
THE UNIVERSITY OF SHEFFIELD

Implicit Surfaces for Modelling and Character Animation

by

Agata Opalach

THESIS SUBMITTED TO THE FACULTY OF PURE SCIENCE

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

DEPARTMENT OF COMPUTER SCIENCE

JULY 1996

c Agata Opalach 1996

Implicit Surfaces for Modelling and Character Animation

Agata Opalach

Abstract

This thesis presents the results of research into the use of implicit surfaces for computer generated char-
acter animation. The ABC approach is developed in order to maintain Appearance, to prevent unwanted
Blending and to preserve Coherence for a character. In particular, the approach addresses the issues of
surface deformation and formulates and tests a novel solution to precise contact modelling during collisions
and self-collisions. Clay-like capabilities are introduced into the technique through coherence preserving
distance constraints.

Inspired by the choreographic nature of the process of animation, a dance notation is proposed as a
motion control method for a layered model. It is combined with a procedural motion generation to provide
hybrid control over animation and to introduce automatic tunable traditional animation effects to computer
generated animation sequences. This new control method incorporates the need for a balance and interaction
between high and low levels of abstraction in character motion control.

Several animation examples are presented in support of the thesis. They show that this research has
been successful in adapting the natural, visually pleasing, “organic” look of implicit surfaces to the task
of animating or breathing life into simple expressive characters. The limitations of interactive display and
taxturing of implicit surfaces are considered to be the main disadvantage of the technique that stops them
from being applied in character animation systems. Some suggestions for improving the rendering process
are given. Several extensions and applications of the techniques developed in this thesis are proposed and
the role of implicit surfaces in character animation is discussed.

i

Acknowledgements

It is a pleasure to thank the people whose influence and assistance have been invaluable for the development
of this research. The computer graphics community is extremely welcoming and supportive. I have enjoyed
enlightening discussions with many individuals whose experience, which they have generously shared, has
been an unlimited inspiration for the final shape of this work. Many thanks go to Jules Bloomenthal for his
many suggestions and for providing me with more insight into the area of implicit surfaces. I express my
gratitude to Brian Wyvill for his constant enthusiasm and help with seeing things in a broader context. I am
indebted to Marie-Paule Gascuel whom I met at the beginning of my encounter with implicit surfaces. Our
productive discussions and fruitful collaborations have been invaluable.

While at the University of Sheffield, I very much enjoyed my time within the welcoming academic com-
munity. My special gratefulness goes to all in the Department of Computer Science. They have provided me
with perfect working conditions and friendly atmosphere without which my work would not have been as
satisfying. Sharing the ups and downs of computer graphics research with members of the Graphics Group
has been an exceptionally excellent experience. I sincerely compliment Alan Watt and Steve Maddock for
proficiently leading the group and for making it such a pleasant working environment. The interdisciplinary
discussions and exchange of stimulating ideas with members of other research groups have been rewarding.
I owe the support team a very special acknowledgment for their rescues with just about anything to do with
software or hardware, in particular Simon Addy for his infinite patience and help.

I thank Claude Puech and everyone at iMAGIS in Grenoble for their continuous support and under-
standing. Without their reassurance and encouragement the final stages of the write-up would have been
hellish.

Very special thanks are due to my supervisor, Steve Maddock, who suggested the initial concept and
supported it with constant help and inspiring comments throughout its development into this thesis. He has
generously shared his time and his ideas.

Finally, I thank all the people who have contributed to the creation of the homely feeling which has
accompanied me during all this time. I would like to thank my family for preparing solid foundations for
all the homes that I will ever be able to sculpt for myself. I thank everybody at Sorby Hall in Sheffield for
helping me to find my place in a foreign country. I am grateful to the dancers of Running Amok for the
experience of expressing my feelings through dance. I would also like to mention all my friends in many
countries around the world who have given me their continuous support.

ii

Rodzicom (For my parents)

iii

Why character animation? Why any visual means of expression? For me, a very important part of life takes
place at the non-verbal level, in the world of feelings and emotions. Some people can translate these into
words. For others, the only way to express them is through the visual channel. The visual expression has no
language constraints, it is universal, personal and fulfilling. A dance, a sculpture or a little wire tree can
sometime say more with the visual metaphore given them by their creator than the most detailed of verbal
descriptions. Then again, it is my very personal theory of life.

iv

Contents

1 Introduction 1
1.1 The thesis : 1
1.2 Overview : 3

1.2.1 Principles : 3
1.2.2 Modelling : 3
1.2.3 Animation : 3
1.2.4 Contributions : 4

2 Principles of Implicit Surfaces 5
2.1 Introduction : 5
2.2 Terminology of implicit surfaces : 5
2.3 Primitives : 7

2.3.1 Skeletal primitives : 8
2.3.2 Algebraic primitives : 13
2.3.3 Empirical primitives : 15

2.4 Blending : 16
2.4.1 Foundations : 16
2.4.2 R-functions : 18
2.4.3 Summation (

P
) : 18

2.4.4 Procedural definition : 19
2.5 Applications : 20

2.5.1 Character and human modelling : 20
2.5.2 Deformable substances : 21
2.5.3 Natural phenomena : 22
2.5.4 Surface reconstruction : 22

2.6 Summary : 23

3 The ABC of Implicit Surfaces 24
3.1 Introduction : 24
3.2 Appearance : 25

3.2.1 Appearance graph : 25
3.2.2 Definition of a model : 25
3.2.3 Positioning a model in the world : 26
3.2.4 Flexibility of the approach : 28

3.3 Blending : 29
3.3.1 Related work : 29
3.3.2 Implicit surfaces with blending properties : 31
3.3.3 A collision between objects : 33
3.3.4 Self-collision for an object : 37
3.3.5 More complex cases of collisions and self-collisions : : : : : : : : : : : : : : : : 40

3.4 Coherence : 40
3.4.1 Coherent implicit surfaces : 40
3.4.2 Distance constraints : 42

v

3.4.3 Connections within a component : 44
3.4.4 Connections between components : 46

3.5 Tripod - a case study : 48
3.6 Summary : 49

4 Animating Implicit Surfaces 52
4.1 Introduction : 52
4.2 Traditional animation principles : 53
4.3 Related work : 55

4.3.1 Layered models : 55
4.3.2 Implicit surfaces : 56

4.4 Layered model : 56
4.5 Flesh generation : 57

4.5.1 Coat of flesh : 57
4.5.2 Strand of flesh : 57

4.6 Choreographic nature of animation : 58
4.6.1 Choreographic process : 59
4.6.2 Animation process : 60
4.6.3 Dance notation : 60

4.7 Animation control : 61
4.8 Component motion : 61

4.8.1 Elementary movements : 63
4.8.2 Choreographing a sequence : 64
4.8.3 Path following : 65

4.9 Flesh motion : 67
4.9.1 Geometric restriction : 67
4.9.2 Adding physical interaction : 67

4.10 Traditional animation effects : 72
4.10.1 Squash and Stretch : 73
4.10.2 Follow Through : 73
4.10.3 Exaggeration : 77

4.11 Dino: a case study : 77
4.11.1 Designing the character : 77
4.11.2 Modelling the character : 78
4.11.3 Animating the character : 80

4.12 Summary : 83

5 Discussion and Future Work 85
5.1 Introduction : 85
5.2 Modelling using implicit surfaces : 86

5.2.1 Layered character modelling : 86
5.2.2 The ABC approach : 87
5.2.3 Specifying a model : 89

5.3 Rendering implicit surfaces : 91
5.4 Animating implicit surfaces : 93

5.4.1 Hybrid animation control : 93
5.4.2 Simplifying a model and metamorphosis : 95
5.4.3 Combining implicit surfaces with other modelling techniques : : : : : : : : : : : 96

5.5 Summary : 97

6 Conclusions 98

Bibliography 100

vi

A Raytracing Implicit Surfaces 106
A.1 Introduction : 106
A.2 Preliminaries : 107

A.2.1 Field function : 107
A.2.2 Radius in isolation : 108
A.2.3 Calculating field value : 108
A.2.4 Ray : 109
A.2.5 Ray-sphere intersection : 109
A.2.6 Data structures : 111
A.2.7 Preprocessing : 112

A.3 Ray-implicit surface intersections : 115
A.3.1 Determining influences along a ray : 115
A.3.2 Finding intersections in each interval : 117

A.4 Normal vectors : 123

B Speeding Up Grid-Data Generation for Polygonisation 126

vii

List of Figures

2.1 An isosurface of equal temperature around two heat sources : : : : : : : : : : : : : : : : 5
2.2 Basic elements of implicit surfaces : 6
2.3 Blinn's potential function : 8
2.4 Nishimura et al.'s potential function : 9
2.5 Wyvill et al.'s potential function : 9
2.6 Potential functions: Blinn, Nishimura et al., Wyvill et al. : : : : : : : : : : : : : : : : : 10
2.7 Bézier potential function : 10
2.8 Arctangent potential function : 11
2.9 Blanc and Schlick's potential function : 11
2.10 Distance as field function : 12
2.11 Euclidean and clover distances : 12
2.12 Piet Hein's superellipse : 14
2.13 The superellipse of Wyvill and Wyvill : 14
2.14 Creating a triangle using 3D hyperquadrics : 15
2.15 Function representation : 15
2.16 Ricci's union blend : 16
2.17 Middleditch and Sears' union blend : 17
2.18 Rockwood and Owen's union blend : 17
2.19 Hoffman and Hopcroft's union blend : 18
2.20 R function union blend : 19
2.21 Procedural blending : 19
2.22 Smoothing before blending : 20

3.1 An example of unwanted blending : 24
3.2 An example of coherence loss : 25
3.3 Dali's head : 26
3.4 The flexibility of appearance specification : 27
3.5 Specifying a model for a simplified arm : 28
3.6 A model of Pinocchio's head : 29
3.7 Two approaches to unwanted blending : 30
3.8 An arm: blendable vs. unblendable : 31
3.9 Implicit surfaces with blending properties: stages of the algorithm : : : : : : : : : : : : : 32
3.10 An object built of two blendable components : 32
3.11 A collision between two objects : 33
3.12 A collision between two objects: diagram : 34
3.13 A collision between three objects : 35
3.14 A collision between three objects: diagram : 35
3.15 A collision between four objects : 37
3.16 Self collision in an object : 37
3.17 Self collision in an object: joint diagram : 39
3.18 Self collision in an object: link diagram : 39
3.19 C0-discontinuity problem : 40
3.20 A more complex self-collision : 40

viii

3.21 A collision between two objects in self-collision : 41
3.22 Types of connections in a model : 42
3.23 The maximum coherence preserving distance : 42
3.24 An approximated coherence preserving distance : 43
3.25 A distance constraint maintained between two primitives : : : : : : : : : : : : : : : : : 44
3.26 Coherence maintained within a component: case 1 : 45
3.27 Coherence maintained within a component: case 2 : 45
3.28 Coherence maintained within a component: case 3 : 46
3.29 Coherence maintained within a component: case 4 : 47
3.30 Coherence maintained within a component: case 5 : 47
3.31 Coherence maintained within a component: multiple motions : : : : : : : : : : : : : : : 48
3.32 Propagation of motion in a graph : 49
3.33 A model of Tripod : 50
3.34 Tripod jumping : 51

4.1 A layered model : 57
4.2 Coat of flesh generation process : 58
4.3 Strand of flesh generation process : 59
4.4 A model of Dancer : 62
4.5 Designing a limb in local coordinates : 63
4.6 Specifying a rotatory movement for a head : 64
4.7 Specifying a plane movement for an arm : 65
4.8 Specifying a conical movement for a leg : 66
4.12 A model of Stickleg : 66
4.9 A lean to the side specified using a dance notation script : : : : : : : : : : : : : : : : : : 67
4.10 Choreography using dance notation : 68
4.11 A jump in “first” landing in “second” : 69
4.13 Lennard-Jones interaction forces : 69
4.14 Stickleg jumping: geometric vs physically based methods : : : : : : : : : : : : : : : : : 70
4.15 A lean to the side with hair : 72
4.16 Knob control of animation parameters : 73
4.17 Stickleg dancing a samba : 74
4.18 Stickleg is jumping with firm and loose flesh : 75
4.19 Dancer is jumping with hair : 76
4.20 Initial sketches for Dino and the designed appearance graph : : : : : : : : : : : : : : : : 78
4.21 The modelling script for Dino : 79
4.22 A model of Dino : 80
4.23 A storyboard : 81
4.24 The animation script for Dino : 81
4.25 A dancing dinosaur: no flesh : 82
4.26 A dancing dinosaur: with flesh : 83

5.1 Tangent continuous deformation : 88
5.2 A suggestion for tangent continuity conserving deformation : : : : : : : : : : : : : : : : 89
5.3 A relationship between scripting and interactive systems : : : : : : : : : : : : : : : : : : 90
5.4 Dali's Kiss No 7 : 92
5.5 A point-to-line connection : 94
5.6 Interaction of a smooth deformable object with a sharp landscape : : : : : : : : : : : : : 96

A.1 The principle of backward raytracing : 106
A.2 Ray-sphere intersection algorithm : 109
A.3 A routine calculating ray intersection with a sphere : 111
A.4 Data structures for implicit surfaces : 112
A.5 Calculating ray-surface intersections for component C2 : : : : : : : : : : : : : : : : : : 117

ix

Chapter 1

Introduction

1.1 The thesis

During the process of modelling, a computer representation of an object is created. This representation
should be chosen to fit the requirements of a particular application. The choice of a suitable modelling
method is usually made by taking into consideration the desired static and dynamic properties of the model.
For a static situation, the sought qualities include the accuracy of the model, its similarity to the modelled
object in the case of real objects or its appeal in the case of artistic creations (e.g. virtual sculptures or
characters in animation). For a dynamic situation, the questions to be answered are concerned with actions
that are likely to be performed on a model: will it deform during its life, does it have to respond to physical
laws and simulate the real world or does the animator need to have total control over its motion to achieve
special effects.

The area of interest in this work is computer generated character animation. This thesis argues that
implicit surfaces can offer useful contributions in this task. The strengths and weaknesses of the technique
are discussed and its robustness in the task of modelling 3D “clay”-like characters is improved. Aspects
of animation control is also considered with the goal of achieving automatic traditional animation effects
in animation sequences. A balance between manual motion control and automatic motion generation for a
layered character model is provided.

One of the most popular modelling primitives in computer graphics is a polygon. A polygonal model
is created by approximating the surface of an object with a number of polygons; it is therefore called
a boundary representation. If a softly blended shape is to be modelled, a polygonal model may suffer
from the jagged silhouette problem that appears when the size of the polygons is too large. To solve the
silhouette problem, a polygon can be replaced by a parametric patch which is a smooth curved surface that
may be used to model “rounded” objects. However, a polygon or a parametric patch are low level entities;
thus, manually specifying them is a tedious and time consuming task. Typically an intermediate modelling
technique is used to generate a boundary representation for an object. In the case of modelling organic life
forms one of the techniques available to produce a surface representation is skeletal design [Bloo95b]. A
skeleton of an object is defined and a surface is fitted around it. For instance, for a 3D curve the surface can
be derived by sweeping a volume cross section along the curve (see e.g. [Watt93]) or by using generalised
cylinders [Agin72].

Problems also occur when trying to model and animate deformable objects using the boundary repre-
sentation. During deformations, the surface has to be modified. Thus, the continuity of the mesh has to be
ensured and sometimes its recreation may be required. Also, detecting interpenetration between objects,
a process essential in animation, is an expensive operation since polygon-polygon or patch-patch intersec-
tions have to be calculated for all surface elements. Nevertheless, the polygonal approach remains very
attractive in computer graphics since it allows for fast hardware supported rendering of the model.

An alternative approach is to model objects using a volume representation, in which the notion of
inside/outside the object is known. An example of such a technique is to use a combination of mathematical
equations to describe an object. For instance, a sphere with radius r, centred at the origin can be accurately
modelled using its equation f(x; y; z) = x2 + y2 + z2 � r2. A point P lies inside the object if the value

1

2 CHAPTER 1. INTRODUCTION

of this function at P is negative, outside the object if it is positive and on the surface if it is zero. Since the
surface of the object is specified indirectly as all points with the given inside/outside function equal to zero,
rendering of a model is more costly as it requires solving an implicit equation f(x; y; z) = 0. However, in
this method it is easier to detect interpenetration between objects.

A surface defined in this indirect way is called an implicit surface. Implicit surfaces have been used
to create smooth blends between solids for many years [Wood87] and have been successfully utilised in
constructive solid geometry (CSG) applications. With his method for visualising electron density fields
using implicit equations, Blinn [Blin82] opened a new path for implicit surfaces - as a self-contained mod-
elling technique. The visualisation in his work was performed using a cloud of points in space with the
exponential that defined a scalar field around each point as a function of the distance from that point. Ex-
tracting an isosurface of equal values from the sum of all fields resulted in a smooth “blobby” surface
blended around the cloud of points. More work was soon undertaken in this direction. In Japan, meta-
balls were developed by Nishimura et al. [Nish85]. At the same time, in Canada Wyvill et al. [Wyvi86b]
introduced soft objects. To built their models, both latter techniques used implicitly defined spheres: iso-
surfaces of equal value in a scalar field defined by a polynomial function around a point. All three pioneer
works [Blin82, Nish85, Wyvi86b] also proposed variations and extensions to the basic method (e.g. negative
or ellipsoidal primitives). A further development of the technique introduced geometric skeletons (e.g. a
line segment, a curve, a polygon or a solid) as primitives that generate the scalar field [Bloo90b, Bloo91].
Since a point is a special case of any of these skeletons, this was in fact a generalisation of the method.

The remainder of this thesis focusses on skeleton-based implicit surfaces, calling them implicit surfaces
for simplicity. Spherical primitives, described by the following scalar field function, will be used:

f(r) = c

�
1� r2

R2

�2

where c is the strength of a primitive, r is the distance from the given point to the centre of the primitive
and R is the radius of influence of the primitive. It is the field function implemented in POV-ray [POV 93],
a raytracing environment used and extended for visualisation of implicit surfaces (Appendix A). The algo-
rithms to be proposed will only be tested for spherical primitives. It will be ensured that they are readily
generalised to more complex skeletons by making as few restrictive assumptions about the scalar field
calculation as possible.

The main goal for traditional animators is to animate the characters that they create. The final animation
sequence should give an impression that the characters are independent from their author, can make their
own decisions and live their own lives. Throughout the years artists have been developing techniques to
achieve these goals. One of the main centres of development was the Disney Studio [Thom81]. There,
a team of artists studied all aspects of animated life before attempting to create it. They were redrawing
their sketches until the desired emotion was apparent to the audience. One of the techniques stressed most
often was “squash and stretch”. Characters showed their reactions and feelings by stretching and squashing
their faces and their entire bodies. All movements were fluid, all physical laws exaggerated and each action
was preceded by its anticipation to prepare the audience for it. These are the main principles of Disney
animation. They make us forget that this is only the illusion of life.

In computer animation, the most popular approach to character animation is using a layered model [Chad89].
A character is modelled as an articulated rigid skeleton and covered with a layer of deformable skin. An
animation sequence is specified for the skeleton and the corresponding deformation of the skin is calcu-
lated by an animation system. One problem with such a layered approach is that only local deformations
of the character's skin are modelled. Therefore, the traditional animation principles, in particular squash
and stretch, cannot be easily achieved because of the rigidity of the underlying skeleton. There is a need
for deformable fluid models in computer generated character animation. Considering the natural clay-like
properties of implicit surfaces and the automatically fitted “skin” (isosurface) around primitives, developing
an alternative, more flexible layered model using them is appealing in this context.

A model created using implicit surfaces is built of a set of unstructured primitives. Thus, when it
is animated, it may undergo deformations that destroy the look intended for a character. For instance,
some primitives may get close to each other and blend some characteristic parts of a character (e.g. a
leg and an arm or fingers in a hand) which is an undesired effect. Moreover, the primitives may move
away from each other and the body which was sculpted for the character will break into pieces losing its

1.2. OVERVIEW 3

integrity. Therefore, the first problem this thesis will look into in order to use implicit surfaces for character
animation, is creating a way of preserving the personality and appeal of a character throughout its life,
particularly during deformations.

Another problem arises when controlling an animation sequence that uses characters built with implicit
surfaces. On one hand, care has to be taken not to introduce undesired blending or coherence loss. On the
other hand however, tedious manual motion specification in order to avoid any undesired effects is unac-
ceptable. A balance between high level motion specification and low level motion adjustment is required.
In addition, for complex models, generating parts of motion automatically should be considered. For a
layered model, a natural approach is to specify the motion for the inner layer and automatically generate
the corresponding motion for the outer layer. Applying this principle to implicit surfaces with the aim of
adapting their properties to the task of creating automatic traditional animation effects will be explored in
this thesis.

1.2 Overview

This thesis is organised into five chapters. After presenting the principles of implicit surfaces, the aspects
of character modelling and animation are presented, followed by a more general discussion which puts the
achievements of this work in a broader context and proposes some future research directions.

1.2.1 Principles

Since terminologies used by the researchers of implicit surfaces differ, Chapter 2 presents a uniform ter-
minology to be used throughout this thesis and classifies existing approaches in these terms. At the end of
this chapter, the reader should have a clear image of the development of implicit surfaces as a modelling
technique and their potential applications.

1.2.2 Modelling

For deformable models, their dynamic behaviour needs to be considered at the time of modelling to make
sure that the required surface changes are achievable with the technique. This is reflected in the contents of
Chapter 3 which discusses the aspects of modelling deformable characters using implicit surfaces and con-
siders their possible motion. The three main requirements identified for this task are: the need for defining
and maintaining the appearance for a character, avoiding unwanted blending between the character's parts
and preserving the coherence of the character. Solutions developed to them form the parts of an extension
to the implicit surfaces modelling technique, the ABC approach, proposed to support character modelling
and animation using them. The ABC approach was initially proposed in [Opal93b].

The extended implicit model builds characters using an appearance graph which defines the general look
of the character as an articulated skeleton. This skeleton is not rigid, its parts may undergo deformation,
e.g. squash and stretch. Based on the appearance graph for a model, the blending properties between the
character's parts are obtained. Finally, to preserve the coherence of a character, distance constraints are
imposed on the primitives.

Chapter 3 will detail these algorithms and present examples of animation sequences created using this
extended model. The details of enhancing a standard raytracer, POVray [POV 93], to deal with the ABC
approach can be found in Appendix A. At the end of Chapter 3 the reader will understand the problems
encountered during modelling and animating deformable characters using implicit surfaces and appreciate
the need for a further development of the technique in order to animate the characters in the traditional
animation sense. Chapter 5 will discuss some of these aspects in more detail providing suggestions for
extensions and possible future directions for the use of the ABC approach.

1.2.3 Animation

Chapter 4 will use and extend the findings of the ABC approach to create traditional animation effects
in computer generated animations. A layer of automatically generated flesh will be added to the layered
model. The issues of high and low level control will then be discussed for such a model. An animator will

4 CHAPTER 1. INTRODUCTION

be provided with a hybrid control method, in which the inner skeleton and the outer layer in the model will
be animated using separate animation techniques. A balance between manual and automatic motion control
will be established.

For the animation of the inner skeleton, the inspiration will be taken from the world of dance. Chore-
ographing a dance piece and creating an animation sequence have a lot in common. They start from an
abstract concept to be conveyed through the visual channel. Then each is planned as a “storyboard” and
progressively refined until all required expressions are included in the motion of performers, dancers or
characters. Appreciating this link between the two art forms, a dance notation will be used to specify the
motion of the inner skeleton.

Such motion control has a relatively low level of abstraction since it requires the specification of the
angles between the links in the joints of the articulation structure. Although the dance notation gives an
intuitive support in this task, it is required to make sure that the motion of the outer layer does not need
to be given manually. Therefore, an algorithm will proposed that will generate the motion of the outer
layer based on the movement of the inner skeleton. The animator will be given control over such automatic
generation in terms of a set of adjustable parameters. High level of control over these parameters will be
offered in terms of heuristics translating them into traditional animation effects. Thus, an animator will be
able to increase or decrease the amount of each of the chosen “Disney” effects. Some initial results of this
part of this research were published in [Opal94, Opal95b]. Some issues related to faster display of implicit
surface during interactive design or animation will be given in Appendix B.

At the end of this chapter the reader will appreciate the complexity of creating expressive animations
and understand the advantages of using a layered model based on implicit surfaces for character animation.
More advantages and disadvantages of the layered approach will be discussed in Chapter 5.

1.2.4 Contributions

This thesis proposes a new presentation and analysis of the implicit surfaces modelling technique for char-
acter modelling and animation using a layered model. It formulates and tests a new solution to the problem
of unwanted blending, thus addressing the issues of surface deformation and contact modelling during col-
lisions and self-collisions. A new approach to coherence preservation is detailed which offers clay-like
modelling capabilities. Inspired by the similarities between the processes of dance choreography and an-
imation, a dance notation is used for parts of motion specification for the layered model. A new hybrid
animation control for automatic generation of traditional animation effects is developed. Finally, some
work on the display techniques for implicit surfaces is presented: an extension to a standard raytracer to
incorporate the ABC approach is detailed, an the possibility of using a secondary data structure for faster
implicit surface polygonisation is considered.

Chapter 2

Principles of Implicit Surfaces

2.1 Introduction

The main focus of this thesis is on implicit surfaces as a modelling technique. Its evolution started from
Blinn's method of modelling electron density fields which used a set of implicitlydefined primitives [Blin82].
This chapter will present the area attempting to classify existing approaches. Since the terminology used by
researchers in the field often differs, a set of definitions will be established and used throughout this thesis.

The main concept behind the technique is combining the functions used to define the primitives to
create a final implicit equation that represents an object. A very general description of an implicit surface is
fP 2 R3 : F(P) = 0g, where F is a real function, F : R3 ! R. A wide variety of objects, presented
in this chapter, can be described in this way.

An analogy often used to describe implicit surfaces is a comparison to heat. Let us imagine a source of
heat in space. All points with temperature equal to a certain value create a surface in space which is called
an isosurface. Multiple sources will create a temperature distribution that is higher in the space contained
between them. Thus, for any value of temperature, an isosurface will merge the two respective temperature
surfaces if the sources are close enough (Figure 2.1).

Figure 2.1: An isosurface of equal temperature around two heat sources (solid line)

Definitions of elements of an implicit surface modelling environment will be introduced in Section 2.2.
A variety of modelling primitives will be presented in Section 2.3. Section 2.4 will discuss ways of com-
bining such primitives. A review of a wide variety of applications to which implicit surfaces have been
beneficial will be given in Section 2.5. The chapter will conclude with some general reflections on the
potentials of implicit surfaces and with assumptions made for the remainder of this thesis (Section 2.6).

2.2 Terminology of implicit surfaces

This work focusses on skeleton-based implicit surfaces, calling them implicit surfaces for simplicity. The
term general implicit surfaces will be used when referring to a superset of implicit surfaces defined generally
as F (P) = 0, where F (P) is a function F : R3 ! R.

5

6 CHAPTER 2. PRINCIPLES OF IMPLICIT SURFACES

isovalue

isosurface

area of
influence

field
function

Σ−blended
field functions
(global scalar field)

blended area
generator
(point)

primitive

Figure 2.2: Basic elements of implicit surfaces

Figure 2.2 illustrates the elementary concepts of modelling with implicit surfaces. A model consists of
primitives combined with each other using a blending method. Each primitive is specified by a generator
(skeletal element) which gives the geometric skeleton of a primitive, an area of influence which limits the
area affected by the primitive and a field function which defines a local scalar field around the generator. For
any given point in space the global scalar field value is calculated by considering local scalar field values
at this point contributed from all primitives influencing it and combining these values using the blending
method. The surface of a model (isosurface or implicit surface) is defined as all points with the global scalar
field value equal to a given isovalue. The isosurface divides the space into the inside and the outside of an
isovolume or implicit volume. More detailed definitions for each of these key terms will now be given.

Generator (skeletal element) is a geometric objectG for which a distance function d(G;P) can be defined
for any point P 2 R3. Examples include a pointC with the Euclidean distance function d(C;P) = k�!CPk
or a line segment AB with the distance d(AB;P) = k��!PP0k where P0 is the point of AB closest to P ,
more formally:

8P 02ABk
��!
P 0Pk > k��!PP0k

Area of influence can be given by any bounding volume, e.g. a bounding sphere, a bounding box, a bound-
ing cylinder etc. For point-generators bounded by a sphere, the term radius of influence is often used.

2.3. PRIMITIVES 7

The influence of a primitive outside its area of influence is set to zero. It reduces the cost of scalar field
value calculation since primitives distant from a given point do not have to be considered.

Field function describes how the local scalar field is shaped around a generator. For a given point P
it returns a scalar value which depends on the distance from P to the generator. The field function can
therefore be decomposed into two functions, a potential function f : R ! R which describes the way the
scalar field changes depending on the distance from the generator and a distance function d : R3 ! R
which calculates the distance. The scalar field value F (P) is then calculated as f(d(P)). In the following
sections we will normally only describe the potential function f assuming its argument is the Euclidean
distance:

d(P1; P2) =
p

(x1 � x2)2 + (y1 � y2)2 + (z1 � z2)2

where P1 = (x1; y1; z1) and P2 = (x2; y2; z2). An example potential function is:

f(r) =

�
1� r2

R2

�2

where r is the distance and R is the radius of influence. For simplicity of notation it will also be written:

f(P) =

�
1� r2

R2

�2

assuming that r is the Euclidean distance from the point P to the generator. The use of an alternative
distance function will be noted explicitly.

Primitive is described by three elements: a generator, an area of influence and a field function.

Blending method specifies a way of combining multiple primitives to obtain a global scalar field. The most
common and simplest blending method is the summation,

P
iFi, of values of all field functions Fi.

Scalar field (global scalar field) is a result of a function which determines the combined influence of all
primitives in space. This function is derived from the given set of primitives and the blending method. It
has to be defined for all points P 2 R3. If summation is used as the blending method, the scalar field is
calculated as:

F (P) =
X

i2Influencing(P)

Fi(P)

where Fi(P) is the field function of i-th primitive.

Isosurface consists of all points with the scalar field value equal to the given isovalue Iso 2 R, more
formally it is fP 2 R3 : F(P) = Is og
Isovolume is a set of all points with the scalar field value greater than or equal to the given isovalue
Iso 2 R, more formally fP 2 R3 : F(P) > Is og.
Inside/outside function: A point with the scalar field value greater than Iso lies inside the isovolume, a
point with the scalar field value equal to Iso lies on the isosurface and a point with the scalar field value
less than Iso lies outside the isovolume.

2.3 Primitives

This section will classify various types of primitives, used in the area of implicit surfaces, into three groups:
skeletal primitives, algebraic primitives and empirical primitives. The first group describes the foundations
of skeleton-based implicit surfaces. The second group shows how general algebraic equations can be used
for implicit modelling. The last group includes models directly given as a discrete scalar field, e.g. medical
scans. The implicit formulation allows for all three groups to coexist and interact with each other in one
modelling system.

8 CHAPTER 2. PRINCIPLES OF IMPLICIT SURFACES

2.3.1 Skeletal primitives

Distance primitives, described in this section, offer this approach to modelling in a natural manner: a set of
generators forms a skeleton of an object which is then smoothly, intuitively and automatically clothed with
the isosurface. The skeletal primitives are divided into three groups based on the distance function used:
Euclidean distance, anisotropic distance and convolutions.

Euclidean distance

The Euclidean distance between two points P1(x1; y1; z1) and P2(x2; y2; z2) in the Euclidean space R3 is
given by:

d(P1; P2) =
p

(x1 � x2)2 + (y1 � y2)2 + (z1 � z2)2
An Euclidean distance surface is defined as an offset surface from a geometric generatorG calculated using
the Euclidean distance d:

fP : f(d(P;G)) = Isog; Iso 2 R

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Figure 2.3: Left: Blinn's potential function, b = 1, a = 12; Right: isosurfaces created by two point-
generators at isovalues (from the outside inwards): :2; :3; :4; :5; :6; :7; :8

Blinn [Blin82] used a Gaussian as the potential function around point-generators:

f(P) = be�ar
2

based on the behaviour of hydrogen atoms (Figure 2.3). The parameters a and b control the shape of the
Gaussian bump that this function describes. They are used to adjust the ”blobbiness” of the model. One
problem with this definition is that the assumed radius of influence is infinity, therefore all primitives have
to be considered to evaluate the scalar field value at any given point. To reduce the computation cost, Blinn
truncated his potential function by neglecting the influence of a primitive outside a certain range. This
introduces a discontinuity into the potential function what may cause continuity problems when blending
the primitives.

Nishimura et al. [Nish85] and Wyvill et al. [Wyvi86b] directly introduced the radius of influence and en-
sured the potential function continuity. A further reduction in computation was achieved by using piecewise
polynomials, which are computationally cheaper than the exponential.

The metaball technology [Nish85] used the following potential function:

f(P) =

8<
:

s(1� 3(rR)
2) 0 6 r 6 R

3
3s
2 (1� r

R)
2 R

3 6 r 6 R
0 R 6 r

where R is the radius of influence and s is the weight of the primitive (Figure 2.4).

2.3. PRIMITIVES 9

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Figure 2.4: Left: Nishimura et al.'s potential function, s = 1, R = 1; Right: isosurfaces created by two
point-generators at isovalues (from the outside inwards): :2; :3; :4; :5; :6; :7; :8

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Figure 2.5: Left: Wyvill et al.'s potential function, R = 1; Right: isosurfaces created by two point-
generators at isovalues (from the outside inwards): :2; :3; :4; :5; :6; :7; :8

Soft objects [Wyvi86b] used a different polynomial:

f(P) =

�
�4

9
r6

R6 + 17
19

r4

R4 � 22
9
r2

R2 r 6 R
0 r > R

where R is the radius of influence (Figure 2.5). This function further speeds up the calculation of the scalar
field value by only using the squared distance r2 and therefore avoiding the expensive operation of square
root.

Figure 2.6 compares the potential functions in these three pioneer works. They are similar in shape, thus
the visual results achievable with these methods are comparable. However, the Blinn's potential is the most
expensive to calculate and changes the model globally. Therefore, the Nishimura et al.'s and Wyvill et al.'s
potentials are more attractive since they are cheaper to compute due to a polynomial approximation of the
Gaussian. Moreover, they allow for local modification of a model, which is essential for interactive design
purposes.
More potential functions were introduced by Kacić-Alesić and Brian Wyvill [Kaci91]. They argued that
the shape of the potential function should be used to control the blending between primitive. For instance,
a novel potential functions proposed was the Bernstein-Bézier spline:

10 CHAPTER 2. PRINCIPLES OF IMPLICIT SURFACES

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Figure 2.6: Potential functions: Blinn (bottom), Nishimura et al. (middle) and Wyvill et al. (top)

F (P) =
Pn
i=0 biB

n
i (

r
R)

Bni (
r
R) =

�
n
i

�
(rR)

i(1� r
R)

n�i

It offered a wide variety of blends depending on the chosen spline control points Pj = (jRn ; bj); j =
0; : : : ; n (Figure 2.7).

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Figure 2.7: Left: Bézier potential function, n = 5, R = 1, b1 = b2 = b3 = 1, b4 = b5 = b6 = 0; Right:
isosurfaces created by two point generators at isovalues (from the outside inwards): :2; :3; :4; :5; :6; :7; :8

Another potential defined was the arctangent:

F (P) = 0:5� 1

�
arctan

�
c1

� r
R
� c2

��
It blended primitives in a very “hard” way (Figure 2.8)

Blanc and Schlick proposed a potential function based on piecewise rational polynomial:

f(P) =

8><
>:

1� (3r2)2

p+(4:5�4p)r2 r2 < 1
4

(1�r2)2

0:75�p+(1:5+4p)r2
1
4 6 r2 < 1

0 r2 > 1

where r is the distance and p controls the slope of the function f(P) (Figure 2.9). It offers inexpensive cal-
culation of the potential, local influence of primitives and unbounded control of the “hardness” of blending
(p 2 R+).

2.3. PRIMITIVES 11

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Figure 2.8: Left: Arctangent potential function, R = 1, c1 = 100, c2 = 1
2 ; Right: isosurfaces created

by two point generators at isovalues (from the outside inwards): :2; :3; :5; :7; :9; :95; :99 (Note: the jagged
effect on the curves is due to Maple rounding errors)

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Figure 2.9: Left: Blanc and Schlick's potential function, p = 1; Right: isosurfaces created by two point
generators at isovalues (from the outside inwards): :2; :3; :4; :5; :6; :7; :8

So far only point-generators were presented. More complex generators were introduced by Bloomenthal
to adapt implicit surfaces to more general aspects of skeletal design of natural forms [Bloo90a]. He used
the distance from a generator directly as the field function. The potential function is therefore constant:

f(P) = r

Note that this definition changes the notion of isovolume by having the values greater than isovalue
outside it. This does not change the generality of this classification. Bloomenthal described points, line
segments, polygons and general curves as generators and provided methods for calculating Euclidean dis-
tance for each of them. He used maximum as the blending method and also described a procedural way of
combining primitives (see section 2.4.4).

Bloomenthal and Wyvill unified their approaches [Bloo90b] and used the soft object potential func-
tion to define the offset function around geometric generators, such as points, line segments, curves and
polygons. Any other potential function can be used to describe the scalar field around such generators.

12 CHAPTER 2. PRINCIPLES OF IMPLICIT SURFACES

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Figure 2.10: Left: Distance as field function; Right: isosurfaces created by one line segment generator at
isovalues (from the outside inwards): :2; :3; :4; :5; :6; :7; :8

C

P

P

P

DC

P

P

P

Figure 2.11: Euclidean (left) and clover (right) distances combined with Blanc and Schlick's potential
function

Anisotropic distance

The field functions described so far were isotropic, i.e. they changed in the same way along any line drawn
from any pointP to the corresponding pointP0 closest on the generator (Figure 2.11). Anisotropic distance
functions offer more complex shapes of the scalar field while using simple generators.

Kacić-Alesić and Brian Wyvill [Kaci91] described a way of incorporating additional parameters, e.g. the
angle between the position vector and a given reference vector, to the distance calculation. In this way they
modelled a general cylinder with varying radius along a curve or a shell shape around a disc.

Blanc and Schlick [Blan95] proposed an interesting range of field and distance functions defined around
point-generators based on piecewise rational polynomials which exhibited both isotropic and anisotropic
behaviours. The anisotropic distance is defined by specifying a direction vector

�!
D (a; b; c) for a point-

generator positioned at C(xc; yc; zc) with the radius of influence R and varying the distance at a point
P (x; y; z) depending on the angle between

�!
D and

�!
CP . The following function can be used to define a

visually attractive clover distance (Figure 2.11):

d2(s; t) =
t2

m + (1�m)(2cos2� � 1)2

where m 2 [0; 1], t2 = u2+v2+w2, u = x�xc
R

, v = y�yc
R

, w = z�zc
R

, s = ua+vb+wc, cos� = s2

t2
. This

distance can then be used in any potential function. In Figure 2.11 it was applied to Blanc and Schlick's

2.3. PRIMITIVES 13

rational polynomial potential.

Convolutions

In the third group of skeletal primitives, described in the work of Bloomenthal and Shoemake [Bloo91], the
offset surface is calculated by considering not only the closest point but all the points on the generator G,
using integration:

f(P) =

Z
S2G

e
�kS�P k2

2 dS

The created surface, convolution, does not produce “bulges” during primitive blending. For a more complete
discussion and a solution to this problem refer to [Bloo95a, Bloo95b].

2.3.2 Algebraic primitives

A wide range of surfaces can be described implicitly using algebraic equations. A simple example is a
sphere centred at (xc; yc; zc) with the radius rs which can be specified as:

fP 2 R3 : (x � xc)2 + (y � yc)2 + (z � zc)2 �r2s = 0g

If a function f(P) = (x � xc)2 + (y � yc)2 + (z � zc)2 is defined for a point P (x; y; z), r2s taken as the
isovalue and the equation rewritten as:

fP 2 R3 : f(P) = r2s g
the formulation agrees with the implicit paradigm.

A sphere is an example of a skeletal primitive described in Section 2.3.1. However, more general
algebraic equations can be used, e.g.

x2

a2
+
y2

b2
� z2

c2
� 1 = 0

which represents a hyperboloid and could also be a primitive in an implicit modelling system. Below,
three groups of algebraic primitives are described: (i) quadrics and superquadrics, (ii) generalised implicit
functions and (iii) function representation of objects.

Quadrics and superquadrics

A quadric surface is given by the following implicit equation:

c1x
2 + c2y

2 + c3z
2 + c4xy + c5yz + c6xz + c7x+ c8y + c9z + c10 = 0

A sphere, a plane, an ellipsoid, a paraboloid or a hyperboloid are sample instances of this equation.
Blinn [Blin82] proposed replacing the spherical term �ar2 in his field formulation by a general quadric
and thus using any quadric as a primitive. Wyvills [Wyvi89] also replaced r2 in their cubical field function
and this way introduced quadrics into their soft object modelling environment. To maintain finite area of
influence they focussed mainly on ellipsoids given by the following quadric:

x2

a2
+
y2

b2
+
z2

c2
� 1 = 0

A further extension to the variety of primitives is to use superquadrics [Barr81] by setting the exponent in
the quadric equation to any w 2 R. For instance, a superellipsoid is described by:

xw

aw
+
yw

bw
+
zw

cw
� 1 = 0

The 2D case of a superellipsoid, a superellipse, was popularised by Piet Hein, a Danish scientist and
poet [Gard65]. Figure 2.12 shows several superellipses.

14 CHAPTER 2. PRINCIPLES OF IMPLICIT SURFACES

Figure 2.12: Piet Hein's superellipse: from the centre w = 0:3; 0:7; 1; 2; �; 100

The use of superquadrics in his Gaussian potential function was another of Blinn's suggestions [Blin82].
Wyvill and Wyvill [Wyvi89] observed that substituting a superellipsoid formula into their cubic potential
function resulted in only local blending between primitives which produced less pleasing results. Thus, they
proposed an alternative way of introducing superellipsoids as primitives. They used the following potential
function:

Rwcosw�

aw
+
Rwcosw�

bw
+
Rwcosw

cw
� 1 = 0

where �, � and are angles made by the axes of the superellipsoid and the vector
�!
OP between the centre

of the ellipsoidO and the given point P and R = k�!OQk is the distance along
�!
OP at which the field drops

to zero (Figure 2.13).

O�
�
�
�

β

��
��
��
��Q

��
��
��
��P

α

Figure 2.13: The superellipse of Wyvill and Wyvill

Generalised implicit functions

Hanson [Hans88] proposed a generalisation of superquadrics, hyperquadrics, that defined a wide class of
shapes including arbitrary convex polyhedra. A primitive was created by intersecting a hyperquadric with
a hyperplane. The resulting lower dimension shape could not be achieved with the use of superquadrics in
that dimension. For instance, a triangle could not be constructed using the superellipse equation in 2D:���x

a

���w1

+
���y
b

���w2

= 1

The family of possible solutions is shown in Figure 2.12. However, intersecting a plane with a 3D superel-
lipsoid given by: ��x

a

��w1 +
��y
b

��w2 +
�� z
c

��w3 = 1

where w1 = w2 = w3 = 1, can produce a triangle (Figure 2.14). This process can be taken into higher
dimension and thus introduce a wide variety of primitives in 3D.

Sclaroff and Pentland [Scla91] discussed another class of generalised implicit functions based on su-
perellipsoids. Their goal was to use the inside/outside test to perform collision detection between implicitly
defined shapes. Given an inside/outside function for a superellipsoid at the point P (x; y; z):

f(P) = ((x
2
w2 + y

2
w2)

w2
w1 + z

2
w1)

w1
2 � 1

2.3. PRIMITIVES 15

Figure 2.14: Creating a triangle using 3D hyperquadrics

where w1; w2 2 R, the rotation matrixM , the translation vector
�!
T , the deformation matrix D and the dis-

placement function d that displaced the surface at a pointP along the normal atP ,
�!
N (P), the inside/outside

function of an oriented, positioned, deformed superellipsoid with the displaced surface at a given point P
was described by:

f(D�1M�1(P ��!T)� d�!N)

Sclaroff and Pentland modelled seashell-like shapes using their generalised implicit formulation and ani-
mated them with collision detection in a physically based system.

Function representation

Another generalised way of dealing with algebraic primitives was proposed by Pasko et al. [Pask93,
Pask95a] and Shapiro [Shap94]. In this approach, algebraic primitives were blended using extended set
theoretic operations defined by R functions [Rvac87] which preserve the continuity of primitives. R func-
tion blending is discussed in Section 2.4. Thanks to the preserved continuity, any algebraic surface and any
procedural surface (e.g. CSG solids and skeletal implicit primitives) could be blended using this approach
(Figure 2.15).

Figure 2.15: Function representation: a square (defined as intersection of four half-planes) blended with
a circle (an implicit surface); the blend is global and can be inside (dotted surface) or outside (dashed
surface) the primitives

2.3.3 Empirical primitives

The last group includes primitives given by a discrete scalar field in a 3D grid. This is a surface recon-
struction situation and implicit surfaces have been successfully used in this context (see Section 2.5.4).
McPheeters [McPh90] identified this group as a separate type of primitives to show the generality of the
implicit formulation. In order to use empirical primitives, it is necessary to provide an interpolation function
that will evaluate the field function at any point P , given only the field values at the discrete grid points.

16 CHAPTER 2. PRINCIPLES OF IMPLICIT SURFACES

2.4 Blending

Having defined the primitives for a model, a smooth manner of combining them is required. This process,
called blending, has been applied for a long time in the context of solid modelling. This section will first
present implicitly defined blends in solid modelling to prepare a background for a following discussion of
blending methods used to combine primitives in the implicit surfaces model. Some questions arising for
solid modelling and also valid for implicit surfaces include: global vs local blends, tangent continuity of
the blend with the blended surfaces, intuitiveness of the shape of the blend surface or blend interference
(preventing the blended surface from intersecting the surfaces being blended).

2.4.1 Foundations

Solid modelling and constructive solid geometry (CSG) find their main application in computer-aided de-
sign (CAD) and computer-aided modelling (CAM) systems that are used to model mechanical components,
which are later machine-manufactured. For technical reasons, solids that result from set-theoretic opera-
tions, e.g. a cube with a hole, created by subtraction of a cylinder from the cube, should have their sharp
edges and corners rounded (blended). The elementary objects in CSG are simple solids, e.g. a sphere,
a plane, a cube, a cylinder, that can be described algebraically. Implicitly defined blends are created by
combining algebraic surfaces using a blending function and taking the zero-set of the result as the blended
surface between the two surfaces. For instance, given two algebraic surfaces, f(x) = 0 and g(x) = 0, the
blend equivalent to the union operation [can be achieved by using the function max(f(x); g(x)). For a
very good overview of blending techniques in solid modelling refer to [Wood87].

The set-theoretic union operation [does not round the edges and corners of the solid. Ricci [Ricc73]
was the first to introduce generalised set-theoretic operations of summation and intersection which offered
a C1-continuous blended surface. The smoothed union and intersection of two primitives defined by field
functions F1 and F2 can be defined by:

Up(F1; F2) = (F p1 + F p2)
1
p

Ip(F1; F2) = (F�p1 + F�p2)
�1
p

where p 2 R+. When p =1, these functions represent exact set-theoretic union, U1 = max(F1; F2) and
intersection, I1 = min(F1; F2). Ricci's blend is global, i.e. it affects the entire surface of primitives being
blended. Figure 2.16 shows two primitives approaching each other and blended using this method.

Figure 2.16: Two primitives, defined by Wyvill et al.'s field function, approaching each other: Ricci's union
blend, p = 1:5, Iso = 0:5

Middleditch and Sears [Midd85] proposed a range controlled blended union between two algebraic
surfaces described by F1 and F2, defined as follows:

(1� u)F1F2 + u(F1 + F2 � r)2 = 0

2.4. BLENDING 17

where r is the range of the blend and u 2 [0; 1]. Figure 2.17 shows two primitives approaching each other
and blended using this method.

Figure 2.17: Two primitives, defined by Wyvill et el.'s field function, approaching each other: Middleditch
and Sears' union blend, u = 1

2 , r = 1, Iso = 0:5

Another range controlled blend was proposed by Rockwood and Owen [Owen89, Rock90a, Rock90b].
The authors defined a separate range for both surfaces being blended: r1 and r2. The blended union surface
is given by:

1�
�
1� 1� F1

r1

�w
�
�
1� 1� F2

r2

�w
= 0

where w 2 R. The exponent w is used to control the “nearness” of the blend to the surfaces and the shape
of the blend, for w > 2 the blend becomes superelliptic. Figure 2.18 shows two primitives approaching
each other and blended using this method.

Figure 2.18: Two primitives, defined by Wyvill et al.'s field function, approaching each other: Rockwood
and Owen's union blend, w = 2, r 1 = r2 = 1, Iso = 0:5

The approach of Hoffman and Hopcroft [Hoff86] offered a superset of the two latter methods by using
the following formulation to blend two surfaces:

r22F
2
1 + r21F

2
2 + 2vF1F2 � 2r1r

2
2F1 � 2r21r2F2 + r21r

2
2 = 0

18 CHAPTER 2. PRINCIPLES OF IMPLICIT SURFACES

where r1; r2 controlled the locality of the blend and v 2 [0; 1]. Rockwood and Owen's blend can be
obtained when v = 0 and Middleditch and Sears' blend by setting v = 1+u

2u . Figure 2.19 shows two
primitives approaching each other and blended using this method.

Figure 2.19: Two primitives, defined by Wyvill et al.'s field function, approaching each other: Hoffman and
Hopcroft's union blend, v = 1

2 , r1 = r2 = 1, Iso = 0:5

2.4.2 R-functions

Pasko et al. [Pask88, Pask93, Pask95a] and Shapiro [Shap94] used another way of blending primitives,
based on the theory of R-functions [Rvac87]. In this method, the set-theoretic operations were generalised
as follows:

F1 [F2 = 1
1+� (F1 + F2 +

p
F 2
1 + F 2

2 � 2�F1F2)

F1 \ F2 = 1
1+� (F1 + F2 �

p
F 2
1 + F 2

2 � 2�F1F2)

where � = �(F1; F2) - an arbitrary function satisfying the following conditions:

�1 < �(F1; F2) � 1
�(F1; F2) = �(F2; F1) = �(�F1; F2) = �(F1;�F2)

R-function blends can be applied to any implicit primitives. They offer Cm continuity and can exactly
represent standard set-theoretic operations (� = 1 in the above definition). They produce global blends,
changing the entire surface of primitives. Figure 2.20 shows two primitives approaching each other and
blended using this method.

2.4.3 Summation (
P

)

Summation of field functions is the simplest way of combining primitives. It is fast to evaluate and does not
require any additional processing to create the blended surface. Its locality and the shape of the resulting
blended surface strongly depend on the choice of the field function. For functions with infinite area of
influence the blend is global, e.g. in [Blin82]. When the areas of influence are finite, the blend only occurs
in the overlapping of the two areas and is therefore local. The tangent continuity of the resulting surface also
depends on the choice of the field function. When a smooth potential function is chosen, the summation
results in a smooth blend. For arbitrary field functions, e.g. a sphere implicitly defined using its algebraic
equation, summation does not result in a C1-continuous blended surface.

2.4. BLENDING 19

Figure 2.20: Two primitives, defined by Wyvill et al.'s field function, approaching each other: R-function
union blend, � = 0, Iso = 0:5

2.4.4 Procedural definition

To give the implicit designer more control over the way primitives blend, procedural blending was pro-
posed [Bloo90a, Bloo90b]. In this method, a procedure that combines primitives is given explicitly. It
attempts to deal deal, for instance, with branching structures and define the implicit surface at a branching
as a complex combination of the branch field functions. In Figure 2.21 the field at the given point P is
calculated considering its distance to the line connecting two closest points of the two branches. It results
in a smooth blend if the angle between the two branches is greater than �

2 . However, for angles smaller
than �

2 , discontinuities occur. Moreover, the method only offers global blending and extending it for the
branchings of order higher than two is not trivial.

P

d

discontinuities

d

P

Figure 2.21: Procedural blending at a branching: distance to the base of a triangle created between two
branches is taken as the distance from P to the skeleton

McPheeters [McPh90] proposed the use of a smoothing function on the result of a potential function
before applying a blending method. The proposed smoothing function was:

fsmooth(v) =
7

4
v3 � 3

4
v4

The field value at a given point P due to a primitive is therefore calculated as fsmooth(f(P)), where f(P)
is the value of the potential function at P . Figure 2.22 illustrated the results. When two implicitly defined

20 CHAPTER 2. PRINCIPLES OF IMPLICIT SURFACES

spheres are blended by summation (Figure 2.22a) tangent disconituities occur. The use of a smoothing
function before summation gives a tangent continuous surface (Figure 2.22b).

0

0.2

0.4

0.6

0.8

1

1.2

0 2 4 6 8 10 12 14 16 0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 2 4 6 8 10 12 14 16

a b

Figure 2.22: Smoothing before blending: before applying fsmooth to the potential functions (left) and after,
blended using

P
(right)

2.5 Applications

This section will present a variety of areas where implicit surfaces have been successfully applied. The tasks
described include natural phenomena modelling, character and human animation, deformable substance
simulation and surface reconstruction from three dimensional data sets.

2.5.1 Character and human modelling

The approach of Wyvill et al. [Wyvi86b] was used to create an animation called “The Great Train Rub-
bery” [Wyvi88]. The character in the film was a train, modelled using implicit surfaces, travelling through
a soft landscape and emitting implicit clouds of smoke. The animation, not at all photo-realistic, was suc-
cessful because of the pleasing, smooth, cartoon-like appearance of implicit surfaces. Another example
of using implicit surfaces to model characters are the following three papers that presented attempts to
implicitly model a very popular character, a dinosaur [Grav93, Espo95, Opal95a].

Beier has popularised implicit surfaces among the animators at the Pacific Data Images [Beie90]. After
the success of their commercial for a children's some toothpaste featuring an implicit character that emerges
from toothpaste to play a guitar and convince the kids to use this particular brand, the PDI team started to
use implicit surfaces in much of their animation work appreciating their smooth appearance.

Opalach and Maddock [Opal94] investigated achieving Disney effects in character animation using
implicit surfaces and incorporating dance notation into such animation [Opal95b]. These approaches will
be detailed in the following chapters.

Implicit surfaces have also found applications in human figure modelling. Bloomenthal [Bloo92] used
geometric generators to represent the bones (line segments), muscles (polygons) and veins (branching
curves) of a human hand. Pelachaud et al. [Pela94] modelled the human tongue during speech using implicit
surfaces. The model was built by taking as generators the triangles that represented the shape of the tongue.
In Japan, a database of human anatomy parts modelled using implicit surfaces was created [Grav93].

Implicit surfaces can be used together with boundary representations, e.g. parametric patches or polyg-
onal models. Shen and Thalmann [Shen95] created a model for the limbs of an articulated human figure
using implicit surfaces and used it to find evenly spaced control points for a B-spline surface chosen for the
final representation of the skin. Singh and Parent [Sing95] used implicit surfaces to control deformation of
a polygonal model of a human figure. They first manually embedded the mesh in an implicit surface model,

2.5. APPLICATIONS 21

ensuring that the polygon vertices lay on the implicit surface. During animation, the vertices of the polygo-
nal mesh were kept on the implicit surface thus the deformation of the mesh was derived from the behaviour
of the implicit surface. This approach benefited from the precise collision modelling algorithm [Gasc93]
discussed in section 2.5.2 below.

2.5.2 Deformable substances

The appearance of implicit surface models suggests a clay like substance that can separate into pieces,
cluster back together and undergo stretching or compression. This intuitive application of the technique
stimulated its use in simulating deformable objects, including elastic and plastic behaviour.

Elastic substances

Marie-Paule Gascuel [Gasc93] developed a method for detecting and processing collisions between implic-
itly defined elastic objects in a physically based environment. During such a collision a precise contact
surface between the objects was extracted and the reaction forces acting on the colliding objects were cal-
culated. These forces were later integrated into the equations of motion.

The collision detection in the implicit model is efficiently performed for any given point due to the
simple inside/outside test. Sampling points on a surface of an object can be tested against another object's
field function. If some of them are inside the second object, a collision occurs and a deforming negative
function is applied to an object in the collision zone. The deformed scalar field Fd(P) is thus calculated as:

Fd(P) = F (P) +D(P)

where F (P) is the scalar field function for the object being deformed and

D(P) = Iso � F (P)

is the negative deforming factor due to the objects colliding with it. This procedure was applied to all
objects in the collision. For two objects in a collision the respective deformed fields are:

F1d(P) = F1(P) + Iso � F2(P)
F2d(P) = F2(P) + Iso � F1(P)

The two isosurfaces extracted for the deformed objects are therefore in contact precisely along the surface
where F1(P) = F2(P).

The elasticity in this method was coded directly in the potential function. The local stiffness k at pointP
was calculated as the opposite of the slope of the potential function k(P) = �F 0(P). Linear and nonlinear
elasticities can be modelled depending on the potential function chosen.

Plastic substances

The behaviour of a plastic substance can be modelled as an interaction between macro-particles that follow
the physical laws of attraction and repulsion. Such was the principle of the method developed by Terzopou-
los et al. [Terz89] in which the macro-particles were represented by point masses or of the methods of Miller
and Pearce [Mill89] and Tonnesen [Tonn91] in which a particle system was used. In all three approaches
implicit surfaces served as a convenient method for representing the surface of the substance by using the
point masses or the particles as generators in the implicit model. However, the surface represented in this
way was not used during simulations, e.g. for collision detection. It was utilised for a purely visual effect.

Desbrun and Marie-Paule Gascuel [Desb94, Desb95a] developed a method for modelling plastic ma-
terials, e.g. mud, clay or dough, taking the implicit model as the starting point. A highly deformable
material was simulated in a generalised particle system with Lennard-Jones attraction/repulsion interac-
tion forces between primitives. Such material could undergo fractures and its chunks could join back
together. Collision detection and response between unblendable materials was modelled as in [Gasc93]
and the progressive fusion between chunks occurred under influence of a sufficient force. Due to the use
of field functions that resulted in a very softly blended surface and because the surface of the substance

22 CHAPTER 2. PRINCIPLES OF IMPLICIT SURFACES

was used for collision detection, the simulation required fewer particles than in the previously described
methods [Terz89, Mill89, Tonn91]. An important issue of volume conservation of deformable material was
also addressed. During animation, the implicit material could undergo considerable volume variations. By
locally controlling the volume, this was decreased to under 3%, hence ensuring realistic simulation.

2.5.3 Natural phenomena

Fujita et al. [Fuji90] developed a method for simulating the splashing water effect using implicit surfaces.
They modelled the behaviour of the water crown after a droplet falls into it by generating quadruplets of
primitives around the fallen droplet. The primitives in each quadruplet started in a cluster and expanded
during induced motion to form splashes of water.

Max and Geoff Wyvill [Max91] used implicit surfaces to model coral. The smoothly blended appear-
ance of this species makes them particularly suitable for the implicit formulation.

Payne and Toga [Payn92] used implicit surfaces built as offset surfaces around polygonal models to
model the brain of a rat. They used linear interpolation between models obtained for different stages of the
brain development to reconstruct the development cycle.

Reed and Brian Wyvill [Reed94] simulated lightning using implicit surfaces. A trajectory of a lightning
strike was modelled using a particle system and the glow was extracted from the soft object definition of
the scalar field around a skeleton defined by such a trajectory.

Hart [Hart95] proposed an implicit formulation for fractals which have been successfully used to model
organic shapes [Mand82]. This way fractals became another primitive in his implicit modelling environ-
ment. Hart used them to model rough surfaces, e.g. a blend between a jagged edge of a leaf and its stem or
the rough bark of a tree.

2.5.4 Surface reconstruction

Implicit surfaces represent the surface of an object by describing a set of generators and a way of producing
a scalar field around them. They are therefore an attractive tool for surface reconstruction from volume data
since they can replace large data sets by a compact model.

Tatsumi et al. [Tats90] used implicit surfaces to model Ito cells found in the liver of a cod. The three
dimensional primitives were manually fitted to two dimensional cross sections of the given medical data in
an interactive editor. The resulting model was then rendered as a transparent surface and combined with a
representation of blood capillary. This way the authors could observe the relationship between Ito cells and
blood capillary.

Muraki [Mura91] developed an automatic method for fitting an implicit surface to volume data. The
reconstruction started with approximating the data by one primitive positioned at the centre of mass of
the data points. The iterative refinement was achieved by replacing a suitable primitive by two smaller
primitives. The candidate primitive was chosen to minimise an error function that measured the difference
between the approximated surface and the reconstructed surface. The error function was expressed in terms
of an average scalar field value and an average normal vector at a chosen m points of the data set. These
values were compared with the corresponding field values for the reconstructed surface. The approach was
unsatisfactory for practical purposes particularly due to its expensive algorithm for choosing the splitting
candidate that examined all primitives in each iteration step and the global character of the reconstruction
process.

Tsingos et al. [Tsin95] improved Muraki's technique by proposing an efficient heuristic for the refine-
ment step based on local field functions and “reconstruction windows” offering a further localisation of the
reconstruction process. Since the field functions were local, the reconstruction could be preserved between
the iteration steps in the areas where the current approximation was sufficiently accurate. The primitive
to be split was chosen as the primitive for which the local fitting was the worst, i.e. for which the sum of
field values at these points from the given data set that are inside the primitive's radius of influence divided
by the number of the points was the greatest. A further improvement was to introduce “reconstruction
windows” that served as bounding boxes for areas separately reconstructed considering only the primitives
and data points inside each window during the refinement step. The method produced good results for

2.6. SUMMARY 23

objects of arbitrary topology and geometry and only required the user specification of the position for the
first approximating primitive.

Savchenko et al. [Savc95] defined a scalar field at the data points by introducing an implicitly defined
carrier solid, e.g. a sphere. The inside/outside function that described the carrier solid was called the carrier
function. The values of the carrier function at the given set of points were then interpolated by a spline.
The function F that defined the reconstructed solid as fP 2 R3 : F(P) 6 0g was given by the algebraic
difference between the spline and the carrier function.

2.6 Summary

This chapter has presented a review and a historical sketch of the development of implicit surfaces. During
the past few years skeleton based implicit surfaces have become a very popular modelling technique. They
offer an intuitive approach to modelling: a set of generators approximates the shape of an object, forming
its skeleton, and the implicit “skin” automatically and smoothly clothes such a skeleton. Generating similar
objects using parametric techniques, e.g. by sweeping a shape along a skeleton, is more difficult to control
and may produce artifacts like interpenetration or surface discontinuities.

Implicit surfaces offer several advantages. Deformation, including topological changes, is relatively
simple and is achievable by simple alterations of the descriptions of primitives in a model. A smooth, con-
tinuous surface around generators is always guaranteed. This property makes implicit surfaces particularly
suitable for modelling objects that change their shape, e.g. for “plasticine” character modelling which is the
chosen area for this thesis.

Moreover, applying implicit surfaces to animation can benefit from a simple method of collision de-
tection between implicitly represented objects, a process essential for animation or simulation. During
collision processing, a precise contact surface can be modelled, as opposed to approximated methods with
possible interpenetration and deformation modelled before contact in the case of parametric surfaces.

The implicit representation is very compact, only requiring storage of the description of primitives
(generators and field functions) and a blending method. This makes it attractive for three dimensional data
set representation and also lowers the storage cost for any application that needs a large number of scenes
to be represented, e.g. storing frames of an animation sequence.

Chapter 3

The ABC of Implicit Surfaces

3.1 Introduction

This chapter will present aspects of character modelling using implicit surfaces. Some limitations of the
technique become apparent when attempting to animate the created models. Character animation deals with
characters, i.e. objects that are given a “personality”. The definition of this notion strongly relies on the
subjective perception of a viewer who is guided by the look and the behaviour of a character. A character
should remain distinct and retain its general shape during animation. In the realm of implicit surfaces it is
easy to loose such characteristics. For instance, Figure 3.3a shows a model inspired by the work of Salvador
Dali. There is no structure imposed on the primitives. When attempting to arbitrarily animate the primitives,
the intended look can easily be destroyed. This is the problem of appearance loss, covered in Section 3.2.

One way of loosing appearance is to allow the characteristic features of a character to blend together.
For instance, Figure 3.3b shows how moving the primitives too close to each other results in the face and the
tail of the character progressively disappearing. Another example is shown in Figure 3.1 where an arm and
a leg of a dancing character blend. Although smooth blending of primitives is a valuable asset of implicit
surfaces, in such a situation it is undesired. Therefore, unwanted blending in the implicit model should be
controlled to prevent merging between parts of a character. Section 3.3 describes the proposed solution.

Figure 3.1: An example of unwanted blending, Left: undesired situation, Right: corrected

The problem opposite to unwanted blending is coherence loss. It occurs when two parts of a model of
a character are placed too far from each other and as a result disconnect, causing the loss of topological
integrity of the model. For instance, Figure 3.3c the primitives in the model were moved too far from each
other and the object starts looking like a random collection of primitives. An example of coherence loss in
dancing character is shown in Figure 3.2. Coherence is defined here as a property of an object which causes
it to maintain its topological integrity during animation. To enforce it in a model, the primitives have to be
prevented from moving too far from each other. At the same time purely manual specification of motion
for all primitives in the model should be avoided. Therefore, when one primitive moves, the others should
follow its motion. The proposed solution is presented in Section 3.4.

Solutions to these three problems will be referred to as the ABC (Appearance, Blending, Coherence) of
implicit surfaces for character animation. It describes a method for modelling a coherent block of clay-like
substance which can retain its general shape during animation according to its appearance defined using a
graph of links and joints. The ABC approach was originally proposed in [Opal93b]. In this chapter more
details will be included along with a working case study of a simple but expressive character animated using
keyframing (Section 3.5). Because of the extended implicit model the character presents a fluidity of shape

24

3.2. APPEARANCE 25

Figure 3.2: An example of coherence loss, Left: undesired situation, Right: corrected

and motion while staying recognisable during animation.

3.2 Appearance

Providing a means to define appearance is essential for character animation to provide structural founda-
tions that are necessary to make characters recognisable throughout their lives. To make such recognition
possible, characteristic parts of an object have to be defined and maintained during an animation sequence.
The method proposed in this section defines parts of a character as elements (links and joints) of a graph.
An animator manually designs all such parts and specifies their place in the character's graph. The general
concept of this approach will be presented first, followed by a description of model scripting and positioning
in world coordinates.

3.2.1 Appearance graph

An appearance graph defines a skeleton of an object in terms of joints and links. Each link and joint has
a group of primitives assigned to it. Such a group of primitives, forming a characteristic part of an object,
will be referred to as an object component or a component. Figure 3.4 shows a simple appearance graph
composed of three components: link1, link2 and joint.

An appearance graph is the conceptual skeleton of an object. It imposes a structure within primitives
and provides a division of the object into components. It does not define the number of primitives or their
spacial relationship. It is possible to use the same appearance graph for deformed versions of the same
model. Hence the skeleton, defined using an appearance graph, is deformable not rigid. Local deformation
can be achieved by moving some of the primitives. If new primitives are added, extreme deformation,
e.g. over-stretching of a character, can be modelled. For example in Figure 3.4 the link link1 and joint
joint are in both cases assigned one primitive. The link link2 is assigned one primitive in the left object
and three primitives in the right one. As a result link2 increases its length, e.g. representing the action of
stretching.

3.2.2 Definition of a model

A script file is used to define an appearance graph and primitives that form components in an object. Fig-
ure 3.5 gives a script file for a simplified human arm. Primitives for each component (upper arm, forearm,
elbow, wrist and hand) are specified in the component's local coordinates. A component's initial rotation
around its local X,Y and Z axes is given as a vector of three rotation angles (�x; �y; �z). In Figure 3.5 the
rotation vectors are marked with Rupperarm, Relbow, Rforearm, Rwrist and Rhand. The components are
then linked together to form an appearance graph. For each joint, the possible cases are: (i) it is a single
joint, (ii) it is attached to a link or (iii) it is between two links. Cases (ii) and (iii) may occur for the same
joint if more than two links meet at that joint. For cases (ii) and (iii), displacements of the origin of the local
coordinate system of a joint in relation to each of its links is given as a translation vector (tx; ty; tz). There
are two joints in Figure 3.5, elbow and wrist, each between two links. The displacement of elbow in rela-
tion to upper arm is given by vector Telbow upper arm and in relation to forearm by vector Telbow forearm.
Similarly, Twrist forearm and Twrist hand give displacements of wrist in relation to forearm and hand re-
spectively. Finally, one of the components is chosen as the anchor of the model and positioned in the world
coordinate system by a translation of its local origin Tanchor. In Figure 3.5 elbow is the anchor. A model

26 CHAPTER 3. THE ABC OF IMPLICIT SURFACES

Figure 3.3: a) A model inspired by the work of Salvador Dali: Lighter spheres represent positive primitives,
darker spheres represent negative primitives, the radius of each sphere is proportional to the radius of influ-
ence of the corresponding primitive. b) Loosing appearance by unwanted blending c) Loosing appearance
by coherence loss

is positioned in the world coordinate system during parsing of its script file. The next section describes the
calculation of the required transformation matrices.

3.2.3 Positioning a model in the world

A point in space is represented as a row-vector, [x y z 1], using homogeneous coordinates, and its
transformed point is [x0 y0 z0 1]:

[x0 y0 z0 1] = [x y z 1]

2
664
x00 x01 x02 x03
x10 x11 x12 x13
x20 x21 x22 x23
x30 x31 x32 x33

3
775

All components in a model are specified in their respective local coordinate systems. To position the
model in the world, a transformation matrix needs to be calculated for each of them. After the scripting
stage, a local rotation matrix MR is known for each component. It is a multiplication of three rotation

3.2. APPEARANCE 27

joint

link 1 link 2

Figure 3.4: The flexibility of appearance specification: the number of primitives or their spacial relationship
are not fixed, which is useful for “squash and stretch” effects

matrices, each of them describing clockwise rotation around an axis specified by a local rotation vector
R = (�x; �y; �z):

MRx
=

2
664

1 0 0 0
0 cos�x sin�x 0
0 � sin�x cos�x 0
0 0 0 1

3
775

MRy
=

2
664

cos�y 0 � sin�y 0
0 1 0 0

sin�y 0 cos�y 0
0 0 0 1

3
775

MRz
=

2
664

cos�z sin�z 0 0
� sin�z cos�z 0 0

0 0 1 0
0 0 0 1

3
775

After multiplying MRx
, MRy

and MRz
, the combined local rotation around the X, Y and Z axes, MR,

becomes:2
664

cos�y cos�z cos�y sin�z � sin�y 0
sin�x sin�y cos�z � cos�x sin�z sin�x sin�y sin�z + cos�x cos�z sin�x cos�y 0
cos�x sin�y cos�z + sin�x sin�z cos�x sin�y sin�z � sin�x cos�z cos�x cos�y 0

0 0 0 1

3
775

For the model's anchor, the translation of the origin of its local coordinate system, T a = (xa; ya; za), is
also given. Its matrix, MT a, is: 2

664
1 0 0 0
0 1 0 0
0 0 1 0
xa ya za 1

3
775

The matrix that gives the world position of the anchor, Mwa, is the multiplication of the anchor's local
rotation matrixMRa and its translation matrix MT a:

Mwa = MRaMT a

To calculate the matrix that describes any other component's position in the world, the appearance graph
of the model is traversed starting from the anchor. The traversal is performed breadthwise to ensure that
all required matrices for a parent node are known when computing the matrices for each of its children.

28 CHAPTER 3. THE ABC OF IMPLICIT SURFACES

iso 0.8
object arm colour Flesh

component upper arm rotation (0,0,-30) � Rupper arm

point (0,0,0) POVfunction 35 1
point (0,-25,0) POVfunction 50 1
point (0,-45,0) POVfunction 30 1
blend SUM

component forearm rotation (0,0,-150) � R forearm

point (0,0,0) POVfunction 30 1
point (0,-35,0) POVfunction 25 1
blend SUM

component hand rotation (0,0,10) � R hand

point (0,0,0) POVfunction 15 1
point (5,-10.5,0) POVfunction 20 1
point (5,-21.5,0) POVfunction 10 1
point (0,-27,0) POVfunction 7 1
blend SUM

component elbow rotation (0,0,0) � Relbow

point (0,0,0) POVfunction 30 1
blend SUM

component wrist rotation (0,0,0) � Rwrist

point (0,0,0) POVfunction 10 1
blend SUM
joint elbow between upper arm (-45,-60,0) � T elbow upper arm

forearm (2,10,0) � Telbow forearm

joint wrist between hand (0,10,0) � Twrist hand
forearm (4,-40,0) � Twrist forearm

anchor elbow (0,0,0) � Tanchor
end

wrist

hand

forearm upper arm

elbow

Figure 3.5: Specifying a model for a simplified arm: script, appearance graph and model

During the traversal, a displacement matrix MD is calculated for each component. It is a translation ma-
trix that describes a scripted displacement between a joint and a link (Telbow upper arm, Telbow forearm ,
Twrist forearm and Twrist hand in Figure 3.5). If the parent of the considered component is a joint, the dis-
placement matrix is the translation by the specified displacement vector Tparent child, otherwise the reversed
translation �Tparent child is taken. For example, in the pair elbow upper arm, elbow's displacement is
given by the vector Telbow upper arm and upper arm's displacement is described by�T elbow upper arm.

The matrix that gives the world position for a component, Mwc, is the multiplication of three matrices:
(i) the local rotation matrix for the component MRc, (ii) the displacement matrix describing the displace-
ment from the parent to the child, MT pc, and (iii) the matrix inherited from the parent, Mwp:

Mwc = MRcMT pcMwp

3.2.4 Flexibility of the approach

An example of the usefulness of deformable skeletons for character animation is shown in Figure 3.6. Recall
the fairy-tale of Pinocchio, a wooden boy whose nose grew when he lied. With a deformable skeleton such
an effect is easy to achieve. Pinocchio's nose can grow and shrink during animation, either by changing the
spacial relationship between primitives or their number, without the need to alter the appearance graph.

3.3. BLENDING 29

iso 0.35
object Pinocchio colour Wood
component head rotation (0,0,0)

point (.8,2.5,-.6) POVfunction 1 .8
point (1.2,2.7,-1.6) POVfunction 1 .8
blend SUM

component nose rotation (0,0,0)
point (1.8,2.5,-.6) POVfunction 1 .3
point (2.0,2.5,-.6) POVfunction 1 .2
blend SUM

joint nose attachedto head (0,0,0)
anchor head (0,0,0)

end

Figure 3.6: A model of Pinocchio's head: Pinocchio's nose grows when he lies - extra primitives were
added to the nose model to achieve the growing effect. The script gives the top left version of the model.

The use of an appearance graph provides a basis for the problems of unwanted blending (Section 3.3)
and coherence loss (Section 3.4). It distinguishes components within an object. The remainder of this
chapter will present ways of ensuring that these components are recognisable during an animation sequence.

3.3 Blending

The appearance of a character, once defined, should be preserved during animation. However, the problem
of unwanted blending may destroy the appearance by merging components of a character. It has been a long
known disadvantage of implicit surfaces yet there have not been many proposed solutions. Two general
approaches can be identified: overlapping unblendable objects [Wyvi89, Beie90] and modifying the scalar
field to model the deformation [Opal93b, Desb95a, Guy95]. The former method is simpler to calculate yet
does not produce intuitive results. In particular, since no contact surface is calculated, colliding objects
overlap which can easily be revealed in a 2D cross section. The latter method offers a representation for a
precise contact surface between objects but introduces C1-discontinuities to the model. The two methods
are illustrated in Figure 3.7. Although no difference can be seen in 3D (top row), the 2D cross section in
the bottom left shows that in the former method objects are simply superimposed - the undeformed lighter
object covers the darker one. The approach described in this chapter falls into the second category.

3.3.1 Related work

The first partial solution to the unwanted blending problem was proposed by Brian and Geoff Wyvill [Wyvi89].
The idea in their method was to divide the primitives in a scene into groups which are unblendable with
each other and then render each group separately. The result was a union of unblendable groups in which
objects overlap to model a collision. This method does not solve the problem of three groups, a joint and
two links, in which the joint is blendable with the two links which are unblendable with each other.

Beier [Beie90] solved this problem by dividing primitives into groups and introducing a root group
which is blendable with all other groups. In the case of a joint with two links, the joint would belong to
the root group while each of the links would be a part of a different group. The unblendable groups were
still handled as a union, while a more natural and expected result would be to detect and process collisions
between them. Moreover, this method still leaves unsolved the problem of unwanted blending between two
joints, e.g. two elbows of a character. Beier suggested an extension to his method in which each group
would have a list of its blendable groups.

30 CHAPTER 3. THE ABC OF IMPLICIT SURFACES

Figure 3.7: Two approaches to unwanted blending (3D and 2D cross sections): overlapping objects (left
column) and precise contact surface between objects (right column)

The method to be described in this chapter was initially proposed in [Opal93b]. It suggested an al-
gorithm that handled collisions between objects as well as self-collisions between different parts of one
object. It was a graph based approach in which each part of an articulated figure represented a joint or a
link in a graph structure. The blending properties of the model were derived from this graph: each joint
was blendable with all its links and there were no other blendable groups in the model. Each object was
divided into blendable components and for each of these a deformed scalar field was calculated to model
precise contact surface in both collisions and self-collisions. The final scene was composed as a union of
deformed blendable components. Since the blendable components fitted exactly to each other, there was no
overlapping in the scene.

Recently, more graph based methods have been introduced [Desb95a, Guy95]. In these, all compo-
nents of a model were represented as nodes in a graph and connections between them marked the desired
blendability. Desbrun and Gascuel [Desb95a] simulated soft substance using implicit surfaces, hence they
used a time-varying blending graph to record changes of blending properties due to merging or separation
of chunks of substance. To render the substance according to current blending properties, they divided the
scene into groups of blendable primitives, considering more than once primitives that belong to more than
one such group. They composed the final scene as a union of such components. Since the precise contact
modelling algorithm [Gasc93] was used, the objects did not overlap.

Guy and Wyvill [Guy95] calculated the deformed scalar field based on a graph of blending properties
in which a connection between nodes represented desired blendability. Their method was a variation of
the algorithm proposed in [Opal93b]. At any given point P , the deformed scalar field value due to i-th
primitive, Fidef (P), was calculated as follows:

Fidef (P) = Fi(P) + Fmb(P) +
nX
j=0

fGj(P) : j 6= i; j 6= mbg

where F (P) is the primitive's undeformed scalar field, Fmb(P) is the maximal value at P due to all primi-
tives blendable with the considered one andGj(P) is the deformation function implemented after [Gasc93].
The final deformed scalar field at point P is the maximum of all deformed scalar fields Fidef (P).

The following sections give details of the algorithm initially proposed in [Opal93b]. Collisions between
objects are handled in a similar way to Gascuel's precise contact modelling algorithm [Gasc93]. However,
the self-collision algorithm is a novel development in the area of implicit surfaces.

3.3. BLENDING 31

3.3.2 Implicit surfaces with blending properties

To avoid unwanted blending between the components of a character, the blending properties of a model,
i.e. the information about which primitives of a model blend with each other and which do not, have to be
uniquely determined. In the appearance graph the default blending properties assume that each joint blends
only with its links. The appearance graph is therefore also a way of specifying the blending properties
of a model; there is no need to generate a supplementary data structure. Moreover, the blending graph
represented by the appearance graph is simpler (fewer nodes and connections) than a graph in which all
object parts are represented in nodes and connections denote blending. Figure 3.8 shows a model of a
simplified arm when all its parts blend together (unwanted blending situation) and with the default blending
properties (unwanted blending prevented).

Figure 3.8: Top: an arm with all its parts blending together (unwanted blending situation) Bottom: the
same model with default blending properties (unwanted blending prevented)

Figure 3.9 shows the principle of the proposed algorithm. A scene is specified as a set of appearance
graphs defining all objects and a set of components representing links and joints in all appearance graphs.
This stage is represented in Figure 3.9a. The next stage (Figure 3.9b) is to decompose each object into
components (links and joints) restricted to an area where a component's influence is highest. In order to
represent deformation of each such component due to blending or collisions, they are considered in turn
and their scalar fields are modified to model blending between blendable components and a precise contact
surface between unblendable components (Figure 3.9c). A union of deformed components for all objects
gives the final scene (Figure 3.9d).

An object component

An object component is a group of primitives that stay blended together during animation. It represents a
part of a character. Given a component C composed of n primitives with field functions fi; i = 1::n, the
undeformed scalar field due to C at a pointP 2 R3 is calculated as:

FC(P) =
nX
i=1

fi(P)

which is the basic implicit surfaces algorithm as described in Chapter 2.
Each object component influences an area of space equal to the union of areas of influence of all prim-

itives in the component. A maximal influence area for a component C,M(C), will denote the part of its

32 CHAPTER 3. THE ABC OF IMPLICIT SURFACES

a) object components
 and appearance graphs

b) components in their
 maximum influence areas

c) components deformed
 by blending and collisions

d) final scene

Figure 3.9: Implicit surfaces with blending properties: stages of the algorithm

area of influence, in which its scalar field value is greater than the scalar field value from any other object
component. More formally:

M(C) = fP 2 R3 : FC(P) > 0 ^ FC(P) = max
i
fFCi(P)gg

Figure 3.10: An object built of two blendable components: 3D and a 2D cross section

Figure 3.10 shows a simple object composed of two components that blend with each other, i.e. its
appearance graph consists of one joint and one link. The two components, deformed due to blending, are
shown in different colours.

Deformation of an object component

In order to calculate the field value at a point P due to a deformed object component C, FCdef (P), scalar
field values from all components that influence P need to be considered. There are two groups of such
components: a set of components blendable with C, B(C), and a set of components unblendable with it,
U(C).

If the pointP does not lie within the maximal influence area of the component,M(C), zero is assigned
to the deformed field value. Otherwise three values at P are computed: (i) the undeformed field value for
C, FC(P), (ii) the collision term, i.e. the sum of all field values due to components in U(C):

FU(C)(P) =
X

Cu2U(C)

FCu(P)

and (iii) the blending term, i.e. the sum of field values due to those components in B(C) that are greater than

3.3. BLENDING 33

all components unblendable with them:

FB(C)(P) =
X

Cb2B(C)^

8Cu2U(Cb)
FCu (P)�FCb

(P)

FCb(P)

FC(P) and FB(C)(P) are added and field values at P due to unblendable components from U(C) are
examined. If any of them is greater or equal to the isovalue and if FC(P) is greater or equal to the isovalue,
the collision term FU(C) needs to be considered. It is subtracted from FC(P)+FB(C)(P) and the isovalue is
added to the final field value. This way the deformed surface of the component is pushed towards its inside
and a precise contact surface is created at all points where FC(P) + FB(C) = FU(C).

Here is a more formal algorithmic expression for FCdef (P):

if P =2M(C) then FCdef (P) = 0
elsif 9Cu2U(C)FCu(P) > Iso ^ FC(P) > Iso then FCdef (P) = FC(P) + FB(C) � FU(C) + Iso
else FCdef (P) = FC(P) + FB(C)

This algorithm will now be presented in a few examples to clarify its details. Two cases of blending
properties will be considered: (i) a collision between objects composed of one component, to illustrate the
creation of a precise contact surface between objects and (ii) a self-collision in an object composed of two
links and a joint between them, to show the precise contact surface in this case.

Figure 3.11: A collision between two objects: 3D and a 2D cross section

3.3.3 A collision between objects

Each object chosen to illustrate this section has an appearance graph composed of one joint, i.e. there is one
component in each object. For simplicity of figures, each component contains only one primitive. This does
not limit the presented considerations. More primitives can be used in each component since the details of a
component's scalar field calculation are irrelevant to the calculation between components. The calculation
of component deformation is order-independent. The component marked C1 in the following diagrams is
arbitrarily chosen in presenting each of the examples. Therefore it will be presented each time for only one
sample component.

Two objects

Figure 3.11 shows a collision between two objects. Figure 3.12 illustrates the following reasoning which
is valid for both objects. For component C1, the set of its blendable components is an empty set, i.e. there
are no other components in the scene that it is blendable with. Therefore, only the influence from the set of
its unblendable components, U(C1), need to be considered. In Figure 3.12, U(C1) = fC2g. The dashed
line in Figure 3.12 shows the maximal influence area for the component C1,M(C1). OutsideM(C1), the
deformed scalar field value is set to zero. The cross-hatched region in Figure 3.12 indicates the area where
both C1(P) > Iso and C2(P) > Iso. Outside this region and within the maximal influence area of C1,

34 CHAPTER 3. THE ABC OF IMPLICIT SURFACES

component C1 component C2

precise contact surface
 FC1(P) = FC2(P)

M(C1)

Figure 3.12: A collision between two objects

the field value is equal to the undeformed field value for C1, FC1(P). Within the cross-hatched region and
insideM(C1), according to the proposed algorithm, the collision term, FC2(P) needs to be considered.
Therefore, the deformed scalar field for C1 is:

FC1def
(P) = FC1(P)� FC2(P) + Iso

Similarly, the deformed scalar field due to C2 within the cross-hatched region and inside M(C2) is
equal to:

FC2def
(P) = FC2(P)� FC1(P) + Iso

The surface of each deformed component is a set of points for which the scalar field value is equal to
the isovalue, fP 2 R3 : F(P) = Is og. For each component, F (P) in this equation is replaced by its
deformed field function. In the cross-hatched area, in which the two components collide, the deformed
implicit surface for C1 is:

fP 2 R3 : FC1 (P) = FC2(P)g
and similarly the deformed implicit surface for C2 is:

fP 2 R3 : FC2(P) = FC1(P)g

Thus, the precise contact surface between the two components is created at:

fP 2 R3 : FC1 (P) = FC2(P) ^ FC1 > Is o ^ FC2 > Is og

Three objects

A similar reasoning can be performed for more than two objects. Figure 3.13 shows a collision between
three objects. The calculation of the deformed scalar field function for component C1 is illustrated in
Figure 3.14. Again, component C1's set of blendable components is empty, i.e. no other components in
the scene are blendable with it. Within its maximal influence area M(C1) (dashed line in Figure 3.14)
two regions in which collision occurs can be identified: areas where there are two or three components
influencing the space. The case of two components (cross-hatched regions in Figure 3.14) is calculated
as for two objects. In the region where three components influence the space, the area where the surface
deforms is where FC1(P) > Iso. Let us look more closely at this region. If both FC2(P) < Iso and

3.3. BLENDING 35

Figure 3.13: A collision between three objects: 3D and a 2D cross section

FC3(P) < Iso (marked in Figure 3.14 with circles), the undeformed field function for C1, FC1(P), is
taken as the deformed field. If FC1(P) > Iso or FC2(P) > Iso (marked in Figure 3.14 with vertical lines),
the collision term FC2(P) + FC3(P) is considered and the deformed field value becomes:

FC1def (P) = FC1(P)� FC2(P)� FC3(P) + Iso

The deformed surface of C1 in this region will therefore be the points:

fP 2 R3 : FC1 (P) = FC2(P) + FC3(P)

component C1

component C3

component C2

M(C1)

precise contact surface
 FC1(P) = FC2(P)

precise contact surface
 FC1(P) = FC3(P)

 deformed surface
FC1(P) = FC2(P)+FC3(P)

P0

Figure 3.14: A collision between three objects: diagram

36 CHAPTER 3. THE ABC OF IMPLICIT SURFACES

Surface continuity considerations

Considering the example in Figure 3.14 again, note that the deformed surface is C1-continuous when it
passes from the region with three influencing components to the regions with only two influencing com-
ponents, i.e. in the interior of the collision. C 0-continuity, i.e. the positional continuity of the surface, is
guaranteed for any field function. C1-continuity, i.e. C0-continuity and tangent (or first derivative) conti-
nuity of the surface, is provided due to the use of a specific field function.

To prove C0-continuity, let us consider a point P0 that lies on the contact surface between components
C1 and C3 and on the radius of influence ofC2 (Figure 3.14). The scalar field value at P0 due to component
C1 deformed by component C3, is:

FC1def (P0) = FC1(P0) � FC3(P0) + Iso

After considering component C2, it becomes:

FC1def (P0) = FC1(P0)� FC2(P0)� FC3(P0) + Iso

Since P0 lies on the radius of influence of C2, the term FC2(P0) = 0, thus the deformed surface is
C0-continuous at P0.

A normal vector
�!
N to an implicit surface defined by a function F , is aligned with the gradient,rF :

rF =

�
@F

@x
;
@F

@y
;
@F

@z

�
To prove C1-continuity at P0, a reasoning similar to the one proving C0-continuity, can be performed for
gradients, yielding continuity of normals. The gradient at P0 due toC1 deformed by C3, is:

rFC1def (P0) = rFC1(P0) �rFC3(P0)

After consideringC2, it becomes:

rFC1def (P0) = rFC1(P0)�rFC2(P0) �rFC3(P0)

Thus, to provide C1-continuity of the deformed surface at P0, the condition:

rFC2(P0) =
�!
0

i.e.
@FC2

@x (P0) =
@FC2

@y (P0) =
@FC2

@z (P0) = 0 must hold. Since a field function F is decomposed into a
potential function f and distance function r, F = f � r, each of its partial derivatives can be calculated as
a combination of @f@r and @r

@x , @r@y , or @r@z , e.g. for x it is:

@F

@x
=
@f

@r

@r

@x

The distance function r at the point P0 is equal to the radius of influence R, r(P0) = R. To obtain the
desired equationrFC2(P0) =

�!
0 , it is thus sufficient for the partial derivative @f

@r
to be equal to zero at the

radius of influence R:
@f

@r
(R) = 0

This is a property of many potential functions (see Section 2.3). For example, the potential function
used here is:

f(P) =

�
1� r2

R2

�2

where r = k�!PGk is the distance to the considered pointP and the primitive's generatorG andR is a radius
of influence. Since

@f

@r
=
�4r
R2

�
1� r2

R2

�
and r(P0) = R, it yields:

@f

@r
(P0) =

�4R
R2

�
1� R2

R2

�
= 0

3.3. BLENDING 37

Figure 3.15: A collision between four objects: 3D and a 2D cross section

Four or more objects

The proposed algorithm works for any number of objects. For instance, Figure 3.15 presents a collision be-
tween four objects. The cross section shows the created contact surfaces. In all collisionsC1-discontinuities
occur only on the exterior of a cluster of objects. The deformed surface inside the cluster is C1-continuous.
A method of C1-smoothing the exterior discontinuities is reported by Marie-Paule Gascuel [Gasc93].

3.3.4 Self-collision for an object

Figure 3.16 shows a simple object composed of three components: one joint and two links. Again, each
component contains only one primitive for the sake of simplicity. The links are in collision while blended
with the joint. The 2D cross section shows the continuity of the deformed surface. The calculation of
deformed scalar field for the joint and for one of the links is presented in the following sections. Surface
continuity considerations follow.

hips

leftleg rightlegrightleg

hips

leftleg

Figure 3.16: Self collision in an object: 3D and a 2D cross section

Calculation of a deformed field for a joint

The component that represents the joint (C1 in Figure 3.17) has an empty set of unblendable components
and two components in its blendable set:

B(C1) = fC2; C3g

Outside its maximal influence areaM(C1) (dashed line in Figure 3.17) the deformed field is set to zero.
WithinM(C1), the surface ofC1 will deform to create a blend betweenC1 and its blendable components in

38 CHAPTER 3. THE ABC OF IMPLICIT SURFACES

the areas where componentsC2 orC3 influence the space. In these areas the blending term is calculated. C2
and C3 are unblendable with each other, thus, according to the proposed algorithm, they will not contribute
to the blending term at the same time. C2 is used in the blending term in the area marked with lines in
Figure 3.17 (vertical lines in the area where C2 is the only influencing component from B(C), horizontal
lines where both C2 and C3 influence the space). The deformed scalar field for C1, FC1def , is equal to the
sum of its undeformed field, FC1 and the blending term. Thus, when C2 contributes to the blending term, it
is:

FC1def (P) = FC1(P) + FC2(P)

and when C3 contributes to the blending term, it is:

FC1def (P) = FC1(P) + FC3(P)

Calculation of a deformed field for a link

Figure 3.18 illustrates the deformed field calculation for one of the links, C2. The set of its blendable
components B(C2) = fC1g and the set of its unblendable components U(C2) = fC3g. Within its max-
imal influence area M(C2) (dashed line in Figure 3.18) and outside the area of influence of its blendable
component C1, the collision between C2 and C3 occurs as described in Section 3.3.3. Within C1's area
of influence but outside C3's area of influence (vertical lines in Figure 3.18), the deformed scalar field is
the sum of C2(P) and the blending term which is C1(P). Inside C3's area of influence (horizontal lines
in Figure 3.18), the collision term, C3(P), has to be considered, i.e. at the areas where both FC2(P) and
FC3(P) are greater than isovalue, the deformed scalar field becomes:

FC2def (P) = FC2(P) + FC1(P)� FC3(P) + Iso

Otherwise, only the sum of the undeformed field function for C2 and the blending term is taken:

FC2def (P) = FC2(P) + FC1(P)

Surface continuity considerations

A naive way of calculating scalar field deformation during a self-collision is to first apply the relevant
collision terms to all unblendable components and then add the influence from blendable components.
Thus, the deformed field value for a component C would be:

FCdef (P) = FC(P)�
X

Cu2U(C)

FCu(P) +
X

Cb2B(C)

FCb(P) + Iso

Applying this algorithm in the case illustrated in Figure 3.16 would result in the following calculation
of deformed components C1; C2 and C3 in the intersection of their areas of influence:

FC1def (P) = FC1(P) + FC2(P) + FC3(P)
FC2def (P) = FC2(P)� FC3(P) + FC1(P) + Iso
FC3def (P) = FC3(P)� FC2(P) + FC1(P) + Iso

This calculation differs from the proposed algorithm only for C1, since its blending term is now always
the sum FC2(P) + FC3(P). For C1, the field function is therefore calculated as if all three components
were blendable with each other. Hence, the created implicit surface passes through the intersection of C1's
maximal influence area and the surface FC1(P) + FC2(P) + FC3(P) = Iso. The calculation for C2

and C3 has not changed, and the isosurface in their maximal influence areas goes through the union of
FC1(P)+FC2(P) = Iso and FC1(P)+FC3(P) = Iso. Figure 3.19 shows the resultingC0-discontinuity.

In the proposed algorithm the blending term for C1 is restricted to only field values from components
that are greater than the components in their unblendable sets. In this way the resulting implicit surface for
C1 also passes through the union of FC1(P) + FC2(P) = Iso and FC1(P) + FC3(P) = Iso providing
C0-continuity.

3.3. BLENDING 39

component C1

M(C1)

component C3component C2

tangent discontinuity

Figure 3.17: Self collision in an object: deformation for a joint

component C1

M(C2)

component C3

component C2

Figure 3.18: Self collision in an object: deformation for a link

40 CHAPTER 3. THE ABC OF IMPLICIT SURFACES

C0-discontinuity

Figure 3.19: C0-discontinuity resulting from adding all blendable components to the blending term

3.3.5 More complex cases of collisions and self-collisions

Figure 3.20 shows an example of a self-collision for an object with more complex components. An appear-
ance graph for the model consists of three components: a joint hip and two links legs. The hip contains
one primitive and there are six primitives in each leg. When unwanted blending is not prevented, the legs
blend with each other (left). When considering the default blending properties for the appearance graph,
the undesired blending between the legs is prevented (middle and right).

Figure 3.20: Another example of self collision, from left to right: all primitives blend, a collision between
two “legs”, a 2D cross section of the collision

Figure 3.21 shows a scene composed of two colliding objects, each modelled using a three component
appearance graph: one joint and two links. In the top sequence, no self-collision was calculated, thus the
links in both objects blend which is an undesired effect that destroys the intended appearance of the objects.
The bottom sequence is calculated using the proposed algorithm, i.e. taking into consideration the collision
between the links and avoiding unwanted blending.

3.4 Coherence

So far, the appearance of characters modelled was not destroyed by unwanted blending. Ways of ensuring
the topological integrity of the model during animation, i.e. the problem of coherence loss, will now be
looked at.

3.4.1 Coherent implicit surfaces

One of the features of implicit surfaces is that local surface deformations can be modelled by moving some
of the primitives in a model. This property inspires the idea of simulating clay-like behaviour for implicit
objects, in which the goal is to squash and stretch an object by moving the primitives and let the system
take care of the object's topological integrity.

To avoid coherence loss, the distance between primitives has to be restricted to eliminate surface sep-
aration (maximum distance) and primitive overlapping (minimum distance). Since all the distance values

3.4. COHERENCE 41

Figure 3.21: A collision between two objects, each in a state of a self-collision: 3D and a 2D cross section.
Top: no self-collision is calculated (unwanted blending destroys appearance), Bottom: the same collision
with self-collisions (unwanted blending prevented)

between minimum and maximum are allowed, a connection between two primitives is not rigid but de-
formable causing a local deformation of the model without coherence loss. By controlling the values of
minimum and maximum distance between primitives various levels of firmness of an object can be mod-
elled. A firmer object will squash and stretch less than a looser one.

Two primitives, between which distance constraints are maintained, will be called a connection. In a
model constructed according to an appearance graph, two types of connections can be identified: internal
to an object component and external to it, between primitives from two object components (Figure 3.22).
The former ensures the coherence of a component, the latter provides bonds between parts of a model.
When a primitive moves, it is first “followed” by remaining primitives from the same component and then
by primitives from the adjacent components. Distance constraints yield topological integrity of the model,
therefore coherence loss does not occur.

To explain the proposed solution, the process for defining and controlling distance constraints between
two primitives, including firmness specification, will be presented first. Then, a way of imposing them
within an object component and between components will be described. Finally, the results will be shown
in a series of examples.

42 CHAPTER 3. THE ABC OF IMPLICIT SURFACES

connections within a component

connections between components

primitives

Figure 3.22: Two types of connections in a model: within a component and between components.

x d -xG1

P0

G2max

Figure 3.23: The maximum coherence preserving distance between two primitives

3.4.2 Distance constraints

Two blendable primitives stay blended with each other as long as for all points along the shortest line
segment connecting their generators G1 and G2:

F1(P) + F2(P) > Iso

where F1; F2 are the field functions of the two primitives and Iso is the isovalue. The maximum distance
at which the two primitives stay connected is when the minimum field value between the two generators
is equal to Iso. The primitives are then connected by exactly one point P0 (Figure 3.23). Let us mark
the distance between the two generators as dmax and the distance between P0 and G1 as x. The distance
between P0 and G2 is then dmax � x. In this situation, the potential functions f1; f2 of the two primitives
and their first derivatives d

dr
f1;

d
dr
f2 satisfy the following equations:�
f1(x) + f2(dmax � x) = Iso

d
dr f1(x) + d

dr f2(dmax � x) = 0

The first equation ensures that the field value at P0 is equal to the isovalue and thus the point P0 lays on
the blended surface. The second equation ensures that the first derivative of the field function is zero and
thus the field function takes a minimum at P0. The point P0 is therefore the point with the lowest field
value between the two generators and the only point of connection between the two primitives. To avoid
the costly calculation of the solution to these equations, its approximation can be used. Instead of looking
for the distance at which two primitives are connected by one point, a distance that guarantees that there
are connected can be computed in an easy way. Consider the situation in Figure 3.24. The dotted circles
represent the two primitives at their radii in isolation, r1 iso; r2iso. The radius in isolation for a primitive
can be calculated by solving the equation:

f(riso) = Iso

where f is the potential function. The field value due to one primitive for distances smaller than the radius
in isolation is greater than the isovalue. For the two primitives in Figure 3.24 it is therefore sufficient to
ensure that both field values F1(P) and F2(P) are greater than Iso

2 for any point P along the line segment

3.4. COHERENCE 43

marked x. The radius at which the field value is equal to Iso
2 can be calculated for a primitive by solving

the equation:

f(r Iso
2
) =

Iso

2

where f is the potential function. To ensure that field values due to both primitives are greater than Iso
2 , the

minimum of the two distances, r1 Iso
2

and r2 Iso
2

has to be taken.

x
G2G1

r2isoisor1

Figure 3.24: An approximated coherence preserving distance between two primitives

The resulting approximated distance will be called maximum coherence distance:

dmax = min

�
f�11

�
Iso

2

�
; f�12

�
Iso

2

��
+ f�11 (Iso) + f�12 (Iso)

where f1; f2 are the potential functions of the two primitives. dmax gives the maximum separation distance
allowed for the two primitives. When one primitive moves away, the other should follow its motion when
the distance between them reaches dmax. Similarly, the minimum coherence distance, dmin, between two
primitives needs to be defined to handle situations when a primitive moves towards the other one and to
prevent generators from overlapping and thus primitives from traversing through each other. dmin = 0 is
proposed. The second primitive should follow the motion when the distance between them is equal to dmin.

The minimum and maximum coherence distances mark the limits of overlapping and blending respec-
tively. In order to control the manner of motion propagation restricting the distance between two primitives
to a subinterval of [dmin; dmax] is required. The notion of firmness specifies such an interval. Assuming
that the initial distance between two primitives, dinit, is within their corresponding minimum and maximum
coherence distances, two parameters specify firmness: fmin 2 [0; 1] and fmax 2 [0; 1]. The distance to be
maintained between the primitives is given by [Rmin; Rmax], where

Rmin = dmin +fmin(dinit� dmin)
Rmax = dmax +fmax(dinit � dmax)

The two parameters represent the “squashability”, i.e. how much the two primitives can approach each
other (fmin) and “stretchability”, i.e. how much they get get away from each other (fmax) of the relationship
between the two primitives. The higher the value of either of the two parameters, the less deformation of the
initial configuration between the primitives is allowed and therefore, the less fluid the motion of an object
which contains the pair.

Figure 3.25 presents how the distance constraints are maintained in a connection (push-pullaction). Two
primitives, one moving (Pm) and one following (Pf), are shown before (lighter shading) and after (darker
shading) the motion

�!
M of Pm. Which of the actions occurs (push or pull) is determined by calculating the

dot product of the vector between the primitives
�����!
Pf0Pm0 and the vector of motion

�!
M and examining the

distance resulting between two primitives after the movement of Pm from Pm0 to Pm1, k�����!Pf0Pm1k.
When �����!

Pf0Pm0 � �!M < 0 ^ k�����!Pf0Pm1k < Rmin

the primitive Pf is pushed. It will move along the vector
�����!
Pm0Pf0 until the distance between the primitives

becomes Rmin. The new positionPf1 is calculated by a ray-sphere intersection algorithm [Glas89], taking
a sphere centred at Pm1 with the radius Rmin and intersecting it with a ray starting at Pf0 in the direction

of
�����!
Pm0Pf0.

44 CHAPTER 3. THE ABC OF IMPLICIT SURFACES

R
min

Pm0

Pm1

Pf0

Pf1

M

"push" "pull"

Pm0
Pm1

Pf0

Pf1

M

R
max

Figure 3.25: A distance constraint maintained between two primitives: light shading represents old posi-
tions of primitives, dark shading gives new positions; M is the direction of motion of one primitive which
then causes a movement of the connected primitive

When �����!
Pf0Pm0 � �!M > 0 ^ k�����!Pf0Pm1k > Rmax

Pf is pulled. It will move along the vector
�����!
Pf0Pm1 until the distance between the primitives becomes

Rmax. Again, a ray-sphere intersection algorithm is used to calculate the new position for Pf , taking a
sphere centred at Pm1 with the radius Rmax and intersecting it with a ray starting at Pf0 in the direction of�����!
Pf0Pm1.

3.4.3 Connections within a component

An object component consists of a collection of primitives. It is therefore necessary to define a network of
connections to be maintained between them. A naive approach would be to attempt the distance constraint
enforcement between each pair of primitives using a full graph of connections. However, this process
is compute intensive. Here, an alternative, user-defined network of connections that fits the particular
requirements of an animator is proposed. A network has to contain all the primitives of the component
and there has to exist a path in the graph between each pair of primitives. At the moment the connections
have to be specified manually, no scripting language is provided. Automatic creation of simple linear
connections between all the primitives in each component, in the order of their specification in the script
file, is implemented but no support exists for more complex networks.

Figures 3.26, 3.27 and 3.28 show examples of networks defined within a component and the behaviour
of the component during motion of one of the primitives. The induced motion of the component depends
on the number of children in the connection network of the primitive causing the motion. The more con-
nections, the more immediate the motion of the component. In Figures 3.26, 3.27 and 3.28 the number of
connections starting in the moved primitive increases resulting in a more and more immediate motion.

Firmness parameter is constant for all connections within a component. Figures 3.29 and 3.30 show
examples of the same motion propagated in a component with the same network of connections for varying
values of firmness. In Figure 3.29, firmness parameters are fmin = 0:9 and fmax = 0:9. The motion
of the component after pulling one of the primitives results in the primitives staying close to each other, the
component is “firmer”. When the firmness is lowered by decreasing fmax down to fmax = 0:2, a more
fluid motion of the component is achieved in the same situation (Figure 3.30).

3.4. COHERENCE 45

Figure 3.26: Coherence maintained within a component for firmness given by fmin = 0:9; fmax = 0:5
for a network of connections shown in the first frame

Figure 3.27: Coherence maintained within a component for firmness given by fmin = 0:9; fmax = 0:5
for a network of connections shown in the first frame

46 CHAPTER 3. THE ABC OF IMPLICIT SURFACES

Figure 3.28: Coherence maintained within a component for firmness given by fmin = 0:9; fmax = 0:5
for a network of connections shown in the first frame

Figure 3.31 shows three consecutive motions applied to a component. Each row in the figure corre-
sponds to one primitive being translated. The component behaves like a chunk of clay while being stretched
and squashed in various directions without breaking into pieces.

An assumption is made that the initial network of primitives within a component preserves its coherence,
i.e. that the initial distance in each connection is within the minimum and maximum coherence distances.
This condition has to be ensured by the user during the modelling stage. A warning is issued by the system if
a model does not meet this requirement, i.e. if there is a connection between two primitives, with generators
Gi; Gj, for which k���!GiGjk > dmax.

The motion starts from one moving primitive and is propagated within the connection network during its
traversal. Thus, when a primitive is moved in a component, its neighbours in the network are examined and
they follow its motion when the new distance between them falls outside the corresponding [Rmin; Rmax]
limits. The process of motion following is described in Section 3.4.2 (push-pull action). The induced motion
of primitives finishes when the connection network has been traversed, i.e. when each primitive has been
visited. Note that some distance constraints may thus remain unsatisfied since for a network with cycles the
traversal will be completed without verifying all connections. For instance, in Figure 3.31 the bottom row of
frames shows the network of connections after the first two movements. Some of the primitives have been
allowed to remain further from each other than the coherence preserving distance and connections between
them have been breached. However, since all primitives are in the network and there is a path between each
pair of primitives in it, each primitive has at least one neighbour to which it stays blended. The coherence
of the component is therefore preserved.

3.4.4 Connections between components

To provide a general method of propagating the induced motion in the appearance graph (between com-
ponents), it is required to find the primitive in each adjacent component that is closest to the deformed
component and start the motion propagation from that primitive. However, a simpler way is to predefine

3.4. COHERENCE 47

Figure 3.29: Coherence maintained within a component for firmness given by fmin = 0:9; fmax = 0:9,
a “firmer” component

Figure 3.30: Coherence maintained within a component for firmness given by fmin = 0:9; fmax = 0:2,
a “looser” component

48 CHAPTER 3. THE ABC OF IMPLICIT SURFACES

Figure 3.31: A component being deformed by three consecutive motions applied to it

the connections between primitives from adjacent components. Such connections are user defined and they
can be fitted to the particular requirements of a model. With connections specified this way, the same prop-
agation algorithm as for connections within a component can be applied. Figure 3.32 shows a simple model
during deformation due to motion propagation. The character is composed of one joint (body) with three
links (legs) attached to it. Motion starts by moving a primitive in one of the legs. The distance constraint
in the connection between the body and this leg cause the body to follow this motion. Then, the remaining
two legs follow since there are connections between them and the body. As a consequence the entire model
is pulled in the up-right direction. To specify this sequence, only one translation had to be given which is
an important advantage of the coherence preservation algorithm.

3.5 Tripod - a case study

In this example, the process of creating a short animation sequence using the ABC approach with one
simple character, Tripod, is presented. Tripod has three legs, each consisting of two primitives, connected
by distance constraints (Figure 3.33). Its trunkhead is composed of one primitive. The trunkhead is a
joint and the three legs are links are attached to it by distance constraints. The firmness parameters are
fmin = 0:9 and fmax = 0:8.

Having defined the model, an animation sequence is created by moving one primitive at a time (Fig-
ure 3.34). The aim was to animate the Tripod during a jump. The first step was to prepare the character for
a jump by bending two of its legs (Frames 00-10) and lowering its trunkhead (Frames 10-15). The jump is
then created by translating the trunkhead in the upper right direction (Frames 15-40). During the upward
motion, Tripod's legs approach each other and collide. For instance, in Frame 40 the legs a self-collision
is modelled. Precise contact surface between the legs is created. This effect would have been lost without
preventing unwanted blending between legs. Also, the effects of squash and stretch can be seen during the
animation - the legs lengthen during the upwards motion and shorten during the descend. When Tripod
reaches its highest position (Frame 40) it is pulled down by translating the right leg down (Frames 40-50).
It approaches the floor leaning to the right side and its balance is retrieved by pulling the left leg down left

3.6. SUMMARY 49

Figure 3.32: Propagation of motion in a graph

and forward (Frames 50-70). Finally, the Tripod returns to its upright position by pulling the trunkhead
upwards (Frames 70-75).

The more detailed description of this animation is as follows (primitive numbers refer to Figure 3.33):

Motion Translation

Frames 00-05 right leg up p4 : (0:1; 0; 0:05)
Frames 05-10 left leg up p0 : (�0:1; 0; 0:05)
Frames 10-15 trunkhead down p6 : (0; 0;�0:5)
Frames 15-40 trunkhead up right p6 : (0:1; 0; 0:15)
Frames 40-50 right leg down p4 : (0; 0;�0:2)
Frames 50-70 left leg down left forward p0 : (�0:05;�0:05;�0:15)
Frames 70-75 trunkhead up p6 : (0; 0; 0:1)

Tripod is modelled in a “plasticine” manner. The deformation due to all movements is plastic, i.e. it
lasts in time. For instance, when Tripod lands on the floor, its body does not return to its initial position but
keeps the shape resulted from the motion.

Collisions with the floor is not calculated with the implicit model. They are approximated by maintain-
ing all generators at a distance from the floor level by at least their radius in isolation. Precise collisions
could have been modelled if a large primitive was used to model the floor.

3.6 Summary

This chapter has presented implicit surfaces with blending properties that can be used to model objects ca-
pable of collisions and self-collisions. The new formulation produces contact surfaces between objects and
between parts of one object. A simple general deformation algorithm has been proposed. It is valid for any
configuration of blending properties in a model. The algorithm guarantees C0-continuity of the deformed
surface. Higher level continuity and volume preserving deformation are two extensions the algorithm would
benefit from. For C1-continuity, the work of Marie-Paule Gascuel [Gasc93] could be followed. Volume
conserving deformation was investigated by Desbrun and Marie-Paule Gascuel [Desb95a].

The main advantage of processing collisions using implicit surfaces is the simplicity of collision detec-
tion and creation of a precise contact surface between colliding objects. Therefore, no surface interpenetra-
tion or occurrence of surface deformation before contact will take place.

Another important technique developed in this chapter is a coherence preserving algorithm that allows a
user to animate a model by simple translation of individualprimitives and calculating the resulting motion of
remaining primitives in the object so that the topological integrity of the model is preserved. The algorithm,

50 CHAPTER 3. THE ABC OF IMPLICIT SURFACES

iso 0.8

object tripod colour Gold
component left rotation (45,0,-20)

point (0,0.5,0) POVfunction 2 1
point (0,-1,0) POVfunction 2 1
blend SUM

component middle rotation (-45,0,0)
point (0,0.5,0) POVfunction 2 1
point (0,-1,0) POVfunction 2 1
blend SUM

component right rotation (45,0,20)
point (0,0.5,0) POVfunction 2 1
point (0,-1,0) POVfunction 2 1
blend SUM

component trunkhead rotation (0,0,0)
point (0,0,0) POVfunction 2.5 2
blend SUM

joint trunkhead attachedto left (1.5,2.2,1.5)
joint trunkhead attachedto middle (0,2.2,-1.5)
joint trunkhead attachedto right (-1.5,2.2,1.5)
anchor trunkhead (1,1.8,0)

end
middle

left

trunkhead

right

P6

P3

P2

P5

P4

P1

P0

Figure 3.33: A model of Tripod with a connection network

based on simple geometric principles, is computationally inexpensive to implement and produces good
results. The calculated motion can be adjusted using an intuitive parameter of firmness. A firmer object
will deform less than a looser one. The coherence preserving algorithm would benefit from a deformation
method that maintains the volume of an object at a constant level and from a more interactive manner of
defining a connection network.

The methods presented offer tools to model deformable “clay” or “plasticine” characters that can easily
be squashed and stretched to create expressive animations. A user is given simple manual control over the
behaviour of an object. Good results can be achieved for simple characters (e.g. Tripod consisting of 7
primitives). However, for more complex models, specifying an animation by moving one primitive at the
time becomes tedious and not intuitive. For instance, the behaviour of a model for two primitives being
moved at the same time is not defined. The next chapter will investigate using a combination of manual
and automatic animation control to achieve a goal of animating implicit surfaces in the traditional character
animation sense.

3.6. SUMMARY 51

Figure 3.34: Tripod jumping

Chapter 4

Animating Implicit Surfaces

4.1 Introduction

Chapter 3 introduced an extended model for implicit surfaces with blending properties, in which clay-like
material can be modelled and deformed in a coherent way. This model makes use of several advantageous
properties of implicit surfaces: their ability to conform to the objects in the environment (precise contact
modelling), their naturally layered structure (generators and an isosurface) which automatically provides
a “skin” for an object, and their deformability, i.e. the fact that, within certain limits, primitives can be
pulled away and pushed towards each other, locally changing the shape of the surface, without the loss of
its continuity. Such effects are often required in character animation and more difficult to achieve using
polygonal or parametric surface models. This model offers deformable implicit surfaces that behave in an
“organic” way. The next goal is to “breathe life” into such material, i.e. to animate it in the traditional
animation sense.

The experience of traditional character animators, collected over the years, has been condensed into a
list of principles of traditional animation [Thom81]. One of the most often stressed rules is “squash and
stretch”. Characters show their reactions and feelings by deforming to the limits of these two extremes. The
animated world is in constant motion. All movements are fluid and all physical laws exaggerated, with each
action preceded by its anticipation to prepare an audience for it. These are the main principles of traditional
animation. They make us forget that this is only an illusion of life. These principles are the inspiration for
the work on animating implicit surfaces described in this chapter.

In computer generated character animation, the level of abstraction at which the animator interacts with
the software, is an important issue. At the lowest level, all parts of a character have to be positioned and
oriented in space and their possible deformation specified. When applied to a more complex model, the
process may prove very tedious. Thus, animators would not be provided with a tool that gave the necessary
level of creative spontaneity. Therefore, some parts of motion specification should be generated by the
computer animation system. On the other hand however, animation control cannot be taken completely
out of the animator's hands and automated, since it would not normally produce the exact required motion.
Assistance with motion generation is desired but fine tuning of detail should be left to the animator. The
manual motion control, used in Chapter 3, provides mechanisms to animate models by moving single
primitives. The motion for all the primitives but the moving one is calculated by the coherence preserving
algorithm (Section 3.4). Nevertheless, it is a low level animation method and for models built with many
primitives, such an approach is difficult to apply. This chapter will show how manual and automatic motion
control can be combined to provide a hybrid animation method for implicit surfaces with blending properties
aiming at creating automatic traditional animation effects.

There are several similarities between choreographing a dance sequence and creating an animation
sequence. Both processes start from a vague idea, sketch the general shape of the piece, choose their
performers, develop phrases to express intended feelings and refine them until the composition is completed.
This correspondence was the inspiration for the use of a dance notation as input to an animation system. It
provides a higher level of animation control for articulated models defined by an appearance graph.

After briefly describing traditional animation principles (Section 4.2), we will look at related work in the

52

4.2. TRADITIONAL ANIMATION PRINCIPLES 53

field of computer character animation (Section 4.3). Then, Section 4.4 will introduce a new multi-layered
model, composed of a manually specified inner layer and automatically generated outer layer. Section 4.5
will present the process for its user-controlled creation of the outer layer. Section 4.6 will describe the
choreographic nature of animation and present three dance notations used in the dance community, choosing
one of them for implementation and justifying the choice. An overview of a hybrid animation control
technique proposed for the layered model, i.e. methods for animating the inner and the outer layers of the
model, will then be presented (Section 4.7). A way of manual animation control of the inner layer based on
the Eshkol-Wachmann dance notation will be discussed in Section 4.8. Two methods of automatic motion
generation for the outer layer will be proposed and compared in Section 4.9. Applying a combination
of these manual and automatic motion control methods to the creation of traditional animation effects in
implicit surface animation will be shown in Section 4.10. The chapter will conclude with a case study of a
“cute” dinosaur (Section 4.11).

4.2 Traditional animation principles

This section briefly describes the principles of traditional animation interpreted after “Disney Animation -
The Illusion of Life” by Thomas and Johnston [Thom81].

Squash and Stretch: In the real world only metal pans and concrete blocks move in a rigid way. Everything
that is alive squashes and stretches to a certain extent during its motion. Therefore, any living object in
Disney cartoons, e.g. a “rigid” broom or a “wooden” boy (Pinocchio), deforms and expresses its feelings,
moods and personality by squashing and stretching its body.

Anticipation: Anticipation prepares an audience for the forthcoming action. The feeling of suspense is
created and it ensures that none of the important events in an animation sequence will be missed by the
audience.

Staging: An action of a story can be presented in many locations. Staging an action means putting it in a
background that creates the required atmosphere through the use of appropriate symbols. For instance, to
create the feeling of fear, a dark, sharp landscape may be used, with a few bats and a black cat.

Straight Ahead Action and Pose-To-Pose Action: These are two contrasting methods of developing an
animation sequence. Straight Ahead Action is a more spontaneous way which uses the ideas that are coming
along while the sequence is being created. Such actions are usually more wild and expressive. Pose-To-
Pose Action is Disney's definition of keyframing. A sequence is carefully planned as a series of keyframes
that mark the important events of a story. Inbetweens, i.e. frames between each pair of keyframes are then
developed. The story told this way becomes clearer and stronger. However, traditional animators found
it more difficult to deal with Pose-To-Pose Action. The inbetween frames often lacked the spontaneity of
Straight Ahead Action. Some tricks to make the change from one key position to another more convincing
are described as the next principle.

Follow Through and Overlapping Action: These are two terms describing a set of tricks used by tra-
ditional animators to add more life to their characters. Apart from the main action taking place, some
additional movements are always happening to make sure that characters never stop moving and thus never
look like flat drawings. Several ways of achieving such effects have been developed. If a character has any
“appendages”, e.g. long ears, tail, clothes, feathers, these will move separately following the main move-
ment and emphasising their weight and dependence on the character. Sometimes parts of a body can behave
this way, e.g. a big stomach or loose flesh being “dragged behind” the body. A character will not move all
its parts at the same time, instead, each of them will get to their final position individually, possibly with
a delay, creating a more dramatic effect. Finally, there is a Moving Hold, a way of stopping a character
without using a still image. A character will stop and then slowly exaggerate its stopping position and ex-
pression, giving an audience the time for a reflection on the events that caused such a halt. All these tricks
add little life-giving features to the behaviour of a character.

Slow In and Out: This is a way of creating inbetween frames for specified keyframes. By creating more
inbetweens at the beginning of a transition and at its end, with fewer frames in the middle, a gradual change
of attitude is achieved.

54 CHAPTER 4. ANIMATING IMPLICIT SURFACES

Arcs: At the beginnings of the art of traditional character animation, motion took place along straight
lines resulting in a rigid behaviour. To avoid such stiffness, movement along curved lines was introduced.
Characters started to “arc” over stairs or “arc” their arms reaching for objects. The result was a more
realistic, less mechanical motion.

Secondary Action: The main action can be supported by a secondary action that strengthens the required
emotion. For instance, a disappointed person may discretely wipe off a tear before turning round to walk
away. Care should be taken not to make the secondary action too big and therefore diminish the impact of
the main action.

Timing: Timing is extremely important in character animation. The same motion performed at a different
speed may completely change the meaning of an action. In [Thom81] the following example is given:

Just two drawings of a head, the first showing it leaning towards the right shoulder and the second with it over on
the left and its chin slightly raised, can be made to communicate a multitude of ideas, depending entirely on the Timing
used. Each inbetween drawing added between these two “extremes” gives a new meaning to the action.

NO inbetweens: The Character has been hit by a tremendous force.
His head is nearly snapped off.

ONE inbetween: The Character has been hit by a brick, rolling pin, frying pan.
TWO inbetweens: The Character has a nervous tic, a muscle spasm,

an uncontrollable twitch.
THREE inbetweens: The Character is dodging a brick, rolling pin, frying pan.
FOUR inbetweens: The Character is giving a crisp order, “Get going!”, “Move it!”.
FIVE inbetweens: The Character is more friendly, “Over here”, “Come on - hurry!”.
SIX inbetweens: The Character sees a good looking girl (man) or

the sports car always wanted.
SEVEN inbetweens: The Character tries to have a better look at something.
EIGHT inbetweens: The Character searches for the peanut butter on the kitchen shelf.
NINE inbetweens: The Character appraises, considering carefully.
TEN inbetweens: The Character stretches a sore muscle.

Exaggeration: To make an animation more convincing, all actions were exaggerated to produce a carica-
ture of reality. Such an animation tells a story more clearly and emphasises the key events or personality
characteristics that are essential to create the “illusion of life”.

Solid Drawing: This principle relates to the process of character modelling. The features to be avoided
are “twins”, i.e. same legs, hands doing the same thing or eyes looking in the same direction. The sought
shapes have volume and flexibility, are strong but not rigid. Parallel lines are out and curved lines are in. A
character modelled without “solid drawing” is more lively even when static.

Appeal: Appeal describes the whole set of features of a character that create the required impression on
an audience. For a bad character, e.g. a nasty witch, this may not necessarily be pleasant or positive char-
acteristics. By emphasising this principle, animators are made aware of the importance of the personality,
reflected in both the look and the motion, that they are creating for any of their creatures.

These principles address all stages of the process of animating. Solid Drawing and Appeal guide the char-
acter design and modelling. Staging suggests a choice of an appropriate background location for the action.
Two styles in which the sequence can be developed are proposed: Straight Ahead or Pose-To-Pose Action.
The remaining principles deal with the generation of motion for the characters. Among them, Slow In and
Out, Arcs and Timing describe how inbetweens can be created to achieve more expressive effects. The man-
ner of performing any motion is enhanced by a preparatory stage (Anticipation), additional effects while it
is happening (Secondary Action) and its progressive finishing (Follow Through and Overlapping Action).
Squash and Stretch argues the essential presence of deformation in expressing any feeling and performing
any action. Finally Exaggeration suggests that any output from any of the stages of the animation creation
can be exaggerated to make the main points more evident to the audience.

In order to introduce automatic traditional animation effects to the animation of implicit surfaces, the
principles of motion generation were considered. Among them, Squash and Stretch, Anticipation, Sec-
ondary Action, Follow Through and Overlapping Action and Exaggeration, are probably the ones that
“breathe life” into traditionally animated characters and that are lacking in computer generated characters.

4.3. RELATED WORK 55

Implicit surfaces can be coherently squashed and stretched (see Chapter 3). The principle of Squash and
Stretch is therefore automatically achievable in their context. Anticipation effect cannot be easily generated
for an arbitrary motion, since a more thorough semantical analysis of the event is required to derive its
potential anticipating action. Semantical analysis of motion is beyond the scope of this thesis. Similarly,
Secondary Action was ruled out since it means explicitly adding new behaviour to parts of a character
in order to emphasise the main expression or feeling. Follow Through and Overlapping Action can be
automatically generated by procedurally animating parts of a character. Finally, for a defined animation
sequence possible ways of its automatic Exaggeration will be looked into.

4.3 Related work

The experience of traditional character animation has been successfully applied to computer animation.
In [Lass87] John Lasseter, who was trained at Disney, described the creation of “Luxo Jr.”, an animation
sequence starring an anglepoise lamp that appealed to the audience in the same way as characters in Disney
animation. This work is undoubtably a milestone in the history of computer character animation used as
a creative tool for animation artists. It was the first computer animation to be nominated for an Academy
Award. However, to create “Luxo Jr.” traditional animation principles were applied manually. The fact
that an anglepoise lamp was chosen as the character helped the squash and stretch and other effects to be
achieved more easily.

Following the success of “Luxo Jr.” in 1986, more PIXAR productions appeared: “Red's Dream” in
1987, “Tin Toy” in 1988 - the first computer animation to be awarded an Academy Award , “Knick Knack”
in 1989. The first fully computer animated feature film, “Toy Story”, created by PIXAR for Disney, was
released in 1996. A lot of artistic skill applied manually to computer models is required to create all of
these animations which makes it very hard for an ordinary user to reproduce similar effects. More support
from an animation software is thus required.

4.3.1 Layered models

A more automated approach to computer character animation is the use of a layered model. In such a
model, a character is created as an articulated skeleton covered with deformable layers of muscle, fat and
skin. The skeleton can be animated using any method, e.g. keyframing or a physically-based approach.
Corresponding deformation of the skin is generated according to the motion of the underlying skeleton.
The skin in layered approaches is most often modelled using polygonal or parametric surfaces. A mesh of
polygons or parametric patches is deformed to fit the moving links and joints of the articulated skeleton.

Magnenat-Thalmann et al. [Magn88] develop a method called joint-dependent local deformation (JLD)
to model deformation of a polygonal mesh. Polygon vertices are bound to points on the articulated skeleton
and move following with the skeleton motion. The skin deformation around joints in a human figure is
handled by geometric deformation procedures tailored for each joint type. The procedure take into consid-
eration the angles between limbs at the joint and approximates the result expected for this particular joint
in humans.

Chadwick et al. [Chad89] use free-form deformation (FFD) blocks [Sede86] to represent a layer of
muscle between the skeleton and the skin. FFD blocks are associated with each muscle and a subset of their
control points is bound to the relevant link in the skeleton by spring and masses connections. The polygonal
skin is embedded in FFD blocks and is parametrised with relation to the FFD space. The flexing of the
muscles is modelled by deforming the associated FFD blocks. The resulting deformed parametrisation for
the skin is calculated and represents the deformed skin layer.

Forsey [Fors91] describes a hierarchical B-spline surface which can generate folds and creases around
joints. The deformation is achieved by moving some control points of surface patches. The surface change
is restricted to the patches that share the moved control points. For deformation that is more local than the
size of a patch, the mesh of patch control points can be progressively refined until a small enough mesh of
control points is achieved.

These three approaches [Magn88, Chad89, Fors91] defined the skin in a separate modelling process
using 3D scanning techniques or existing databases of human figures. Skin creation can be simplified by
using implicit surfaces as a layer in the model. For instance, Shen and Thalmann [Shen95] use implicit

56 CHAPTER 4. ANIMATING IMPLICIT SURFACES

surfaces to define a muscle layer for a character. The resulting implicit surface is sampled and the sampling
points are used to control a B- spline surface of the skin. The implicit surface helps to evenly distribute the
control points of the parametric surface, otherwise a non-trivial problem.

Another approach to skin modelling is to generate an elastic surface attached to a rigid body at specified
points using spring connections. Gascuel et al. [Gasc91] proposed a layered model in which the skin is
defined by a spline surface and attached to a rigid kernel by stiff springs. The skin deformation is calculated
by combining the influence of external forces with the internal response of the springs. Turner [Turn95]
adapted the deformable elastic polygonal mesh of point masses given by Terzopoulos et al. [Terz87] to the
task of skin definition for a layered character. The surface is attached to the body by a series of point-to-
point spring constraints and deforms in response to environmental forces such as gravity and air pressure.
Turner uses a set of unblended implicit superellipsoids to define the body of a character.

4.3.2 Implicit surfaces

Implicit surfaces offer a naturally layered model (generators and an isosurface) in which the continuityof the
implicit “skin” is automatically attached to the skeleton and easily deformed with its continuity preserved.
This is one of the main motivations for using implicit surfaces to develop an alternative layered approach
for computer character animation in which the skin for a character is associated with an isosurface, i.e. it
does not have an explicit representation.

Implicit surfaces have already been used for character animation. Although manually animated, a guitar
player in a toothpaste advert [Beie90] proves that the smooth appeal of implicit surfaces and its layered
structure that promotes fast prototyping of an animation sequence are highly beneficial for computer char-
acter animation.

The principles of traditional animation have also been applied to implicit surfaces. Wyvill [Wyvi92] de-
veloped a technique for modelling squash and stretch effects. In his work, the scalar field around generators
was deformed by warping different regions of space and applying the warping function to the overall scalar
field value. A warping region was normally associated with an object in a scene, e.g. a floor. Thus, when
an object traverses a warping region, its scalar field deforms to model squash, e.g. on contact with the floor,
or stretch, e.g. after having bounced off the floor. Effects such as slug-like motion or waves going through
a surface can be achieved by choosing a suitable warping function.

Such a layered approach to character construction is particularly attractive for fast design and motion
prototyping. A character can be viewed at varying levels of detail. The the low level, a stick figure rep-
resenting the articulated structure can be displayed. The subsequent layers can be added to improve the
animator's perception of the character's look and the manner of motion. A fully rendered, slower to pro-
duce, version of the character may only be used to view the final result. If further refinement is required, it
can be performed at a lower level of detail.

4.4 Layered model

The model proposed in Chapter 3 consists of two layers: a set of generators and an implicit surface that
represents the “skin” for an object. Animation can be specified at the generator level and the implicit
coating will follow the resulting motion. Deformations that occur due to collisions between objects or self-
collisions within an object are modelled at the implicit surface level. Therefore, an animator can focus on
the desired motion letting the software take care of deformation processing. Moreover, the software ensures
coherence preservation so a character can be animated by pulling and pushing its parts without topological
integrity loss.

The goal of extending such a model is to provide a higher level of animation control that will au-
tomatically generate the chosen traditional animation effects: Squash and Stretch, Follow Through and
Exaggeration. The extension proposed is to add a layer of flesh to the model. Flesh consists of a group of
primitives distributed around the components, attached to them and blendable with them.

Three layers can be identified in this extended model (Figure 4.1): user-designed object components,
automatically generated flesh and an automatically created skin, i.e. the isosurface that covers both compo-
nents and flesh. In this model, object components form a layer that is animated by a user. Based on their

4.5. FLESH GENERATION 57

skinflesh primitives

primitives

component
object component

Figure 4.1: Three layers in the new model: object components, flesh and skin

motion, the flesh movement is computed. The skin is automatically deformed according to the motion of
both components and flesh taking into consideration the blending properties for an object. The blending
properties of flesh are derived from the blending properties of components. A more detailed description of
the process of flesh generation for a given model, including assigning flesh blending properties will now be
presented.

4.5 Flesh generation

Two kinds of flesh are proposed: a coat of flesh, which covers a component, and a strand of flesh, attached to
a component by one of its ends. Both types of flesh are connected to their associated components by distance
constraints of a certain, user-specified, firmness characteristic. A user also specifies the field function to be
used for flesh primitives.

4.5.1 Coat of flesh

A coat of flesh around a component is generated automatically using an algorithm adapted from the scatter-
ing method described in [Bloo90b], in which particles, initially scattered in space, travel to the isosurface.
First, for each primitive in a given component, flesh primitives are distributed around it at its radius of in-
fluence (Figure 4.2). The primitive around which flesh is distributed will be called the parent primitive for
all flesh primitives created around it. A simple parametrisation of a sphere is used to distribute primitives:
for a parent primitive with a generator Gi and a radius of influence Ri, a coat of flesh is given by generators
P� :

P� = Gi + (Ri sin� cos ;Ri sin� sin ;Ri cos�)

where � = ��; 2�� : : :2� and = � ; 2� : : :2�. The density of flesh primitives can be controlled by
varying the sampling rate, i.e. by adjusting the values of �� and � . These initial flesh primitives migrate
towards the parent until they reach the isosurface. A linear search is used to find the intersection point.
These primitives that reach the parent without intersecting the isosurface are ignored. They are marked with
crosses in Figure 4.2. The remaining ones constitute a coat of flesh. The distribution of flesh primitives is
not even which produces less regular but not undesirable effects. Some recent works [Witk94, Desb95b]
propose methods of adaptive sampling of implicit surfaces which produce a more uniform distribution of
sample points. A coat of flesh directly inherits the blending properties of its associated component.

4.5.2 Strand of flesh

A strand of flesh is modelled as a chain of primitives attached to a component. A user has to specify a parent
primitive in the component, an attachment point, a direction of growth and the number of flesh primitives
to be used. The system will then automatically create the strand. The first strand primitive (a root) is

58 CHAPTER 4. ANIMATING IMPLICIT SURFACES

final position of a flesh primitive

isosurface coating components

a component primitive

initial position of a flesh primitive

migration direction

radius of influence

Figure 4.2: Coat of flesh generation process: Top: creating flesh primitives, Bottom: component, component
coated with flesh primitives (represented by spheres) and component blended with flesh

generated at the specified attachment point (Figure 4.3). It then migrates along a line connecting it with the
parent until it reaches the isosurface. The motion is towards the parent if the attachment point is outside the
isovolume and away from the parent if it is inside it. If the root reaches the parent without intersecting the
isosurface, it is marked as invalid (a cross in Figure 4.3) and the strand is not created. After placing the root
on the isosurface, the remaining strand primitives are evenly distributed along the strand direction

�!
d . The

centre Pi of i-th primitive in the strand, in relation to the root P 0, is given by:

Pi = P0 + iR0

�!
d

k
�!
d k

where R0 = f�1(Iso) is the radius of a flesh primitive in isolation. It is an arbitrary distance that ensures
coherence of the strand. Any other value from the coherence preserving interval [dmin; dmax] (see Sec-
tion 3.4.2) can be used. Each strand primitive can be tested against the scalar field due to the components
to verify if it does not interpenetrate the isosurface. When a flesh primitive created is inside the isovolume,
a shorter strand is generated. Suppressed strand primitives are marked with squares in Figure 4.3.

This kind of flesh is useful for modelling ”boneless” parts of a character, e.g. hair or a soft tail. All strand
primitives are assumed to be the same size. Interesting effects may be achieved by introducing varying radii
of primitives and modelling for instance a tapering tail. For the blending properties for a strand of flesh,
it is assumed that the root is blendable with the associated component and the next strand primitive. The
remaining strand primitives are only blendable with their two neighbouring strand primitives.

4.6 Choreographic nature of animation

Creating an animation sequence has many common points with choreographing a dance piece. Both these
creative processes start with a vague, often intangible idea and through a series of stages transform it into

4.6. CHOREOGRAPHIC NATURE OF ANIMATION 59

radius of influence

migration direction

final position of a flesh primitive

isosurface coating components

a component primitive

initial position of a flesh primitive

strand direction

Figure 4.3: Strand of flesh generation process: Top: creating flesh primitives, Bottom: component, compo-
nent with strand primitives (represented by spheres) and component blended with flesh

a motion specification for characters in the case of animation, or for dancers in the case of choreography.
There are several formalisms (dance notations) developed to record an existing dance piece. Some of them
have been computerised and there exists software capable of editing and interpreting them [Calv96]. This
section will point out the similarities between choreography and animation and review the most popular
dance notations looking for their application to the composition of an animation sequence.

4.6.1 Choreographic process

A choreographer starts with an inspiration, an abstract idea to be conveyed through the dance. The manner
of transforming such abstraction into a dance performance defines a unique artistic style of a choreogra-
pher. One possible path is to start from a general sketch of the dance, a “conceptual storyboard”, in which
movements are referred to in abstract terms, e.g. dance solitude, walk into a new perspective, comment on
the deception of time, leave a thought of fatalism. The next stage is to develop a series of dance phrases
that express required feelings and moods. These phrases are then taught to the dancers at rehearsals. The
following stage is the recursive refinement of the phrases, the creation of their variations often suggested
by the dancers and improvised interaction between them. The dancers can therefore be active participants
in the creative process. By the end of this stage, the phrases are combined into monologues and dialogues
between dancers. These dance elements can be now fitted into the conceptual storyboard, that itself may
have evolved during the creative process. If the choreographer is satisfied with the resulting dance, the
process gets to its final stage: the performance rehearsal, during which small movements might be modified
but whose main purpose is to prepare the dancers to dance the feelings in the choreographed movements
rather than simply performing them. The choreographic process may go back to an earlier stage of creation
many times and commence its refinement from there.

60 CHAPTER 4. ANIMATING IMPLICIT SURFACES

4.6.2 Animation process

Creating an animation sequence also starts from an initial idea, a message to be given to the audience.
Again, a way of transforming this vague goal into the final animation depends strongly on the animator's
style of work. A few sketches are usually drawn at the beginning to present the artist's concept of the story.
These are then developed further into a detailed storyboard for the animation and a study of characters in
the animation. Character modelling is the next stage and it can be compared to an audition for dancers in the
choreographic process. Then, each sequence described in the storyboard is developed into a series of shots
or phrases, refined until the required emotion is conveyed through them. For large animation projects, the
active participation of dancers in the creative process can be compared to the hierarchical development of
the animation, in which a separate animator can be assigned to the task of animating a particular character or
a background event and be allowed to create it according to his or her individual artistic sense. Finally, the
developed sequences are tried out together, any possible discrepancies or non-smooth transitions between
them removed and the animation is ready for performance. At any time, the animator may decide to go
back to a previous stage to refine the creation process from there.

4.6.3 Dance notation

Most visual recordings of dance pieces are recordings of an interpretation of a choreography performed by
a group of dancers. Such interpretations will differ from performance to performance and from one group
of dancers to another. Recreating the initial choreography from it cannot be free from the influence of the
personalities of performing dancers. Notwithstanding the importance of this style of recording, there is a
need for saving a pure, uninterpreted choreography, that can be taken up by a choreographer and a group of
dancers for re-interpretation.

One way of recording a choreography is writing it up as a formalised score, analogous to writing up a
musical piece. However, there is no established notation for dance that could be equivalent to the musical
score. Moreover, the existing dance notations are difficult to master and they require a trained notator to
record a choreography. The three most popular dance notations are Benesh notation [Bene56], Eshkol-
Wachmann notation [Eshk58] and Labanotation [Hutc70]. They will be briefly described in the following
sections.

Benesh notation

Benesh notation [Bene56] was developed mainly for classical ballet. It records the dance movements on
the five-line music stave aligned with the musical score used for a choreography. The bottom line in the
stave becomes the floor and the following ones represent the levels of the knees, the waist, the shoulders
and the top of the head of a dancer. A set of symbols is used to mark the placement and the orientation of
these body parts for any given dance position. Due to its use of free symbols, e.g. curves to describe limb
movements or body transitions between dance positions, Benesh notation is difficult to learn and automate.

Labanotation

Labanotation [Hutc70] represents a human figure as a set of joints connected by limbs. The motion of each
joint in the body is drawn as a vertical stripe describing the evolution of its positions in time. Each time
stripe contains a series of symbols that give the place, orientation and the level in space for each joint.
The size of symbols gives the duration of each movement and additional diagrams are drawn to show the
relationship between the dancers in the stage space. Because of its highly formalised syntax, Labanotation
is most often used in computer systems for dance [Bare77, Smol77, Calv80, Hall95].

Eshkol-Wachmann notation

Eshkol and Wachmann [Eshk58] define a model of a human body as an articulated structure of limbs con-
nected by joints. They then specify local rotations for each limb using three types of transformations:
rotatory movements, plane movements and curved surface movements, each described as the angles nec-
essary to perform the relevant rotation. Each dance position can be detailed as a sequence of these three

4.7. ANIMATION CONTROL 61

types of movements starting from the neutral position in which the amounts of transformations for all limbs
are zero. The given rotations are performed for the relevant links in the articulated structure describing a
dance position for the model. This makes Eshkol-Wachmann notation particularly suitable for computer
implementation, since such a description of dance positions directly uses the forward kinematics principle
in which the angles between the limbs (links) in the articulations (joints) of the model are given to describe
a state of an articulated structure (see e.g. [Watt92]). Moreover, although Eshkol-Wachmann dance notation
was created for human figures, it can be trivially extended for any character by specifying the elementary
movements for all links in an appearance graph of a character. For these reasons Eshkol-Wachmann no-
tation has been chosen as a method for animating components in the layered model for implicit surfaces
(Section 4.8).

4.7 Animation control

At the lowest level of abstraction, controlling an animation of a model means specifying the time evolution
of all parameters required to specify a state of the model. For rigid objects, the position in space and the
orientation is sufficient. For deformable objects, the change of the geometry and possibly the change of
the topology have to be specified. For complex models, detailing all these parameters becomes a tedious
manual procedure that requires a great deal of effort to create an animation. A higher level of control is thus
necessary. At a higher level of control, the animator deals with more abstract description of the animation,
normally passing a set of rules or constraints to the algorithms implemented in software.

Physics-based simulation is one example of higher level motion control. The physical conditions in a
scene are specified and numerical solutions to the Newtonian equations of motion give the new positions
of all objects. Particle systems are another example. Each particle behaves according to specified rules
and a set of particles interacting with each other create randomised behaviours of the model. For objects
defined using an articulated structure, one control method is kinematics (see e.g. [Watt92]) which requires
a description of the positions of the links in the articulations (joints) of the model. The positions can be
specified directly (forward kinematics) or calculated from the required placing of the ends of the links, so
called end-effectors, e.g. hands or feet of a character(inverse kinematics).

The coherence preserving animation control method, described in Section 3.4, is a low level method in
which an animation is created by specifying the motion for individual primitives in a model. To specify a
higher level of control for the layered model described in Section 4.4, a hybrid control method in proposed,
in which the two layers are animated separately. The motion of components is specified using forward
kinematics (Section 4.8) and for the flesh, a procedural method is developed (Section 4.9) that links the
flesh motion with the component motion by having the flesh “follow” the movement of components. The
flesh motion is generated automatically and a set of parameters, used to control the process, can be adjusted
to refine the result.

4.8 Component motion

This section details a method of motion specification for the object component layer using forward kine-
matics. The inspiration for this particular implementation of forward kinematics comes from the world
of dance. It uses the Eshkol-Wachmann dance notation [Eshk58] to define poses of a character that can
be combined into a more complex movement (see Section 4.6). Perlin [Perl95] used a similar approach
to choreograph dance sequences for a virtual puppet. He created a library of movements using low level
forward kinematics and combined them to create a dance. Implementing the Eshkol-Wachmann dance no-
tation allows for the state of an articulated structure to be specified at a higher level of abstraction, using
a more intuitive set of elementary movements (rotatory, plane and curved surface movements) rather than
directly specifying limb angles at joints.

Figure 4.4 presents the modelling script and a model of a dancer in the neutral position. This dancer
will perform the elementary movements and some of the dance sequences, created using the dance notation,
that will illustrate the results presented in this chapter.

62 CHAPTER 4. ANIMATING IMPLICIT SURFACES

iso 0.8
object Dancer colour Grey
component head r (0,0,0)

point (-1.5,6,0) POV 5 1.2
point (1.5,6,0) POV 5 1.2
point (0,2,0) POV 5 1.2
blend SUM

component neck r (0,0,0)
point (0,0,0) POV 3 1.2
blend SUM

component torso r (0,0,0)
point (0,6.5,0) POV 5 1.2
point (-4,6.5,0) POV 5 1.2
point (4,6.5,0) POV 5 1.2
point (0,2,0) POV 4 1.2
point (-2,2,0) POV 4 1.2
point (2,2,0) POV 4 1.2
point (0,0,0) POV 3 1.2
point (-2,3.5,-2.5) POV 2.5 1.2
point (2,3.5,-2.5) POV 2.5 1.2
blend SUM

component pelvis r (0,0,0)
point (0,-1,0) POV 5 1.2
point (-1.5,-5.5,0) POV 3 1.2
point (-1.5,-4.5,0) POV 3 1.2
point (1.5,-5.5,0) POV 3 1.2
point (1.5,-4.5,0) POV 3 1.2
point (-2.5,-4,1) POV 4 1.2
point (2.5,-4,1) POV 4 1.2
blend SUM

component l upper arm r (0,0,0)
point (0,-2.5,0) POV 4 1.2
point (-0.5,-6,0) POV 4 1.2
point (-1,-8,0) POV 3 1.2
blend SUM

component l forearm r (0,0,0)
point (-1,-1.5,0) POV 3 1.2
point (-1,-3.5,0) POV 2.5 1.2
point (-0.5,-4.5,0) POV 1.5 1.2
blend SUM

component l hand r (0,0,0)
point (-0.5,-1,0) POV 2 1.2
point (0,-2.5,0) POV 1.5 1.2
blend SUM

component r upper arm r (0,0,0)
point (0,-2.5,0) POV 4 1.2
point (0.5,-6,0) POV 4 1.2
point (1,-8,0) POV 3 1.2
blend SUM

component r forearm r (0,0,0)
point (1,-1.5,0) POV 3 1.2
point (1,-3.5,0) POV 2.5 1.2
point (0.5,-4.5,0) POV 1.5 1.2
blend SUM

component r hand r (0,0,0)
point (0.5,-1,0) POV 2 1.2
point (0,-2.5,0) POV 1.5 1.2
blend SUM

component l thigh r (0,0,0)
point (0,-0.5,0) POV 5 1.2
point (0,-2.5,0) POV 4 1.2
point (0,-5,0) POV 4 1.2
point (0,-8,0) POV 3 1.2
blend SUM

component l lower leg r (0,0,0)
point (0,0.5,0) POV 4 1.2
point (0,-3,0) POV 4 1.2
point (0,-6,0) POV 3 1.2
blend SUM

component l foot r (0,0,0)
point (0,0,-1) POV 2 1.2
point (0,0,-3) POV 2 1.2
point (0,0,-4) POV 1.5 1.2
blend SUM

component r thigh r (0,0,0)
point (0,-0.5,0) POV 5 1.2
point (0,-2.5,0) POV 4 1.2
point (0,-5,0) POV 4 1.2
point (0,-8,0) POV 3 1.2
blend SUM

component r lower leg r (0,0,0)
point (0,0.5,0) POV 4 1.2
point (0,-3,0) POV 4 1.2
point (0,-6,0) POV 3 1.2
blend SUM

component r foot r (0,0,0)
point (0,0,-1) POV 2 1.2
point (0,0,-3) POV 2 1.2
point (0,0,-4) POV 1.5 1.2
blend SUM

component top spine r (0,0,0)
point (0,0,0) POV 1 1
blend SUM

component low neck r (0,0,0)
point (0,0,0) POV 1 1
blend SUM

component waist r (0,0,0)
point (0,0,0) POV 1 1
blend SUM

component l elbow r (0,0,0)
point (0,0,0) POV 1 1
blend SUM

component l wrist r (0,0,0)
point (0,0,0) POV 1 1
blend SUM

component r elbow r (0,0,0)
point (0,0,0) POV 1 1
blend SUM

component r wrist r (0,0,0)
point (0,0,0) POV 1 1
blend SUM

component l knee r (0,0,0)
point (0,0,0) POV 1 1
blend SUM

component l ankle r (0,0,0)
point (0,0,0) POV 1 1
blend SUM

component groin r (0,0,0)
point (0,0,0) POV 1 1
blend SUM

component r knee r (0,0,0)
point (0,0,0) POV 1 1
blend SUM

component r ankle r (0,0,0)
point (0,0,0) POV 1 1
blend SUM

joint top spine between
head (0,0,0) neck (0,3,0)

joint low neck between
neck (0,-2,0) torso (0,6.5,0)

joint waist between
pelvis (0,2,0) torso (0,0,0)

joint low neck between
l upper arm (0,0,0) torso (-6,7,0)

joint l elbow between
l upper arm (0,-8.5,0) l forearm (0,0,0)

joint l wrist between
l forearm (0,-5.5,0) l hand (0,0,0)

joint low neck between
r upper arm (0,0,0) torso (6,7,0)

joint r elbow between
r upper arm (0,-8.5,0) r forearm (0,0,0)

joint r wrist between
r forearm (0,-5.5,0) r hand (0,0,0)

joint groin between
pelvis (-3,-5.5,0) l thigh (0,0,0)

joint l knee between
l lower leg (0,0,0) l thigh (0,-9,0)

joint l ankle between
l lower leg (0,-7,0) l foot (0,0,0)

joint groin between
pelvis (3,-5.5,0) r thigh (0,0,0)

joint r knee between
r lower leg (0,0,0) r thigh (0,-9,0)

joint r ankle between
r lower leg (0,-7,0) r foot (0,0,0)

anchor waist (0,0,0)
end

Figure 4.4: A script file and a model of a dancer

4.8. COMPONENT MOTION 63

4.8.1 Elementary movements

In the following implementation of the three types of elementary movements an assumption is made that
the longitudinal axis of a limb is aligned with the Y -axis of the local coordinate system of the limb, the top
of the limb, i.e. the articulation around which any limb rotation is performed, is positioned at the origin of
the limb's local coordinate system and the front of the limb is the negative Z-axis. In Figure 4.5 two sample
limbs, an “arm” and a “head”, are shown in their respective local coordinate systems.

�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

���
���
���
���

���
���
���
���

�
�
�
�

����������
����������
����������
����������

����������
����������
����������
����������

"arm"

X

Y

"head"

Z

X

Z
Y

Figure 4.5: Designing a limb in local coordinates: the longitudinal axis is aligned with the Y -axis, the top
of the limb lies at the origin and its front is the negative Z-axis

Rotatory movements

Rotatory movements are performed around the longitudinal axis of a limb. A user specifies an amount
of rotation � 2 [�2�; 2�]. A negative � describes a clockwise rotation and a positive � gives an anti-
clockwise rotation. Since the longitudinal axis is aligned with the Y -axis, a rotatory movement is a rotation
by � around Y -axis described by the following rotation matrix:2

664
cos� 0 � sin� 0
0 1 0 0

sin� 0 cos� 0
0 0 0 1

3
775

Plane movements

A limb moves in a plane movement when it describes a plane in space with its longitudinal axis. A user
specifies a plane of motion and an amount of rotation � 2 [�2�; 2�]. The plane of motion is chosen from
a family of planes perpendicular to the XZ-plane and going through the Y -axis (Figure 4.7). It can be
described by an angle � 2 [0; �] which gives the required amount of anti-clockwise rotation of the XY -
plane around the Y -axis. A plane movement is thus a combination of a rotation by � around Y -axis and a
rotation by � around Z-axis. Its local transformation matrix is the multiplication of:2

664
cos � 0 � sin � 0
0 1 0 0

sin � 0 cos � 0
0 0 0 1

3
775
2
664

cos� sin� 0 0
� sin� cos� 0 0

0 0 1 0
0 0 0 1

3
775

Conical movements

A limb moves in a conical movement when its longitudinal axis describes a cone. A conical movement is
a simple case of a more general curved surface movement in which a limb describes any curved surface in

64 CHAPTER 4. ANIMATING IMPLICIT SURFACES

α

Y

Z

X

Figure 4.6: Specifying a rotatory movement for a head (� = � �
3)

space. For a conical movement a user specifies a cone and an amount of rotation � along a cone, where
� 2 [�2�; 2�]. The cone is described by its angular size � 2 [0; �2] and its position in space, which is a
planar movement of the axis of the cone with parameters and � (Figure 4.8). A conical movement is thus
a combination of a rotation by � around Z-axis, a rotation by � around Y -axis (these two rotations give the
motion along the cone as if it was aligned with the Y -axis) and then a plane movement described by and
� to transform the cone to its position. The matrix of this motion is the multiplication of:2

664
cos � sin � 0 0
� sin � cos � 0 0

0 0 1 0
0 0 0 1

3
775
2
664

cos� 0 � sin� 0
0 1 0 0

sin� 0 cos� 0
0 0 0 1

3
775
2
664

cos � 0 � sin � 0
0 1 0 0

sin � 0 cos � 0
0 0 0 1

3
775
2
664

cos sin 0 0
� sin cos 0 0

0 0 1 0
0 0 0 1

3
775

4.8.2 Choreographing a sequence

Elementary movements can be combined for each limb by multiplying their corresponding matrices. A
motion element is a set of elementary movements to be applied to limbs. Each motion element is assigned
a time step at which it starts and a time step at which it ends. Starting from the neutral position, motion
elements are progressively applied to the model. For each elementary movement in a motion element,
the angle �� is calculated by dividing the specified angle � by the number of frames during which the
movement takes place. For each frame of animation, the current position of the model is calculated by
applying a �� part of all elementary movements in motion elements currently taking place. In Figure 4.9
two motion elements are specified. The first one takes place between times t = 1 and t = 2 and the second
between times t = 1 and t = 5. For instance, for the frame t = 3, the entire first motion element has been
applied and 3

5
-th of each movement from the second motion element.

Figure 4.10 shows three variations of a dance movement specified using the dance notation. During the
first motion element (times 0-2), Dancer leans to the side (plane movements of the torso and the head).
At the same time she opens her arms (plane movements), turns her left leg outwards (rotatory movement)
and launches the right leg to the side (plane movement). The first motion element stays the same for all
three sequences. Slight changes in choreography are achieved by adjusting the last two motion elements.
The second motion element (times 2-4) is a rotatory movement of the torso. The angle is increased in each
sequence. Frame 4 in each sequence shows the difference in the amount of turn of the Dancer's body. The

4.8. COMPONENT MOTION 65

α

β
Y

X

Z

Figure 4.7: Specifying a plane movement for an arm (� = 5�
12 and � = 11�

12)

last motion element (times 4-5) describes leaning of the torso backwards (plane movement) and bending of
the right leg (plane movements). The amount of the lean is increased in each sequence. Similarly, more leg
bending is achieved by increasing the amount of the plane movement and adding a plane movement for the
right calf.

4.8.3 Path following

The choreography specified so far was performed with the dancer standing in one place. In this section
another type of an elementary motion is added, location change. It is implemented as a translation of the
anchor of the model given by a vector T = (xt; yt; zt). It is treated in the same way as the other three
elementary movements, and performed at each time step as a translation �T calculated by dividing the
coordinates of vector T by the number of frames during which the location change takes place.

Figure 4.11 shows a sample motion specified using location change: a jump in the first dance position
(feet outwards, legs straight, knees together, stomach pressed against the spine, shoulders down, relaxed
arms) landing in the second dance position (feet outwards, legs apart, knees bent, body resting along its
axis) with arms open and chest facing the ceiling. The anchor of the model (waist) is moved in the vertical
direction by the location change movement while the remaining elementary movements specify the pose of
the dancer during different phases of the jump.

66 CHAPTER 4. ANIMATING IMPLICIT SURFACES

α
γ

δ

β

X

Y

Z

Figure 4.8: Specifying a conical movement for a leg (� = �2�, � = �
8 , = �

12 and � = �
12)

iso 0.8

object Stickleg colour SkyBlue
component stick rotation (0,0,-20)

point (0,5,0) POVfunction 10 1
point (0,10,0) POVfunction 10 1
point (0,15,0) POVfunction 10 1
point (0,20,0) POVfunction 10 1
point (0,25,0) POVfunction 10 1
point (0,30,0) POVfunction 10 1
blend SUM

component joint rotation (0,0,0)
point (0,0,0) POVfunction 10 1
blend SUM

component leg rotation (0,0,20)
point (0,-5,0) POVfunction 10 1
point (0,-10,0) POVfunction 10 1
point (0,-15,0) POVfunction 10 1
point (0,-20,0) POVfunction 10 1
point (0,-25,0) POVfunction 10 1
point (0,-30,0) POVfunction 10 1
blend SUM

joint joint between stick (0,0,0) leg (0,0,0)
anchor joint (0,0,0)

end

hip

stick

leg

4.9. FLESH MOTION 67

object Dancer
times 1 2

plane l upper arm (-100,0)
plane l forearm (-20,0)
plane l hand (-20,0)

times 1 5
plane torso (-30,0)
plane r upper arm (30,10)
plane r forearm (15,0)
plane l upper arm (-50,0)
plane l forearm (-20,0)
plane l hand (-5,0)
plane l thigh (-30,0)
plane l foot (90,90)

end

t=4 t=5t=0 t=3t=2t=1

Figure 4.9: A lean to the side specified using a dance notation script

4.9 Flesh motion

Each flesh primitive has a parent either among the component primitives, as for skin and the root in a
strand, or among other flesh primitives, as for the remaining primitives in a strand. Motion for a flesh
primitive is generated by considering its position in relation to its parent. A simple approach is to use the
coherence preservation algorithm to calculate flesh motion in a geometric manner. However, the effect
obtained is unnaturally regular and gives a “wooden” look to a character. To introduce some irregularity
to flesh behaviour, physical interaction can be added to its motion generation. The results of these two
approaches to flesh motion control are presented in the following sections. Figure 4.12 presents a simple
character, Stickleg, chosen to illustrate the difference between the two methods. Stickleg is built of two
links and a joint between them and covered with a coat of flesh.

4.9.1 Geometric restriction

A connection between a flesh primitive and its parent can be treated as another distance constraint (see
Section 3.4) to be maintained by the system. Thus, each flesh primitive exhibits push-pull action in relation
to its parent.

Figure 4.14a shows the result of animating Stickleg coated with flesh, modelled in Figure 4.12, using
this algorithm. The coat of flesh contains approximately 200 primitives. The firmness parameters specified
for each connection between a flesh primitive and its parent are fmin = 0:5 and fmax = 0:9. Note the
high degree of regularity in the motion. For instance, in frame 12, the flesh looks like a series of primitives
translated behind the components. Moreover, at the end of the motion of the components, the flesh ceases
its movement. This behaviour seems unnatural, hence some physical interaction between primitives is taken
into account in the next method of flesh motion generation.

4.9.2 Adding physical interaction

The Lennard-Jones attraction/repulsion forces (see e.g. [Munc85]) between flesh primitives (Figure 4.13)
model interaction forces which act between molecules. At the equilibrium distance between two primi-
tives, rij, the interaction forces between them are equal to zero. When the distance between the primitives
decreases, a force pushes them away from each other (repulsion force). When the distance increases, a
force pulls them towards each other (attraction force). The interaction forces tend to zero when the distance

68 CHAPTER 4. ANIMATING IMPLICIT SURFACES

a
object Dancer

times 0 2
plane head (30,0)
plane torso (45,0)
rotatory l thigh 30
rotatory l calf -45
plane l upper arm (-130,0)
plane l forearm (-40,0)
plane l hand (-25,0)
plane r upper arm (150,0)
plane r forearm (45,0)
plane r hand (30,0)
plane r thigh (30,0)
plane r foot (-30,-30)

times 2 4
rotatory torso 45

times 4 5
plane torso (30,0)
plane r thigh (45,0)

end

b
object Dancer

times 0 2
plane head (30,0)
plane torso (45,0)
rotatory l thigh 30
rotatory l calf -45
plane l upper arm (-130,0)
plane l forearm (-40,0)
plane l hand (-25,0)
plane r upper arm (150,0)
plane r forearm (45,0)
plane r hand (30,0)
plane r thigh (30,0)
plane r foot (-30,-30)

times 2 4
rotatory torso 90

times 4 5
plane torso (45,0)
plane r thigh (45,0)
plane r calf (30,0)

end

c
object Dancer

times 0 2
plane head (30,0)
plane torso (45,0)
rotatory l thigh 30
rotatory l calf -45
plane l upper arm (-130,0)
plane l forearm (-40,0)
plane l hand (-25,0)
plane r upper arm (150,0)
plane r forearm (45,0)
plane r hand (30,0)
plane r thigh (30,0)
plane r foot (-30,-30)

times 2 4
rotatory torso 100

times 4 5
plane torso (60,0)
plane r thigh (60,0)
plane r calf (30,0)

end

t=4 t=5t=3

a

b

c

t=1 t=2

Figure 4.10: Choreography using dance notation: three variations of a dance movement

4.9. FLESH MOTION 69

object Dancer
times 1 1

translate waist (0,-1,0)
plane l thigh (-20,0)
plane r thigh (20,0)
plane l calf (30,0)
plane r calf (-30,0)
plane l upper arm (-5,0)
plane r upper arm (5,0)

times 2 2
plane l foot (80,0)
plane r foot (-80,0)
plane l thigh (25,0)
plane r thigh (-25,0)

plane l calf (-30,0)
plane r calf (30,0)

times 2 3
translate waist (0,10,0)
plane l upper arm (15,10)
plane r upper arm (-15,10)

times 4 6
translate waist (0,-10,0)

times 5 6
plane l upper arm (60,10)
plane r upper arm (-60,100)
plane l foot (-80,0)
plane r foot (80,0)
plane l thigh (5,0)

plane r thigh (-5,0)
plane l calf (30,0)
plane r calf (-30,0)

times 6 6
plane l thigh (-5,0)
plane r thigh (5,0)
plane l calf (10,0)
plane r calf (-10,0)
conical l upper arm (60,45,45,60)
conical r upper arm (-60,45,135,60)

times 7 7
plane torso (20,45)

end

t=6 t=7t=5t=0 t=1 t=2 t=3 t=4

Figure 4.11: A jump in “first” landing in “second” specified using dance notation with location change

between primitives tends to infinity.

distance between generators

L
en

na
rd

-J
on

es
 in

te
ra

ct
io

n
fo

rc
e

rij

Figure 4.13: Lennard-Jones interaction forces between two point masses

In order to introduce such physical interaction to flesh behaviour, a mass mi, a velocity�!v i and a current
acting force

�!
F i are attributed to each flesh primitive. At the same time a gravity vector �!g is added as a

global characteristic of a scene. At each time step, a flesh primitive will move according to these parameters.
The position si and the velocity �!v i of the i-th primitive change after time �t according to the Newtonian
equations of motion as follows:

si(t+�t) = si(t) +
�!v i(t)�t+

�!
F i(t)
mi

�t2

�!v i(t+�t) = �!v i(t) +
�!
F i(t)
mi

�t

The Lennard-Jones forces Lij between two flesh primitives, with current positions of generators Gi and

70 CHAPTER 4. ANIMATING IMPLICIT SURFACES

7 8 9

10 1211

10

b) Adding Physical Interaction

a) Geometric Restriction

1211

9

1 65432

2

87

1 6543

Figure 4.14: Stickleg jumps with flesh controlled using a) the geometric restriction method and b) a combi-
nation of geometric restriction and the Lennard-Jones forces

4.9. FLESH MOTION 71

Gj, are computed during the calculation of the current acting force
�!
F i:

�!
F i(t) = mi

�!g +
X
j

�!
L ij(t)

The
�!
L ij calculation is implemented after Miller and Pearce [Mill89]:

�!
L ij(t) =

(
a(b1

Dm
ij

� b2
Dn
ij

)
���!
GiGj i 6= j

0 i = j

where a is a scaling factor, Dij = k���!GiGjk is the distance between the two generators, m = 2n are
constants, b1 and b2 are variables, b2 = b1r

n�m
ij , and rij is the equilibrium distance between the genera-

tors. The equilibrium distance rij depends on the initial distance between the two primitives. Recall the
minimum and maximum coherence preserving distances between two primitives (Section 3.4):

dmin = 0
dmax = f�1i (Iso

2
) + f�1j (Iso

2
)

For primitives initially close to each other (Rinit 2 [dmin; dmax]), the equilibrium distance rij is set to
their initial separation Rinit. When the initial distance is larger than dmax, rij is set to dmax. As the result
the interaction between flesh primitives is not homogeneous. The advantage of this approach is that there is
little interaction between primitives which are initially far from each other, i.e. the primitives do not attempt
to achieve the equilibrium state in which the distance between each pair of primitives is equal to a constant
equilibrium value. Thus, the equilibrium state matches the initial configuration of primitives.

To calculate the new position of a flesh primitive due to the motion of its parent, the physical interaction
method is combined with the geometric restriction method. At each time step Lennard-Jones forces are first
computed between all flesh primitives and the above equations are used to find the potential new position
for the i-th flesh primitive, Pi0 :

Pi0 si(t +�t)

The geometric restriction method is then applied to adjust this position to maintain it within the distance
constraints of the relevant connection, [Rmin; Rmax]. If such an adjustment is required, the primitive's
velocity �!v i is changed according to the adjusting translation:

�!v i(t +�t) �!v i(t +�t) + c
����!
Pi0Pi1
k
����!
Pi0Pi1k

where Pi1 is the adjusted flesh primitive position and c is a scaling factor.
When a flesh primitive reaches the Rmin or Rmax distance from its parent, its velocity �!v i is reversed

and dampened in the next time step:

�!v i(t +�t) �D�!v i(t+�t)

where D 2 [0; 1] is a damping factor.
Figure 4.14b shows the result of animating Stickleg coated with flesh using the above algorithm. The

firmness parameters are not changed (fmin = 0:5, fmax = 0:9). The physical interaction between flesh
primitives is calculated with gravity �!g = (0; 10; 0). The mass of a primitive is proportional to its radius
in isolation r = f�1(Iso), mass = 4�

3 r
3. The Lennard-Jones interaction forces are calculated with

parameters b1 = 10, n = 4, m = 2. The factor a depends on the distance between the two primitives
Dij : (

a = 1� D2
ij

r2
ij
(ri+rj)2

if D2
ij > r

2
ij(ri + rj)2

a = 0 if D2
ij < r2ij(ri + rj)2

where rij is the equilibrium distance and ri; rj are the respective radii in isolation of the two primitives.
The damping factor used in the simulation is D = 0:5.

72 CHAPTER 4. ANIMATING IMPLICIT SURFACES

The flesh primitives are attracted towards each other by Lennard-Jones interaction forces, thus they do
not follow the motion of their respective parent primitives in the same manner. For instance, in frames 7-9,
“muscle-like” irregularity of Stickleg's behaviour can be observed. The flesh is distributed more evenly
around components and generator overlapping is prevented by repulsion forces. The flesh no longer ceases
its motion at the same time as object components, it continues to move until its velocity is dampened to
zero. The damping rate can be controlled by the damping factor.

Figure 4.15 shows an example of motion generation using this method for strands of flesh. A dancer
performs a lean to the side and her hair, modelled as strands of flesh, automatically follows the motion. The
firmness of “hair” is set to fmin = 0:2 and fmax = 0:7. The parameters of the physical interaction are
the same as for Stickleg. In the frame 0, the hair hangs down due to gravity. All the strands are blendable
and the last primitive in each strand is given a larger radius and is therefore heavier. As the dancer starts
to lean to the side, the hair strands stretch within their geometric restriction limits (frames 1-5). At the
same time, hair undergoes Lennard-Jones interaction, which causes it to join and separate into strands. For
instance, in the frame 2 the strands of flesh are blended while in the frame 5 separate strands can be seen.
Comparing Figure 4.15 and Figure 4.9, note how adding flesh to the model enhances the liveliness of an
animation sequence, with no additional motion specification required.

t=4 t=5t=0 t=3t=2t=1

Figure 4.15: A lean to the side specified using dance notation: hair is modelled using strands of flesh and
follows the motion of the head

The hybrid animation control method proposed offers two stages of creating an animation sequence.
The first approximation of the required motion is achieved by animating object components. The final
motion for the object is obtained when the motion for the flesh layer is automatically generated based on th
component motion and a set of control parameters. The flesh behaviour can be refined by adjusting these
parameters and regenerating its motion until the desired effect is reached. The following section will look
into ways of controlling the adjustment of parameters in order to add traditional animation effects to the
behaviour of flesh.

4.10 Traditional animation effects

In the hybrid animation method proposed large parts of motion are generated automatically. It allows the
animator to focus on the general aspects of motion (animating components) and leave the software to pro-
duce the detailed motion accordingly (animating flesh). It is essential however to provide the animator with
a means to refine the motion proposed by the software. One way to achieve such a refinement is to directly
manipulate each of the available control parameters. This section proposes heuristics that express some
traditional animation effects (Squash and Stretch, Follow Through and Exaggeration) in terms of control
parameters. The animator is thus given a higher level of control in which the amount of the traditional
animation effects in the final animation can be increased or decreased.

Such a manner of parameter adjustment can be called “knob” control. The aim is to give the animator
a set of abstract “knobs” that express high level qualities of an animation sequence, e.g. the amount of
exaggeration. Such an abstract quality can be translated into lower level control parameters and increasing
or decreasing it means the appropriate adjustment of these parameters. One implementation of such a map-
ping is to represent each abstract quality (“knob”) by the [�1; 1] interval with zero marking the reference
“normal” setting for all relevant parameters, specified by the animator, and provide a function that for each
value k 2 [�1; 1] gives a value of a parameter p within its limits [pmin; pmax]. This correspondence can

4.10. TRADITIONAL ANIMATION EFFECTS 73

be given by:

p(k) = �0:5k (k � 1) pmin � (k � 1) (k + 1)pinit + 0:5k (k + 1) pmax

where pinit is the initial value of the parameter p. It is a non-linear mapping and it can be applied for any
parameter with finite limits pmin; pmax and for any initial value pinit (Figure 4.16).

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

min pp init

0 1-1

parameter

knob

maxp

min max

Figure 4.16: Knob control of animation parameters

Increasing an abstract quality may mean a decrease of a parameter's value. For instance, if the abstract
quality if “lightness”, the decrease in gravity will increase the level of lightness. To map a decrease of a
parameter p to the [�1; 1] interval, p is considered as a parameter p0 2 [�pmax;�pmin] with the initial
value �pinit. For any given k 2 [�1; 1] the corresponding value of the parameter p is p(k) = �p0(k)
where p0(k) is the mapping for p0.

The traditional animation qualities that are implemented in this thesis are: Squash and Stretch, Follow
Through and Exaggeration. Heuristics converting each of these three qualities into the parameters of the
hybrid animation control proposed are detailed in the following sections.

4.10.1 Squash and Stretch

The amount of squash and stretch in a character's behaviour can be adjusted by controlling the firmness
of the object components. Two parameters specify firmness: fmin, which decides the allowed amount
of squash that can be performed on the character, and fmax which decides the allowed amount of stretch
(see Section 3.4). The range goes from a “loose” character for low values of both firmness parameters,
to a “firm” character for high values. Special effects, e.g. a character that can easily be squashed but not
stretched are also possible. Thus, the Squash and Stretch “knob” maps the [�1; 1] interval into the values
of fmin and fmax for object components.

In Figure 4.17 Stickleg is dancing a samba, choreographed using the coherence preserving algorithm,
i.e. by pulling and pushing the hip joint sideways. The values of firmness parameters are: fmin = 0:8
and fmax = 0:6, which means that the primitives are not allowed to get too close to each other (fmin
high) but they can get away from each other (fmax medium). When hip passes through its middle point, it
pushes stick because the component primitives get too close to each other. As a result the character stretches
upwards (frames 3,9,14). In the left or right extreme of hip's motion, it pulls both stick and leg when the
distance between the component primitives becomes too big. Thus, the character squashes (frames 6,12,16).
The motion of flesh is calculated according to the motion of components and will be discussed in the next
section.

4.10.2 Follow Through

Whereas for Squash and Stretch the firmness for object components was adjusted, the effect of Follow
Through is achieved by controlling the behaviour of the flesh. More Follow Through means that flesh
follows the motion of components while staying further behind. This can be achieved by decreasing flesh
firmness, i.e. by setting both fmin and fmax to low values. The flesh with such a characteristic will allow

74 CHAPTER 4. ANIMATING IMPLICIT SURFACES

16151412 17 18 1913

1 432

11

5 109876

Figure 4.17: Stickleg dancing a samba: the character stretches and squashes and flesh is following the
motion of the hip joint to the left and to the right (follow through)

the components to get close to it before being “pushed” and to get further away before being “pulled”. This
is the effect sought for Follow Through. Frames 1-10 in Figure 4.17 show how the components push the
flesh (frames 1-4), then start to pull it behind them (frames 5-6) and push them again when the direction of
the hip movement changes (frames 7-10).

Another quality of the flesh with more Follow Through is that it continues its motion for longer after
components stop moving. This can be achieved by using a larger damping factor. In Figure 4.17 this effect
can be seen in frames 16-19. Frame 16 is the last frame, for which the motion of components occur, the
next three frames present the flesh that bounces around static components until it slowly comes down to rest
in frame 19. The effect was generated using a high damping factorD = 0:9.

Various Follow Through effects can also be created by increasing the mass of a flesh primitive or the
gravity in the environment to obtain heavier or lighter flesh. For higher values of gravity or for increased
mass, the flesh will stay attracted towards the ground and for lower values of gravity, the flesh will be more
bouncy, flying upwards. For instance, Figure 4.18 contrasts a jumping sequence for Stickleg with firmer
flesh (Figure 4.18a) with its version with looser flesh (Figure 4.18b). Comparing frames number 7 in the
two sequences shows how the looser flesh exhibits more follow through. It drops down to the ground and
stays there even when Stickleg is still in the air (frames 7-12 in Figure 4.18b). To create the impression
that the flesh is attached at the ends of the components, connections were created between flesh primitives
in a form of chains (seen clearly in the frame 12 in Figure 4.18b). The flesh primitives at the end of each
chain are attached by firm connections to the ends of the components and the rest of the chain hangs loosely
below. The disadvantage of this approach is that naked components can be seen. For instance, frames 9-12
in Figure 4.18b show the naked stick.

Summarising, the Follow Through “knob” maps the [�1; 1] interval into the values of firmness (fmin
and fmax), the damping factor, gravity and flesh primitive mass. Each of the parameters is using its own
mapping equation and the adjustment is performed for the same value of k 2 [�1; 1] resulting in a gradual
change of all the initial parameter values. Since lower values of firmness are required to increase Follow
Through, the decreasing mapping is used for fmin and fmax.

4.10. TRADITIONAL ANIMATION EFFECTS 75

8 97

121110

10

b) Very Loose Flesh

a) Rather Firm Flesh

1211

9

654321

1

87

65432

Figure 4.18: Stickleg is jumping with a) firm flesh and b) with very loose flesh, that drops on the floor before
following the motion

76 CHAPTER 4. ANIMATING IMPLICIT SURFACES

Figure 4.19: Tuning the traditional animation effects: a) a reference animation with “normal” flesh, b) the
flesh can get “lighter”, c) “looser” or d) “suspended”

4.11. DINO: A CASE STUDY 77

4.10.3 Exaggeration

According to traditional animation principles [Thom81] any action is more convincing when exaggerated.
The Exaggeration “knob” therefore converts the current animation sequence into the same sequence with
all its qualities (parameters) increased (the “less” direction) or decreased (the “more” direction). The set of
all initial parameters is used to mark the zero position, i.e. the sequence at its normal, not exaggerated state.
The animator needs to specify if for a particular parameter the increasing or the decreasing mapping should
be used.

Figure 4.19 shows the variety of animation effects that can be achieved using parameter control. It
shows a Dancer, modelled in Figure 4.4, with strands of flesh representing hair. Figure 4.19a will serve as
a reference sequence. It was animated using the dance notation, as in the example in Figure 4.11 with arm
movement removed to show the hair motion more clearly. The direction of strands during their generation
was set to the direction outwards from the head to avoid interpenetration between flesh and components
(frame a1). During frames a2-a6 the Dancer bends her knees in preparation for a jump while her hair falls
down under gravity. During the motion up (frames a6-a12) the hair continues to fall down. When the
Dancer returns to the ground (frames a14-a21), the hair moves slightly upwards due to the head movement.
Finally during the last two frames, a21-a22, the Dancer has completed the jump and the hair bounces gently
sideways in the follow through stage.

Figure 4.19b shows a sequence of a Dancer with “light” hair. It has been achieved by decreasing the
gravity of the scene to �!g = (0; 5; 0). The hair stays longer in the air before falling down (frames b1-b7)
and during the jump (frames b7-b12). During the follow through phase (frames b21-b29), the hair stays
further from the head and higher above the shoulders.

In Figure 4.19c the hair is “loose”, i.e. it has low level of firmness (fmax = 0:1). The strand primitives
can stay further from each other, creating longer and thinner chains of primitives.

Figure 4.19d presents a “special effect” - hair that stays suspended in the air before falling down. It has
been achieved by using a combination of a negative value for the damping factor D = �0:1 and a positive
valueD = 0:5. The values are alternated every other time step. When the negative damping factor is used,
instead of changing the direction when reaching the minimum of maximum coherence preserving distance,
the flesh primitive attempts to continue motion in the same direction, being dragged back in the next time
step, when the damping factor changes. This effect results in hair staying above the head, not falling flatly
on it.

4.11 Dino: a case study

The animation process starts from a thought to be conveyed through an animated sequence. The initial
stages include pencil studies for the characters and rough sketches for the main actions in the sequence, a
storyboard. Then, the characters are modelled using a chosen modelling technique and the sequences from
the storyboard are developed using a variety of animation control methods. This section will present the
development of an animation sequence from the initial ideas using the layered model proposed for in the
realm of implicit surfaces. The components of the chosen character, Dino, will be animated by applying
the Eshkol-Wachmann notation to the articulated figure (appearance graph) of the character, including new
“limbs”: the neck and the tail of a dinosaur. The flesh motion will be generated by using a combination of
the geometric restriction method and physical interaction between primitives. The animation sequence can
then be refined by adjusting the amount of traditional effects in it.

4.11.1 Designing the character

After a few initial charcoal sketches, the characteristic parts of the character were transformed into an
implicit surface with blending properties, i.e. the appearance graph to be used for the character was chosen
(Figure 4.20). The factors which were taken into consideration are: what are the important features of the
character (i.e. what makes up its appearance), where will bending occur in the character (i.e. where are the
joints) and how much flexibility is needed in each limb (i.e. how many joints are in a limb). The chosen
character has a long bendable neck (3 joints) and a long bendable tail (3 joints).

78 CHAPTER 4. ANIMATING IMPLICIT SURFACES

Figure 4.20: Initial sketches and the designed appearance graph

4.11.2 Modelling the character

The next stage is converting the designed character into a model. In the traditional 3D character animation,
plasticine or clay would be used to create it. For implicit surfaces, each component in the appearance graph
has to be modelled using two layers of primitives: a component layer which defines the general look of the
bone and muscle structure for the character, and a flesh layer which models soft and loose parts, e.g. hair
or tail. Each limb is defined in its local coordinate system and then the complete model is assembled by
constraining the limbs to meet at relevant joints. In the prototyping stage, components alone may be used
for motion definition, making the experiments faster to perform. Flesh can be added later when the motion
for components is decided.

Modelling components

A simple approach to model bone/muscle would be to replace each link in the appearance graph (Fig-
ure 4.20) by a line segment generator and each joint by a point generator. It gives a good starting point for
the appearance of each limb. It can be treated as the bone structure and the muscle layer has to be added
around each such bone to shape it into the required look for the limb. For some applications, e.g. when
modelling a toy dinosaur, the crude approximation may even be sufficient. However, if a more sophisti-
cated dinosaur is required, each component has to be manually refined. Figure 4.21 shows the script used to
produce the bone/muscle layer for the dinosaur in Figure 4.22a. The limbs were approximated by chains of
point generators rather than line segments.Figure 4.22c shows its 2D cross section with primitives marked
as spheres.

4.11. DINO: A CASE STUDY 79

iso 0.4

object dino colour Wheat
component head rotation (0,0,0)

point (16,-19,0) POVfunction 40 1
point (36,-34,0) POVfunction 20 1
blend SUM

component neck1 rotation (0,0,0)
point (30,30,0) POVfunction 40 1
blend SUM

component neck2 rotation (0,0,0)
point (18,31,0) POVfunction 40 1
point (43,55,0) POVfunction 40 1
blend SUM

component neck3 rotation (0,0,0)
point (12,36,0) POVfunction 40 1
point (23,72,0) POVfunction 40 1
blend SUM

component trunk rotation (0,0,0)
point (53,1,0) POVfunction 80 1
point (108,1,0) POVfunction 80 1
blend SUM

component tail1 rotation (0,0,0)
point (-67,-58,0) POVfunction 45 1
point (-35,-31,0) POVfunction 45 1
point (0,0,0) POVfunction 50 1
blend SUM

component tail2 rotation (0,0,0)
point (-55,-22,0) POVfunction 35 1
point (-28,-15,0) POVfunction 35 1
blend SUM

component tail3 rotation (0,0,0)
point (-28,-3,0) POVfunction 30 1
blend SUM

component l fleg rotation (0,0,0)
point (25,-87,0) POVfunction 10 1
point (14,-82,0) POVfunction 20 1
point (3,-65,0) POVfunction 25 1
point (-4,-44,0) POVfunction 25 1
point (0,-22,0) POVfunction 30 1
blend SUM

component l bleg rotation (0,0,0)
point (3,-74,0) POVfunction 12 1
point (-11,-72,0) POVfunction 15 1
point (-31,-67,0) POVfunction 30 1
point (-6,-46,0) POVfunction 35 1
point (16,-24,0) POVfunction 35 1
blend SUM

component r fleg rotation (0,0,0)
point (25,-87,0) POVfunction 10 1
point (14,-82,0) POVfunction 20 1
point (3,-65,0) POVfunction 25 1
point (-4,-44,0) POVfunction 25 1
point (0,-22,0) POVfunction 30 1
blend SUM

component r bleg rotation (0,0,0)
point (3,-74,0) POVfunction 12 1
point (-11,-72,0) POVfunction 15 1
point (-31,-67,0) POVfunction 30 1
point (-6,-46,0) POVfunction 35 1
point (16,-24,0) POVfunction 35 1
blend SUM

component top spine rotation (0,0,0)
point (0,0,0) POVfunction 20 1
blend SUM

component neck j1 rotation (0,0,0)
point (0,0,0) POVfunction 40 1
blend SUM

component neck j2 rotation (0,0,0)
point (0,0,0) POVfunction 40 1
blend SUM

component low neck rotation (0,0,0)
point (0,0,0) POVfunction 45 1
blend SUM

component back rotation (0,0,0)
point (0,0,0) POVfunction 80 1
blend SUM

component tail j1 rotation (0,0,0)
point (0,0,0) POVfunction 40 1
blend SUM

component tail j2 rotation (0,0,0)
point (0,0,0) POVfunction 30 1
blend SUM

component l fhip rotation (0,0,0)
point (0,0,0) POVfunction 35 1
blend SUM

component l bhip rotation (0,0,0)
point (0,0,0) POVfunction 40 1
blend SUM

component r fhip rotation (0,0,0)
point (0,0,0) POVfunction 35 1
blend SUM

component r bhip rotation (0,0,0)
point (0,0,0) POVfunction 40 1
blend SUM

joint top spine between neck1 (20,20,0) head (0,0,0)
joint neck j1 between neck1 (0,0,0) neck2 (54,50,0)
joint neck j2 between neck2 (0,0,0) neck3 (40,103,0)
joint tail j1 between tail1 (-97,-86,0) tail2 (0,0,0)
joint tail j2 between tail2 (-85,-25,0) tail3 (0,0,0)
joint trunk between neck3 (0,0,0) low neck (-140,-45,0)
joint trunk attachedto back (0,0,0)
joint trunk attachedto tail1 (-30,12,0)
joint trunk attachedto l fhip (-105,50,30)
joint trunk attachedto l bhip (-25,60,40)
joint trunk attachedto r fhip (-105,50,-30)
joint trunk attachedto r bhip (-25,60,-40)

anchor back (0,0,0)

skin
radius 30
cover trunk neck2 neck3 tail1 tail2 tail3

end

Figure 4.21: The modelling script for Dino

Modelling flesh

In this step, the soft and “floppy” parts of Dino, e.g. hair or loose skin, are modelled. Coats of flesh on
the neck, trunk and tail are added to make the Dino's body deformable during animation. There are 45
primitives in all components. 153 flesh primitives were used to generate the flesh layer. Flesh radius 50
was used, which is greater than most of the radii of component primitives. Using larger flesh primitives
produces a less “bumpy” surface. Figure 4.22b shows the final dinosaur and Figure 4.22d shows its 2D

80 CHAPTER 4. ANIMATING IMPLICIT SURFACES

cross section with primitives marked as spheres.

Figure 4.22: Modelling the Dino: a) components b) components with flesh c) a 2D cross section showing
primitives in the components d) a 2D cross section showing primitives in the components and flesh

4.11.3 Animating the character

This is the most complex stage of the animation process. It should be ensured that, instead of a photo
realistic look, the motion is used to convey a character's personality to the audience. The use of traditional
animation effects, such as squash and stretch, follow through or exaggeration results in a more captivating
animation sequence. This stage is performed in three steps: drawing a storyboard, specifying motion
elements for the articulated figure and generating flesh motion. The last step may be adjusted until the
satisfactory motion for the flesh is obtained.

4.11. DINO: A CASE STUDY 81

Storyboard

The goal of an animation sequence should be defined first. It is typically sketched out as a storyboard, in
which the story to be told is constructed. The emotion to be expressed in each scene is suggested in the
storyboard. Figure 4.23 presents the storyboard sketched for this animation. The dino-dance movements
performed by the character are clearly defined in each frame.

Figure 4.23: A storyboard

Component motion

In this stage, the animator can focus on choosing ways of achieving emotions for each motion element.
Motion elements for the articulated figure are specified using the Eshkol-Wachmann dance notation, apply-
ing it to all Dino's components, including the tail and the neck components. Such an extended notation can
be in this particular case called a “dinotation”. Figure 4.24 presents the dinotation script for the motion in
Figure 4.25. It describes the first few movements in the storyboard.

object dino
times 1 2

plane neck1 (30,0)
times 2 4

plane neck2 (45,0)
times 3 6

plane neck3 (60,0)
plane head (60,0)

times 6 8
translate trunk (0,-10,0)
plane r fleg (-30,90)
plane r bleg (-30,90)
plane l fleg (30,90)
plane l bleg (30,90)
plane neck1 (-30,0)
plane neck2 (-45,0)
plane neck3 (-60,0)
plane head (-60,0)

times 6 7
plane tail1 (-30,0)

times 7 8
plane tail2 (-30,0)

times 8 10
translate trunk (0,10,0)
plane r fleg (20,90)
plane r bleg (20,90)
plane l fleg (-20,90)
plane l bleg (-20,90)
plane tail1 (-30,0)
plane tail3 (-45,0)

times 9 12
translate trunk (0,-15,0)
plane r fleg (-20,90)
plane r bleg (-20,90)
plane l fleg (20,90)
plane l bleg (20,90)

times 13 15
translate trunk (0,20,0)
plane neck1 (-30,0)
plane neck2 (-45,0)
plane neck3 (-30,0)
plane head (60,0)
plane tail1 (60,0)
plane tail2 (30,0)
plane tail3 (45,0)

end

Figure 4.24: The animation script for Dino

82 CHAPTER 4. ANIMATING IMPLICIT SURFACES

Figure 4.25: A dancing dinosaur: no flesh

Flesh motion

Animating the dinosaur modelled using only components results in very little deformation and a quite rigid
behaviour of the character. For instance, in frame 12 in Figure 4.25 the individual links in the tail are bent
showing the articulations. When the components are covered with a layer of flesh, such artifacts do not
appear. Figure 4.26 presents the same animation sequence with added flesh motion. The flesh firmness is
set to fmin = 0:9 and fmax = 0:5. Gravity use in the scene is (0; 5; 0), therefore the flesh stays above
components during its motion (e.g. the flesh on the tail in frames 08-12). The “bubbling” effect is due to the
size and distribution of flesh primitives that were used. A more dense flesh or larger flesh primitives would
produce a smoother result.

4.12. SUMMARY 83

Figure 4.26: A dancing dinosaur: with flesh

4.12 Summary

This chapter introduced a layered model for character animation based on implicit surfaces with blending
properties. Three layers in the model are: user-defined object components, user-controlled automatically
generated flesh and automatically created implicit skin. The model offers the advantages of a layered model,
e.g. the possibility of designing, viewing and animating the model at various levels of detail. Additionally,
it offers the advantages of implicit surfaces, e.g. simple deformation, precise collision and self-collision
modelling and automatic continuous skin generation.

A hybrid motion control, i.e. a combination of manual and automatic control, is provided to animate
this model. An animator specifies motion for object components of a character using a dance notation.
Based on this motion, the system generates flesh motion. Skin motion does not need to be calculated since
it automatically deforms and fits the time-varying configuration of components and flesh according to the
extended model for implicit surfaces with blending properties described in Chapter 3. An animator can
change a set of parameters that control the automatic motion generation to refine the final behaviour of
the character. This adjustment can be performed at a low level of abstraction, by directly manipulating all

84 CHAPTER 4. ANIMATING IMPLICIT SURFACES

available parameters. A higher level of adjustment control is also provided. It translates the parameters
controlling the flesh motion generation into an abstraction for traditional animation effects: Squash and
Stretch, Follow Through and Exaggeration. For instance, a request for more follow through is automati-
cally translated into decreasing the firmness of flesh, increasing the damping factor, increasing gravity and
increasing flesh mass. These traditional animation effects are incorporated automatically and the animator
has control over their amount. The animator can also switch between high and low levels of animation
control by adjusting both abstract qualities of the flesh motion and individual control parameters.

Such a hybrid method offers a balance between manual animation control, when total control and motion
specification is left to the animator, and automatic animation control, when the system generates the motion
based on some general rules given by the animator. It provides a way of animating a multi-layered model
with only a few parameters to control and it allows the animator to describe the animation in abstract terms.

Chapter 5

Discussion and Future Work

5.1 Introduction

In this chapter, the experience gained through this research will be put in a broader context, attempting
to establish the current and future role of skeleton based implicit surfaces in modelling and character ani-
mation. Some improvements to the methods developed will be proposed and potential applications of the
results achieved will be discussed.

Skeleton based implicit surfaces offer a natural layered approach to modelling. An object is specified
as a set of geometric generators, each of them defining a scalar field around itself. The surface of the object
is represented by an isosurface of the global scalar field, calculated by combining the scalar fields around
generators. Any type of geometric generators, e.g. points, line segments, curves or polygons, can be used.
They create an intuitive skeleton for an object. The resulting surface is smoothly wrapped around such a
skeleton, giving the object an attractive, “organic” look. Arbitrary surface topology for an object can be
achieved. An implicit model is compact, because only the description of the primitives has to be stored. It
also facilitates rapid prototyping of objects for design or animation, since most of the initial work can be
done in real time by manipulating skeletons only and the surfaces can be added later. Another advantage
of implicit surfaces is their deformability. Surface deformation can be easily performed by changing the
position or the radius of influence of some primitives in a model. Motion fluidity can be introduced to the
behaviour of a model in this way. Implicit primitives can be moved within a certain limit without the loss
of the topological integrity of the model. These qualities of implicit surfaces were the initial motivation for
their use in the area of computer graphics investigated in this research: character modelling and animation.

One of the essential qualities of a character is its appearance, i.e. a set of characteristic features, both
static (look) and dynamic (behaviour), that make it recognisable throughout its life. The first part of this
research dealt with a definition and conservation of such characteristics for models constructed using im-
plicit surfaces (Chapter 3). As a result, an extended implicit model has been proposed. It defined the
characteristic parts of a character using an appearance graph. It offered solutions to the problem of these
parts blending together (unwanted blending) and the problem of them separating and thus destroying the
topological coherence of the character (coherence loss). In Section 5.2 these aspects of modelling using im-
plicit surfaces will be discussed. The general advantages of modelling a character using a layered approach
will be presented and some particular problems encountered for a layered implicit model will be discussed.
Some generalisations of the algorithms proposed in this thesis will be presented and a few attractive ex-
tensions, including tangent continuous deformation and volume preserving deformation will be proposed.
Finally, two ways of specifying a model, a script file and an interactive editor, will be contrasted and their
relationship examined.

A character has to be coloured and textured to appeal to the audience as a convincing personality. These
are aspects of rendering and they remain an open research area for implicit surfaces. Before moving to the
issues of animating implicit surfaces, some of the problems of texturing will be discussed in Section 5.3.

The experience of traditional character animation was an inspiration for the second part of this research
that dealt with animation control of implicit surfaces (Chapter 4). The aim was to introduce traditional
animation effects to computer generated animation. The hybrid control proposed offers a balance between

85

86 CHAPTER 5. DISCUSSION AND FUTURE WORK

automatic (high level) and manual (low level) animation control. In this thesis traditional animation effects
are achieved automatically and their extent is fine-tunable by the user. Section 5.4 will present a reflection on
the animation control of implicit surfaces, in particular hybrid animation control of a multi-layered model.
The possibility of simplifying a model and using multiple levels of detail during character design, animation
prototyping and interactive animation will be considered. A suggestion of an application of the approach
presented in this thesis to the task of 3D metamorphosis of deformable objects will also be presented.
Finally, a possible combination of implicit surfaces with other modelling and animation environments,
e.g. the interaction between smooth and sharp objects, will be discussed.

5.2 Modelling using implicit surfaces

Most life forms possess some kind of a skeleton. A natural approach to modelling living or animated objects
is therefore to use skeletal design, i.e. to specify a skeleton for an object and have software automatically
clothe it with a surface. The skeleton can then be moved during the object's life and the surface always
follows this motion, deforming accordingly. Implicit surfaces are a good way of modelling such skeletal
objects, including forms with arbitrary topology. They also offer a compact computer representation, and,
because of their multi-layered nature, allow for fast prototyping of models since not all layers have to be
displayed.

5.2.1 Layered character modelling

Using a layered model is particularly suitable for computer character modelling. The first layer forms
the skeleton for a character, typically an articulated structure of links and joints. Then one or more of
the following layers are added to sculpt the body for the character: bones, muscles, fat tissue, skin. This
strategy, based on the skeletal nature of life forms, may suggest that only characters existing in the world of
animals can be modelled. However, the analogy can be taken further to model inanimate forms in order to
animate them, e.g. designing the skeleton, the muscles and the skin for a tree or a table. A character would
usually be “humanised”, i.e. it will have in its skeleton equivalents of legs, arms and heads.

The most common approach to creating layered characters in computer animation is to represent the skin
as a polygonal or parametric surface and fit it around an articulated structure [Magn88, Chad89, Fors91].
The skin deforms during each movement of the skeleton thus modelling skin effects, e.g. creases and skin
folds. The skin layer is often also used to model the deformation due to the muscles, e.g. bulging during
muscle flexion, without the explicit muscle layer representation. The deformable muscle layer may be
represented explicitly in the model as in [Shen95] where implicit surfaces are used to model muscles. These
skin models are geometric, elastic skin can also be modelled, incorporating some physics based rules of it
deformation. Gascuel et al. [Gasc91] use a rigid bone layer and covers it with an elastic skin modelled with
B-spline surfaces and attached to the bone layer by springs. Turner [Turn95] uses superellipsoids model
muscle and fat tissue layers. He attaches an elastic polygonal skin layer to them by spring forces. The
deformation of the skin is in these cases guided by the response obtained from the spring connections by
applying the current acting forces to them.

The definition of an implicit surface uses the concept of a skeleton (a set of generators) and a skin (an
isosurface). An advantage of this representation is that the skin is calculated automatically and intuitively
around a given set of generators, with arbitrary topology supported. Creating the skin layer is therefore
a simple procedure as opposed to the creation of a polygonal or a parametric surface around a skeleton
which is required for existing layered character models. Another advantage is the simplicity of deforming
an implicit surface which is achievable by changing the parameters that define implicit primitives. For
instance, to model a bulging muscle, the radius of a primitive can be increased and the implicit surface will
locally bulge within the primitive's radius of influence.

To benefit from these qualities, this thesis investigated the use of implicit surfaces for developing an
alternative layered model for character animation. Initially, the properties of a simple model consisting of
two layers (a set of generators and an isosurface) were examined. It was observed that objects modelled
using this approach had little structure imposed on them. They were treated as a collection of primitives that
blended with each other. At any time, these primitives could cluster together and blend into an amorphous
shape. They could also move apart, causing the loss of the topological integrity of the surface. Imposing a

5.2. MODELLING USING IMPLICIT SURFACES 87

structure on a set of generators in a model using an appearance graph provides a basis for solutions proposed
to these two problems: avoiding unwanted blending and preventing coherence loss. The new formulation
for implicit surfaces, extended by these solutions, was named the ABC approach: Appearance, Blending
and Coherence.

5.2.2 The ABC approach

An appearance graph serves the purpose of an articulated structure for a model. It consists of links which
define the limbs of a character and joints which define the articulations between the limbs. It is used during
the design stage of character modelling to define the characteristic parts of a character. Contrary to the
existing layered models, an appearance graph does not define a rigid skeleton for an object. Therefore, the
same appearance graph can be used throughout the animated life of a character, even if it undergoes extreme
deformations, e.g. limb stretching which is an effect often required in cartoons.

To deal with unwanted blending, an extended formulation for implicit surfaces was introduced (see
Section 3.3). It defined the blending properties for a scene and modified the way of calculating the global
scalar field to model deformation due to collisions between objects and between parts of an object. Mod-
elling precise contact surfaces in self-collisions is a novel development for computer animation.

Although simple primitives and simple blending were used, the proposed solution to the unwanted
blending problem, i.e. a model for implicit surfaces with blending properties, is extensible to distance
surfaces defined around any geometric skeletons, e.g. line segments, curves or polygons. It is not applicable
to other blending methods because the algorithm for calculating the deformed surface relies on summation
to provide surface continuity.

Extending the unwanted blending algorithm

The extension of the formulation for implicit surfaces with blending properties (Section 3.3) is trivial. The
proposed solution is based on regions of influence and scalar field values at a given point P . The field
value at P due to a deformed component C, FCdef (P), is calculated according to the following algorithm
(Section 3.3):

if P =2M(C) then FCdef (P) = 0
elsif 9Cu2U(C)FCu(P) > Iso ^ FC(P) > Iso then FCdef (P) = FC(P) + FB(C) � FU(C) + Iso
else FCdef (P) = FC(P) + FB(C)

whereM(C) is the maximal influence area for C, B(C) is the set of components blendable with C, U(C)
is the set of components unblendable with it, FC(P) is the undeformed field value for C, FU(C)(P) is the
collision term:

FU(C)(P) =
X

Cu2U(C)

FCu(P)

and FB(C)(P) is the blending term:

FB(C)(P) =
X

Cb2B(C)^

8Cu2U(Cb)
FCu (P)�FCb

(P)

FCb(P)

For any component C, its undeformed field function FC(P) is calculated as:

FC(P) =
nX
i=1

fi(P)

where fi; i = 1::n are field functions of primitives in the component. To use a new type of a primitive, only
the calculation of the undeformed field function for a component changes. The proposed algorithm remains
intact.

Although it has been developed for characters, the ABC approach can be used for other applications,
for instance for simulating deformable objects that undergo collisions and self-collisions. For simulation
purposes the two important areas where the methods proposed need to be further developed are tangent
continuous deformation and volume conservation during deformation.

88 CHAPTER 5. DISCUSSION AND FUTURE WORK

a) b)

c) d)

Figure 5.1: Differences between continuous and discontinuous surface deformation
a) Tangent discontinuity in a collision
b) Tangent discontinuity in a self-collision
c) Tangent continuous deformation during a collision
d) Tangent continuous deformation during a self-collision

Tangent continuous deformation

One problem with the proposed formulation is that during collisions, tangent discontinuities occur in the
deformed surfaces. Figure 5.1a presents a diagram of the deformation during a collision and a self-collision.
The points of tangent discontinuity are marked. Figure 5.1b shows a perhaps more natural behaviour of the
deformed surface, with tangent continuity preserved. Marie-Paule Gascuel [Gasc93] proposed a method
that added a displacement function to the scalar field to preserve C1-continuity of deformation during
collisions. The displacement function was calculated in a post-processing stage and it required calculation
of the closest point on a surface, a computationally expensive operation. Moreover, collisions with the
deformed surface could not be detected, since the field function calculation remained unchanged. To our
knowledge, no deformation method that preserves tangent continuity has been proposed for self-collisions.
This problem is one of the possible directions to explore in future research.

For instance, one possible solution to tangent discontinuity is the use of an alternative blending method.
Figure 5.2 shows a few ideas that may serve as a starting point. The light grey areas mark the initial inside of
an object with a tangent discontinuity (a “corner”). The dark grey areas show local blend surfaces that were
added (Figures 5.2a, 5.2b and 5.2c) or subtracted from the initial surface (Figures 5.2d, 5.2e and 5.2f) to
achieve tangent continuity of the surface. The final blended surface of the object is marked with lines.
Any local blending method can be used, e.g. the method of Middleditch and Sears [Midd85], Rock-
wood and Owen [Owen89, Rock90a, Rock90b], Hoffman and Hopcroft [Hoff86] or Rossignac and Re-
quicha [Ross84]. Each of these methods offers a way of controlling the range of blend, marked in Figure 5.2
by radii R1 and R2. Figures 5.2a, 5.2b and 5.2c present a sequence of blends applied to a “corner” of an
convex object. The idea is to allow for the radius R1 to take negative values and therefore add a blend that
will create a tangent continuous surface which fits the “ground” (Figure 5.2c). This method can be used to
create tangent continuous deformation during collisions.

Figures 5.2d, 5.2e and 5.2f illustrate a reasoning that can be applied to achieve tangent continuity during
self-collisions. In Figure 5.2d, a local subtractive blend was created around the “corner” of a concave object.
The idea is to apply such a blend to the “corner” while the two parts of the object approach each other and
collide (Figures 5.2e and 5.2f). One problem that may occur is blend surface interpenetration.

5.2. MODELLING USING IMPLICIT SURFACES 89

R1

R2 R2

R1

R2

R1

R2

R1

R2

R1

a) b) c)

d) e) f)

R2

R1<0

Figure 5.2: A suggestion for tangent continuity conserving deformation
a) b) c) during a collision
d) e) f) during a self-collision

Volume preserving deformation

A significant problem with the model presented in this thesis is that volume is not conserved during defor-
mation. The first attempt to introduce volume conservation to animation of implicit surfaces was done by
Wyvill et al. [Wyvi86a]. The isovalue, magic, was chosen so that the volume of two blended primitives is
approximately equal to the sum of the initial two volumes. However, this solution does not generalise to
more than two primitives. Moreover, it controls only the initial and the final frames of an animation. The
volume in the inbetween frames is not controlled.

Desbrun and Gascuel [Desb95a] proposed a solution for any number of primitives. During surface
sampling, a set of seeds is maintained on the implicit surface for each generator. These seeds can be used
to define a set of “pyramids” with the top on a generator and the base on a surface triangle defined by the
sampling points. The volume of an implicit object is approximated by the volume of such pyramids. It
is maintained at a near constant level by adjusting the field function of primitives for which the sampling
changes during animation. The volume is thus controlled locally.

As stressed in one of the traditional animation principles, a character needs to conserve its volume in
order to preserve its personality [Thom81]. As an example, a series of drawings showing a half-filled sack
of flour in different “moods” was shown to animators at the Disney studio. Squashed and stretched to
express feelings, it always retained its half-filled state. A method that provides volume control should be
introduced in the model proposed in this thesis to make the animations more convincing.

5.2.3 Specifying a model

To develop a model proposed in this thesis, a user needs to define a set of primitives in 3D space, form them
into components and position the components in relation to each other to obtain parts of an appearance
graph. Two possible contrasting methods of model specification are: (i) off-line batch processing of a
modelling language script and (ii) on-line interactive design of a model. The former method can handle any
size of models but does not offer an interactive environment. The latter gives an immediate visualisation of
the form being designed but the more complex the object the more computationally intensive its display.

The two methods of model specification are closely related (Figure 5.3). A model in both cases has to
be stored in a file, which can either be a simple script file or can contain some programming commands,
e.g. iteration. Both an interactive modelling program and a text editor can load existing models, modify

90 CHAPTER 5. DISCUSSION AND FUTURE WORK

them and save them. An often used approach is to use an interactive modeller to specify the first version of
a model and then to manually modify the resulting modelling file in a text editor.

programming

simple script
or

modelling file

language

modeller

interactive
editor

text

Figure 5.3: A relationship between scripting and interactive systems

Interactive editing

Implicit surfaces do not offer an easy way of rendering the surface of an object. Direct raytracing needs
to be used (Appendix A) or the surface needs to be polygonised and then shaded using a standard polygon
renderer. Neither of these methods is interactive. Wireframe-based, interactive implicit surface modellers
exist commercially (e.g. MetaEditor [Meta94]) and as freeware (e.g. Blob Sculptor [Herm94]). They offer
tools to create models built of simple primitives, defined by point-generators. They are useful for creating
simple models of organic looking shapes. However, they become computationally expensive for more
complex models.

Bloomenthal and Wyvill [Bloo90b] suggested a set of methods for improving the interactivity of mod-
elling using implicit surfaces. Instead of a 3D surface, a series of 2D slices can be displayed. This requires
good interpretation skills to perceive the shape of the 3D object. Another alternative is to directly display
an octree used to locate the surface in space, i.e. in a given adaptive grid, cubes containing the surface are
identified but surface polygons are not computed and the cubes displayed directly, with their back faces
removed. Another interesting technique is scattering, in which a cloud of points, initially close to the sur-
face, travels towards it until it achieves a required proximity. The surface is approximated by displaying the
seeds.

The bottleneck of implicit surface visualisation is surface sampling. Witkin and Heckbert [Witk94]
developed an adaptive sampling algorithm that used a set of floaters with repulsion forces that maintained
their position on the surface and adapted their density to surface changes. For instance, if the surface was
stretched, new surface floaters would be born and when the surface was squashed, some floaters would
die. The floaters could be displayed at near real time rates, giving a good impression of the shape of the
surface. A set of such sampling points could be used to obtain a polygonisation of the sampled surface.
However, since a set of floaters did not have a fixed topology, i.e. during the life of each floater, it could
travel anywhere on the surface, such a polygonisation would have to be recalculated after each modification.

Desbrun et al. [Desb95b] have developed a method of approximate display of implicit surfaces, based
on piecewise polygonisation. The primitives were sampled and polygonised in their area of maximal in-
fluence. The topology of the resulting set of sampling points was fixed, since a set of seeds had always
been sent in fixed directions from a generator to the surface. The sampling points had to be modified only
in the areas where the surface had been modified. Thus, the algorithm could take advantage of temporal
coherence between deformed versions of the same model. The surface could be visualised as sample points
or the polygonisation of the blended implicit surface can be approximated by displaying the polygonised
primitives. Such piecewise polygonal display was not continuous but it was interactive and offered an im-
portant advantage of opaque visualisation, that gave the information about depth that could not be achieved
by displaying only the sampling points.

A short study of interactive display of implicit surfaces has been performed in [Opal95c]. The study in-
vestigated polygonisation of implicit surfaces using the marching cubes algorithm [Lore87]. The technique

5.3. RENDERING IMPLICIT SURFACES 91

of marching cubes divides a 3D space into grid cells. Then, there are three stages in the polygonisation
algorithm: (i) generating grid-data, (ii) identifying grid cells intersecting the implicit surface and (iii) cal-
culating the polygons. In the first stage (i), the scalar field values at the grid points (corners of grid cells)
have to be calculated. During stage (ii) all cells which are intersected by the surface (boundary cells) are
found and in the stage (iii) polygons in each boundary cell are produced according to the scalar field values
in the corners of the cell. Previous attempts have been made to speed up steps (ii) and (iii) of polygoni-
sation [Wyvi86a, Bloo88, Bloo90b]. The experiments in [Opal95c] were concerned with the first phase of
the polygonisation process, the grid-data generation. During deformation, the grid-data will only change
in the areas where the surface has been modified. Therefore, there is no need to regenerate all the data. A
secondary data structure can be used to determine the grid parts that need processing. Appendix B presents
the results of the study showing that the local updating of the grid-data gives a significant reduction in
computation time for smaller primitives (half the size of the world and smaller) for both the static image
and animation. For larger primitives (larger than half the size of the world) the complete regeneration of the
grid-data appears to be more efficient.

This approach could be useful during the design of an implicit model since a user would possibly modify
a small part of an object at a time. Similarly, during animation, only the moving objects need to be updated,
the static rigid background stays unchanged and should only be rendered once. The method described in
Appendix B was proposed for generation of grid-data but it could be used for any stage in the rendering
process, e.g. if polygonisation is performed during the boundary cell search, the search does not have to be
performed for the entire grid; only the modified grid cells need to be re-polygonised.

Model scripting

The approach taken in this thesis is the use of script files to specify models. A specification language was
developed and writing a modelling script using the syntax of this language was left as a manual task to an
animator. Although this is a quick method of prototyping the proposed algorithms, it proves unsatisfactory
for modelling complex characters. Specifying components and their relative position is a tedious task and
requires skill to create an interesting shape.

For instance, Figure 5.4 shows a sample scene and a script file used to specify it. Specifying such a scene
manually is a very complex task. The primitives in this example were actually generated using supporting
tools. The implicit “floor” was generated by a simple C program that used random radii for primitives and
distributed the primitives at a fixed grid within a rectangle. The model of a head was constructed using a
2D interactive modelling tool [Opal93a]. The depth in it was achieved by assigning the Z-coordinate value
to zero. The two characters were obtained by rotation and translation of the model obtained.

Using the experience from this example, one possible improvement to the modelling language is to
convert it to a programming language that would allow for instance to distribute primitives along simple
geometric primitives, e.g. a line segment, a curve or a polygon. The language could be purely text based,
i.e. a program file would be compiled to produce a model, or an interesting possibility would be to consider
visual programming, which could use an interactive tool to specify certain programming structures, e.g. an
array of primitives.

5.3 Rendering implicit surfaces

Implicit surfaces suffer from a serious drawback - they cannot be easily rendered at interactive speeds. Two
techniques that have been most widely used for rendering them are polygonisation and direct ray- tracing.
Since they cannot be so far be performed in real-time, the usual trade-off between high quality and speed
occurs. Hence, alternative techniques which display the approximation of the surface have been developed
(see Section 5.2.3). However, perhaps a more serious problem affecting the rendering of models built using
implicit surfaces is the problems of texturing them.

Texturing general models built with implicit surfaces is considered an open research problem. The
possibility of constant changes of the surface of a model (including topology changes) is one of the main
advantages of the technique. However, this causes problems with texturing such models, in particular with
parametrisation of the deforming surface.

92 CHAPTER 5. DISCUSSION AND FUTURE WORK

object floor colour Flesh
component surface rotation (0,0,0)
point (0,0,0) POV 158 1
point (0,0,80) POV 115 1
point (0,0,160) POV 154 1
point (0,0,240) POV 128 1
point (0,0,320) POV 114 1
point (0,0,400) POV 197 1
point (0,0,480) POV 117 1
point (0,0,560) POV 153 1
point (0,0,640) POV 200 1
point (0,0,720) POV 122 1
point (160,0,0) POV 156 1
point (160,0,80) POV 140 1
point (160,0,160) POV 129 1
point (160,0,240) POV 200 1
point (160,0,320) POV 134 1
point (160,0,400) POV 101 1
point (160,0,480) POV 102 1
point (160,0,560) POV 126 1
point (160,0,640) POV 114 1
point (160,0,720) POV 119 1
point (320,0,0) POV 198 1
point (320,0,80) POV 136 1
point (320,0,160) POV 118 1
point (320,0,240) POV 179 1
point (320,0,320) POV 178 1
point (320,0,400) POV 182 1
point (320,0,480) POV 113 1
point (320,0,560) POV 148 1
.
.
. 100 primitives

joint surface
anchor surface (0,0,0)

object head1 colour Brown
component head rotation (-25,0,0)
point (265,0,743) POV 28 1
point (238,0,777) POV 22 1
point (220,0,778) POV 22 1
point (265,0,682) POV 11 -1
point (277,0,709) POV 22 1
point (263,0,718) POV 14 1
point (251,0,717) POV 11 1
point (242,0,716) POV 11 1
point (240,0,693) POV 15 1
point (251,0,696) POV 15 1
point (266,0,699) POV 15 1
point (304,0,751) POV 60 1
point (259,0,652) POV 24 1
point (311,0,694) POV 65 1
point (272,0,660) POV 21 1
point (287,0,672) POV 31 1
point (290,0,884) POV 43 1
point (410,0,620) POV 100 -1
point (214,0,828) POV 62 1
point (244,0,849) POV 62 1
point (432,0,748) POV 90 1
point (376,0,722) POV 90 1
point (272,0,794) POV 52 1
point (642,0,744) POV 5 1
point (642,0,749) POV 7 1
point (642,0,755) POV 9 1
point (642,0,761) POV 9 1
point (612,0,772) POV 9 1
.
.
. 66 primitives

joint head
anchor head (0,0,0)

object head2 colour Gold
component head rotation (25,180,0)
point (265,0,743) POV 28 1
point (238,0,777) POV 22 1
point (220,0,778) POV 22 1
point (265,0,682) POV 11 -1
point (277,0,709) POV 22 1
point (263,0,718) POV 14 1
point (251,0,717) POV 11 1
point (242,0,716) POV 11 1
point (240,0,693) POV 15 1
point (251,0,696) POV 15 1
point (266,0,699) POV 15 1
point (304,0,751) POV 60 1
point (259,0,652) POV 24 1
point (311,0,694) POV 65 1
point (272,0,660) POV 21 1
point (287,0,672) POV 31 1
point (290,0,884) POV 43 1
point (410,0,620) POV 100 -1
point (214,0,828) POV 62 1
point (244,0,849) POV 62 1
point (432,0,748) POV 90 1
point (376,0,722) POV 90 1
point (272,0,794) POV 52 1
point (642,0,744) POV 5 1
point (642,0,749) POV 7 1
point (642,0,755) POV 9 1
point (642,0,761) POV 9 1
point (612,0,772) POV 9 1
.
.
. 66 primitives

joint head
anchor head (0,0,0)

Figure 5.4: Dali's Kiss No 7

5.4. ANIMATING IMPLICIT SURFACES 93

Colour is the simplest “texture” which can be applied to the skin of a character. It has been used
in all implementations of implicit surfaces. The most common approach is to apply the weighted sum of
colour contributions from all primitives to find the colour of the areas of multiple influence [Blin82, Nish85,
Wyvi86a, McPh90]. This results in a smooth colour transition in the blending area. Each object component
in a character can be assigned a colour to simulate items of “clothing”. Flesh primitives can be assigned
separate colour.

McPheeters [McPh90] summarises possible colouring metaphors for implicit surfaces. He suggests
three simple approaches: all primitives change colour to the blended colour (primitives are like drops of
coloured water), the division between primitives is visible (primitives are made of clay-like solids) or there
is a smooth transfer of colour (semi-solid primitives which exhibit limited mixing). He also mentions a
more complex metaphor: the effect of sculpting an object from differently coloured pieces of clay, the
result being streaks of two initial colours and shades of the blended colour around the connection area.

One of the most popular texturing techniques is two-dimensional texture mapping. It finds a tex-
ture value for a surface point from the parametric representation of the surface. The values of parame-
ters are passed to a 2D function which returns the required texture value. Implicit surfaces are not eas-
ily parametrised. Nevertheless parametrisation can be obtained in some cases. Bloomenthal [Bloo88]
parametrises implicit surfaces using their boundary representation (polygons). McPheeters [McPh90] uses
direct parametrisation of primitives applying complex mathematical procedures. An efficient patch based
method of polygonising and decorating implicit surfaces was proposed by Pedersen [Pede95]. For character
animation, it is important that the texture “sticks” to the surface during a character's life, including its defor-
mation. Smets-Solanes [Smet93, Smet96] proposes a method that offers this property for implicit surfaces.
He observes that parametrisation is not essential for applying a 2D texture mapping. What is sufficient is a
homeomorphism between instances of a moving and deforming implicit surface. He proposes an algorithm
for finding such a homeomorphism.

Solid texturing is another popular method of texturing, in which textured objects are “carved” in a 3D
texture space. Problems arise when a textured object moves. Wyvill et al. [Wyvi90a] attempted to apply
solid texturing to deformable implicit surfaces. However, squashing and stretching of a character could not
be naturally handled by their solution.

5.4 Animating implicit surfaces

There are many similarities between dance choreography and character animation. Both of them start
from an abstract idea to be delivered through the visual channel. The structure of a creation is sketched
by dividing it into dance phrases or animation events. The artist is then developing each part, possibly
simultaneously and often going back to the structure and modifying it according to any new ideas that
appeared during the production. In this research, the choreographic nature of animation was recognised and
used by implementing a dance notation as one level of a hybrid animation control method for animation
creation. In this level, the animator has full control over the movement of all components in a character. The
inspiration for the animation control for flesh, comes from the traditional character animation. The motion
of flesh is used to create automatic animation effects, notably Squash and Stretch, Follow Through and
Exaggeration. In this section the results obtained using this approach to animation control will be discussed
and some new directions and extensions for it will be proposed.

5.4.1 Hybrid animation control

Characters modelled in thesis are built around articulated structures. Each link and joint in the structure
contains a group of primitives (an object component). One method proposed for animation control of
such a model is the coherence preserving algorithm (Section 3.4). Individual primitives are moved and the
motion for the remaining primitives is computed accordingly. The motion specification is fairly low level
since it has to be given by positioning the primitives in space. However, the system is capable of calculating
the movement for all the primitives but one at each time step. Nevertheless, for more complex models
specifying motion of individual primitives is a tedious procedure.

An alternative way of animating an articulated structure is to specify the positions and orientations for
all joints and links using, for example, forward kinematics. It is a higher level of abstraction with relation to

94 CHAPTER 5. DISCUSSION AND FUTURE WORK

primitives since there is no need to specify individual positions for any of the primitives in a model. They
are derived from the motion of relevant links and joints. Moreover, the chosen implementation of forward
kinematics, based on Eshkol-Wachmann dance notation, is based on an intuitive principle of dance position
specification which makes choosing the link positions easier. However, a character animated in this way
undergoes very little deformation, only the surface around joints changes slightly due to blending. With the
goal of keeping the high level of abstraction for motion specification while keeping the fluidity of motion
obtained using the coherence preserving algorithm, the model was extended by an automatically generated
layer of flesh.

The motion control for components was specified using the dance notation, the motion for flesh was
automatically derived from the motion of components. To provide the animator with control over the flesh
motion, a set of adjustable parameters was used to define the flesh behaviour. Heuristics were proposed to
adjust these parameters in order to achieve automatic and controllable traditional animation effects: Squash
and Stretch, Follow Through and Exaggeration. Each of these abstract qualities of movement is adjusted
using “knob” control (see Section 4.10). First, the flesh motion is created according to a set of low-level
parameters given by an animator (e.g. the gravity or firmness of components or flesh). The motion created
for this configuration of parameters is considered to be the “normal” version of a sequence. The animator
can then increase or decrease the achieved effect on the high level by “turning” the relevant knob, i.e. by
proportionally modifying all parameters manipulated by each abstract quality.

The heuristics work well for simple qualities, e.g. for Squash and Stretch which adjusts the firmness of
object components. The results are predictable. A “looser” object will undergo more squash and stretch. A
“firmer” one will deform less. For more complex qualities of Follow Through and Exaggeration, the results
obtained in the animations are less intuitive. The parameters may easily interfere with each other if they are
mapped as forward and inverse mapping in two different “knobs”. The parameter interference was one of
the reasons for introducing a layer of flesh, since increasing the amount of Squash and Stretch at the same
time as increasing the amount of Follow Through cancelled the influence on the firmness parameter when
used for object components.

One limitation of using the dance notation for specifying motion of components is that links are treated
as rigid line segments, so spine-like effects cannot be modelled. For instance, in Figure 4.25, this effect can
be clearly seen on the tail of the dinosaur. An interesting extension would be to combine the dance notation
with the coherence preservation algorithm. A spine could be modelled as a chain of primitives connected
by coherence preserving connections. The behaviour of such a “spine” could be either directly scripted
by moving one of the primitives and making the remaining ones follow the motion, or it could be derived
from a dance notation script for the components adjacent to the “spine” in the articulated structure. In this
context, a useful extension to the coherence preserving algorithm is to use primitives other than spherical
so that rigid links can be used in place of the rigid chains of primitives used at the moment. This extension
is detailed in the following section.

a) b) c)

Figure 5.5: A point-to-line connection

5.4. ANIMATING IMPLICIT SURFACES 95

Extending the coherence preserving algorithm

The coherence preserving algorithm that allows for clay-like material to be modelled, is extensible for other
types of skeletons and other blending methods. To extend it to other types of generators, it is required to
specify new types of connections between pairs of primitives. For example, to introduce a line segment as a
generator, a point-to-line constraint has to be defined. It will restrict the distance from a point to a line seg-
ment. A rotation can be introduced to the “push/pull” action instead of translation only response. Figure 5.5
shows a possible behaviour of a point-to-line connection. Figure 5.5a show the initial configuration of two
generators: a line segment and a point. The point is moved in the direction shown by the arrow. In the new
configuration (Figure 5.5b) the distance between two two generators is still within the allowed limits, there-
fore the line does not move. However, when the point is moved again in the same direction (Figure 5.5c),
the allowed coherence preserving distance is breached and the line generator follows the point. Instead of a
simple translation, rotation should also be used to make the connection realistic. Similar cases would have
to be developed for all possible pairs of generators. The work of Gascuel and Gascuel [Gasc94] proposes
a method of maintaining displacement constraints between solids. They treat each connection as an elas-
tic “string” and use this physical property to calculate the expected behaviour of connected solids. Small
translations and rotations are applied to adjust each connection. An important advantage of this method is
that it works for cycles in the connection network.

The coherence preservation algorithm is also extensible to other blending methods, provided that the
new limiting conditions are found. For instance, if union blending is used, the maximum coherence pre-
serving distance is the sum of the radii of the primitives in isolation:

dmax = f�11 (Iso) + f�12 (Iso)

This is an intuitive result since maximum-blending is equivalent to taking a union of the primitives. Thus,
the two primitives are blended only if they overlap in space when considered in isolation.

5.4.2 Simplifying a model and metamorphosis

In an animation scene, objects sufficiently far away from the view point need not be shown with the same
level of detail as the objects close to the viewer. Using a simplified version of a model to represent a distant
object will reduce the time required to perform an animation step and render the scene. This strategy has
been used in applications requiring a real time fly-through of an environment, e.g. in flight simulators.

In the realm of implicit surfaces this can be achieved by building a few models for each object, from
a coarse one to be displayed at a distance to a fine one for close-ups. A multi-levelled design for implicit
surfaces was proposed by Beier [Beie90] who suggested the use of a few primitives to approximate a
character in the initial stages of character design and animation production and refining the representation
after deciding on the desired sequence.

A similar approach can be used during an animation sequence, in which a less detailed representation of
a character can be utilised for characters sufficiently far away from the view point. However, this introduces
problems during switching between different levels of detail, since some primitives might suddenly appear
or vanish. Therefore, a smooth transition between versions of a model has to be provided. It can be
achieved by interpolation between the representations that will progressively vary the size of appearing or
vanishing primitives. Since simplified versions of a character are built using the same appearance graph,
such transition should produce natural results.

A more complex problem of graph simplification can also be considered. For objects far away, main-
taining all the branches of the appearance graph and processing collisions between them is a superfluous
costly operation that will not have a significant effect on the animated scene. Therefore, for distant objects,
surface deformation due to collisions may be ignored. However, the collisions should be detected and in-
fluence the animation so it is up to date when the character comes closer to the viewpoint. This leads to a
very complex problem of simplification of a model during motion. It is desired to save computation power
by not calculating the motion of distance objects. However, when at a given time step an object is near
the viewpoint, it should have completed its animation script until this time step. This may be understood
as a very general problem of motion simplification, for example, a character moving at a distance along a
spline may be moved along a straight line. Again, the question of possible collisions missed during such a
simplification needs to be addressed.

96 CHAPTER 5. DISCUSSION AND FUTURE WORK

A generalisation of the smooth transition between simplified models is 3D metamorphosis, i.e. finding
a smooth transition between two arbitrary objects. When two two objects are specified as skeleton based
implicit surfaces with graphs describing the blending properties of each model, a generalisation of the
algorithm applied to perform smooth transitions between the simplified models of an object is required.
One of the desired properties of the sought algorithm is consistent topology changes. If the topologies of
the start and end objects are the same, no topology change should occur during the metamorphosis. If the
topologies differ, the transition should not reverse to the topology of a previous stage in the metamorphosis
(e.g. during the metamorphosis from a sphere to a torus, a hole should appear at one stage and it should not
disappear until the end object is reached). Work on a metamorphosis algorithm would need to consider the
shortest chain of changes required to perform the transition and whether or not all intermediate stages are
valid models, i.e. include the skeletons, field functions and a graph of blending properties.

initial surface

final surface
added or subtracted blends

Figure 5.6: Interaction of a smooth deformable object with a sharp landscape

5.4.3 Combining implicit surfaces with other modelling techniques

Each modelling technique is better suited to a particular task. For instance, it would be difficult to model a
cube with implicit surfaces, while it is a simple task using polygons or CSG operations. Similarly, modelling
an expressive deformable character is easier using implicit surfaces and non-trivial using polygons. To
provide a complete animation environment, as many modelling and animation techniques as possible should
be supported. It is thus important to explore their interaction.

To combine implicit surfaces with polygonal models, the behaviour of an implicit character in an envi-
ronment of sharp rigid objects defined using e.g. CSG methods should be examined. The character would
need to deform itself against the sharp corners of a rigid object while keeping its tangent continuity. More
complex precise collision surfaces would have to be created. Figure 5.6 shows a possible behaviour in
such a situation. A mixture of additive and subtractive blends (dark grey areas) could possibly be used to
achieve tangent continuous deformation around vertices and edges of a sharp landscape. The added sur-
face blends which model the surface “dripping” down the sides of the rigid solid in Figure 5.6 could be
modelled as suggested in Figure 5.2. The subtracted surface blends need to model the surface wrapped
around sharp corners and edges on the rigid object. It is a more general case of precise contact surface
creation during collisions. A rigid object can be represented by an implicit function, as for instance in
the work by Pasko et al. [Pask88, Pask95b], in which a function representation of objects was proposed
to represent a wide variety of primitives, including skeleton based implicit surfaces and CSG objects. In
this case, a method of precise contact modelling between different classes of objects, based on scalar field
modification, could be developed.

5.5. SUMMARY 97

5.5 Summary

In this chapter the main points of the ABC approach have been summarised and some suggestions for
extending it to more cases of skeletally based implicit surfaces have been given. Some initial ideas to
provide tangent continuous deformation, an issue important for character animation as well as more general
deformable clay-like substance deformation have been detailed.

The chapter also looked at ways of specifying an implicit character. A significant drawback of implicit
surface for design and animation, is the lack of an interactive way of visualising them. The chapter reviewed
the related research work in that area and summarised the results of a short study on the use of a secondary
data structure to detect and process only the modified parts of a scene. The problem of interactive character
sculpting and animation using implicit surfaces still remains an open research area.

A hybrid method of controlling the motion for a layered model based on providing a separate method
for controlling the components (dance notation) and flesh motion (the coherence preserving algorithm com-
bined with physical interaction), has been discussed. The main goal of this method has been to provide a
user with a tool for creating automatic but fine-tunable traditional animation effects. Some extensions to
the coherence preserving algorithm and to component animation specification have also been proposed.

A suggestion for the use of simplified models for character design and animation has been given. Some
initial ideas about the advantages of using an appearance graph for creating a smooth transition between the
versions of a model have been listed. It has also been suggested that a generalisation of this approach could
be applied to 3D metamorphosis between moving characters.

Finally, the importance of integrating a variety of modelling techniques in an animation environment for
character modelling has been stressed. As an example, the interaction between smooth implicit characters
and sharp polygonal landscape has been discussed and some initial ideas for its implementation have been
given.

Chapter 6

Conclusions

This thesis has presented the results of research into modelling and animation of characters using implicit
surfaces. The initial motivation was the visual appeal of the technique: smoothly blended organic-looking
shapes with arbitrary topology. The main goal was to adapt this method to the problems specific to character
animation and to provide automatic creation of traditional animation effects. The findings of this research
prove that extending implicit surfaces, as proposed in this thesis, creates a useful tool for modelling and
animating simple but expressive characters. For modelling, the ABC approach introduces clay-like prop-
erties to the behaviour of a block of implicit material. Characters that can be sculpted in this material and
they can be coherently deformed while retaining their appearance throughout their animated lives. For ani-
mation, the hybrid animation control method, developed for the multi-layered implicit model, offers a way
of automatically creating and controlling cartoon effects such as squash and stretch, follow through and
exaggeration.

In the ABC (Appearance, Blending, Coherence) approach, a means of specifying a character's appear-
ance using a graph was proposed, blending properties were incorporated into the technique and coherence
preservation constraints were imposed on the spacial relationship between the primitives in a model. A
character is assembled from components connected according to its appearance graph and animated by
moving its individual primitives. The novelty of this way of introducing a structure into a model lies in the
fact that it does not restrict the number or the spacial relationship between the primitives that are assigned
to the components. A certain amount of deformation, automatically controlled so as not to destroy the
topological integrity, is allowed and therefore special cartoon effects (e.g. extreme stretching of limbs) can
be modelled.

The unwanted blending algorithm detects and processes collisions between characters and self-collisions
for a character. The response to collisions results in the creation of a precise contact surface between the
interacting parts. Deformation during collisions is essential for animation, especially for implicit surfaces
which, in their initial form, would blend the colliding parts, destroying the appearance of a model. The ex-
tended implicit formulation proposed in this thesis offers a simple algorithm that models deformation due
to collisions by modifying the calculation of the global scalar field. The algorithm is general and extensible
to more complex skeletons. The self-collision deformation processing is a novel development for implicit
surfaces.

The coherence preserving algorithm ensures that all the primitives in a model stay connected during its
deformation. The firmness for such a “clay” character can be specified. It changes the amount of squashing
and stretching allowed to occur for it. The algorithm implements simple and efficient geometric distance
constraints in a model. They control the distance between primitives and maintain it within the topological
integrity preserving limits. As a result, the entire surface remains coherent without breaking into pieces.
Distance constraints for implicit surfaces benefit from the fact that, within certain limits, surface topology
remains unchanged during the relative motion of primitives. An extension incorporating more variety of
generators to this algorithm has been proposed.

Animating characters by moving individual primitives is a tedious process and it is impractical for more
complex models and longer animation sequences. Looking into the process of creating an animation, simi-
larities to dance choreography can be observed. With this comparison in mind, a higher level of animation

98

99

control for characters modelled using an appearance graph was proposed. It implements the Eshkol-Wach-
mann dance notation and uses it to specify the positions of links in the appearance graph in relation to the
joints. This is the principle of using forward kinematics for animating an articulated structure. However, it
offers a slightly higher level of abstraction by expressing the link rotations in terms of shaping the body of a
character into a dance position. Although a more intuitive way of motion specification, dance notation does
not take advantage of the natural deformability of implicit surfaces and animations created using it exhibit
little deformation.

To combine the advantages of using a higher level animation control method with the benefits of the
coherence preserving algorithm, an extra layer was introduced into the model. A hybrid animation control
method was then proposed to specify an animation sequence for this model. Dance notation was used
to animate object components and define the general movement of a character. The motion of the flesh
layer was generated based on a combination of the coherence preserving algorithm and physical interaction
between primitives. This approach generates much of the animation for a character automatically. A set
of parameters controls the generated motion and can be adjusted by a user. Heuristics are proposed that
translate adding traditional animation effects into modifying a subset of these parameters. The method
produces pleasing results for short animation sequences starring simple characters. Its intuitiveness needs
to be assessed in a more complex animation project, that would create a longer animation sequence featuring
a number of characters interacting with each other and with the environment.

A series of future directions for implicit surfaces was proposed. In particular, tangent continuity con-
serving and constant volume deformation needs to be further explored for character animation and for other
applications of implicit surfaces, e.g. simulation of deformable substances. The limitations of the rendering
process of implicit surfaces make them less attractive for interactive design and character animation. Thus,
methods need to be developed to improve their display rate and provide consistent texturing of implicit ob-
jects during deformation. Model simplification and 3D feature based metamorphosis for moving characters
are also interesting problems to explore.

Implicit surfaces offer a way of modelling smooth, organic-looking forms that can be locally modified
to suit the animator's design of a character. The set of animation techniques proposed in this thesis enhances
the artistic vocabulary of an animator by offering an intuitive way of working with implicit “clay” to model
and animate three-dimensional characters using a computer. An improvement of the interactivity of the
algorithms and a study integrating them into a standard, polygon-based animation environment is required
to assess the usability of the methods for a real-life character animation project.

Bibliography

[Agin72] G. Agin. “Representation and Description of Curved Objects”. Stanford Artificial Intelligence
Report MEMO AIM-173, Stanford University, 1972.

[Arvo91] J. Arvo, Ed. Graphics Gems II. Academic Press, 1991.

[Bare77] J. Barenholtz, Z. Wolofsky, I. Ganapathy, T. Calvert, and P. O'Hara. “Computer Interpretation
of Dance Notation”. S. Lusignan and J. North, Eds., Computing in the humanities, pp. 235–240,
University of Waterloo Press, Waterloo, 1977.

[Barr81] A. H. Barr. “Superquadrics and Angle-Preserving Transformations”. IEEE Computer Graphics
and Applications, Vol. 1, No. 1, pp. 11–23, 1981.

[Beie90] T. Beier. “Practical Uses for Implicit Surfaces in Animation”. Modeling and Animating with
Implicit Surfaces, pp. 20.1–20.11, 1990. SIGGRAPH Course Notes 23.

[Bene56] R. Benesh and J. Benesh. An Introduction to Benesh Dance Notation. Adam and Charles Black,
London, 1956.

[Blan95] C. Blanc and C. Schlick. “Extended fields functions for soft objects”. Implicit Surfaces'95,
pp. 21–32, Grenoble, France, Apr. 1995. Proceedings of the first international workshop on
Implicit Surfaces.

[Blin82] J. F. Blinn. “A Generalization of Algebraic Surface Drawing”. ACM Transactions on Graphics,
Vol. 1, No. 3, pp. 235–256, July 1982.

[Bloo88] J. Bloomenthal. “Polygonisation of implicit surfaces”. Computer Aided Geometric Design,
Vol. 5, pp. 341–355, 1988.

[Bloo90a] J. Bloomenthal. “Techniques for Implicit Modeling”. Modeling and Animating with Implicit
Surfaces, pp. 13.1–13.18, 1990. SIGGRAPH Course Notes 23.

[Bloo90b] J. Bloomenthal and B. Wyvill. “Interactive Techniques for Implicit Modeling”. Computer
Graphics, Vol. 24, No. 2, pp. 109–116, March 1990.

[Bloo91] J. Bloomenthal and K. Shoemake. “Convolution Surfaces”. Computer Graphics, Vol. 25, No. 4,
pp. 251–256, July 1991. Proceedings of SIGGRAPH'91.

[Bloo92] J. Bloomenthal. “Hand Crafted”. 4th Annual Western Computer Graphics Symposium, Banff,
Alberta, Apr. 1992.

[Bloo95a] J. Bloomenthal. “Bulge Elimination in Implicit Surface Blends”. Implicit Surfaces'95, pp. 7–
20, Grenoble, France, Apr. 1995. Proceedings of the first international workshop on Implicit
Surfaces.

[Bloo95b] J. Bloomenthal. Skeletal Design of Natural Forms. PhD thesis, The University of Calgary,
Department of Computer Science, Jan. 1995.

[Bron85] I. Bronsztejn and K. Siemiendiajew. Matematyka: poradnik encyklopedyczny (tom 1-6). Panst-
wowe Wydawnictwo Naukowe, 1985. In Polish.

100

BIBLIOGRAPHY 101

[Calv80] T. Calvert, J. Chapman, and A. Patla. “The Integration of Subjective and Objective Data in the
Animation of Human Movement”. Computer Graphics, pp. 198–203, 1980.

[Calv96] T. Calvert and S. Mah. “Choreographers as Animators: Systems to support composition of
dance””. N. Magnenat-Thalmann and D. Thalmann, Eds., Interactive Computer Animation,
Chap. 5, pp. 100–125, Prentice Hall, 1996.

[Chad89] J. E. Chadwick, D. R. Haumann, and R. E. Parent. “Layered Construction for Deformable
Animated Characters”. Computer Graphics, Vol. 23, No. 3, pp. 243–252, 1989. Proceedings
of SIGGRAPH'89.

[Desb94] M. Desbrun and M.-P. Gascuel. “Highly Deformable Material for Animation and Collision
Processing”. Fifth Eurographics Workshop on Animation and Simulation, Oslo, Norway, Sep.
1994.

[Desb95a] M. Desbrun and M.-P. Gascuel. “Animating Soft Substances with Implicit Surfaces”. Computer
Graphics, pp. 287–291, 1995. Proceedings SIGGRAPH'95.

[Desb95b] M. Desbrun, N. Tsingos, and M.-P. Gascuel. “Adaptive Sampling of Implicit Surfaces for
Interactive Modelling and Animation”. Implicit Surfaces'95, pp. 171–186, Grenoble, France,
Apr. 1995. Proceedings of the first international workshop on Implicit Surfaces.

[Eshk58] N. Eshkol and A. Wachmann. Movement Notation. Weidenfeld and Nicolson, 1958.

[Espo95] J. M. de Espona. “The Basics of Building a Dinosaur”. Computer Graphics World, Vol. 18,
No. 7, pp. 79–83, July 1995.

[Fors91] D. R. Forsey. “A Surface Model for Skeleton-based Character Animation”. Second Eurograph-
ics Workshop on Animation and Simulation, pp. 55–73, Vienna, Austria, Sep. 1991.

[Fuji90] T. Fujita, K. Hirota, and K. Murakami. “Representation of Splashing Water using Metaball
Model”. Fujitsu, Vol. 41, No. 2, pp. 159–165, 1990. in Japanese.

[Gard65] M. Gardener. “M. Gardener's Mathematical Games Column: The Superellipse”. Scientific
American, No. 213, pp. 222–234, 1965.

[Gasc91] M.-P. Gascuel, A. Verroust, and C. Puech. “Animation and Collisions between Complex De-
formable Bodies”. Graphics Interface'91, pp. 263–270, 1991.

[Gasc93] M.-P. Gascuel. “An Implicit Formulation for Precise Contact Modelling between Flexible
Solids”. Computer Graphics, Vol. 27, pp. 313–320, 1993. Proceedings of SIGGRAPH'93.

[Gasc94] J.-D. Gascuel and M.-P. Gascuel. “Displacement constraints for interactive modelling and ani-
mation of articulated structures”. The Visual Computer, Vol. 10, pp. 191–204, 1994.

[Gasc95] J.-D. Gascuel. “Implicit Patches: An optimised and powerful ray intersection algorithm”. Im-
plicit Surfaces'95, pp. 143–160, Grenoble, France, Apr. 1995. Proceedings of the first interna-
tional workshop on Implicit Surfaces.

[Glas89] A. S. Glassner. An Introduction to Ray Tracing. Academic Press Ltd, 1989.

[Grav93] G. L. Graves. “The Magic of Metaballs”. Computer Graphics World, pp. 27–32, May 1993.

[Guy95] A. Guy and B. Wyvill. “Controlled Blending for Implicit Surfaces”. Implicit Surfaces'95,
pp. 107–112, Grenoble, France, Apr. 1995. Proceedings of the first international workshop on
Implicit Surfaces.

[Hall95] N. Hall-Marriot. DANCE: Describing, Animating and Notating Classical Enchaianements.
PhD thesis, University of Technology, Sydney, 1995.

102 BIBLIOGRAPHY

[Hans88] A. Hanson. “Hyperquadrics: Smoothly Deformable Shapes with Convex Polyhedral Bounds”.
Computer Vision, Graphics, and Image Processing, Vol. 44, pp. 191–210, 1988.

[Hart93] J. Hart. “Ray Tracing Implicit Surfaces”. Modeling, Visualizing and Animating Implicit Sur-
faces, pp. 13.1–13.15, 1993. SIGGRAPH Course Notes 25.

[Hart95] J. Hart. “Implicit Representation of Rough Surfaces”. Implicit Surfaces'95, pp. 33–44, Greno-
ble, France, Apr. 1995. Proceedings of the first international workshop on Implicit Surfaces.

[Herm94] A. Hermida, S. Anger, and T. Brown. “Blob Sculptor version 1.0a”. 1994. Available at Pi
Square BBS (301)725-9080.

[Hoff86] C. Hoffman and J. Hopcroft. “Quadratic blending surfaces”. Computer Aided Design, Vol. 18,
pp. 301–306, 1986.

[Hutc70] A. Hutchinson. Labanotation. New York: Theatre Arts Books, 1970.

[Kaci91] Z. Kacic-Alesic and B. Wyvill. “Controlled Blending of Procedural Implicit Surfaces”. Graph-
ics Interface'91, pp. 236–245, Calgary, Canada, June 1991.

[Karl89] D. Karla and A. H. Barr. “Guaranteed Ray Intersections with Implicit Surfaces”. Computer
Graphics, Vol. 23, No. 3, pp. 297–306, 1989. Proceedings of SIGGRAPH'89.

[Lass87] J. Lasseter. “Principles of Traditional Animation Applied to Computer Animation”. Computer
Graphics, Vol. 21, No. 4, pp. 35–43, 1987.

[Lore87] W. Lorensen and H. Cline. “Marching cubes: a high resolution 3D surface construction al-
gorithm”. Computer Graphics, Vol. 21, No. 4, pp. 163–169, July 1987. Proceedings of SIG-
GRAPH'87.

[Magn88] N. Magnenat-Thalmann, R. Laperriere, and D. Thalmann. “Joint-Dependent Local Deforma-
tions for Hand Animation and Object Grasping”. Graphics Interface'88, pp. 26–33, 1988.

[Mand82] B. B. Mandelbrot. The Fractal Geometry of Nature. W.H. Freeman, 1982.

[Max91] N. L. Max and G. Wyvill. “Shapes and Textures for Rendering Coral”. N. M. Patrikalakis, Ed.,
Scientific Visualisation of Physical Phenomena, pp. 333–343, Springer-Verlag, 1991.

[McPh90] C. W. McPheeters. Isosurface Modelling of Soft Objects in Computer Graphics. PhD thesis,
National Centre for Computer Animation, Department of Communication and Media, Dorset
Institute, 1990.

[Meta94] “Meta Editor”. Personal communication from Bruno Tsuchiya, META Corporation Interna-
tianal, 1994.

[Midd85] A. E. Middleditch and K. H. Sears. “Blend Surfaces for Set Theoretic Volume Modelling
Systems”. Computer Graphics, Vol. 19, No. 3, pp. 161–170, July 1985.

[Mill89] G. Miller and A. Pearce. “Globular Dynamics: A Connected Particle System for Animating
Viscous Fluids”. Computers and Graphics, Vol. 13, No. 3, pp. 305–309, 1989.

[Munc85] R. Muncaster. A-level physics. Stanley Thornes (Publishers) Ltd., 1985.

[Mura91] S. Muraki. “Volumetric Shape Description of Range Data using “Blobby Model””. Computer
Graphics, Vol. 25, No. 4, pp. 227–235, July 1991. Proceedings of SIGGRAPH'91.

[Nish85] H. Nishimura, M. Hirai, T. Kawai, T. Kawata, I. Shirakawa, and K. Omura. “Object Modeling
by Distribution Function and a Method of Image Generation”. The Transactions of the Institute
of Electronics and Communication Engineers of Japan, Vol. J68-D, No. 4, pp. 718–725, 1985.
In Japanese (translated into English by Takao Fujiwara while at Centre for Advanced Studies
in Computer Aided Art and Design, Middlesex Polytechnic, England, 1989).

BIBLIOGRAPHY 103

[Opal93a] A. Opalach and S. Maddock. “Computer Animation using Implicit Surfaces”. Tech. Rep. CS-
93-15, Department of Computer Science, University of Sheffield, Nov. 1993. 52 pages.

[Opal93b] A. Opalach and S. Maddock. “Implicit Surfaces: Appearance, Blending and Consistency”.
Fourth Eurographics Workshop on Animation and Simulation, pp. 233–245, Barcelona, Spain,
Sep. 1993.

[Opal94] A. Opalach and S. Maddock. “Disney Effects using Implicit Surfaces”. Fifth Eurographics
Workshop on Animation and Simulation, Oslo, Norway, Sep. 1994.

[Opal95a] A. Opalach. “How to create and animate a dancing dinosaur with implicit surfaces”. Introduc-
tion to Modelling and Animation using Implicit Surfaces, pp. 14.1–14.4, Leeds, UK, June 1995.
Course Notes No 3.

[Opal95b] A. Opalach and S. Maddock. “High Level Control of Implicit Surfaces for Character Anima-
tion”. Implicit Surfaces'95, pp. 223–232, Grenoble, France, Apr. 1995. First International
Eurographics Workshop on Implicit Surfaces.

[Opal95c] A. Opalach and S. Maddock. “Speeding Up Grid-Data Generation for Polygonisation of Im-
plicit Surfaces”. Eurographics UK Chapter, pp. 153–160, Loughborough, UK, March 1995.

[Owen89] J. C. Owen and A. P. Rockwood. “Intersection of General Implicit Surfaces”. ACM Transac-
tions on Graphics, pp. 335–345, Oct. 1989.

[Pask88] A. Pasko, V. Pilyugin, and V. Pokrovskij. “Geometric Modeling in the Analysis of Trivariate
Functions”. Computers and Graphics, Vol. 12, No. 3/4, pp. 457–465, 1988.

[Pask93] A. Pasko, V. Savchenko, V. Adziev, and A. Sourin. “Multidimensional geometric modeling and
visualization based on the function representation of objects”. Tech. Rep. 93-1-008, Department
of Computer Software, The University of Aizu, Japan, Sep. 1993.

[Pask95a] A. Pasko, V. Adzhiev, A. Sourin, and V. Savchenko. “Function Representation in Geometric
Modeling: Concepts, Implementation and Applications”. The Visual Computer, Vol. 11, No. 8,
pp. 429–446, 1995.

[Pask95b] A. Pasko and V. Savchenko. “Constructing Functionally Defined Surfaces”. Implicit Sur-
faces'95, pp. 97–106, Grenoble, France, Apr. 1995. Proceedings of the first international work-
shop on Implicit Surfaces.

[Payn92] B. A. Payne and A. W. Toga. “Distance Field Manipulation of Surface Models”. IEEE Com-
puter Graphics and Applications, pp. 65–71, Jan. 1992.

[Pede95] H. K. Pedersen. “Decorating Implicit Surfaces”. Computer Graphics, pp. 291–300, 1995.
Proceedings of SIGGRAPH'95.

[Pela94] C. Pelachaud, C. van Overweld, and C. Seah. “Modeling and Animating the Human Tongue
during Speech Production”. Computer Animation'94, 1994.

[Perl95] K. Perlin. “Real Time Responsive Animation with Personality”. IEEE Visualisation and Com-
puter Graphics, Vol. 1, No. 1, pp. 5–15, March 1995.

[POV 93] POV-team. “POV-Ray v.2.2”. 1993. Available by ftp from alfred.ccs.carleton.ca.

[Pres92] W. Press, S. Teukolski, W. Vetterling, and B. Flannery. Numerical Recipes in C. Cambridge
University Press, 1992.

[Reed94] T. Reed and B. Wyvill. “Visual Simulation of Lightning”. Computer Graphics, pp. 359–364,
1994. Proceedings of SIGGRAPH'94.

[Ricc73] A. Ricci. “A constructive geometry for computer graphics”. The Computer Journal, Vol. 16,
No. 2, pp. 157–160, May 1973.

104 BIBLIOGRAPHY

[Rock90a] A. P. Rockwood. “Using Implicit Surfaces to Blend Arbitrary Solid Models”. Modeling and
Animating with Implicit Surfaces, pp. 9.1–9.22, 1990. SIGGRAPH Course Notes 23.

[Rock90b] A. P. Rockwood and J. C. Owen. “Blending Surfaces in Solid Modeling”. Modeling and
Animating with Implicit Surfaces, pp. 10.1–10.17, 1990. SIGGRAPH Course Notes 23.

[Ross84] J. R. Rossignac and A. A. Requicha. “Constant-Radius Blending in Solid Modelling”. Com-
puters in Mechanical Engineering, Vol. 3, No. 1, pp. 65–73, July 1984.

[Rvac87] V. L. Rvachev. Theory of R-functions and Some Applications. Naukova Dumka, Kiev, 1987. In
Russian.

[Savc95] V. V. Savchenko, A. A. Pasko, O. G. Okunev, and T. L. Kunii. “Function Representation of
Solids Reconstructed from Scattered Surface Points and Contours”. Computer Graphics Forum,
Vol. 14, No. 4, pp. 181–188, 1995.

[Scla91] S. Sclaroff and A. Pentland. “Generalized Implicit Functions For Computer Graphics”. Com-
puter Graphics, Vol. 25, No. 4, pp. 247–250, July 1991. Proceedings of SIGGRAPH'91.

[Sede86] T. W. Sedeberg and S. R. Parry. “Free Form Deformations of Solid Geometric Models”. Com-
puter Graphics, Vol. 20, No. 4, pp. 151–160, 1986. Proceedings of SIGGRAPH'86.

[Shap94] V. Shapiro. “Real functions for representation of rigid solids”. Computer Aided Geometric
Design, Vol. 11, pp. 153–175, 1994.

[Shen95] J. Shen and D. Thalmann. “Interactive Shape Design Using Metaballs and Splines”. Implicit
Surfaces'95, pp. 187–196, Grenoble, France, Apr. 1995. Proceedings of the first international
workshop on Implicit Surfaces.

[Sing95] K. Singh and R. Parent. “Implicit Function Based Deformations of Polyhedral Objects”. Im-
plicit Surfaces'95, pp. 113–128, Grenoble, France, Apr. 1995. Proceedings of the first interna-
tional workshop on Implicit Surfaces.

[Smet93] J.-P. Smets-Solanes. “Surfacic Textures for Animated Implicit Surfaces: the 2D case”. Fourth
Eurographics Workshop on Animation and Simulation, pp. 221–232, Barcelona, Spain, 1993.

[Smet96] J.-P. Smets-Solanes. “Vector Field Based Texture Mapping of Animated Implicit Objects”.
Eurographics'96, 1996. To appear.

[Smol77] S. Smoliar and L. Weber. “Using the Computer for a Semantic Representation of Labanota-
tion”. S. Lusignan and J. North, Eds., Computing in the humanities, pp. 253–261, University
of Waterloo Press, Waterloo, 1977.

[Tats90] H. Tatsumi, E. Takaoki, K. Omura, and H. Fujita. “A New Method for Three-Dimensional
Reconstruction from Serial Sections by Computer Graphics Using “Meta-Ball”: Reconstruction
of “Hepatoskeletal System” Formed by Ito Cells in the Cod Liver”. Computers and Biomedical
Research, Vol. 23, No. part 1, pp. 37–45, 1990.

[Terz87] D. Terzopoulos, J. Platt, A. Barr, and K. Fleischer. “Elastically Deformable Models”. Computer
Graphics, Vol. 21, No. 4, pp. 205–214, July 1987. Proceedings of SIGGRAPH'87.

[Terz89] D. Terzopoulos, J. Platt, and K. Fleisher. “Heating and Melting Deformable Models (From
Goop to Glop)”. Graphics Interface'89, pp. 219–226, June 1989.

[Thom81] F. Thomas and O. Johnston. Disney Animation: The Illusion of Life. Abbeville Press, 1981.

[Tonn91] D. Tonnesen. “Modelling liquids and solids using termal particles”. Graphics Interface'91,
pp. 255–262, 1991.

[Tsin95] N. Tsingos, E. Bittar, and M.-P. Gascuel. “Implicit Surfaces for Semi-Automatic Medical Or-
gans Reconstruction”. Computer Graphics International'95, pp. 3–15, Leeds, UK, June 1995.

BIBLIOGRAPHY 105

[Turn95] R. Turner. “LEMAN: A System for Constructing and Animating Layered Elastic Characters”.
Computer Graphics International'95, pp. 185–203, Leeds, UK, June 1995.

[Watt92] A. Watt and M. Watt. Advanced Animation and Rendering Techniques: Theory and Practice.
Addison-Wesley, 1992.

[Watt93] A. Watt. 3D Computer Graphics (second edition). Addison-Wesley, 1993.

[Witk94] A. Witkin and P. Heckbert. “Using Particles to Sample and Control Implicit Surfaces”. Com-
puter Graphics, pp. 269–278, July 1994. Proceedings of SIGGRAPH'94.

[Wood87] J. R. Woodwark. “Blends in Geometric Modelling”. R. R. Martin, Ed., The mathematics of
surfaces II, pp. 255–297, Clarendon Press, 1987.

[Wyvi86a] B. Wyvill, C. McPheeters, and G. Wyvill. “Animating Soft Objects”. The Visual Computer,
Vol. 2, pp. 235–242, Aug. 1986.

[Wyvi86b] G. Wyvill, C. McPheeters, and B. Wyvill. “Data Structure for Soft Objects”. The Visual Com-
puter, Vol. 2, pp. 227–234, Aug. 1986.

[Wyvi88] B. Wyvill. “The Great Train Rubbery”. SIGGRAPH'86 Electronic Theatre and Video Review,
1988. Issue 26.

[Wyvi89] B. Wyvill and G. Wyvill. “Field Functions for Implicit Surfaces”. The Visual Computer, Vol. 5,
pp. 75–82, Dec. 1989.

[Wyvi90a] G. Wyvill. “Texturing Implicit Surfaces”. Modeling and Animating with Implicit Surfaces,
pp. 15.1–15.5, 1990. SIGGRAPH Course Notes 23.

[Wyvi90b] G. Wyvill and A. Trotman. “Ray-Tracing Soft Objects”. Computer Graphics International'90,
pp. 469–475, 1990.

[Wyvi92] B. Wyvill. “Warping Implicit Surfaces for Animation Effects”. Western Computer Graphics
Symposium (SKIGRAPH'92), pp. 55–63, 1992.

Appendix A

Raytracing Implicit Surfaces

A.1 Introduction

The raytracing technique is based on simulating light rays or photon paths. Photons leave a light source and
travel around a scene bouncing off objects. Some of them will reach the eye (the view point) and therefore
contribute to the image of the scene. This is called forward raytracing. In computer graphics, backward
raytracing is commonly used, where rays from the viewpoint are “fired” into the scene. Figure A.1 shows
the general principle of backward raytracing. The primary rays (solid lines) are sent into a scene through
each pixel in the screen. They are tested for intersections with the objects in the scene. If an intersection
is found, it is tested for shadows by sending shadow rays (dotted lines) towards all light sources. The
process is recursively repeated for rays reflected or transmitted through transparent objects (dashed lines).
To calculate the shading at the intersection points, a vector normal to the surface in the intersection points
needs to be computed. The colour of each pixel is calculated by combining the shading from all intersection
points resulted from all levels of recursion after sending a ray to the scene. Glassner [Glas89] gives a very
good introduction to raytracing.

light source

light source

pixels
point

screen

view

��
��
��
��

shadow ray

recursive ray (reflected or transmitted)

primary ray

intersection point

Figure A.1: The principle of backward raytracing

Implicit surfaces are well suited to raytracing because of the inside/outside function used to define them
which has a simple normal vector calculation. Using inside/outside function, an intersection along a ray can
be calculated with iterative methods, e.g. Newton's method or regula falsi as proposed by Blinn [Blin82].
A normal vector for an implicit surface is aligned with the gradient of the field, which is easily calculated
using partial derivatives of the scalar field function. Blinn [Blin82] and Nishimura et al. [Nish85] visualise
their implicit models using raytracing. More general raytracing algorithms for implicit surfaces have also
been developed. Karla and Barr [Karl89] propose an algorithm which guarantees ray-surface intersections
even with the finest details on an implicit surface. Wyvill and Trotman [Wyvi90b] suggest an algorithm
which is less general but finds all intersections along a ray, not only the closest one, a feature useful for
CSG operations on implicit surfaces. Dominique Gascuel [Gasc95] describes a based on “implicit patches”

106

A.2. PRELIMINARIES 107

extension to Karla and Barr's algorithm which handles skeletal elements and various blending properties.
Hart [Hart93] presents a good review of raytracing applied to the implicit surfaces modelling technique.

This appendix gives details of an extension that implements implicit surfaces with blending properties
proposed in this thesis in a freeware raytracer called POVray [POV 93]. Section A.2 will give some prelim-
inary details, including calculation of the value of the scalar field function used, the ray-sphere intersection
to determine which primitives influence the space along a ray, the data structures used and the preprocessing
required. Section A.3 will describe the two-stage algorithm for finding ray-surface intersections: finding
intervals along the ray in which the same scalar field function used (Section A.3.1) and calculating intersec-
tions in each interval (Section A.3.2). Section A.4 will show the computation of a normal vector at a given
point.

A.2 Preliminaries

A.2.1 Field function

The potential function used is:

f(r) = s

�
1� r2

R2

�2

where r is the distance from a given point to the generator of the primitive being considered, s is a scaling
factor and R is the radius of influence of the considered primitive. This function can be transformed as
follows:

f(r) = s

�
1� 2

r2

R2
+
r4

R4

�

and further:

f(r) =
s

R4|{z}
c0

r4 +
�2s
R2|{z}
c1

r2 + s|{z}
c2

The function is stored as the coefficients c0; c1; c2. Its value for a given r2 is simply calculated as:

f(r) = c0(r
2)2 + c1r

2 + c2

108 APPENDIX A. RAYTRACING IMPLICIT SURFACES

A.2.2 Radius in isolation

The radius of a primitive in isolation, used for instance in the coherence preserving algorithm (see Sec-
tion 3.4) or for simple collision detection between spherical primitives, can be calculated as follows:

rIso = f�1(Iso)

The radius in isolation therefore fulfills the following equation:

s

�
1� r2Iso

R2

�2

= Iso

Since rIso 6 R, the square root of both sides of the equation can be taken:

1� r2Iso
R2

=

r
Iso

s

Transforming further:

r2Iso = R2

1�

r
Iso

s

!

Because rIso > 0, the solution, after taking the square root, is:

rIso = R

s
1�

r
Iso

s

A.2.3 Calculating field value
The following procedure implements field value calculation described in Section 3.3:

=�
� Calculate the field value of a implicit surface - the position vector
� ”Pos” must already have been transformed into implicit space.
�=

static DBL
calculate field value(obj, Pos)
OBJECT �obj;
vector�Pos;
f

int i, j, indef flag, maxi;
double len, density, defval, defv, defdensity, bldens,maxbldens;
Primitive �ptr;
IMPLICIT �implicit = (IMPLICIT �) obj;
vector V;

density = 0.0;
for (i = 0; i < implicit!count; i++) f

ptr = implicit!list[i];
len = calculate skeleton distance2(&(implicit!list[0]), i, Pos, &V);
if (len< ptr!radius2)f

density += len � (len � ptr!coeffs[0] + ptr!coeffs[1]) + ptr!coeffs[2];
g

g

=� this is the undeformed density, calculate deformation �=

defdensity = 0.0;
indef flag = FALSE;
for (i = 0; i < implicit!defcount; i++) f

defval = 0.0;
for (j = 0; j< implicit!deformlist[i]!count; j++) f

ptr = implicit!deformlist[i]!list[j];
len = calculate skeleton distance2(&(implicit!deformlist[i]!list[0]),

j, Pos, &V);
if (len< ptr!radius2)f

defv = len � (len � ptr!coeffs[0] + ptr!coeffs[1]) + ptr!coeffs[2];
if (defv� implicit!isovalue) indef flag = TRUE;
defval += defv;

g
g

A.2. PRELIMINARIES 109

if (defval> density) return 0; =� outside maximal influence�=
defdensity += defval;

g

=� max blending components density �=

maxbldens = 0.0;
maxi = -1;
for (i = 0; i< implicit!blcount; i++) f

bldens = 0.0;
for (j = 0; j< implicit!blendlist[i]!count; j++) f

ptr = implicit!blendlist[i]!list[j];
len = calculate skeleton distance2(&(implicit!blendlist[i]!list[0]),

j, Pos, &V);
if (len� ptr!radius2)f

bldens += len � (len � ptr!coeffs[0] + ptr!coeffs[1])+ptr!coeffs[2];
g

g
if (bldens> density) return 0;
if (bldens> maxbldens)f

maxi = i;
maxbldens = bldens;

g
g

if (maxi>-1) density += maxbldens;

if (density� implicit!isovalue && indef flag)
return density-defdensity+implicit!isovalue;

else
return density;

g

A.2.4 Ray

A ray is represented by its starting point P0 and its normalised direction
�!
D (Figure A.2). Any point P

along the ray can be represented by:

P = P0 + t
�!
D

where t 2 R.

A.2.5 Ray-sphere intersection

To determine which primitives contribute to the scalar field function along a ray, the intersection of the ray
with the bounding spheres, i.e. spheres at the radius of influence, are calculated. It is a simple ray-sphere
intersection algorithm detailed in [Glas89].

D

R
d

G
P

0
P

Gt

in

rt

P
out

P
closest

Figure A.2: Ray-sphere intersection algorithm

The steps of the algorithm are as follows (see Figure A.2):

110 APPENDIX A. RAYTRACING IMPLICIT SURFACES

1. Calculate the position vector from the ray starting point P0 to the centre of the sphere G:

��!
P0G = G� P0

2. Calculate the distance from P0 to the point on the ray closest toG. The point closest toG belongs to
the ray, it can therefore be written as:

Pclosest = P0 + tG
�!
D

for a tG 2 R. Thus, the distance from P0 to Pclosest is:

kPclosest � P0k = ktG�!D k = tGk�!D k = tG

because
�!
D is normalised. The value of tG can be calculated by projecting

��!
P0G on the ray, using

scalar product:

tG =
��!
P0G � �!D

3. Calculate the distance d from G to Pclosest. It can be calculated from the Pythagorean theorem using
the right-angle triangle4P0PclosestG:

d2 = k��!P0Gk2 � t2G =
��!
P0G � ��!P0G� t2G

4. Calculate the distance tr from Pclosest to each of the two intersection points, Pin and Pout. It can
be calculated from the Pythagorean theorem using one of the right-angle triangles4PinPclosestG or
4PoutPclosestG:

t2r = R2 � d2

where R is the radius of the sphere.

5. Calculate the two intersection pointsPin and Pout. They are points lying on the ray, thus they can be
expressed as:

Pin = P0 + tin
�!
D

Pout = P0 + tout
�!
D

where tin; tout 2 R can be calculated using previously computed values of tG and tr :

tin = tG � tr
tout = tG + tr

Figure A.3 presents an implementation of this algorithm given by Cychosz in Graphics Gems II [Arvo91].

A.2. PRELIMINARIES 111

int intsph (raybase,raycos,center,radius,rin,rout)

Point3 raybase; =� Base of the intersection ray �=
Vector3 raycos; =� Direction cosines of the ray �=
Point3 center; =� Center of the sphere �=
double radius; =� Radius of the sphere �=
double �rin; =� Entering distance �=
double �rout; =� Leaving distance �=

f
int hit; =� True if ray intersects sphere�=
double dx, dy, dz; =� Ray base to sphere center �=
double bsq, u, disc;
double root;

dx = raybase.x - center.x;
dy = raybase.y - center.y;
dz = raybase.z - center.z;
bsq = dx�raycos.x + dy�raycos.y + dz�raycos.z;
u = dx�dx + dy�dy + dz�dz - radius�radius;
disc = bsq�bsq - u;

hit = (disc� 0.0);

if (hit) f =� If ray hits sphere �=
root = sqrt(disc);
�rin = -bsq - root; =� entering distance �=
�rout = -bsq + root; =� leaving distance �=

g

return (hit);
g

Figure A.3: A routine calculating ray intersection with a sphere

A.2.6 Data structures

Figure A.4 shows the data structures required. The type vector (Lines 1-3) is presented for completeness.
It stores four coordinates of a vector in the homogeneous representation.

The next two types *implicitstackptr (Lines 4-9) and *componentstackptr (Lines 10-16) are used by
the parser and return unsorted lists of primitives and components.

This data is then passed to the procedure called MakeImplicit (included in Section A.2.7) that converts
them into Primitive records (Lines 18-23), Component dynamically allocated arrays (Lines 25-28) and a
IMPLICIT record (Lines 35-47), which represents a component with blending properties.

The type Implicit Interval (Lines 30-33) is used for storing intervals along a ray (Section A.3.1).

112 APPENDIX A. RAYTRACING IMPLICIT SURFACES

1: typedef struct f =�————– A vector in homogeneous coordinates ————–�=
2: double x,y,z,one; =� vector coordinates�=
3: g vector;
4: =�—- An unsorted list of primitives returned by the parser —-�=
5: typedef struct implicit list struct �implicitstackptr;
6: struct implicit list struct f
7: Primitive prim; =� a description of a primitive �=
8: implicitstackptr next; =� next primitive in the list �=
9: g;
10: =�—- An unsorted list of components returned by the parser —�=
11: typedef struct component list struct �componentstackptr;
12: struct component list struct f
13: implicitstackptr list; =� a list of descriptions of primitives �=
14: int count; =� number of elements in the list (dynamic memory allocation)�=
15: componentstackptr next; =� next list of primitives �=
16: g;
17:
18: typedef struct f =�—————————- A primitive —————————-�=
19: double radius2, radius iso; =� radius of influence and radius in isolation �=
20: double coeffs[3]; =� coefficients of the potential function �=
21: double tcoeffs[5]; =� coefficients required for intersection search �=
22: vector generator; =� the position of the (point-)generator�=
23: g Primitive;
24:
25: typedef struct f =�————— A component= a array of primitives ————–�=
26: Primitive ��list; =� a dynamically allocated array of primitives �=
27: int count; =� number of primitives �=
28: g Component;
29:
30: typedef struct f =�—————- An interval for intersection search —————-�=
31: int type, index, index2; =� interval type and indices in the relevant arrays of primitives �=
32: double bound; =� the value of t, along the ray �=
33: g Implicit Interval;
34:
35: struct Implicit Struct =�————– A component with blending properties ————-�=
36: f
37: STURM FIELDS =� POVray variable - stores info for Sturm sequences �=
38: TRANSFORM �Trans; =� POVray variable - transformation matrix �=
39: short Inverted; =� POVray variable - boolean flag (inverted or not) �=
40: double isovalue; =� the isovalue for the component�=
41: int defcount, blcount; =� number of deforming and blending components�=
42: Component�list; =� an array of main primitives �=
43: Component��deformlist; =� an array of deforming components�=
44: Component��blendlist; =� an array of blending components�=
45: Implicit Interval�intervals; =� an array of intervals (used in intersection search) �=
46: short collision; =� a boolean flag (indicates a collision) �=
47: g IMPLICIT;

Figure A.4: Data structures for implicit surfaces

A.2.7 Preprocessing

Creating components

For each component C its array of primitives list (line 42 in Figure A.4) is created. For each primitive its
radius in isolation radius iso (line 19 in Figure A.4) is calculated as described in Section A.2.2 and the
coefficients c0, c1 and c2 (line 20 in Figure A.4) are calculated as detailed in Section A.2.1.

Creating B(C) and U(C)
For each component C, B(C) and U(C) are assigned based on the modelling script. They are stored as
arrays of components blendlist and deformlist (lines 43-44 in Figure A.4) in the IMPLICIT record.

The following procedure implements the creation of components an their relevant sets B(C) and U(C)
from the information passed from the parser:

void
MakeImplicit(implicit, isovalue, implicitlist, deforminglist,
blendinglist, blendtable, npoints, ndlists, nblists, sflag)
IMPLICIT �implicit;
double isovalue;
implicitstackptr implicitlist;
componentstackptr deforminglist;

A.2. PRELIMINARIES 113

componentstackptr blendinglist;
blendtableptr�blendtable;
int npoints, ndlists, nblists;
int sflag;
f

int i, j;
double rad, coeff, xs, ys, zs, xe, ye, ze, len;
double coeffs[5], roots[4];
int root count;
implicitstackptr temp;
componentstackptr dtemp, btemp;
vector mins, maxs, V;
int ndpoints=0, nbpoints=0; =� total number of deforming primitives �=

if (npoints< 1) f
printf("Need at least one component in an implicit surfacen");
exit(1);

g
implicit!isovalue = isovalue;
implicit!list = (Primitive ��) malloc(npoints� sizeof(Primitive �));
implicit!deformlist = (Component��) malloc(ndlists � sizeof(Component�));
implicit!blendlist = (Component��) malloc(nblists � sizeof(Component�));
if (implicit!list == NULL jj implicit!deformlist == NULL jj implicit!blendlist == NULL)

MAError("implicit data");

for (i = 0; i< (unsigned) npoints; i++) f
implicit!list[i] = (Primitive �) malloc(sizeof(Primitive));
if (implicit!list[i] == NULL)

MAError("implicit data");
g

dtemp = deforminglist;
for (i = 0; i< (unsigned) ndlists; i++) f

implicit!deformlist[i] = (Component�) malloc(sizeof(Component));
if (implicit!deformlist[i] == NULL)

MAError("implicit data");
implicit!deformlist[i]!list = (Primitive ��) malloc(dtemp!count� sizeof(Primitive�));
if (implicit!deformlist[i]!list == NULL)

MAError("implicit data");
implicit!deformlist[i]!count = dtemp!count;
for (j = 0; j< (unsigned) dtemp!count; j++) f

ndpoints++;
implicit!deformlist[i]!list[j] = (Primitive �) malloc(sizeof(Primitive));
if (implicit!deformlist[i]!list[j] == NULL)

MAError("implicit data");
g
dtemp = dtemp!next;

g

btemp = blendinglist;
for (i = 0; i< (unsigned) nblists; i++) f

implicit!blendlist[i] = (Component�) malloc(sizeof(Component));
if (implicit!blendlist[i] == NULL)

MAError("implicit data");
implicit!blendlist[i]!list = (Primitive ��) malloc(btemp!count� sizeof(Primitive�));
if (implicit!blendlist[i]!list == NULL)

MAError("implicit data");
implicit!blendlist[i]!count = btemp!count;
for (j = 0; j< (unsigned) btemp!count; j++) f

nbpoints++;
implicit!blendlist[i]!list[j] = (Primitive �) malloc(sizeof(Primitive));
if (implicit!blendlist[i]!list[j] == NULL)

MAError("implicit data");
g
btemp = btemp!next;

g

implicit!count = npoints;
implicit!defcount = ndlists;
implicit!blcount = nblists;
implicit!Sturm Flag = sflag;

=� Initialize the implicit data �=
for (i = 0; i< npoints; i++) f

temp = implicitlist;
if (fabs(temp!elem.coeffs[2])< EPSILON jj

temp!elem.radius2< EPSILON) f
perror("Degenerate implicit elementnn");

g
=� Store implicit specific information�=
rad = temp!elem.radius2;

114 APPENDIX A. RAYTRACING IMPLICIT SURFACES

implicit!list[i]!radius iso = rad�(sqrt(1 - sqrt(Iso=coeff)));
rad � = rad;
coeff = temp!elem.coeffs[2];
implicit!list[i]!radius2 = rad;
implicit!list[i]!coeffs[2] = coeff;
implicit!list[i]!coeffs[1] = -(2.0 � coeff) = rad;
implicit!list[i]!coeffs[0] = coeff = (rad � rad);

implicit!list[i]!generator.x = temp!elem.generator.x;
implicit!list[i]!generator.y = temp!elem.generator.y;
implicit!list[i]!generator.z = temp!elem.generator.z;

implicitlist = implicitlist!next;
free(temp);

g

=� Initialize the deforming data�=
for (i = 0; i < ndlists; i++) f

dtemp = deforminglist;
for (j=0; j<dtemp!count; j++) f

temp = deforminglist!list;
if (fabs(temp!elem.coeffs[2])< EPSILON jj

temp!elem.radius2< EPSILON) f
perror("Degenerate deforming elementnn");

g
=� Store implicit specific information�=
rad = temp!elem.radius2;
implicit!deformlist[i]!list[j]!radius iso = rad�(sqrt(1 - sqrt(Iso=coeff)));
rad � = rad;
coeff = temp!elem.coeffs[2];
implicit!deformlist[i]!list[j]!radius2 = rad;
implicit!deformlist[i]!list[j]!coeffs[2] = coeff;
implicit!deformlist[i]!list[j]!coeffs[1] = -(2.0 � coeff) = rad;
implicit!deformlist[i]!list[j]!coeffs[0] = coeff = (rad � rad);

implicit!deformlist[i]!list[j]!generator.x = temp!elem.generator.x;
implicit!deformlist[i]!list[j]!generator.y = temp!elem.generator.y;
implicit!deformlist[i]!list[j]!generator.z = temp!elem.generator.z;

dtemp!list = dtemp!list!next;
free(temp);

g
deforminglist = deforminglist!next;
free(dtemp);

g

=� Initialize the blending data �=
for (i = 0; i < nblists; i++) f

btemp = blendinglist;
for (j=0; j<btemp!count; j++) f

temp = blendinglist!list;
if (fabs(temp!elem.coeffs[2])< EPSILON jj

temp!elem.radius2< EPSILON) f
perror("Degenerate blending elementnn");

g
=� Store implicit specific information�=
rad = temp!elem.radius2;
implicit!blendlist[i]!list[j]!radius iso = rad�(sqrt(1 - sqrt(Iso=coeff)));
rad � = rad;
coeff = temp!elem.coeffs[2];
implicit!blendlist[i]!list[j]!radius2 = rad;
implicit!blendlist[i]!list[j]!coeffs[2] = coeff;
implicit!blendlist[i]!list[j]!coeffs[1] = -(2.0 � coeff) = rad;
implicit!blendlist[i]!list[j]!coeffs[0] = coeff = (rad � rad);

implicit!blendlist[i]!list[j]!generator.x = temp!elem.generator.x;
implicit!blendlist[i]!list[j]!generator.y = temp!elem.generator.y;
implicit!blendlist[i]!list[j]!generator.z = temp!elem.generator.z;

btemp!list = btemp!list!next;
free(temp);

g
blendinglist = blendinglist!next;
free(btemp);

g

=� Allocate memory for intersection intervals �=
implicit!intervals = (Implicit Interval �)

malloc((npoints+nbpoints+ndpoints)�
NO OF INTERSECTIONS � sizeof(Implicit Interval));

if (implicit!intervals == NULL)

A.3. RAY-IMPLICIT SURFACE INTERSECTIONS 115

MAError("implicit data");

g

Collision detection

Collision detection can be performed without surface sampling, taking advantage of the fact that primitives
are built around point-generators. Therefore, a collision occurs when any two generators G1 and G2 from
two unblendable components are closer to each other than the sum of their respective radii in isolation (as
detailed in Section 3.4), i.e. when:

d(G1; G2) 6 r1 Iso + r2 Iso

To detect collisions, the program iterates over all primitives from all unblendable components and checks the
distances between generators. If a collision occurs, it is recorded in the component (line 46 in Figure A.4).

A.3 Ray-implicit surface intersections

The intersections are found in two stages: (i) determine which primitives influence the space along the given
ray and create the intervals based on this information and (ii) calculate intersections in each interval.

A.3.1 Determining influences along a ray
For each component C a list of its primitives and the primitives in its blendable and unblendable sets
are traversed, looking for intersections with the radii of influence of primitives using the routine intsph
(Figure A.3). The values of tin and tout, calculated by intsph, mark the limits of influence of a primitive.
A list oftin and tout, sorted along the ray, is created and stored in *intervals (line 45 in Figure A.4). The
following fragment of code presents calculation of intervals:

=�
� Store the points of intersection of this implicit with the ray. Keep
� track of: whether this is the start or end point of the hit, which
� component was pierced by the ray, and the point along the ray that the hit
� occured at.
�=

static
add hit interval(intervals, cnt, type, index, index2, bound)
Implicit Interval ��intervals;
int �cnt;
int type, index, index2;
DBL bound;
f

int k, j;
for (k = 0; k< �cnt && bound> (�intervals)[k].bound; k++);
if (k< �cnt) f

=�
� This hit point is smaller than one that already exists -
� bump the rest and insert it here
�=

for (j = �cnt; j> k; j--)
memcpy(&((�intervals)[j]), &((�intervals)[j - 1]), sizeof(Implicit Interval));

(�intervals)[k].type = type;
(�intervals)[k].index = index;
(�intervals)[k].index2= index2;
(�intervals)[k].bound= bound;
(�cnt)++;

g else f
=�
� Just plop the start and end points at the end of the list
�=

(�intervals)[(�cnt)].type = type;
(�intervals)[(�cnt)].index = index;
(�intervals)[(�cnt)].index2 = index2;
(�intervals)[(�cnt)].bound = bound;

g
g

static int
valid(t0,t1,mindist)
double �t0,�t1,mindist;

116 APPENDIX A. RAYTRACING IMPLICIT SURFACES

f
double disc;

if (t1< mindist) t1 = 0.0;
if (t0< mindist) t0 = 0.0;
if (t1 == t0) return FALSE;
else if (t1< t0) f

disc = t0;
t0 = t1;
t1 = disc;

g
return TRUE;

g

=� types of intervals �=
#de�ne IN 0
#de�ne OUT 1
#de�ne IN DEF 3
#de�ne OUT DEF 4
#de�ne IN BL 5
#de�ne OUT BL 6

static int
determine influences(P, D, implicit, mindist)
VECTOR �P, �D;
IMPLICIT �implicit;
DBL mindist;
f

int i, j, cnt;
double t0, t1;
Implicit Interval �intervals = implicit!intervals;
Primitive �temp;

cnt = 0;
for (i = 0; i < implicit!count; i++) f

if (intsph(�P, �D, implicit!list[i]!generator, sqrt(implicit!list[i]!radius2), &t0, &t1)) f
if (!valid(&t0,&t1,mindist))

break;
add hit interval(&intervals, &cnt, IN, i, 0, t0);
add hit interval(&intervals, &cnt, OUT, i, 0, t1);

g =� if intsph �=
g =� for �=

=� now find intersections with deforming primitives �=

for (i = 0; i < implicit!defcount; i++) f
for (j = 0; j< implicit!deformlist[i]!count; j++) f

temp = (implicit!deformlist[i]!list)[j];
if (intsph(�P, �D, temp!generator, sqrt(temp!radius2), &t0, &t1)) f

if (!valid(&t0,&t1,mindist))
break;

add hit interval(&intervals, &cnt, IN DEF, i, j, t0);
add hit interval(&intervals, &cnt, OUT DEF, i, j, t1);

g
g =� for j �=

g =� for i �=

=� and intersections with blending primitives �=

for (i = 0; i < implicit!blcount; i++) f
for (j = 0; j< implicit!blendlist[i]!count; j++) f

temp = (implicit!blendlist[i]!list)[j];
if (intsph(�P, �D, temp!generator, sqrt(temp!radius2), &t0, &t1)) f

if (!valid(&t0,&t1,mindist))
break;

add hit interval(&intervals, &cnt, IN BL, i, j, t0);
add hit interval(&intervals, &cnt, OUT BL, i, j, t1);

g
g =� for j �=

g =� for i �=

return cnt;
g

Figure A.5 presents a diagram of a scene discussed in Section 3.3.4. It is composed of one object,
containing three components: a jointC1 and two links C2 and C3. Each of the three components contains
one primitive, whose radius of influence is marked with a dashed circle.

A.3. RAY-IMPLICIT SURFACE INTERSECTIONS 117

The example shows calculating the intersections for component C2. The set of its unblendable compo-
nents U(C2) = fC3g and the set of its blendable components B(C2) = fC1g. The intersections of the ray
with all spheres of influence are marked with letters A;B;C;D;E; F and the type of each intersection is
indicated on the left of the figure.

3

C1

C2 C

�
�
�

�
�
�

def_in

def_out

bl_out

in

bl_in

out

B
C

D

E

F

A

Figure A.5: Calculating ray-surface intersections for componentC2

A.3.2 Finding intersections in each interval

When the intervals are calculated, each of them is processed looking for intersection with the isosurface of
the component being considered.

A point of the ray P is represented by:

P = P0 + t
�!
D

for t 2 R. The distance r2 from such a point P on the ray to the generator G of a primitive can be found
from the Pythagorean theorem:

r2 = (P0 + t
�!
D � G) � (P0 + t

�!
D �G) =

�!
D � �!Dt2 + 2t

�!
D � (P0 � G) + (P0 � G) � (P0 � G)

Using the following substitutions:

t0 = (P0 � G) � (P0 � G)

t1 =
�!
D � (P0 � G)

and noticing
�!
D � �!D = 1 it can be rewritten as:

r2 = t0 + 2tt1 + t2

118 APPENDIX A. RAYTRACING IMPLICIT SURFACES

This distance can then be inserted into the coefficient form of a primitive's field function:

f(r) = c0(r
2)2 + c1r

2 + c2

resulting in the following equation:

f(r) = c0(t0 + 2tt1 + t2) + c1(t0 + 2tt1 + t2) + c2

Expanding the terms and grouping with respect to t gives:

f(r) = t4 c0|{z}
T0

+t3 (4c0t1)| {z }
T1

+t2 (c1 + 2c0t0 + 4c0t
2
1)| {z }

T2

+t 2(c1t1 + 2c0t0t1)| {z }
T3

+ c2 + c1t0 + c0t
2
0| {z }

T4

This formulae can be solved for t by any quartic root solvers [Pres92] to find the values of t which fulfill
f(r) = Iso. For multiple primitives, the coefficients T0; T1; T2; T3; T4 are added:

f1(r) + f2(r) = t4(T10 + T20) + t3(T11 + T21) + t2(T12 + T22) + t(T13 + T23) + (T14 + T24)

By solving this formulae, intersection with the implicit surface due to the blend between the two primitives
are found.

To find intersections, intervals are processed one by one. Each time a new primitive starts to influ-
ence the ray, its coefficients T0; T1; T2; T3; T4 are calculated and stored in the array tcoeffs (Line 21 in
Figure A.4) in the relavant Primitive record.

Three lists of currently influencing components are constructed as arrays of sums of coefficients tcoeffs
from all primitives belonging to the component: the sum of coefficients from the component being consid-
ered (called coeffs in the procedure All Implicit Intersections quoted further in this section), an array of
coefficients from the components blendable with it (called bcoeffs[] in All Implicit Intersections) and the
sum of coefficients from the components unblendable with it (called dcoeffs in All Implicit Intersections).
The blendable components are treated separately because in the algorithm for implicit surface with blending
properties (Section 3.3) the blending term only considers components that are within their maximal areas
of influence.

When a primitive starts to influence the ray (interval types IN, IN DEF, IN BL), its tcoeffs coefficients
are added to the relevant array of coefficients. When a primitive stops to influence the ray (interval types
OUT, OUT DEF, OUT BL) its coefficients are subtracted from the relevant coefficient array.

After updating the coefficients, the function that describes the scalar field in the current interval along
the ray is computed using the coefficients coeffs, bcoeffs and dcoeffs. Let us look again at the example in
Figure A.5.

The influence of components and the field functions in the intervals are as follows:

interval main blendable unblendable
AB C2 - -
BC C2 - C3 so
CD C2 C1 C3 solve
DE - C1 C3 C
EF - C1 - C

To validate the roots, the values of t are checked against the bounds of the current interval. If they are
outside the bounds, the t in invalid. Then, the potential intersection point P intersect is calculated from:

Pintersect = P0 + t
�!
D

To verify isPintersect lies on the implicit surface, the field value is calculated and tested against the isovalue.
If Pintersect lies on the implicit surface, i.e. its field value is equal to the isovalue within certain precision,
it is passed to POVray as an intersection point.

The following procedure implements root finding in intervals:

A.3. RAY-IMPLICIT SURFACE INTERSECTIONS 119

int
All Implicit Intersections(Object, Ray, Depth Stack)
OBJECT �Object;
RAY �Ray;
ISTACK �Depth Stack;
f

IMPLICIT �implicit = (IMPLICIT �) Object;
INTERSECTION Local Element;
DBL dist, len, �tcoeffs, dcoeffs[5], ��bcoeffs, coeffs[5], roots[4];
int i, j, k, b, cnt, dcnt, bcnt, binx;
vector P, D, V;
int root count, in flag, indef flag, inbl flag, �inbl flag array;
Primitive �element;
DBL t0, t1, c0, c1, c2;
vector IPoint, dv;
Implicit Interval �intervals = implicit!intervals,
int Intersection Found = FALSE, New Intersection Found = FALSE;

Ray Implicit Tests++;

=� Trans the ray into the implicit surface space �=

if (implicit!Trans 6= NULL) f
MInvTransPoint(&P, &Ray!Initial, implicit!Trans);
MInvTransDirection(&D, &Ray!Direction, implicit!Trans);

g else f
P.x = Ray!Initial.x;
P.y = Ray!Initial.y;
P.z = Ray!Initial.z;
D.x = Ray!Direction.x;
D.y = Ray!Direction.y;
D.z = Ray!Direction.z;

g

len = sqrt(D.x � D.x + D.y � D.y + D.z � D.z);
if (len == 0.0)

return 0;
else f

D.x /= len;
D.y /= len;
D.z /= len;

g

=�
� Figure out the intervals along the ray where each component of the
� implicit surface has an effect.
�=

if ((cnt = determine influences(&P, &D, implicit, 0.01)) == 0)
=�

� Ray doesn't hit the sphere of influence of any of its
� component elements
�=

return 0;

=� Clear out the coefficients �=
for (i = 0; i< 4; i++)

coeffs[i] = 0.0;
coeffs[4] = -implicit!threshold;

for (i=0; i<5; i++)
dcoeffs[i] = 0.0;

bcoeffs = (DBL��)malloc(implicit!blcount�sizeof(DBL�));
for (i=0; i<implicit!blcount; i++)

bcoeffs[i] = (DBL �)malloc(5�sizeof(DBL));

inbl flag array = (int�)malloc(implicit!blcount�sizeof(int));

for (i=0; i<implicit!blcount; i++) f
inbl flag array[i]=0;
for (j=0; j<5; j++)

bcoeffs[i][j] = 0.0;
g

=�
� Step through the list of influence points, adding the influence of
� each implicit component as it appears
�=

in flag = 0;
indef flag = 0;
inbl flag = 0;

120 APPENDIX A. RAYTRACING IMPLICIT SURFACES

for (i=0; i< cnt; i++) f

=� examine each interval, update coeffs, dcoeffs and bcoeffs �=

switch (intervals[i].type)f

case IN:

in flag++;
element = implicit!list[intervals[i].index];

c0 = element!coeffs[0];
c1 = element!coeffs[1];
c2 = element!coeffs[2];

VSub(V, P, element!skeleton.pos);
VDot(t0, V, V);
VDot(t1, V, D);
tcoeffs = &(element!tcoeffs[0]);

tcoeffs[0] = c0;
tcoeffs[1] = 4.0 � c0 � t1;
tcoeffs[2] = 2.0 � c0 � (2.0 � t1 � t1 + t0) + c1;
tcoeffs[3] = 2.0 � t1 � (2.0 � c0 � t0 + c1);
tcoeffs[4] = c0 � t0 � t0 + c1 � t0 + c2;

for (j = 0; j< 5; j++)
coeffs[j] += tcoeffs[j];

break;
case OUT:

tcoeffs = &(implicit!list[intervals[i].index]!tcoeffs[0]);
for (j = 0; j< 5; j++)

coeffs[j] -= tcoeffs[j];
--in flag;
break;

case IN DEF:
indef flag++;
element = implicit!deformlist[intervals[i].index]!list[intervals[i].index2];

c0 = element!coeffs[0];
c1 = element!coeffs[1];
c2 = element!coeffs[2];

VSub(V, P, element!skeleton.pos);
VDot(t0, V, V);
VDot(t1, V, D);
tcoeffs = &(element!tcoeffs[0]);

tcoeffs[0] = c0;
tcoeffs[1] = 4.0 � c0 � t1;
tcoeffs[2] = 2.0 � c0 � (2.0 � t1 � t1 + t0) + c1;
tcoeffs[3] = 2.0 � t1 � (2.0 � c0 � t0 + c1);
tcoeffs[4] = c0 � t0 � t0 + c1 � t0 + c2;

for (j = 0; j< 5; j++)
dcoeffs[j] -= tcoeffs[j];

break;
case OUT DEF:

tcoeffs = &(implicit!deformlist[intervals[i].index]!list[intervals[i].index2]!tcoeffs[0]);
for (j = 0; j< 5; j++)

dcoeffs[j] += tcoeffs[j];
--indef flag;
break;

case IN BL:
element = implicit!blendlist[intervals[i].index]!list[intervals[i].index2];

c0 = element!coeffs[0];
c1 = element!coeffs[1];
c2 = element!coeffs[2];

VSub(V, P, element!skeleton.pos);
VDot(t0, V, V);
VDot(t1, V, D);
tcoeffs = &(element!tcoeffs[0]);

A.3. RAY-IMPLICIT SURFACE INTERSECTIONS 121

tcoeffs[0] = c0;
tcoeffs[1] = 4.0 � c0 � t1;
tcoeffs[2] = 2.0 � c0 � (2.0 � t1 � t1 + t0) + c1;
tcoeffs[3] = 2.0 � t1 � (2.0 � c0 � t0 + c1);
tcoeffs[4] = c0 � t0 � t0 + c1 � t0 + c2;

for (j = 0; j< 5; j++)
bcoeffs[intervals[i].index][j] += tcoeffs[j];

if (!(inbl flag array[intervals[i].index])++)
inbl flag++;

break;
case OUT BL:

tcoeffs = &(implicit!blendlist[intervals[i].index]!list[intervals[i].index2]!tcoeffs[0]);

for (j = 0; j< 5; j++)
bcoeffs[intervals[i].index][j] -= tcoeffs[j];

if (!--(inbl flag array[intervals[i].index]))
--inbl flag;

break;

default:
Error("Bl: Unrecognized interval type");
break;

g =� switch interval type �=

=� now find intersections �=

if (in flag) f

=� for each component in the blendable interval list we'll add it to
F(P), look for intersections (both undeformed and deformed)
check if it's Inside Implicit then subtract its influence - linear... �=

b = inbl flag; =� current bcoeffs considered�=
binx = 0; =� to find the element in bcoeffs array �=

do f

if (b>0) f
while (binx< implicit!blcount && !inbl flag array[binx]) binx++;
for(k=0; k<5; k++)

coeffs[k] += bcoeffs[binx][k];
g

=� first the undeformed component�=

=� Figure out which root solver to use �=
if (implicit!Sturm Flag == 0)

=� Use Ferrari's method �=
root count = solve quartic(coeffs, &roots[0]);

else
=� Sturm sequences �=
if (fabs(coeffs[0])< COEFF LIMIT)

if (fabs(coeffs[1])< COEFF LIMIT)
root count = solve quadratic(&coeffs[2], &roots[0]);

else
root count = polysolve(3, &coeffs[1], &roots[0]);

else
root count = polysolve(4, coeffs, &roots[0]);

=� See if any of the roots are valid �=
for (j = 0; j < root count; j++) f

dist = roots[j];
=�

� First see if the root is in the interval of
� influence of the currently active components of
� the implicit
�=

if ((dist� intervals[i].bound) &&
(dist� intervals[i+1].bound) &&
(dist> Implicit Tolerance))f

VScale(IPoint, D, dist);
VAdd(IPoint, IPoint, P);
=� Transform the point into world space �=
if (implicit!Trans 6= NULL)

MTransPoint(&IPoint, &IPoint, implicit!Trans);
if (Inside Implicit(&IPoint, Object)) f

122 APPENDIX A. RAYTRACING IMPLICIT SURFACES

VSub(dv, IPoint, Ray!Initial);
VLength(len, dv);
if (Point In Clip(&IPoint, Object!Clip)) f

push entry(len, IPoint, Object, Depth Stack);
Intersection Found = TRUE;

g
g

g
g =� for root...�=
if (Intersection Found)

Ray Implicit Tests Succeeded++;

if (indef flag) f

coeffs[4] += implicit!threshold;
for (k=0; k<5; k++)

coeffs[k] += dcoeffs[k];

=� Figure out which root solver to use �=
if (implicit!Sturm Flag == 0)

=� Use Ferrari's method �=
root count = solve quartic(coeffs, &roots[0]);

else
=� Sturm sequences �=
if (fabs(coeffs[0])< COEFF LIMIT)

if (fabs(coeffs[1])< COEFF LIMIT)
root count = solve quadratic(&coeffs[2], &roots[0]);

else
root count = polysolve(3, &coeffs[1], &roots[0]);

else
root count = polysolve(4, coeffs, &roots[0]);

=� get rid of deformation coefficients �=

coeffs[4] -= implicit!threshold;
for (k=0; k<5; k++)

coeffs[k] -= dcoeffs[k];

=� See if any of the roots are valid �=
for (j = 0; j< root count; j++) f

dist = roots[j];
=�

� First see if the root is in the interval of
� influence of the currently active components of
� the implicit
�=

if ((dist� intervals[i].bound) &&
(dist� intervals[i+1].bound) &&
(dist> Implicit Tolerance))f

VScale(IPoint, D, dist);
VAdd(IPoint, IPoint, P);
=� Transform the point into world space �=
if (implicit!Trans 6= NULL)

MTransPoint(&IPoint, &IPoint, implicit!Trans);
if (Inside Implicit(&IPoint, Object)) f

VSub(dv, IPoint, Ray!Initial);
VLength(len, dv);
if (Point In Clip(&IPoint, Object!Clip)) f

push entry(len, IPoint, Object, Depth Stack);
New Intersection Found = TRUE;

g
g =� if Inside .. �=

g =� if dist>= int... �=
g =� for j<root count �=
if (New Intersection Found)

Ray Implicit Tests Succeeded++;
g =� if indef flag �=

=� clear blending coefficients �=

if (b>0)
for(k=0; k<5; k++)

coeffs[k] -= bcoeffs[binx][k];

b--;
g while (b>0); =� if b ... == consider next blendable component�=

g =� if in flag �=

g =� for i<cnt �=

A.4. NORMAL VECTORS 123

return Intersection Found jj New Intersection Found;
g

A.4 Normal vectors

At any point of a scalar field a normal vector to the isosurface going through this point is aligned with the
gradient of the field at this point [Bron85]. The gradient can be simply calculated as partial derivatives of
the function F which describes the scalar field:

N =

�
@F

@x
;
@F

@z
;
@F

@z

�
To calculate the gradient in POVray, for each intersection point the field function is computed according
to the algorithm for implicit surfaces with blending properties, presented in Section 3.3. The result is a
function F that contains a sum and difference of field functions due to all primitives that contributed to its
value:

F (P) =
X
i2C

fi(P) +
X

i�B(C)

fi(P)�
X

i�U(C)

fi(P) + constant

The gradient of such a function is calculated as:

rF (P) =
X
i2C

rfi(P) +
X

i�B(C)

rfi(P)�
X

i�U(C)

rfi(P)

Each partial derivative @F
@x

, @F
@y

and @F
@z

can be therefore calculated as:

@F

@x
(P) =

X
i2C

@fi
@x

(P) +
X

i�B(C)

@fi
@x

(P)�
X

i�U(C)

@fi
@x

(P)

Therefore, it is sufficient to calculate all partial derivatives due to field functions contributing to the pointP
and combine them according to the blending properties algorithm.

Let us consider the field function used in the coefficient form:

f(r) = c0(r
2)2 + c1r

2 + c2

where r2 = (xG � x)2 + (yG � y)2 + (zG � z)2 for a generator G = (xG; yG; zG). The partial derivative
of such a function can be calculated as:

@f

@x
=
@f

@r

@r

@x

The partial derivative @f
@r

is calculated as follows:

@f

@r
= 4c0r

3 + 2c1r

Since:
r =

p
(xG � x)2 + (yG � y)2 + (zG � z)2

its partial derivative @r
@x is given by:

@r

@x
=

@A
@x

2
p
A

!
=

��2 (xG � x)
2
p
A

�

where
p
A = r. The derivative @f

@x is therefore:

@f

@x
=

�
4c0r3 + 2c1r

�
(� (xG � x))

r
=
�
4c0r

2 + 2c1
�
(� (xG � x))

The following procedure calculates the normal vector at a given intersection point:

124 APPENDIX A. RAYTRACING IMPLICIT SURFACES

void
Implicit Normal(Result, Object, IPoint)
OBJECT �Object;
VECTOR �Result, �IPoint;
f

VECTOR New Point, V, DefResult;
int i, j, maxi;
double dist, val, density, defdensity, defval, defdens, maxbldens, bldens;
IMPLICIT �implicit = (IMPLICIT �) Object;
Component�temp;
int indef flag;

=� Transform the point into the blobs space �=
if (implicit!Trans 6= NULL)

MInvTransPoint(&New Point, IPoint, implicit!Trans);
else

New Point = �IPoint;

Make Vector(Result, 0, 0, 0);

=�
� For each component that contributes to this point, add its bit to
� the normal
�=

density = 0.0;
for (i = 0; i < implicit!count; i++) f

temp = implicit!list[i];
dist = calculate skeleton distance2(&(implicit!list[0]), i, &New Point, &V);
if (dist� temp!radius2)f

density += dist � (dist � temp!coeffs[0] + temp!coeffs[1]) + temp!coeffs[2];
val = -2.0 � (2.0 � temp!coeffs[0]� dist + temp!coeffs[1]);
Result!x += val � V.x;
Result!y += val � V.y;
Result!z += val � V.z;

g
g

=� this is the normal based on undeformed density, add deformation�=

Make Vector(&DefResult, 0, 0, 0);
defdensity = 0.0;
indef flag = FALSE;
for (i = 0; i < implicit!defcount; i++) f

for (j = 0; j< implicit!deformlist[i]!count; j++) f
temp = implicit!deformlist[i]!list[j];
dist = calculate skeleton distance2(&(implicit!deformlist[i]!list[0]),

j, &New Point, &V);
if (dist� temp!radius2)f

defdens = dist � (dist � temp!coeffs[0] + temp!coeffs[1]) + temp!coeffs[2];
if (defdens� implicit!isovalue) indef flag = TRUE;
defdensity += defdens;
defval = -2.0 � (2.0 � temp!coeffs[0]� dist + temp!coeffs[1]);
DefResult.x += defval � V.x;
DefResult.y += defval � V.y;
DefResult.z += defval � V.z;

g
g

g

if (indef flag && density� implicit!isovalue)f
Result!x -= DefResult.x;
Result!y -= DefResult.y;
Result!z -= DefResult.z;

g

maxbldens = 0.0;
maxi = -1;
for (i = 0; i < implicit!blcount; i++) f

bldens = 0.0;
for (j = 0; j< implicit!blendlist[i]!count; j++) f

temp = implicit!blendlist[i]!list[j];
dist = calculate skeleton distance2(&(implicit!blendlist[i]!list[0]),

j, &New Point, &V);
if (dist� temp!radius2)f

bldens += dist � (dist � temp!coeffs[0] + temp!coeffs[1])+temp!coeffs[2];
g
if (bldens> maxbldens)f

maxi = i;
maxbldens = bldens;

g

A.4. NORMAL VECTORS 125

g
g

if (maxi>-1)
for (j = 0; j< implicit!blendlist[maxi]!count; j++) f

temp = implicit!blendlist[maxi]!list[j];
dist = calculate skeleton distance2(&(implicit!blendlist[maxi]!list[0]),

j, &New Point, &V);
if (dist� temp!radius2)f

val = -2.0 � (2.0 � temp!coeffs[0]� dist + temp!coeffs[1]);
Result!x += val � V.x;
Result!y += val � V.y;
Result!z += val � V.z;

g
g

val = (Result!x � Result!x + Result!y � Result!y + Result!z � Result!z);
if (val< EPSILON) f

Result!x = 1.0;
Result!y = 0.0;
Result!z = 0.0;

g else f
val = 1.0 = sqrt(val);
Result!x � = val;
Result!y � = val;
Result!z � = val;

g

=� Transform back to world space �=
if (implicit!Trans 6= NULL)

MTransNormal(Result, Result, implicit!Trans);
VNormalize(�Result, �Result);

g

Appendix B

Speeding Up Grid-Data Generation for
Polygonisation of Implicit Surfaces

This appendix presents a paper published in the proceedings of the 13th Annual Eurographics UK Chapter
Conference, in Loughborough, 28th-30th March 1995.

126

Speeding Up Grid-Data Generation for Polygonisation of
Implicit Surfaces

Agata Opalach Steve Maddock

Department of Computer Science, The University of Sheffield,

Regent Court, 211 Portobello Street, Sheffield, S1 4DP, UK

Tel: +44 114 282 5577 Fax: +44 114 278 0972

E-mail: a.opalach@dcs.shef.ac.uk

Abstract

Implicit surfaces are particularly suitable for design and animation of smoothly blended objects that
deform during motion. Such objects change their shape due to external forces, deform during collisions
with other objects or conform to their environment. They are also able to squash and stretch, an effect
essential in traditional animation yet often lacking in computer animation. However, visualisation of
implicit surfaces is not yet achieved at interactive rates. This limits the practical application of implicit
surfaces in the area of interactive design and animation. One way of displaying implicit surfaces is to
polygonise them and use a fast hardware polygon renderer to create a high quality image. This paper
proposes a way of speeding up grid-data generation, one of the phases of the polygonisation process.

1 Introduction

Implicit surfaces as a modelling technique were initially described by Blinn (blobby molecules) [2], Nishi-
mura et al. (metaballs) and Wyvill et al. (soft objects) [19]. All three approaches used scalar fields around
3D points to build their models. The technique was later generalised for arbitrary skeletal elements [20, 5, 4]
and has found practical applications in a wide variety of areas. For instance, Tatsumi et al. present the
use of metaballs in the process of modelling the cod liver [16], Fujita et al. represent splashing water
using metaballs [7], Muraki uses a blobby model for volumetric shape description (including human face
modelling) [12], Max and Wyvill render coral as soft objects [10] and Payne and Toga model a rat's brain
using distance fields [15].

Implicit surfaces have also been appreciated in the field of computer animation. In Japan, metaballs
have been widely used for modelling and animation of shapes as complex as human anatomy parts [9]
Another use for the technique is in visualising deformable material modelled as particles [11, 18] or mass
points [17]. Implicit surfaces have also been used for modelling precise contact between colliding implicitly
defined solids [8] and simulating highly deformable material which can break into pieces [6].

Beier at Pacific Data Images commented on the usefulness of blobby primitives for character anima-
tion [1]. Our work [13] describes the ABC of implicit surfaces: appearance, blending and coherence. These

127

128

three properties are important for character animation with implicit surfaces. In [14] we used implicit sur-
faces to implement cartoon effects (or traditional animation principles) in a character animation system.
The growing popularity of implicit surfaces calls for their interactive visualisation.

First let us briefly introduce the terminology of implicit surfaces. Consider a set of skeletal elements
(points, lines, polygons) with a scalar field function fi : R3 ! R defined for them. An implicit surface
can be defined as fP 2 R3j F(P) � Iso = 0g where Iso is the isovalue at which an isosurface is
extracted and F (P) =

P
n

i=1
(fi(P)). Figure 1 shows an implicit surface created around two points. We

will refer to skeletal elements as primitives.

A

P

B

Figure 1: An implicit surface around two skeletal elements, or primitives, A and B

Two main techniques are used to visualise implicit surfaces. The first is polygonisation, in which an
implicit model is converted to a polygonal representation and then a standard polygon renderer is used to
render the polygons. The second is ray tracing. Here, ray-surface intersections are computed using the
implicit definition of a surface and the intersections are then used by a ray tracing program to render the
surface.

Since fast polygon rendering hardware already exists, we shall consider techniques to speed up the
polygonisation process. One standard way to polygonise an implicit surface is to divide a 3D space into grid
cells. There are three stages in this method: (i) generating grid-data, (ii) identifying grid cells intersecting
the implicit surface and (iii) calculating the polygons. In the first stage (i), the scalar field values at the
grid points (corners of grid cells) have to be calculated. During stage (ii) all cells which are intersected by
the surface (boundary cells) (Figure 2) are found and in the stage (iii) polygons in each boundary cell are
produced according to the scalar field values in the corners of the cell. Previous attempts have been made to
speed up steps (ii) and (iii) of polygonisation [21, 3, 5]. Our experiments are concerned with the first phase
of the polygonisation process, the grid-data generation (i).

2 Grid-data generation algorithms

An implicit surface is defined by primitives positioned in space. If we divide the space into grid cells,
some grid points will be influenced by a number of primitives (Figure 2), i.e. the primitives give non-zero
contributions to the scalar field value at those grid points. We can identify two techniques for generating
grid-data: the naive method and the update method.

2.1 Naive method

The naive method of generating the grid-data is to iterate over all primitives (including non-influencing
primitives) and sum the scalar field contribution from them for each grid point. In this simple approach the
process of calculating scalar field values at all grid points has to be repeated each time primitives are added,
deleted or moved in the scene. When only a few primitives are involved, large parts of the scene remain
unchanged, yet all the grid-data is recalculated. We can address such computation inefficiency using the
update method.

APPENDIX B. SPEEDING UP GRID DATA GENERATION 129

B

C

A

Figure 2: (2D case) Three primitives A, B and C defining an implicit surface in a 2D grid. A circle around
each primitive represents the radius of influence. Grid points within each radius of influence are shown as
crosses. The boundary cells are shaded in grey.

2.2 Update method

In the update method the initial stage is to store a list of influencing primitives for each grid point. Then, at
a given grid point, only primitives influencing it are considered in the calculation of the scalar field value.
The update method requires additional data structures to be created and maintained for a scene. Once the
data structure is created, it has to be updated for each change occurring in the scene. There is no need to
recalculate the parts of the scene which have not been altered. The primitives added, deleted or moved
have to be inserted, deleted or moved to the influence lists of relevant grid points and the field value at the
affected grid points has to be recalculated.

We will compare the two methods of grid-data generation in two experiments: (i) generating a static
image of a scene and (ii) generating the frames of an animation sequence.

3 Static image experiment

The first experiment was designed to compare the performance of the two grid-data generation techniques
in the case of polygonising a single image of a static scene.

3.1 Test sets

The test data for the static image experiment consisted of a randomly generated cluster of primitives (each of
the same radius) in the middle of a cubic world (Figure 3). The world dimensions were 100x100x100 units
and primitives were randomly placed in the 50x50x50 units cube in the centre of the world. For each test
case the number of primitives in the scene and their radius were independently varied. In one set of tests the
number of primitives was fixed at 32 and their radius was varied from 10 to 100 (Table 1 in the Appendix).
In the second set, the number of primitives was fixed at 128 (Table 2 in the Appendix). The time required
for generating grid-data for both grid-data generation methods was measured. For the update method, the
time required for creating the additional data structure was also added. Ten tests in each configuration were
run and the results averaged.

3.2 Results and Discussion

We expected that the update method would be considerably faster than the naive method. However, the
results presented in Figure 4 for 32 and 128 primitives show that the update method only works better for
small (radius 10-50) and fewer (32) primitives. When the size of primitives gets larger (close to the size of
the world), the update method proves to be very inefficient.

130

Figure 3: Static image test: 128 primitives, radius 25

0

100

200

300

400

500

600

700

800

0 20 40 60 80 100
radius of primitives

Static image (32 primitives)

naive
update

0

2000

4000

6000

8000

10000

12000

0 20 40 60 80 100
radius of primitives

Static image (128 primitives)

naive
update

Figure 4: The results of the static image experiment: The plots show the time in seconds of grid-data
generation for the scene from Figure 3 for varying radius of primitives in two cases: 32 and 128 primitives

The naive method has a constant cost which depends only on the number of primitives in the scene.
The update method depends on the radius of primitives in the scene: the larger the primitives, the more grid
points they influence and therefore the longer the time required to create the additional data structure. In a
practical situation most of the primitives in a scene would probably be small in relation to the world size.
In these cases using the update method for grid generation would reduce the computation time.

APPENDIX B. SPEEDING UP GRID DATA GENERATION 131

Figure 5: Animation test: 128 primitives, radius 25, randomly moving 100 primitives

4 Animation experiment

The animation experiment was designed to compare the two techniques during the creation of several frames
in an animation sequence. In this case the update method takes advantage of the fact that only some of the
primitives move during each animation step (Note: all primitive can move in the worst case).

4.1 Test sets

The animation experiment used the same scene as in the static image experiment. For each animation
step a number of primitives in the scene were moved in random directions. The translation vector had a
random length within the range from one to two grid cells. Figure 5 shows frames from the tested animation
sequence. For each test case the number of primitives in the scene, their radius and the number of primitives
moving during the animation were independently varied. The number of primitives changed from 32 to 128,
their radius from 10 to 60 and the number of moving primitives from 10 to the total number of primitives in
the scene. In each test ten frames of animation were created and the average time for grid-data generation
for one frame was calculated. In the update method the time for creating and updating the secondary data
structure was also added to the total time. Each test was run ten times and the results averaged.

4.2 Results and Discussion

Figures 6 and 7 and Tables 3-8 in the Appendix show the results of the animation experiment for 32 and
128 primitives respectively. The plots show how the computation time changes depending on the number
of primitives moved in an animation step. The plots represent different radii of the primitives in the scene.
The update method proves more efficient in most cases. However, when the radius of primitives in the scene
grows larger (radius 50+, world size 100x100x100) and nearly all primitives in the scene are moved, the
naive method works better.

132

Animation Experiment (32 primitives)

10

20

30

40

50

60

70

80

90

5 10 15 20 25 30 35
radius of primitives

radius 20

naive
update

5 10 15 20 25 30 35
radius of primitives

radius 40

naive
update

5 10 15 20 25 30 35
radius of primitives

radius 50

naive
update

Figure 6: The results of the animation experiment: The plots show the average time in seconds of polygo-
nising one frame of animation from Figure 5 for the radius of primitives 32 and a varied number of moved
primitives

Animation Experiment (128 primitives)

0

50

100

150

200

250

300

0 20 40 60 80 100 120
radius of primitives

radius 20

naive
update

0 20 40 60 80 100 120
radius of primitives

radius 40

naive
update

0 20 40 60 80 100 120
radius of primitives

radius 50

naive
update

Figure 7: The results of the animation experiment: The plots show the average time in seconds of polygo-
nising one frame of animation from Figure 5 for the radius of primitives 128 and a varied number of moved
primitives

APPENDIX B. SPEEDING UP GRID DATA GENERATION 133

5 Conclusions

We have run a series of tests comparing two methods of grid-data generation for polygonising implicit
surfaces: the naive method and the update method. The update method gives a significant reduction in
computation time for smaller primitives (half the size of the world and smaller) for both the static image
and animation experiments. For larger primitives (larger than half the size of the world) the naive method
appears to be more efficient since it has a constant cost for all cases. The main advantage of the update
method is shown during animation, when it uses the fact that only some primitives in the scene move.
Hence, only grid- relation to the size of the world) primitives in the scene and only some of them will be
moving in each animation step. In these cases the update method considerably speeds up the grid-data
generation process.

The use of implicit surfaces for modelling and animation is growing in popularity. Speeding up their
display is important for interactive applications. For instance, a designer or an animator have to view their
creations in real time in order to be able to use implicit surfaces for interactive design or creating computer
animation. When interactively sculpting an object an artist or designer is likely to change only one part of
it at a time. Similarly an animation sequence will usually consist of a static background and only a few
objects moving. In these cases the update method of grid-data generation can accelerate the visualisation
process.

References
[1] Thad Beier. Practical uses for implicit surfaces in animation. In Modeling and Animating with Implicit Surfaces,

pages 20.1–20.11, 1990. SIGGRAPH Course Notes 23.

[2] James F. Blinn. A generalization of algebraic surface drawing. ACM Transactions on Graphics, 1(3):235–256,
July 1982.

[3] Jules Bloomenthal. Polygonisation of implicit surfaces. Computer Aided Geometric Design, 5:341–355, 1988.

[4] Jules Bloomenthal and Ken Shoemake. Convolution surfaces. Computer Graphics, 25(4):251–256, July 1991.
Proceedings of SIGGRAPH'91.

[5] Jules Bloomenthal and Brian Wyvill. Interactive techniques for implicit modeling. Computer Graphics,
24(2):109–116, March 1990. Proceedings of SIGGRAPH'90.

[6] Mathieu Desbrun and Marie-Paule Gascuel. Highly deformable material for animation and collision processing.
In Fifth Eurographics Workshop on Animation and Simulation, Oslo, Norway, September 1994.

[7] Takushi Fujita, Katsuhiko Hirota, and Kouichi Murakami. Representation of splashing water using metaball
model. Fujitsu, 41(2):159–165, 1990. in Japanese.

[8] Marie-Paule Gascuel. An implicit formulation for precise contact modelling between flexible solids. Computer
Graphics, 27:313–320, 1993. Proceedings of SIGGRAPH'93.

[9] Gaye L. Graves. The magic of metaballs. Computer Graphics World, pages 27–32, May 1993.

[10] Nelson L. Max and Geoff Wyvill. Shapes and textures for rendering coral. In N. M. Patrikalakis, editor, Scientific
Visualisation of Physical Phenomena, pages 333–343. Springer-Verlag, 1991.

[11] Gavin Miller and Andrew Pearce. Globular dynamics: A connected particle system for animating viscous fluids.
Computers and Graphics, 13(3):305–309, 1989.

[12] Shigeru Muraki. Volumetric shape description of range data using “blobby model”. Computer Graphics,
25(4):227–235, July 1991. Proceedings of SIGGRAPH'91.

[13] Agata Opalach and Steve Maddock. Implicit surfaces: Appearance, Blending and Consistency. In Fourth Euro-
graphics Workshop on Animation and Simulation, pages 233–245, Barcelona, Spain, September 1993.

134

[14] Agata Opalach and Steve Maddock. Disney effects using implicit surfaces. In Fifth Eurographics Workshop on
Animation and Simulation, Oslo, Norway, September 1994.

[15] Bradley A. Payne and Arthur W. Toga. Distance field manipulation of surface models. IEEE Computer Graphics
and Applications, pages 65–71, January 1992.

[16] Haruyuki Tatsumi, Eiji Takaoki, Koichi Omura, and Hisao Fujita. A new method for three-dimensional recon-
struction from serial sections by computer graphics using “meta-ball”: Reconstruction of “hepatoskeletal system”
formed by ito cells in the cod liver. Computers and Biomedical Research, 23(part 1):37–45, 1990.

[17] Demetri Terzopoulos, John Platt, and Kurt Fleisher. Heating and melting deformable models (from goop to glop).
In Graphics Interface'89, pages 219–226, June 1989.

[18] David Tonnesen. Modelling liquids and solids using termal particles. In Graphics Interface'91, pages 255–262,
1991.

[19] Brian Wyvill, Craig McPheeters, and Geoff Wyvill. Animating soft objects. The Visual Computer, 2:235–242,
August 1986.

[20] Brian Wyvill and Geoff Wyvill. Field functions for implicit surfaces. The Visual Computer, 5:75–82, December
1989.

[21] Geoff Wyvill, Craig McPheeters, and Brian Wyvill. Data structure for soft objects. The Visual Computer, 2:227–
234, August 1986.

Appendix. Experimental Results

Static Image Experiment

radius 10 20 30 40 50 60 70 80 90
method
naive 88 90 91 92 92 94 98 113 107

update 10 11 14 22 36 55 84 122 316

Table 1: Static image experiment results [time] (32 primitives)

radius 10 20 30 40 50 60 70 80 90
method
naive 262 263 265 267 274 289 299 326 345

update 10 16 32 71 145 912 3532 6936 10501

Table 2: Static image experiment results [time] (128 primitives)

APPENDIX B. SPEEDING UP GRID DATA GENERATION 135

Animation Experiment

moved 10 20 30
method
naive 68 67 67

update 10 10 11

Table 3: Animation experiment results [time] (32 primitives, radius 20)

moved 10 20 30
method
naive 72 71 72

update 46 65 86

Table 4: Animation experiment results [time] (32 primitives, radius 40)

moved 10 20 30
method
naive 71 70 70

update 29 37 46

Table 5: Animation experiment results [time] (32 primitives, radius 50)

moved 10 20 30 40 50 60 70 80 90 100 110 120
method
naive 195 195 194 196 195 196 195 195 195 194 196 195

update 12 13 14 15 15 16 17 18 19 20 20 21

Table 6: Animation experiment results [time] (128 primitives, radius 20)

moved 10 20 30 40 50 60 70 80 90 100 110 120
method
naive 199 199 199 204 200 199 200 199 199 200 200 199

update 43 49 56 63 67 76 77 85 91 92 98 104

Table 7: Animation experiment results [time] (128 primitives, radius 40)

moved 10 20 30 40 50 60 70 80 90 100 110 120
method
naive 205 205 205 205 204 205 205 205 205 205 204 204

update 81 95 111 122 132 145 159 165 180 196 209 220

Table 8: Animation experiment results [time] (128 primitives, radius 50)

