An Investigation into Speaker Informed DNN Front-end for LVCSR

Yulan Liu¹, Penny Karanasou², Thomas Hain¹

¹ The Univers	ity of Sheffield, UK;	2
$^{1}{acp12yl}$,	$\texttt{t.hain} \ \texttt{@sheffield.ac.uk}$	2

Abstract

- Considerable interest in "informed training" of DNNs: DNN input is augmented with **auxiliary codes carrying** speaker information.
- This work
- -shows mathematical equivalence between speaker informed DNN training and "bias adaptation";
- -analyses influential factors such as dimension, discrimination and stability of auxiliary codes;
- -compares different speaker informed DNN training methods in LVCSR task;
- -introduces a system based on speaker classification followed by speaker informed DNN for short utterances.

This work was supported by EPSRC Programme Grant EP/I031022/1 (Natural Speech Technology).

Background				
Signal and feature level	Integration into DNN			
VTLN (Grezl2007)	LIN (Neto1995), LON (Li2010),			
fMLLR (Yu2011)	LHN (Gemello2007), fDLR (Yu2011)			
Speaker informed DNN training	Encoding speaker information			
Eigenvectors (Dupont2000),	in DNN topology			
i-vectors (Saon2013),	Output layer (Yao2012),			
speaker codes (Hamid2013),	bottleneck layer (Doddipatla2014),			
SSBN or d-vectors (Liu2014)	LHUC (Swietojanski2014)			

Speaker informed DNN training

DNN input layer:

$$x_{2,k}(t) = f\left(\sum_{m=1}^{M} x_{1,m}(t)w_{1,m,k} + b_{1,k}\right)$$

Speaker informed DNN input layer:

$$x'_{2,k}(t) = f\left(\sum_{m=1}^{M} x_{1,m}(t)w'_{1,m,k} + \sum_{l=1}^{L} c_l(t)h'_{l,k} + b'_{1,k}\right)$$

University of Cambridge, UK. ²p.karanasou@eng.cam.ac.uk

Equivalent overall bias: $\beta_k(t) = \sum_{l=1}^{L} c_l(t) h'_{l,k} + b'_{1,k}$ - With speaker dependent auxiliary codes \rightarrow

Speaker dependent equivalent bias: $\beta_k^s = \sum_{l=1}^L c_l^s h'_{l,k} + b'_{1,k}$

- Assume optimal bias \hat{b}_{k}^{s} , ideally $\beta_{k}^{s} = \hat{b}_{k}^{s}$
- force it to be true for all speakers \rightarrow

$$\begin{pmatrix} c_1^1 & c_2^1 & \cdots & c_L^1 \\ c_1^2 & c_2^2 & \cdots & c_L^2 \\ \vdots & \vdots & \ddots & \vdots \\ c_1^S & c_2^S & \cdots & c_L^S \end{pmatrix} \begin{pmatrix} h'_{1,k} \\ h'_{2,k} \\ \vdots \\ h'_{L,k} \end{pmatrix} = \begin{pmatrix} \hat{b}_k^1 - b'_{1,k} \\ \hat{b}_k^2 - b'_{1,k} \\ \vdots \\ \hat{b}_k^S - b'_{1,k} \end{pmatrix}$$

- Special case: auxiliary code matrix is a unit matrix: **Unique Binary Index Codes (UBIC)**

Auxiliary codes

. **Dimension**

- As the number of speakers increases, the dimension of auxiliary codes should also increase.

2. Discrimination

- Linear separability and orthogonality.
- Higher discriminability \rightarrow lower condition number of auxiliary code matrix.
- Related to speaker separation using the auxiliary codes.

3. Stability

- Using only local information enables fast estimation.
- Temporal noise in auxiliary codes estimation degrades numerical stability in training, and the approximation to optimal speaker dependent biases in test.

Experiments

Auxiliary codes investigated

Speake

- Speake
- Speake
- Speaker
- Speaker

[1] Y. Liu, P. Zhang and T. Hain, "Using neural network front-ends on far field multiple microphones based speech recognition," in ICASSP2014. [2] P. Karanasou, Y. Wang, M. Gales, and P. Woodland, "Adaptation of deep neural network acoustic models using factorised i-vectors," in Interspeech 2014.

Frame-wise auxiliary codes

baseli -----

SSB

SSDN posteri

Natural Speech

'I'he Of Sheffield

- AMI corpus, IHM, DNN-HMM-GMM (6 layered DNN); - Training: 77.5h from 170 speakers;

- Test: 6.9h from 27 speakers (2.5h: 10 seen speakers; 4.4h: 17 unseen speakers);

- Average utterance length: 4.2s in training, 5s in test.

- SSBN, SSDNN posteriors [1] - Speaker i-vectors [2] - Hand-crafted codes

8	dim binary index	170 dim UBIC	188 dim UBIC
er 1 (seen)	0000000	000001	000001
er 2 (seen)	0000001	000010	000010
er 3 (seen)	0000010	000100	000100
174 (unseen)	10101101	000000	000010000
175 (unseen)	10101110	000000	000100000

- 170dim UBIC + SSDNN

SSBNSeen SpkrUnseen SpkrOveralline- 21.5 25.0 23.8 13 20.3 ($5.6\%\downarrow$) 25.5 23.6 40 20.4 25.3 ($1.2\%\uparrow$) 23.5 ($1.2\%\downarrow$)N60 20.4 26.9 24.5 80 20.5 25.9 23.9 100 21.0 25.9 24.1 13 20.0 25.8 23.7 40 20.5 25.5 ($2.0\%\uparrow$) 23.7 N60 19.8 ($7.9\%\downarrow$) 26.0 23.8 aors80 20.1 25.9 23.8 100 19.9 25.6 23.5 ($1.2\%\downarrow$)					
ine - 21.5 25.0 23.8 13 20.3 $(5.6\%\downarrow)$ 25.5 23.6 40 20.4 25.3 $(1.2\%\uparrow)$ 23.5 $(1.2\%\downarrow)$ N60 20.4 26.9 24.5 80 20.5 25.9 23.9 100 21.0 25.9 24.1 13 20.0 25.8 23.7 40 20.5 25.5 $(2.0\%\uparrow)$ 23.7 NN60 19.8 $(7.9\%\downarrow)$ 26.0 23.8 100 19.9 25.6 23.5 $(1.2\%\downarrow)$		SSBN	Seen Spkr	Unseen Spkr	Overall
1320.3 $(5.6\%\downarrow)$ 25.523.64020.425.3 $(1.2\%\uparrow)$ 23.5 $(1.2\%\downarrow)$ 6020.426.924.58020.525.923.910021.025.924.11320.025.823.74020.525.5 $(2.0\%\uparrow)$ 23.7NN6019.8 $(7.9\%\downarrow)$ 26.023.810019.925.623.5 $(1.2\%\downarrow)$	ine		21.5	25.0	23.8
4020.4 25.3 $(1.2\%\uparrow)$ 23.5 $(1.2\%\downarrow)$ N6020.426.924.58020.525.923.910021.025.924.11320.025.823.74020.5 25.5 $(2.0\%\uparrow)$ 23.7NN60 19.8 $(7.9\%\downarrow)$ 26.023.810019.925.6 23.5 $(1.2\%\downarrow)$		13	20.3 (5.6%↓)	25.5	23.6
N 60 20.4 26.9 24.5 80 20.5 25.9 23.9 100 21.0 25.9 24.1 13 20.0 25.8 23.7 40 20.5 25.5 (2.0%) 23.7 40 20.5 25.5 (2.0%) 23.7 40 20.1 25.9 23.8 40 19.8 (7.9%) 26.0 23.8 40 19.9 25.6 23.5 (1.2%)		40	20.4	25.3 (1.2%↑)	23.5 (1.2%↓)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	N	60	20.4	26.9	24.5
10021.025.924.11320.025.823.74020.525.5 (2.0%)23.7NN6019.8 (7.9%)26.023.8lors8020.125.923.810019.925.623.5 (1.2%)		80	20.5	25.9	23.9
1320.025.823.74020.5 25.5 $(2.0\%\uparrow)$ 23.7NN60 19.8 $(7.9\%\downarrow)$ 26.023.8lors8020.125.923.810019.925.6 23.5 $(1.2\%\downarrow)$		100	21.0	25.9	24.1
4020.5 25.5 $(2.0\%\uparrow)$ 23.7NN60 19.8 $(7.9\%\downarrow)$ 26.023.8lors8020.125.923.810019.925.6 23.5 $(1.2\%\downarrow)$		13	20.0	25.8	23.7
NN60 19.8 (7.9% \downarrow) 26.023.8lors8020.125.923.810019.925.6 23.5 (1.2% \downarrow)		40	20.5	25.5 (2.0%↑)	23.7
lors8020.125.923.810019.925.623.5 $(1.2\%\downarrow)$	IN	60	19.8 (7.9%↓)	26.0	23.8
100 19.9 25.6 23.5 (1.2% \downarrow)	ors	80	20.1	25.9	23.8
		100	19.9	25.6	23.5 (1.2%↓)

i-vectors				
	Dim	Seen Spkr	Unseen Spkr	Overall
baseline		21.5	25.0	23.8
	13	19.3 (10.2%↓)	26.3	23.8
	40	19.6	25.4 (1.6%↑)	23.3 (2.1%↓)
i-vectors	60	20.6	26.6	24.4
	80	19.6	25.4 (1.6%↑)	23.3 (2.1%↓)
	100	19.5	26.5	24.0

Hand-crafted codes

	SSBN	Seen Spkr	Unseen Spkr	Overall
baseline	_	21.5	25.0	23.8
8 dim codes		19.6	25.6 (2.4%↑)	23.4 (1.7%↓)
170dim UBIC		19.3 (10.2%↓)	28.8	25.4
188dim UBIC	_	19.4	28.3	25.1
	13	19.4	26.4	23.8
	40	19.3 (10.2%↓)	26.8	24.1
170dim UBIC	60	19.3 (10.2%↓)	26.8	24.1
(estimated)	80	19.3 (10.2%↓)	26.8	24.1
	100	19.4	26.7	24.1

Summary

- The dimension, discriminability and stability of auxiliary codes all influence the performance in practice.

Performance

- Seen speakers
- * i-vectors and UBIC based methods achieved equivalent and the best performance;
- * SSDNN-UBIC structure enables fast adaptation on short utterances without performance degradation.
- Unseen speakers: no improvement potentially because: * i-vectors: insufficient speaker diversity in training data; * rest methods: lacking information about unseen speakers, system overfits to training.
- by 8 dim hand-crafted binary index codes.
- -Overall: i-vectors achieved best performance, followed

UNIVERSITY OF CAMBRIDGE

• Speaker informed DNN training: common mathematical framework for auxiliary codes in DNN input.

- Equivalent to using speaker dependent biases;