracting localisation estimates, can
improve the frame localisation accuracy for real, reverberant
recordings. The systems presented have all operated on low-
level cues in a bottom up manner; future work will look at in-
corporating these techniques into a more sophisticated system
with both bottom-up and top-down components.
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