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Abstract  
Comparative evaluation of Machine Learning 
(ML) systems used for Information Extraction 
(IE) has suffered from various inconsistencies in 
experimental procedures. This paper reports on 
the results of the Pascal Challenge on Evaluating 
Machine Learning for Information Extraction, 
which provides a standardised corpus, set of 
tasks, and evaluation methodology. The 
challenge is described and the systems submitted 
by the ten participants are briefly introduced and 
their performance is analysed.  

1.  Introduction 

As part of text understanding, Information Extraction (IE) 
is a long standing goal of Artificial Intelligence (AI). 
Recently, fuelled by the vast amount of electronic 
documents available via the WWW and a growing interest 
in annotating these documents to utilise them for the 
Semantic Web, automatic IE is receiving increasing 
attention from the Machine Learning (ML) community. In 
order to determine the appropriate ML techniques to use 
for IE from textual data it is necessary to perform 
comparative evaluations. However, to-date such 
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evaluations have been hampered by under-defined 
experimental procedures. In addition the evaluations are 
carried out from an IE perspective so that the focus is not 
on the contribution of the ML algorithms to the IE task. 

The MUC conferences were the first comprehensive 
effort to evaluate IE systems. They provided annotated 
corpora that are still used as standard testbeds 
(Hirschman, 1998), and also evaluation software 
(Douthat, 1998). More recently other corpora have been 
made available to the research community, such as the job 
postings collection (Califf, 1998), and the seminar 
announcements, corporate acquisition and university Web 
page collections (Freitag, 1998). However comparative 
evaluation using these corpora has suffered from various 
inconsistencies in experimentation which clouds the 
ability to assess the relative performance of systems. 
Much of this difficulty is shared with general evaluation 
of ML systems; where experiments use different data 
processing, sampling and feature selection it is difficult to 
determine the critical factors effecting performance. Other 
issues are more specific to IE, such as the partial scoring 
of inexact identification of slot fillers or how to count 
multiple fillers for a slot.  

In IE there are very few comparative articles in the sense 
mentioned in (Daelemans and Hoste, 2002); most of the 
papers simply present the results of the new proposed 
approach and compare them with the results reported in 
previous articles. There is rarely any detailed analysis to 
ensure that the same methodology is used across different 
experiments (Lavelli et al., 2004). 
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The Pascal Challenge on the Evaluation of Machine 
Learning for Information Extraction aims to address the 
issues raised above by providing a methodology and 
actual experimental setup to guarantee a reliable 
comparison of the performance of multifarious ML 
algorithms. In order to simulate a wide variety of 
application situations the study examines the way these 
algorithms behave (their brittleness) when the test data is 
sampled from a different timeframe and thus diverges 
from the training data. In addition, the study assesses the 
algorithms’ performance with progressively increasing 
availability of training data, tracing the learning curve, 
and also the ability to exploit unannotated material to aid 
learning. Thus the challenge’s intension is threefold: 

1. The definition of a methodology for fair comparison 
of ML algorithms for IE. 

2. To actually perform the evaluation in a controlled 
situation, reporting on the relative benefits of ML 
techniques to IE and identify future challenges. 

3. To make publicly available an extensible testbed to 
enable comprehensive, comparable research beyond 
the lifetime of the current challenge. 

The challenge methodology aims, as far as possible, to 
limit the variation in the dependent variables outside the 
ML technique used. This involves a standardised 
approach in three areas: the provision of the data, task 
specification and performance evaluation. The following 
three sections describe the approach taken in each of these 
areas1. Section 5 briefly describes systems submitted by 
the ten participants in the challenge and in Section 6 the 
comparative performance of the systems is analysed. The 
remaining section discusses conclusions from the 
challenge and further work. 

2.  Data 

The domain selected for the challenge was the extraction 
of pertinent information from Workshop Call for Papers 
(CFP). The main reasons for the choice of domain was 
due to familiarity to the organisers (thus it is possible to 
interpret the documents without costly “experts”), there 
are good sources of data and it offers a range of difficulty. 
A further desirable feature is that, in common with many 
collections of documents, the text has a degree of semi-
structured formatting; the learning algorithms should 
exploit such regularity. 

A corpus of 1,100 documents was collected from various 
sources; it comprises of 850 Workshop CFP and 250 
Conference CFP. The majority of the documents come 
from the field of Computer Science, due to the readily 
available archives, although other fields, such as 
biomedicine and linguistics, are also represented. Care 

————— 
1 The data, a more detailed description of the tasks and the 

evaluation server are available from http://tyne.shef.ac.uk/Pascal 

was taken to ensure each document relates to a unique 
call. The documents are divided into three corpora: 

 • Training Corpus (400 Workshop CFP): The documents 
in the training corpus are randomly divided into 4 sets of 
100 documents. Each of these sets is further randomly 
divided into 10 subsets of 10 documents. Each document 
relates to a workshop held between 1993 and 2000. 

 • Test Corpus (200 Workshop CFP): The documents in 
the training corpus relate to workshops held between 2000 
and 2005. 

• Enrich Corpus (250 Workshop CFP & 250 Conference 
CFP): The documents in the enrich corpus relate to 
workshops held between 2000 and 2005 & conferences 
held between 1997 and 2005. 

Note that the training and test data is largely temporally 
distinct. Thus there will be less differentiation between 
the 4-fold cross-validation training and test data, as these 
are randomly sampled from the same timeframe. The Test 
Corpus may exhibit differences introduced by the 
temporal disparity providing a more rigorous test of a 
learning systems ability to generalise. As the Enrich 
Corpus offers documents taken from the same timeframe 
as the Test Corpus, it can potentially be exploited to 
uncover the temporal differences. 

2.1  Preprocessor 

The data was preprocessed using the GATE 
(http://www.gate.ac.uk/) system, which provides 
tokenisation, orthography, Part-Of-Speech tagging and 
named-entity recognition (Location, Person, Date, etc.) 
text features. The features selected are a fairly basic set in 
terms of linguistic processing. Future corpora could 
include other features such as lemmatisation or those 
derived from parsing which may be deemed necessary for 
IE tasks such as explicit relation extraction. 

2.2  Annotation 

The annotation exercise took place over roughly three 
months and involved a series of consultations between the 
challenge organisers and the annotators to determine the 
final annotations. The general methodology adopted was 
one of maximising the information provided by the 
annotations whilst minimising ambiguity during 
annotating. This meant that whilst it would have been 
desirable to extract the list of people on the organising 
committee, in the initial studies the annotators found very 
difficult to determine whether a name should or should 
not be included, and thus this annotation was removed 
from consideration.  

For the final annotation exercise 10 people annotated an 
overlapping set of documents, with each document being 
annotated by two people. Conflicts were resolved by the 



Evaluating Machine Learning for Information Extraction 
 

 

overseeing annotator. An annotation tool (Melita2) was 
used to aid the process, although all automatic pattern-
matching was switched off, except for exact-string 
matching, in order that the data was not bias towards the 
matching algorithm. 

Each document can have 11 annotation types; 8 relating 
to the workshop itself (name, acronym, homepage, 
location, date, paper submission date, notification date 
and camera-ready copy date) and 3 relating to the 
associated conference (name, acronym and homepage).  

Table 1: Frequency distribution of annotations 

CORPUS FREQUENCY ANNOTATION TYPE 

TRAIN % TEST % 

workname 543 11.8 245 10.8
workacro 566 12.3 243 10.7
workhome 367 8.0 215 9.5 
workloca 457 10.0 224 9.9 
workdate 586 12.8 326 14.3
workpape 590 12.9 316 13.9
worknoti 391 8.5 190 8.4 
workcame 355 7.7 163 7.2 
confname 204 4.5 90 4.0 
confacro 420 9.2 187 8.2 
confhome 104 2.3 75 3.3 
TOTAL 

4583 100 2274 100 
 

Table 1 above shows the frequency distribution of the 
annotations for both the training and test corpora; as can 
be seen the two distributions are broadly similar. Note 
that, as not all workshops have an associated conference, 
the lowest proportions are observed for conference related 
annotations. 

There are certain distinct differences in the types of 
annotation. For example, the CFP “important dates” 
(paper submission date, notification date and camera-
ready copy date), are generally well prescribed by the 
surrounding text. Whilst the workshop and conference 
names are more defined by their position in the document 
and have a greater variation in length. Such differences 
will obviously influence the ability of the learning 
algorithms to identify given annotation types. 

Each annotation (or slot) is defined by a start and end tag 
which are placed in a boundary between two tokens. The 
training data has approximately 430,000 tokens, which 
equates to the same amount of instances, 9,166 of these 
are positive instances of tag placement. 

————— 
2 Available at http://nlp.shef.ac.uk/melita 

3.  Tasks 

For each task participants can only use the features 
provided by the preprocessor. They were encouraged to 
submit results not only for testing on the Test Corpus but 
also for the four-fold cross-validation experiment on the 
training corpus; with a 300 training, 100 testing document 
split using the partitions provided. 

• Task1: Given all the available training documents 
(i.e. 300 documents for the 4-fold cross-validation 
and 400 documents for the Test Corpus 
experiment), learn the textual patterns necessary to 
extract the annotated information. 

• Task2a (Learning Curve): Examine the effect of 
limited training resources on the learning process by 
incrementally adding the provided subsets to the 
training data. Thus there are 9 experiments; for the 
four-fold cross-validation experiment the training 
data has 30, 60, 90, 120, 150, 180, 210, 240 and 270 
documents, and for the Test Corpus experiment the 
training data has 40, 80, 120, 160, 200, 240, 280, 
320 and 360 documents. 

• Task2b (Active Learning): Examine the effect of 
selecting which documents to add to the training 
data. Given each of the training data subsets used in 
Task2a, select the next subset to add from the 
remaining training documents. Thus a comparison of 
the Task2b and Task2a performance will show the 
advantage of the active learning strategy. 

• Task3a (Enrich Data): Perform the above tasks 
exploiting the additional 500 unannotated 
documents. In practice only one participant 
attempted this task and only to enhance Task1 on the 
Test Corpus. 

• Task3b (Enrich WWW Data): Perform either of the 
above tasks but using any other (unannotated) 
documents found on the WWW. In practice only one 
participant attempted this task and only to enhance 
Task1 on the Test Corpus. 

4.  Performance Evaluation 

The performance of the systems was evaluated using the 
MUC scorer (Douthat, 1998). Each system was evaluated 
on its ability to identify every occurrence of an annotation 
and only exact matches were scored. Performance is 
reported using standard Information Extraction (IE) 
measures of Precision, Recall and F-Measure. The 
systems overall performance is calculate by micro-
averaging the performance on each of the eleven slots. 
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5.  Systems 

The challenge attracted ten participants3; each participant 
was entitled to submit up to 3 systems and, in total, 18 
systems entered in the challenge. Table 2 shows the 
number of systems entered for each of the tasks, for both 
the 4-fold cross-validation and Test Corpus experiments. 
Whilst Task1 and Task2 attracted sufficient systems to 
provide comparative evaluation, Task3 did not. It is hoped 
that this task will receive greater attention in the future. 

Table 2: Number of system submitted for each task 

TASKS TEST DATA 

1 2a 2b 3a 3b 

4-fold 14 8 4 0 0 

Test Corpus 17 10 5 1 1 
 

Table 3 below gives a summary of each of the systems4, 
the main features of the system shown are: 

• ML Algorithm: Five participants employ Support 
Vector Machines (SVM) as the learning algorithm, 
whilst four participants use Hidden Markov Models 

————— 
3 Another participant entered 3 systems which used a different pre-
processor; these results have been excluded from this analysis. 

4 For a more comprehensive description of the systems see the Challenge 
web page at http://tyne.shef.ac.uk/Pascal/ 

(HMM) (Condition Random Field (CRF) is a form 
of Markov Model) which are widely used linguistic 
modelling, and one participant uses a rule induction 
technique (LP2). 

• Token Window: The size of the token window 
ranges from 4 to 15 tokens. Note that a token 
window of 4 means a left/right context of 8 tokens.  

• Tag Context: Two participant systems consider other 
tags in tag placement; the Finn system considers 
annotation start tags in the context of end tags and 
vice-versa, whilst the Amilcare system considers 
tags in the context of all observed adjacent tags. In 
general most of the systems learn each tag 
separately. All of the systems use some form of 
conflict resolution in the final selection of the tags to 
use for annotation. Currently there is no research 
into the importance of this tag conflict resolution in 
IE. 

• Feature Selection: Three participants employ feature 
selection methods removing low frequency or low 
information tokens. 

• Instance Selection: Two participant systems use 
instance selection methods to reduce the number of 
negative instances, removing up to 50% of the 
instances to alleviate the class imbalance and to 
speed up processing. 

Table 3: Summary of features of participants’ systems 

PARTICIPANT NO. OF 
SYSTENS 

ML 
ALGORITHM 

TOKEN 
WINDOW 

TAG CONTEXT FEATURE 
SELECTION 

INSTANCE 
SELECTION 

Amilcare 2 LP2 5 Adjacent tags   

Bechet 2 HMM 10    

Canisius 1 SVM, IBL 5  Freq & Info-gain  

Finn 1 SVM 4 Start/End Info-gain Yes 

Hachey 1 HMM 5    

ITC-IRST 3 SVM 10   Yes 

Kerloch 2 HMM 15    

Stanford 1 CRF 4    

T-Rex 2 SVM 6  Info-gain  

Yaoyong 3 SVM 10    
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6.  Experimental Results 

The following section summarises the results from the 
Pascal Challenge5. In general the results are only provided 
for experiments on the unseen Test Corpus; as the use of 
this data was mandatory for participants. 

6.1  Task1 

Nine participants submitted 17 systems for Task1; Figure 
1 shows the performance of the best system for each 
participant. 

As can be seen in Figure 1, there is a tendency to favour 
precision over recall in all but one system. This is 
probably due to IE systems, in general, being aimed at 
applications which place a higher cost on false positives. 
It is interesting to note that the top three systems (in terms 
of F-Measure), Amilcare, Yaoyong and Stanford, use very 
different ML techniques; rule induction, SVM and CRF, 
respectively. Also, although five of the systems use SVM, 
there is a considerable variation in their performance. 

————— 
5 The results are available in full at 

http://tyne.shef.ac.uk/Pascal/results.php 

Thus no clear advantage is observed simply by the 
adoption of a given ML technique. 

Figure 2 shows the change in performance for the seven 
participants who submitted systems for both the 4-fold 
cross-validation and the Test Corpus. Care should be 
taken when drawing conclusions from comparing these 
experiments as both the training and test sets differ. 
However it is interesting to note that the ITC-IRST, Finn 
and Canisius systems suffer a large fall in performance 
when using the Test Corpus; all three systems use SVM 
techniques. This fall in performance indicates that these 

Table 4: Performance on Task1 (Test Corpus) on each slot for systems providing at least one highest F-Measure 

WORKSHOP CONFERENCE PARTICIPANT MEASURE 

NAME ACRO DATE HOME LOCA PAPE NOTI CAME NAME ACRO HOME 

PRE 0.656 0.887 0.769 0.864 0.621 0.876 0.889 0.876 0.792 0.922 0.656 

REC 0.241 0.844 0.632 0.619 0.402 0.851 0.889 0.865 0.422 0.888 0.28 AMILCARE 
FME 0.352 0.865 0.694 0.721 0.488 0.864 0.889 0.87 0.551 0.905 0.393 

PRE 0.629 0.738 0.81 0.656 0.611 0.719 0.867 0.764 0.649 0.619 0.368 

REC 0.539 0.523 0.666 0.87 0.674 0.763 0.821 0.736 0.411 0.348 0.093 YAOYONG1 
FME 0.58 0.612 0.731 0.748 0.641 0.74 0.843 0.75 0.503 0.445 0.149 

PRE 0.618 0.806 0.822 0.678 0.737 0.747 0.87 0.777 0.643 0.576 0.389 

REC 0.576 0.358 0.693 0.665 0.576 0.68 0.774 0.791 0.4 0.428 0.093 STANFORD 

FME 0.596 0.496 0.752 0.671 0.647 0.712 0.819 0.784 0.493 0.491 0.151 

PRE 0.713 0.796 0.838 0.734 0.717 0.767 0.943 0.845 0.775 0.634 0.455 

REC 0.437 0.481 0.586 0.679 0.612 0.636 0.784 0.669 0.344 0.278 0.067 YAOYONG2 

FME 0.542 0.6 0.69 0.705 0.66 0.696 0.856 0.747 0.477 0.387 0.116 

PRE 0.852 0.733 0.85 0.672 0.812 0.841 0.921 0.911 0.795 0.667 0.556 

REC 0.539 0.259 0.451 0.419 0.406 0.617 0.795 0.687 0.344 0.235 0.067 ITC-IRST 
FME 0.66 0.383 0.589 0.516 0.542 0.712 0.853 0.783 0.481 0.348 0.119 

 

 Figure 1: Precision & Recall on Task 1 (Test Corpus) 
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systems have a tendency to over-fit the training data and 
thus are more brittle to changes between the training and 
test data. The other system which uses SVM, Yaoyong, 
does not exhibit such a large fail in performance which is 
possible due to the adoption of a more robust type of 
SVM (i.e. one using uneven margins).  

There is a considerable variation in the ability of all the 
systems to identify certain slots. Table 4 shows the five 
systems which provide the highest F-Measure on at least 
one slot. Amilcare achieves the highest on 7 out of the 11 
slots and the other four systems achieve the highest for 
one slot each; Yaoyong system 1 (workshop homepage) 
and 2 (workshop location), ITC-IRST (workshop name) 
and Stanford (workshop date).  

Figure 3 summarises the results in Table 4, showing the 
mean and maximum F-Measure for these five systems. 
When considering the mean F-Measures, the best 
performance is observed (as might be expected) on the 
four workshop dates; these have a well-defined format 
and are highly prescribed by the surrounding text. The 
worst performance is on the three conference annotations, 
which have a relatively low representation in the data. 
However, looking at the maximum F-Measure for the 
acronyms shows that Amilcare performs significantly 
better than all the other systems. This is possible due to 
Amilcare being the only system which considers the 

identification of annotation tags in the context of the other 
tags, potentially an important feature in identifying 
acronyms. A similar performance difference is observed 
for the conference homepage annotation. However the 
Amilcare system provided the worst F-Measure of the 
five systems on the workshop name and location, showing 
its techniques do not guarantee good performance on all 
slot types. Future improvements will have to concentrate 
on identifying the relative benefits of different techniques 
at identifying different annotation types. Unfortunately no 
statistics were kept for inter-annotator agreement. In 
retrospect this would have been very useful in comparing 
the relative performance of the machine learning 
algorithms against the annotators for each of the slot. 

6.2  Task2a: Learning Curve 

Figure 4 shows the F-Measure for the six systems which 
submitted results for the learning curve experiment on the 
test corpus. Each point on the graph represents an increase 
of one tenth of the training data. The systems can be 
divided into the three above the mean and the three below 
the mean F-Measure. The Amilcare system provides the 
highest F-Measure throughout the learning curve and 
shows a significant increase when using more than half of 
the training data. The Hachey system uses a similar 
technique to the Stanford system and, as for that 
technique in Task1, produces good results. It is interesting 
to note that the performance of the ITC-IRST system is 
most affected by low amounts of training data. 

Figures 5 & 6 show the Precision and Recall, 
respectively, for the six systems. This shows that the 
systems pursue different strategies in terms of the 
performance measures. Both the Amilcare and ITC-IRST 
systems maintain a high Precision throughout the learning 
curve, indeed they mirror each other’s performance. The 
difference in performance of these two systems is entirely 
due to a difference in Recall. Indeed there is generally 
more variation in Recall than in Precision for all the 
systems, except the Kerloch system which greatly favours 
Recall over Precision. As was stated above this is partly 
due to IE systems being aimed at applications which place 
a higher cost on false positives. If the system’s object was 
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merely to maximise F-Measure, advantage could be 
gained from increasing Recall at the expensive of some 
Precision, especially when lesser amounts of training data 
are available, even more so for systems which exhibit a 
large Precision/Recall imbalance such as the ITC-IRST 
system. 

6.3  Task2b: Active Learning 

Three participants entered 5 systems for the Active 
Learning experiment; Amilcare, Hachey and the three 
Yaoyong systems. All three systems use some form of 
divergence to determine the appropriate documents to add 
to the training set. Hachey measures the divergence 
between the tags inserted in the potential training 

documents by two different classifiers. Amilcare applies a 
measure of the divergence between the expected and 
inserted tags in a document. Whilst Yaoyong measures 
divergence between an example subset sampled from the 
documents.  

Figure 7 shows the change in F-Measure between the 
Learning Curve and Active Learning experiments. As can 
be seen no single system shows any clear advantage, 
although the Amilcare and Hachey systems provided the 
greatest improvements when using their active learning 
strategies.  

The Hachey system provides the most consistent 
improvement in F-Measure, with the highest increase 
observed in the mid-range of training data (except for an 
unfortunate blip at 0.4 of the total training data). It would 
be expected that for low amounts of training data the 
learned classifiers do not have enough information to 
make reasonable judgements on the potential of the 
remaining documents, whilst when most of the data is 
used for training there are less potential documents from 
which to select thus less chance of improving over a 
random selection. Confusingly Amilcare’s performance 
appears contrary to this intuition, with the improvements 
at low and high, rather than mid, amounts of training data. 
Given the inconsistent results and the small improvements 
(although the largest gain does represent 10% a fall in 
error rate) more work needs to be done on the active 
learning task. 

6.4  Task3: Enrich Data 

Unfortunately only two systems were submitted from the 
Task3 experiments. The Stanford system performed 
worse when using the Enrich data. The Amilcare system 
specifically aimed to improve its performance on the 
workshopname and indeed some improvement in Recall 
and F-Measure for this slot was observed, however 
overall performance was not changed. 

7.  Conclusion 

This paper reports on the initial evaluation of the Pascal 
Challenge; whilst it is difficult to draw concrete 
conclusions without a more in-depth comparison of the 
systems’ features, a number of interesting observations 
can be made from their performances. 

The top three systems, in terms of F-Measure, submitted 
for Task1 use very different learning algorithms (rule 
induction, SVM and CRF), and systems which use similar 
techniques provide diverse performance. Thus the 
adoption of a ML algorithm, in itself, does not provide a 
guaranteed advantage. 

The 4-fold cross-validation experiments produced more 
consistent performance between the systems. However, a 
number of systems exhibited a degree of brittleness when 
testing on the Test Corpus which indicates a tendency to 
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  Figure 5: Learning Curve Precision 
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over-fit the training data. Given that systems using similar 
techniques exhibited more robust behaviour this indicates 
that the fall is due to system parameterisation rather than 
an intrinsic feature of the ML algorithm used. 

When examining the performance on individual slots a 
considerable amount of variation is observed. Whilst the 
Amilcare system provides the highest F-Measure for 7 out 
of the 11 slots it also performs poorly on two of the 
others. Future work will need to determine particular 
annotation types (i.e. those defined by internal syntax, 
surrounding text, document position, etc.) and the features 
of ML system which allow it to perform well on a given 
annotation type. For example, as Amilcare uses other tags 
to identify tag placement, its good performance is 
partially due to the relatively large number of slots in this 
experiment, especially if the annotation placement has a 
regular structure in each document.  

Given the differences between the systems which perform 
well it is hoped that further examination will enable the 
development of a combined system to improve 
performance further by exploiting the synergistic features 
of the techniques used, which provide good performance 
on different slot types. 

The (Task2a) Learning Curve experiment shows that to 
optimise performance (especially in terms of F-Measure) 
the Precision/Recall balance should be considered in 
terms of the amount of training data available. This is 
particularly evident for the systems which strongly favour 
Precision over Recall. 

The (Task2b) Active Learning experiment did not provide 
clear results although both the Amilcare and Hachey 
approaches showed some advantage. Future work 
focusing on this task will implement the two strategies 
using a single system to better determine their 
effectiveness. 

Unfortunately there was not sufficient interest in the 
(Task3) Enrich data experiments to draw any conclusions.  

One of the abiding outcomes of the challenge is that 
document annotation is both time-consuming and tedious. 
Whilst such an exercise is very useful to evaluate systems 
for ML research, for “real-world” application the 
annotation exercise will have to show that the significant 
cost of annotation is outweighed by the benefits derived. 
Also Google currently indexes over 8 billion pages, 
manually annotating any reasonable proportion of these 
for the Semantic Web is an unfeasible task. Thus it is 
crucial that the ML community examines ways of using 
unannotated data, in semi-supervised learning methods, to 
provide effective IE. 

It is hoped that the Pascal Challenge data and 
methodology presented in this paper will receive further 
attention and will be augmented with other data sets and 
evaluation tasks providing a comprehensive testbed for 
ML approaches to IE. 
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