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Abstract. A speech separation system is described in which sources
are represented in a joint interaural time difference-fundamental fre-
quency (ITD-F0) cue space. Traditionally, recurrent timing neural net-
works (RTNNs) have been used only to extract periodicity information;
in this study, this type of network is extended in two ways. Firstly, a
coincidence detector layer is introduced, each node of which is tuned
to a particular ITD; secondly, the RTNN is extended to become two-
dimensional to allow periodicity analysis to be performed at each best-
ITD. Thus, one axis of the RTNN represents F0 and the other ITD allow-
ing sources to be segregated on the basis of their separation in ITD-F0
space. Source segregation is performed within individual frequency chan-
nels without recourse to across-channel estimates of F0 or ITD that are
commonly used in auditory scene analysis approaches. The system is
evaluated on spatialised speech signals using energy-based metrics and
automatic speech recognition.

1 Introduction

When listening in natural environments, the ear is bombarded with energy from
multiple sound sources. Despite these sounds being mixed together, the human
auditory system has the ability to analyse and extract cognitive representations
for the individual sounds that are present—possibly performing this task simul-
taneously for multiple sources. It has been proposed that the acoustic signal
is subjected to an auditory scene analysis in which a number of cues are ex-
tracted and used to segregate sounds on the basis of them ‘belonging’ to same
physical source [1]. Such cues include common periodicity, common onset/offset,
proximity in frequency, etc.

Human speech perception is robust even in very challenging acoustic environ-
ments; conversely, automatic speech recognition (ASR) systems can be suscep-
tible to relatively small changes in the background acoustics. For many years,
there has been interest in developing computational models of auditory scene
analysis (CASA; see [2] for a review) and one use of such models is as an aide to
ASR systems. In this paper, we present a novel technique of computing a joint
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harmonicity-location cue in a neurobiologically plausible manner which can be
used to segregate concurrent talkers and produce a mask for use with ‘missing
data’ automatic speech recognisers [3].

The remainder of this article is organized as follows. The next section describes
the two grouping cues that will be used by our system. Section 3 provides a brief
overview of the competing approaches to neural representations of sounds. Follow-
ing this, recurrent timing neural networks (RTNNs) are described in detail. This
is followed by the implementation details of the auditory front end and the way in
which this is coupled to an array of RTNNs. We present a number of evaluation
techniques which have been used to assess the system and describe their results.
We conclude with a discussion of the presented work and directions for future work.

2 Grouping Cues

2.1 Harmonicity

Fundamental frequency (F0) is a potent grouping cue. When listening, harmoni-
cally related components tend to form perceptual wholes (streams), whereas dif-
ferences in F0 promote segregation. For example, Brokx and Nooteboom found
that listeners were better able to identify two simultaneous speech utterances if
they had different F0s [4].

Further support for the role of F0 in grouping comes from a number of studies
which have investigated the perception of ‘double vowels’. In this paradigm, a
pair of steady-state, synthetic vowels are presented simultaneously, with identical
onset and offset, and subjects are required to identify both vowels. Scheffers
[5] found that listeners were able to identify both simultaneous vowels more
accurately when they were on different F0s than when they were on the same
F0. From these studies, it was proposed that a F0-guided segregation strategy
is used to separate, and subsequently identify, simultaneous sounds.

Despite the fact that listeners’ recognition does improve with increasing F0,
doubt has been cast upon the proposed F0-guided segregation strategy. Bird and
Darwin [6] investigated the mechanisms by which the auditory system exploits F0
differences in separating two sentence-length utterances. They used a stimulus in
which the low-pass part of the target sentence had the same F0 as the high-pass
part of the interfering sentence. The remaining parts shared the same variable
F0. If the auditory system relies on global mechanisms, performance would be
impaired due to inappropriate grouping of low- and high-pass parts. It was found
that listener performance on the band swapped stimuli was the same as on the
unmanipulated stimuli up to 2 semitones. Thus, across-frequency grouping of
components across the low- and high-frequency regions only occurred for F0
differences of 5 semitones and above, but not 2 semitones and below.

2.2 Location

Listeners can also take advantage of the differing signals reaching the two ears
to determine the direction of a sound source [7]. Provided a sound is not in
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the median plane1, sound energy will reach the closer ear slightly before the
further ear and also with a slightly higher intensity. These two cues are referred
to as interaural time difference (ITD) and interaural intensity difference (IID),
the latter caused by ‘shadowing’ due to the head. ITD will be the focus in this
study. ITDs range from 0 s for a sound directly in front of the listener’s head
(i.e., at an azimuth of ±0◦) to about 690μs for a sound directly opposite one of
the ears (i.e., at an azimuth of ±90◦).

In general, the constituent energies of a sound originating from the same loca-
tion will share approximately the same ITD (we note, however, that ITD coher-
ence is eroded in reverberant conditions; see [2, Chap. 7]). Thus, across-frequency
grouping by ITD ought to provide a powerful mechanism for segregating mul-
tiple voices. Indeed, across-frequency grouping by ITD has been employed by
computational models of voice separation (e.g., [8,9]).

However, analogous to F0-based segregation, there is also evidence that across-
frequency grouping does not occur for interaural time difference (ITD). A number
of studies have drawn across-frequency grouping by ITD into question; Edmonds
and Culling [10] studied this using target and interferer pairings each of which
had been low- and high-pass filtered. Even when the low-pass portion of the
target and the high-pass portion of the interferer were placed at the same ITD
and the remaining portions placed at a different ITD, listeners performed as
well as when both target portions were presented at a consistent ITD. When
both target and interferer are placed at the same ITD, performance was signif-
icantly reduced. This suggests that the auditory system exploits differences in
ITD independently within each frequency channel.

3 Neural Mechanisms

The precise mechanism by which the auditory system can exploit different group-
ing cues (the ‘neural code’) remains unclear. Taking the example of harmonicity,
theories of pitch perception can be considered to lie on a continuum with ‘place
code’ models and ‘temporal code’ models at the extremities. The place code
states that the pitch of a periodic sound corresponds to the position of maxi-
mum excitation in some tonotopically organised site in the brain. In contrast,
temporal models of pitch perception use the temporal fine structure of the au-
ditory nerve firings to determine the pitch.

A class of neural networks called timing nets have been suggested as a means
of explaining how the auditory system uses temporally-coded input to produce
meaningful outputs [11,12]. Such networks consist of coincidence detectors and
delay lines and can be considered to encapsulate a range of architectures which em-
ploy analyses of interspike intervals (e.g., auto-correlation and cross-correlation).
A specific form of timing nets called recurrent timing neural networks (RTNNs)
requires only one spike pattern as input and has been successfully used for peri-
odicity analysis [12]. It should be emphasised, however, that the stimuli used in
1 A vertical plane passing through the head such that all points on the plane are

equidistant from both ears.
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[12] consisted of synthetic, stationary F0s. In the study presented here, we extend
this work to operate on natural speech and extend the network architecture such
that interaural time delay is also represented within the same network. This novel
architecture allows concurrent speech to be separated on the basis of a joint F0-
location cue without need for across-channel grouping: all processing is strictly
within-channel.

4 Recurrent Timing Neural Networks

An RTNN consists of a bank of coincidence detectors, all operating on the same
stimulus; Fig. 1(b). Each node of the network has a recurrent input exhibiting a
slightly different delay; Fig. 1(a). The pattern circulating in the recurrent delay
loop re-emerges after τ milliseconds; this is then compared with the stimulus
arriving at the node; if a coincidence is detected, the amplitude of the delay
loop input is increased by a certain factor. Regardless of the detection of a
coincidence, an attenuated version of the incoming signal is fed into the delay
line: without this, there would be no circulating signal to produce coincidences.
Thus, stimulus periodicities equal to a node’s recurrent delay will be emphasised
by that node. Over time, repeating temporal patterns are enhanced relative to
the rest of the stimulus. Furthermore, multiple repeating patterns with different
periodicities can be detected and encoded by such networks. Cariani showed that
such a relatively simple network was able to successfully separate up to three
concurrent synthetic vowels [12].

In this study, we wish to represent both pitch information and ITD information
in the same feature space. To achieve this, we make two important alterations to
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Fig. 1. (a) Coincidence detector with recurrent delay loop. (b) A group of coincidence
detectors with recurrent delay loops of increasing length form a recurrent timing neu-
ral network (RTNN). Note that all nodes in the RTNN receive the same input. (c)
2D RTNN (bottom layer) with extra coincidence detector layer (top) allowing joint
estimation of F0 and ITD. Downward connections are only shown for the front and
back rows. Recurrent delay loops for the RTNN layer are omitted for clarity. xL(t) and
xR(t) represent signals from the left and right ears respectively. Solid nodes represent
activated coincidence detectors.
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the architecture shown in Fig. 1(b). In order to compute the ITD feature, a one-
dimensional row of coincidence detectors coupled by a delay line is introduced. In
our system, 41 nodes are used, each coupled by a delay of equal duration (1 sample
at 20 kHz or 50μs). The end nodes of this row each receive one of the individual
ear signals as shown in Fig. 1(c). Each signal propagates down the row; in essence,
this performs a cross-correlationanalysis equivalent to Jeffress’ neural coincidence
model of sound localisation [13]. Hence, the ITD of sounds to the right of the head
are represented by coincidences in the left-hand half of the delay line (since they
reach the right ear first and gain a headstart down the delay line travelling toward
the left-hand edge) and vice versa.

Functionally, the delay line has the effect of performing an initial stage of
source separation: activities due to spatially distinct sound sources will be emit-
ted by their corresponding delay line node. At any one time, all nodes in the
delay line will be emitting activity of some form (although only a small number
will be responding strongly to sources at their best-ITD). In order to perform
periodicity analysis on the output of each of these nodes, the one-dimensional
network architecture shown in Fig. 1(b) is replicated to create a two-dimensional
network in which each column performs periodicity analysis on the output of a
single ITD delay line node; see Fig. 1(c). The activity of the two-dimensional
layer, therefore, is a map with ITD on one axis and pitch on the other. Contin-
uing the example shown in Fig. 1(c), the two-dimensional network is showing
that the source nearest the right side of the head has a large pitch period, while
the source towards the left side of the head has a small pitch period.

The ability to represent both F0 and ITD on the same feature space, allows
the model to avoid a common problem in CASA: when multiple concurrent
sources are present, how is the correct ITD associated with the correct F0? The
two features are commonly computed in distinct feature spaces. In this model,
they are automatically associated. Furthermore, it is easier to separate multiple
sources in this feature space since it is unlikely that two sources will exhibit
the same pitch and location simultaneously, thus being represented in different
areas. Indeed, given a static separation of the sources, there is no need for explicit
tracking of F0 or location: we simply connect the closest activity regions over
time. A further advantage is that source separation can proceed within-channel
without reference to a dominant F0 or dominant ITD estimate as required in an
across-frequency grouping technique. Provided there is some separation in one
or both of the cues, two activity regions (in the case of two simultaneous talkers)
can be extracted and assigned to different sources.

5 The Model

5.1 Auditory Periphery

A bank of 20 gammatone filters [14] with overlapping passbands simulate the
frequency analysis performed by the basilar membrane. Their centre frequencies
range from 100Hz to 8 kHz and are equally spaced on the equivalent rectangular
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bandwidth (ERB) scale [15]. A gammatone filter of order n and centre frequency
f Hz is defined as:

gt(t) = tn−1 exp(−2πbt) cos(2πft + φ)H(t) (1)

where f is the centre frequency, φ is phase, b is related to bandwidth, and H(t)
is the unit step (Heaviside) function defined as H(t) = 1 if t ≥ 0, H(t) = 0
otherwise. Here, we use fourth-order gammatone filters. Since later stages of
the model only require periodicity information, the auditory nerve response is
approximated by half-wave rectifying and cube root compressing the output of
each filter.

5.2 RTNN

The RTNN layer consists of a grid of independent (i.e., unconnected) coincidence
detectors with an input from the ITD estimation layer (described above) and a
recurrent delay loop. For a node with a recurrent delay loop duration of τ whose
input xθ(t) is received from the ITD node tuned to an interaural delay of θ, the
update rule is:

C(t) = αxθ(t) + βxθ(t)C(t − τ) . (2)

The output of the node (and, hence, also about to enter the recurrent delay loop)
is denoted by C(t); C(t−τ) is the response which is just emerging from the delay
loop. To ensure some form of signal is always circulating in the delay loop to
allow coincidences to occur, α acts as an attenuator for the incoming signal. Note
that α is sufficiently small so as not to dominate the node’s response (α = 0.2).
Should a coincidence occur, the weight β determines the rate of adjustment and
is dependent on τ such that coincidences at low pitches are de-emphasized [12].
Here, β increases linearly from 3 at the smallest recurrent delay loop length to
10 at the largest.

In order to perform the joint pitch-ITD analysis on each auditory nerve centre
frequency, the model employs 20 independent networks (of the form shown in
Fig. 1(c)), one for each frequency channel. Network activity is captured using
a sliding temporal window in which activity over the duration of the window
is averaged. In our model, we use a window size of 25ms and a temporal shift
of 5 ms. Therefore, for every frequency channel, a sequence of two-dimensional
activity plots is built up over time.

Ultimately, the system should allow concurrent speakers to be separated and
be transcribed by an automatic speech recognition system. Thus, it is necessary
to know, at any time-frequency point during the signal, whether that point is
dominated by the target speech or by some form of interference. The network
activity plots (one generated every 5ms per frequency channel) can be used
to make an estimate of talker activity at a particular time-frequency point: a
highly active node relative to the rest of the network indicates that the source at
that F0-ITD combination is active. Specifically, a time-frequency binary mask
for the target talker is created from the RTNN output. A time-frequency mask
unit is set to 1 if the target talker’s activity was greater than the target’s mean
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activity for that frequency channel, otherwise it is set to 0. Talker activity can
be grouped across time frames by associating the closest active nodes in F0-ITD
space (assuming the two talkers don’t momentarily have the same ITD and F0).

6 Evaluation

The separation technique described above was evaluated on a number of speech
mixtures drawn from the TIdigits Studio Quality Speaker-Independent
Connected-Digit Corpus [16]. The sampling rate for the corpus is 20 kHz.

In order to investigate the influence of spatial separation on the ability of
the system to successfully segregate concurrent speakers, three different tar-
get+interferer spatialisations were used: -40◦+40◦, -20◦+20◦ and -10◦+10◦. For
each scenario, 100 randomly selected utterance pairs were created, all of which
were from male talkers. To avoid duration mismatches due to differing speaking
rates across subjects, the target utterance consisted of five digits and the inter-
ferer utterance consisted of seven digits. Furthermore, the target was always on
the left of the azimuth midline. The signals were spatialised by convolving them
with head related transfer functions (HRTFs) measured from a KEMAR artifi-
cial head in an anechoic environment [17]. The two speech signals where then
combined with a signal-to-noise ratio (SNR) of 0 dB. The SNR was calculated
using the original, monaural, signals prior to spatialisation.

Three forms of evaluation were employed: assessment of the amount of target
energy lost (PEL) and interferer energy remaining (PNR) in the mask [18, p.
1146]; target speaker SNR improvement; ASR performance improvement.

All three techniques require the use of an a priori binary mask (an ‘optimal’
mask). The a priori binary mask is formed by placing a 1 in any time-frequency
units where the energy in the mixed signal is within 1 dB of the energy in the
clean target speech (the regions which are dominated by target speech), other-
wise they are set to 0. In other words, an a priori binary mask uses information
about regions of uncorrupted speech within the mixture.

6.1 Signal Energy

In order to assess the quality of segregation based upon an energy metric, it is
necessary to obtain a number of time-domain signals. These signals are derived
from a resynthesis process which uses a binary mask to determine which time-
frequency portions are required and which are to be discarded. The gammatone
filter outputs for each frequency channel are divided into frames of size equal to
the binary mask resolution. Each signal frame is then weighted by the value of
the binary mask at that time-frequency point. Individual channels are recovered
using the overlap-and-add method and these are summed across frequencies to
yield a resynthesized signal. The percentage of target speech excluded from the
segregated speech (PEL), and the percentage of interferer included (PNR) are
defined to be [18, p. 1146]:

PEL =
∑

n e2
1(n)

∑
n I2(n)

, (3)
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PNR =
∑

n e2
2(n)

∑
n O2(n)

. (4)

The clean target signal which has been resynthesized using the a priori binary
mask is denoted by I(n). O(n) is the clean target signal which has been resyn-
thesized using the RTNN produced mask (the actual separated signal produced
by our system). e1(n) is the clean target signal which has been resynthesized
using a mask in which 1s are present at all time-frequency points which are 1
in the a priori binary mask and 0 in the RTNN produced mask (the portions of
the signal which ought to be present but are missing in the system’s separated
signal). e2(n) is the opposite of this; in other words, e2(n) is the clean target
signal which has been resynthesized using a mask in which 1s are present at all
time-frequency points which are 1 in the RTNN produced mask and 0 in the
a priori binary mask (the portions of the signal which are present but should
not be: remaining interferer).

In addition to resynthesizing the target O(n), the interferer signal is also
resynthesized using the RTNN generated target mask. This allows the calculation
of SNR (an easily understood metric) before and after processing.

6.2 Automatic Speech Recognition

The third evaluation technique involves using an ASR system which can ex-
ploit the ‘missing data’ technique [3]. The task of ASR can be defined as the
assignment of an acoustic observation x to a class of speech sound C. However,
some components of x may be unreliable or missing due to an interfering sound
source. In this situation, the likelihood of the acoustic model f(x|C) cannot be
established in the usual manner. To overcome this problem, the missing data
approach partitions x into reliable and unreliable components, xr and xu. The
reliable components xr (whose values are known) are directly available to the
classifier whereas the unreliable components xu are uncertain.

More specifically, the marginal distribution f(xr|C) is used directly and the
likelihood f(xu|C) is estimated by integrating over bounds (i.e., between zero
and the observed energy) [3].

The missing data approach requires a process which identifies the reliable
and unreliable components, xr and xu. Here, we use the RTNN time-frequency
binary mask to indicate whether the acoustic evidence in each time-frequency
region is reliable; units assigned 1 in the binary mask define the reliable areas of
target speech whereas units assigned 0 represent unreliable regions.

The features used by the recogniser in this study are known as auditory rate
maps. They are computed by calculating the instantaneous Hilbert envelope
of each gammatone filter response [19]. This is smoothed by a low-pass filter
with an 8ms time constant, sampled at 5 ms intervals (to match the RTNN
binary mask resolution), and cube root compressed to give a pseudo-spectrogram
representation of auditory firing rate (Fig. 2).

Auditory rate maps were obtained for the training section of the corpus, and
were used to train 12 word-level HMMs (a silence model, ‘oh’, ‘zero’ and ‘1’ to ‘9’)
each consisting of 18 no-skip, straight-through states with observations modelled
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Fig. 2. The upper left panel shows the ratemap for the target utterance (‘587o9’) and
the interfering utterance (‘736883o’) ratemap is shown below it. Darker areas indicate
higher energy; the interfering ratemap has been truncated to match the duration of
the target. The upper right panel shows the ratemap of the two utterances which
have been spatialised to -40◦ (target) and 40◦ (interferer) and mixed at a monaural
SNR of 0 dB. The bottom right panel shows the RTNN missing data mask for the
target utterance—black pixels denote time-frequency regions dominated by the target
utterance.

by a 12 component diagonal Gaussian mixture. Training was performed using
HTK [20] and testing used Barker’s Computational Auditory Scene Analysis
Toolkit (CTK)2.

6.3 Results

The results from our model are shown in Table 1; each value represents the
average performance of 100 target and interferer utterance pairs for the three
different spatial separations. In addition, the average performance across all spa-
tial separations is included. The data in the table is split into three main classes:
PEL and PNR, SNR improvement and ASR improvement. For comparison, a pri-
ori performance is also shown for SNR and ASR approaches. These values are
calculated for the left ear (the ear closest to the target). Although the speech
signals were mixed at 0 dB relative to the monaural signals, the actual SNR at
the left ear for the spatialised signals will depend on the spatial separation of
the two talkers (hence its inclusion in the table).

On average, the RTNN system removes over 91% of the interfering utterance
with this figure rising to 94% at the most favourable separation. In addition to
this, the amount of energy incorrectly removed from the target PEL is approxi-
mately 11%. The SNR metric shows a significant improvement at all interferer
positions; on average, our model exhibits an improvement factor of 3.7 when
compared to the SNR before separation. Furthermore, it can be observed that
2 Available from http://www.dcs.shef.ac.uk/∼jon/ctk.html
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Table 1. Separation performance for concurrent speech at different interferer azimuth
positions in degrees; ‘pre’ denotes performance before processing; ‘RTNN’ denotes per-
formance after processing and ‘a priori’ denotes ‘optimal’ performance. ASR accuracy
is (100% - word error rate).

±10◦ ±20◦ ±40◦ AVERAGE

SNR (dB) pre 1.64 3.13 5.19 3.32
SNR (dB) RTNN 10.03 11.55 14.49 12.02
SNR (dB) a priori 12.35 13.27 15.01 13.54

Mean PEL (%) 10.62 12.74 10.22 11.19
Mean PNR (%) 9.99 8.42 6.02 8.14

ASR Acc. (%) pre 15.00 22.20 28.20 21.80
ASR Acc. (%) RTNN 71.60 74.60 83.40 76.53
ASR Acc. (%) a priori 93.40 94.00 94.60 94.00

SNR performance approaches the a priori values at wider separations. Such SNR
performance is supported by the low values for PNR which indicate good levels
of interferer rejection and relatively little target loss.

Importantly, the missing data ASR paradigm is tolerant to this relatively low
level of target energy loss as indicated by the ASR accuracy performance. Indeed,
the missing data ASR performance remains relatively robust when compared to
the baseline system which used a unity mask (all time-frequency units assigned
1). We note that ASR performance also approaches the a priori values at wider
angular separations. Furthermore, we predict that an increased sampling rate
would produce improvements in performance for both SNR and ASR at smaller
separations due to the higher resolution of the ITD sensitive layer (see below).

7 Conclusions

A number of grouping cues play important roles in the auditory system’s ability
to segregate competing sounds. Two of these cues are harmonicity and location.
The neural coding strategy by which such cues are represented is the subject of
continued debate. A type of neural network called recurrent timing neural net-
works has been proposed as a means of explaining how the auditory system uses
temporally-coded input to produce meaningful outputs [11,12]. Such networks
have been used successfully in previous studies to separate multiple concurrent
synthetic vowels using periodicity information.

In this study we extended such one-dimensional networks to allow the ar-
chitecture to represent sounds in a joint F0-ITD cue space. The system was
evaluated using a much more challenging paradigm than the synthetic static
vowels used in previous RTNN studies [11,12]. Here, the scenarios consist of
concurrent real speech mixed at an SNR of 0 dB. Unlike stationary vowels, each
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constituent signal contains fluctuating F0s and sections of unvoiced speech are
common.

The results shown in Table 1 indicate high levels of interferer rejection with
low levels of incorrectly removed target speech. The system retained an average
of 88.81% of target speech energy and removed over 91% of the interferer. SNR
values for the separated target speech also indicate good separation, and informal
listening tests found that target speech extracted by the system was of good
quality. SNR performance reported here (10.03dB at the smallest separation)
also compares well with those of [9], although direct comparison is difficult due to
differing stimuli and spatial separations. The energy-based mechanism allowing
unvoiced segments to be represented in the RTNN binary mask successfully
included the utterances’ fricatives. We note that the target signals commonly
used in such evaluations tend to be voiced throughout (e.g., [18]), thus avoiding
the problem of unvoiced energy.

The relatively wide spatial separations employed here were by necessity of the
sampling rate of the speech corpus: at 20 kHz an ITD of one sample is equivalent
to an angular separation of approximately 5.4◦. Thus, the smallest separation
used here corresponds to an ITD of just 3.7 samples. A means of addressing
this issue is to upsample the corpus to a higher sampling rate of, for example,
48 kHz. However, this has the effect of significantly increasing the size of the
RTNN and thus the computational load—a topic of future work. We will also
test the system on a larger range of SNRs and larger set of interferer positions.

Furthermore, an assumption made by the system is that the target is always
on the left side of the head. At each frequency, the activity of a source is rep-
resented in F0-ITD space. Over the duration of the signal, the position of this
source will fluctuate with pitch and location, hence, creating a trace through
the 3-dimensional space of F0, ITD and time. This presents a permutation am-
biguity problem similar to that encountered in frequency-domain blind source
separation approaches [21], which could be solved by combining channels that
have a similar temporal structure. Alternatively, an attentional process could
be employed which would select one of the sources to be the target based upon
some a priori knowledge of the target and track it across time (e.g., [22]).
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