

ReMoDeL Data
Refinement

Data Transformations in
ReMoDeL, Part 2
Technical Report

Revision: 1.0

Date: 31 July 2022

Anthony J H Simons
Department of Computer Science
University of Sheffield

2

Contents
1. Introduction .. 4

1.1 Software Engineering Models ... 4

1.2 Transformation Chains .. 4

1.3 Data Refinement .. 5

2. Existence Dependency Graph ... 6

2.1 Existence Dependency .. 6

2.2 Dependencies and Attributes ... 7

2.3 Existence Dependency Graph Examples ... 7

2.4 Metamodel for an Existence Dependency Graph .. 9

2.5 Cycle Shop Example Model .. 11

2.6 Student Records Example Model .. 12

3. SQL Database Schema ... 14

3.1 Primary and Foreign Key Constraints ... 14

3.2 Semantic Consistency Maintenance .. 15

3.3 SQL Database Schema Examples ... 16

3.4 Metamodel for an SQL Database Schema .. 18

3.5 The Cycle Shop Example Model .. 20

3.6 The Student Records Example Model ... 23

4. Normal ERM to EDG Transformation ... 25

4.1 Mapping of Types ... 25

4.2 Mapping of Properties ... 25

4.3 The ReMoDeL Transformation Normal ERM to EDG .. 25

4.4 Normal ERM to EDG Examples ... 27

5. EDG to SQL Transformation .. 28

5.1 Mapping of Types ... 28

5.2 Mapping of Properties ... 28

5.3 Mapping of Identifiers ... 28

5.4 The ReMoDeL EDG to SQL Transformation ... 29

5.5 EDG to SQL Examples ... 32

6. Code Generation ... 33

6.1 The Visitor Interface ... 33

6.2 The MySQLWriter Implementation .. 34

3

6.3 The Generated Cycle Shop Database .. 37

6.4 The Generated Student Records Database .. 39

6.5 The Chain of Compiled Transformations .. 40

7. References .. 42

4

1. Introduction
This document describes the second part of a chain of model transformations applied to the
task of data refinement, using ReMoDeL v3, a high-level syntax for defining models and
model transformations. It assumes the reader is familiar with the ReMoDeL metamodel
language and transformation language [1]. It also assumes prior knowledge of data
modelling notations, including the UML Class Diagram [2], the “Crow’s Foot” Entity
Relationship Diagram [3] and the SQL Data Definition Language [4].

1.1 Software Engineering Models

Model-Driven Engineering (MDE) is a general strategy in software engineering that creates
and manipulates software designs at a high level using abstract models. Model-Driven
Development (MDD) is the subfield which focuses specifically on generating executable
software systems from high level designs. To do this, there must exist suitable design models
that capture relevant views of the intended software system. Each view offers a quasi-
independent perspective, an abstraction, or simplification, of some aspect of the system.

Computer Aided Software Engineering (CASE) tools have traditionally supported three main
views, constructing models that highlight data, process and time:

• The data view is usually expressed in different kinds of structural data model, such as an
Entity-Relationship Diagram [3], a simple kind of information model; or a UML Class
Diagram [2], which captures more semantic relationships.

• The process view can be expressed using a Dataflow Diagram [5] describing processes
with their inputs and outputs; or UML Activity Diagram [2] which also describes the
sequencing of processes; or a Jackson Structured Program chart [6], which describes the
detailed program block structure.

• The time view can be expressed using a traditional flowchart [7], a UML Activity
Diagram [2] or State Machine Diagram [2], both of which express ordering constraints; or
the UML Sequence Diagram [2] or Communication Diagram [2] which describe a more
detailed call-graph.

A diagram is a graphical representation of an underlying model, which captures certain
logical information. A model is constructed from elements, typically vertices, edges and
attributes, that are taken from a metamodel. Each model element is an instance of some type
defined in the metamodel. In this sense, a metamodel is “the type of” a model [1].

1.2 Transformation Chains

A model transformation is a collection of rules for transforming the elements of a source
model into the elements of a target model. A transformation may be endogenous, meaning
that the source and target models have the same metamodel type, or exogenous, meaning that
the source and target metamodels are distinct and the transformation performs a translation
from one type to the other [1].

Where the target type of one transformation is the source type for another, it is possible to
construct transformation chains. Several transformations may then be applied consecutively,
where the output of one transformation is used as the input for the next one in the sequence.
Transformation chains are employed in MDD, in which high-level abstract models are
progressively refined, via intermediate model representations, into concrete models that are

5

closer to executable code. Building such transformation chains is in fact the goal of MDD,
which seeks to find suitable refinement rules and model representations.

In a declarative transformation language, like that of ReMoDeL, each transformation is a
functional mapping from a source to a target. Therefore, when two transformations are
chained together, this is equivalent to function composition. This provides a mathematical
basis for reasoning about transformation chains. A transformation may be a simple mapping,
with one source and target, or a more complex merging, with multiple sources and one target.
A chain of mapping transformations is a linear function composition. A chain of merging
transformations is a hierarchical function composition.

1.3 Data Refinement

The general problem of combining the different high-level views of a software system has not
yet been solved. Here, we focus on the more tractable sub-problem of data refinement, the
transformation of a high-level and semantically rich data model given by the UML Class
Diagram [2], via an intermediate representation of data offered by the Entity-Relationship
Diagram [3], to a low-level model corresponding to the SQL Data Definition Language used
to define a relational database [4].

The data refinement problem is one of the better-understood problems in MDD, due to the
existence of well-known methods for normalising a data model. The chain of transformations
to be considered altogether includes the following:

• Class Diagram to ER Diagram: this first transformation maps each UML class to an
entity. Some of these are strong and others weak, if they depend on related entities
for identification. The UML semantic relationships: association, aggregation,
generalisation and composition, are mapped to simpler relationships, in which the
direction of dependency is correctly established.

• ER Diagram to Normal ER Diagram: this second transformation converts the ER
Diagram to at least third normal form (3NF+). It merges one-to-one relationships,
and splits many-to-many relationships by introducing an intermediate linker entity.
Every entity has a natural, derived, or surrogate identifier.

• Normal ER Diagram to Existence Dependency Graph: this third transformation
orders the entities by existence dependency and converts relationships into directed
references owned by the entities. These form the basis for foreign keys.

• Existence Dependency Graph to Database Schema: this fourth transformation
converts entities to tables, attributes to columns with database types, identifiers to
primary keys and references to additional columns and foreign keys. Column names
are transformed to prevent name clashes. Data deletion semantics are identified.

• Database Schema to SQL Data Definition Language: the final code generation step is
a simple translation of the Database Model to SQL. It uses a bespoke code generator
written in Java, designed according to the Visitor Design Pattern [8].

This document (part 2 of 2) covers the second half of the above transformation chain, from
the Normal ER Diagram to the SQL Data Definition Language. Partly, this is due to the need
to introduce each of the modelling notations and their ReMoDeL encodings, before
explaining the various mapping rules involved in the latter two transformations and the code-
generation step.

6

2. Existence Dependency Graph
The development of the Existence Dependency Graph (EDG) in software engineering is due
to Snoeck and Dedene [9], who demonstrated that this viewpoint is simpler and provides
greater semantic clarity than parts-wholes relationships. It is used along with an object-event
table and object state machines in the software engineering method MERODE [10], which
benefits from points of correspondence in these views to propagate consistency constraints
across models. An EDG is an object model that is already in normal form. Whereas
MERODE constructs these from first principles, we derive these after a process of traditional
data normalisation.

2.1 Existence Dependency

The notion of existence dependency is simple. Entities are arranged in a dependency graph,
connected by directed relationships, according to whether the entity at the tail of the arrow is
existence-dependent on the entity at the head. That is, the dependent entity at the tail cannot
exist, without the prior existence of the entity at the head. This also means that the lifetime of
the dependent entity must be wholly contained within the lifetime(s) of the entity (or entities)
at the head.

Figure 1: Existence Dependency Graph

Figure 1 illustrates the idea, depicting an EDG for the library domain, using a variant of the
UML class diagram notation. The graph is a DAG (directed acyclic graph), meaning that an
entity cannot depend (transitively) upon itself in a cycle, but an entity may depend on more
than one other entity. Each entity is drawn as a named rectangle, containing a list of
attributes. Each directed arrow represents an existence dependency.

For example, a BookCopy depends on a pre-existing BookTitle; and a Loan depends
on the pre-existence of both a BookCopy and a Member of the library. The lifetime of
a BookCopy cannot exceed that of its BookTitle; and the lifetime of a Loan must be
contained within the lifetimes of both the related BookCopy and Member.

7

2.2 Dependencies and Attributes

In our notation, the arrows flow from the dependent to the master entity. In Snoeck's notation
[9], dependencies are drawn as lines with different end-annotations to denote different kinds
of optionality and multiplicity. We omit this detail, partly because the head of every arrow
must always have the multiplicity of exactly one. The tail of every arrow could have any
multiplicity, but after normalisation, cannot have exactly one (in 3NF, the related entities
would have been merged). In database design, the point of identifying multiplicity is to
determine the direction of dependency, which flows from the optional- or many-side to the
one-side. This is what the EDG makes explicit.

Each dependency arrow may be treated a reference from the source to the target entity. This
is useful from the database design perspective, since it reveals into which entities a foreign
key must be placed (the source) and from which entity suitable identifying attributes must be
copied (the target). So, the EDG simplifies the relationships of ERM, ready for database
implementation. The EDG could also be converted back into a UML Class Diagram that may
more easily be mapped to and from a relational database (foreign keys map to object pointers
and vice-versa). That is, the resulting class structure closely matches the table structure.

In our notation, entities contain a list of named attributes; and any identifying attributes are
underlined. Our dependency arrows are also named. This name corresponds to the name of
the original UML end-role on the target side. We also underline this name, if the dependency
is identifying. Whereas a dependency is an indication that foreign key attributes will
eventually be copied (from target to source), an identifying dependency is also an indication
that these will also be part of a compound primary key (in the source). Snoeck [11] also
views dependencies as short-hand for foreign keys; however, she does not distinguish those
which must also serve as primary keys.

For example, when the linker Loan is eventually converted into a database table, its
compound primary key will consist of the attributes {memberID, copyID, issueDate}.
The primary key of Loan must include at least the foreign keys {memberID, copyID}
relating Loan to the entities Member and BookCopy. The inclusion of issueDate, a
local identifying attribute, comes from domain analysis, to support identification of
loans of the same book to the same borrower on different occasions.

A correspondence exists between identifying dependencies and weak entities (from ERM). In
figure 1, Loan is related by identifying dependencies copy, member respectively to Copy and
Member and it is also a weak associative entity. By contrast, BookCopy is related by a non-
identifying dependency title to BookTitle, and is not a weak entity, in the sense that it is
wholly identified by its local copyID. So, our existence dependency notation preserves the
distinction between strong and weak entities.

2.3 Existence Dependency Graph Examples

We shall develop the same two case studies from part 1 of this report [11] in the rest of this
document, to illustrate how the normalised ERM models are converted into EDG models.
Figure 2 shows the Existence Dependency Graph for the Cycle Shop case study developed in
part 1. This figure resolves all the many-to-one relationships from ERM as directed
references, representing the existence dependency of the source upon the target.

8

Figure 2: Existence Dependency Graph for the Cycle Shop

So, it is clear that a Customer will refer to an Address, and that an Order will refer to a
Customer. The dependency of Line upon Order has an underlined name, indicating that this
relationship is identifying; and this implies that Line is a weak entity. Earlier, in the ERM,
we determined that Line is a detail entity, which cannot be identified solely by its local
identifier number, but also depends on the identifier number of its master entity Order. (The
clash of names is deliberate; to be resolved by a later transformation rule).

Elsewhere in the model, there are a number of weak entities that were originally derived from
UML generalisation relationships. Bicycle, FrameSet, Handlebar and Wheel are all kinds of
Product sold in the shop. These have been converted into subtype entities, related to Product
through the identifying dependency product, which indicates that the entities are weak. Their
primary key attributes will eventually be renamed copies of the primary key attributes of
Product {brand, serial}, which also serve as the foreign key relating each subtype to the
supertype Product.

A more interesting case is Bicycle, which by UML aggregation is an assembly of FrameSet,
Handlebar and two Wheels. The translation of the aggregation made Bicycle existence
dependent upon FrameSet and HandleBar, but not upon Wheel. This is because there is only
one each of the former, which allows the creation of a reference; however, an artificial linker
BicycleMadeOfWheel was needed to link a Bicycle to more than one Wheel. In other
respects, the Bicycle assembly is correctly dependent on the parts that constitute it. A Bicycle
can be deleted without deleting any of its parts. The additional constraint is that the linker
BicycleMadeOfWheel must also be deleted in cascading fashion.

The direction of dependency for aggregation is the reverse of that for the composition
relationship between Line and Order, in which the part is existence dependent on the whole.
Deleting an Order must result in the deletion of all related Lines, in a cascading fashion. This
is how we determine the difference between UML aggregation and UML composition in the
Existence Dependency Graph. Our solution for aggregation allows the whole to depend
directly on single parts, and for these references to be made null if the part is removed or

9

deleted. This contrasts with Snoeck [9], who constructs associative entities to relate all parts
to an aggregate whole. Snoeck's approach has some attractions, but results in entities that are
related in a one-to-one fashion, which we seek to eliminate in 3NF.

Cascading deletion must also be implemented for subtype entities. Deleting a Product should
result in the automatic deletion of the related subtype instance, whose type is one of {Bicycle,
FrameSet, HandleBar, Wheel}. This can be handled directly in the database using foreign
key constraints. Deleting a Bicycle should also result in the deletion of the related Product.
This can only be achieved by explicit coding in the implementation.

Figure 3: Existence Dependency Graph for Student Records

Figure 3 shows the Existence Dependency Graph for the Student Records system. After
normalisation to 3NF+, the model contains associative entities Approval and Study, which are
existence dependent on the pairs of entities that they relate. The separate UCard entity has
been merged with Student, and LabLog is now existence dependent upon Student (instead of
upon UCard).

Dependent entities LabLog and Degree are strong entities, being self-identifying; whereas the
associative entities Approval and Study are weak entities (with identifying references). The
Session entity is also weak, with an identifying reference to Student. This reflects how
Session was originally a detail entity dependent on the master Student. There is a chain of
identifying references from Study to Session, and from Session to Student. This will have
implications for the creation of foreign keys that also serve as part of the primary keys for
these two entities.

2.4 Metamodel for an Existence Dependency Graph

Figure 4 shows a metamodel for the Existence Dependency Graph. The main difference
between this model and the earlier metamodels for UML and ERM are that all relationships
are now encoded as references that are owned by an Entity, rather than as separate edges that
refer to their source and target vertices.

10

metamodel EDG {
 concept Named {
 attribute name : String
 }
 concept Type inherit Named {
 }
 concept BasicType inherit Type {
 }
 concept Entity inherit Type {
 component properties : Property{}
 operation attributes : Attribute{} {
 properties.select(prop | prop.simple)
 }
 operation references : Reference{} {
 properties.select(prop | not prop.simple)
 }
 operation simpleIDs : Attribute{} {
 self.attributes.select(prop | prop.id)
 }
 operation complexIDs : Reference{} {
 self.references.select(prop | prop.id)
 }
 }
 concept Typed inherit Named {
 reference type : Type
 }
 concept Property inherit Typed {
 attribute id : Boolean
 operation simple : Boolean {
 false
 }
 }
 concept Attribute inherit Property {
 reference type : BasicType
 operation simple : Boolean {
 true
 }
 operation surrogate : Boolean {
 name.endsWith("ID")
 }
 }
 concept Reference inherit Property {
 reference type : Entity
 attribute kindOf : Boolean
 attribute partOf : Boolean
 attribute madeOf : Boolean
 }
 concept Diagram inherit Named {
 component basicTypes : BasicType{}
 component entities : Entity{}
 }
}

Figure 4: A metamodel for the Existence Dependency Graph

Using the ReMoDeL textual syntax for metamodels [1], figure 4 describes Named things
having a name: String. Type is a kind of Named thing that is subdivided into BasicType and
Entity. The Typed concept, a kind of Named thing, refers to a type: Type. A Property is a
kind of Typed concept which may be identifying. From this are derived Attribute (whose type
is specialised as a BasicType), and Reference (whose type is specialised as an Entity).

The generalisation of Property in this metamodel allows an Entity to consist of a collection of
Properties; and then to provide operations that filter this to yield sets of Attributes or
References, using the ability of select to type-cast to a more specific type. Property also

11

specifies via the Boolean id attribute whether the Property (Attribute, or Reference) is
identifying.

Apart from this, the metamodel is very simple. Reference also specifies whether it was
derived from earlier generalisation, aggregation or composition in UML, using the Boolean
kindOf, madeOf or partOf attributes. The top-level enclosing Diagram concept simply
contains sets of BasicTypes and Entities.

2.5 Cycle Shop Example Model

Figure 5 encodes the Cycle Shop case study from figure 2 in the ReMoDeL textual syntax for
models [1]. This model was translated automatically from a normalised ERM model, using a
transformation to be presented in section 4. It contains a single Diagram consisting of sets of
BasicTypes and Entities, where each Entity consists of a set of heterogeneous Properties,
some of which are identifying, and which are either Attributes or References.

model edg1 : EDG {
 d1 : Diagram(name = "Cycle Shop", basicTypes = BasicType{
 b1 : BasicType(name = "Boolean"),
 b2 : BasicType(name = "Integer"),
 b3 : BasicType(name = "Natural"),
 b4 : BasicType(name = "Real"),
 b5 : BasicType(name = "String"),
 b6 : BasicType(name = "Date"),
 b7 : BasicType(name = "Money")
 }, entities = Entity{
 e1 : Entity(name = "Address", properties = Property{
 a1 : Attribute(name = "house", type = b5, id = true),
 a2 : Attribute(name = "postcode", type = b5, id = true),
 a3 : Attribute(name = "road", type = b5),
 a4 : Attribute(name = "city", type = b5)
 }),
 e2 : Entity(name = "Customer", properties = Property{
 a5 : Attribute(name = "customerID", type = b2, id = true),
 a6 : Attribute(name = "forename", type = b5),
 a7 : Attribute(name = "surname", type = b5),
 r1 : Reference(name = "address", type = e1)
 }),
 e3 : Entity(name = "Order", properties = Property{
 a8 : Attribute(name = "number", type = b2, id = true),
 a9 : Attribute(name = "date", type = b6),
 r2 : Reference(name = "customer", type = e2)
 }),
 e4 : Entity(name = "Product", properties = Property{
 a10 : Attribute(name = "brand", type = b5, id = true),
 a11 : Attribute(name = "serial", type = b2, id = true),
 a12 : Attribute(name = "name", type = b5),
 a13 : Attribute(name = "price", type = b7)
 }),
 e5 : Entity(name = "FrameSet", properties = Property{
 a14 : Attribute(name = "size", type = b2),
 a15 : Attribute(name = "shocks", type = b1),
 r3 : Reference(name = "product", type = e4, id = true, kindOf = true)
 }),
 e6 : Entity(name = "Handlebar", properties = Property{
 a16 : Attribute(name = "style", type = b5),
 r4 : Reference(name = "product", type = e4, id = true, kindOf = true)
 }),
 e7 : Entity(name = "Wheel", properties = Property{
 a17 : Attribute(name = "diameter", type = b2),
 a18 : Attribute(name = "tyre", type = b5),
 r5 : Reference(name = "product", type = e4, id = true, kindOf = true)
 }),

12

 e8 : Entity(name = "Line", properties = Property{
 a19 : Attribute(name = "number", type = b2, id = true),
 a20 : Attribute(name = "quantity", type = b2),
 a21 : Attribute(name = "cost", type = b7),
 r6 : Reference(name = "order", type = e3, id = true, partOf = true),
 r7 : Reference(name = "item", type = e4)
 }),
 e9 : Entity(name = "Bicycle", properties = Property{
 r8 : Reference(name = "product", type = e4, id = true, kindOf = true),
 r9 : Reference(name = "frameSet", type = e5, madeOf = true),
 r10 : Reference(name = "handlebar", type = e6, madeOf = true)
 }),
 e10 : Entity(name = "BicycleMadeOfWheel", properties = Property{
 r11 : Reference(name = "bicycle", type = e9, id = true, partOf = true),
 r12 : Reference(name = "wheel", type = e7, id = true, partOf = true)
 })
 })
}

Figure 5: The EDG model for the Cycle Shop in ReMoDeL syntax.

Some of the References are marked as encoding kind-of, made-of or part-of relationships.
This shows how all of the UML semantic relationships (generalisation, aggregation,
composition, association) have been appropriately tracked by the EDG. All References are
named after the original end-role names.

2.6 Student Records Example Model

Figure 6 encodes the second case study, which is for the Student Records system shown in
figure 3, in the ReMoDeL textual syntax for models [1]. This shows the merger of UCard
attributes into Student, and the creation of the two associative entities for Study and Approval,
which each have a pair of identifying references to their related entities. The detail entity
Session has an identifying reference to Student. Other references are non-identifying, so will
eventually yield foreign keys, rather than primary and foreign keys.

model edg2 : EDG {
 d1 : Diagram(name = "Student Records", basicTypes = BasicType{
 b1 : BasicType(name = "Boolean"),
 b2 : BasicType(name = "Integer"),
 b3 : BasicType(name = "Natural"),
 b4 : BasicType(name = "Real"),
 b5 : BasicType(name = "String"),
 b6 : BasicType(name = "Date"),
 b7 : BasicType(name = "Time"),
 b8 : BasicType(name = "Status")
 }, entities = Entity{
 e1 : Entity(name = "Department", properties = Property{
 a1 : Attribute(name = "code", type = b5, id = true),
 a2 : Attribute(name = "name", type = b5)
 }),
 e2 : Entity(name = "Degree", properties = Property{
 a3 : Attribute(name = "code", type = b5, id = true),
 a4 : Attribute(name = "name", type = b5),
 r1 : Reference(name = "department", type = e1)
 }),
 e3 : Entity(name = "Module", properties = Property{
 a5 : Attribute(name = "code", type = b5, id = true),
 a6 : Attribute(name = "name", type = b5),
 a7 : Attribute(name = "credits", type = b2)
 }),
 e4 : Entity(name = "Student", properties = Property{
 a8 : Attribute(name = "number", type = b2, id = true),
 a9 : Attribute(name = "title", type = b5),
 a10 : Attribute(name = "forename", type = b5),

13

 a11 : Attribute(name = "surname", type = b5),
 a12 : Attribute(name = "status", type = b8),
 a13 : Attribute(name = "uCardNumber", type = b2),
 a14 : Attribute(name = "uCardExpiry", type = b6),
 r2 : Reference(name = "degree", type = e2)
 }),
 e5 : Entity(name = "LabLog", properties = Property{
 a15 : Attribute(name = "date", type = b6, id = true),
 a16 : Attribute(name = "enter", type = b7, id = true),
 a17 : Attribute(name = "exit", type = b7),
 r3 : Reference(name = "student", type = e4)
 }),
 e6 : Entity(name = "Approval", properties = Property{
 r4 : Reference(name = "module", type = e3, id = true),
 r5 : Reference(name = "degree", type = e2, id = true)
 }),
 e7 : Entity(name = "Session", properties = Property{
 a18 : Attribute(name = "year", type = b6, id = true),
 a19 : Attribute(name = "level", type = b2),
 r6 : Reference(name = "student", type = e4, id = true, partOf = true)
 }),
 e8 : Entity(name = "Study", properties = Property{
 a20 : Attribute(name = "grade", type = b2),
 a21 : Attribute(name = "resit", type = b2),
 r7 : Reference(name = "session", type = e7, id = true),
 r8 : Reference(name = "module", type = e3, id = true)
 })
 })
}}

Figure 6: The EDG model for the Student Records in ReMoDeL syntax.

One aspect that is not immediately obvious in the two models in figures 5 and 6 is that the
Entities have been sorted in order of existence dependency, such that later Entities depend on
earlier Entities. This does not affect the semantics of the model, but it does improve the
presentation. All Reference objects refer to their Entity objects via a ReMoDeL object
identifier. On first occurrence, each object identifier is expanded to a full definition of the
object in question. So, the ordering ensures that every Entity is encountered and defined
before any Reference refers to it. This avoids inline expansion of Entity definitions inside
Reference types.

14

3. SQL Database Schema
The SQL Database Schema is a novel diagrammatic representation of the SQL data definition
language [4]. It is intended as the model from which a simple code generator could generate
the statements in SQL to define a complete database, with suitable primary keys and foreign
keys, with their related constraints. We base the SQL Database Schema on the Existence
Dependency Graph, with additional details of the names and types of foreign key columns.

Figure 7: SQL Database Schema

Figure 7 illustrates the idea for this notation. The tables of the database are depicted as
named rectangles, containing lists of columns (attributes), which now have basic types
commonly found in databases, along with a maximum field width. Underlined columns will
form part of the primary key for the table. Foreign key columns are grouped in separate
partitions, from which references flow to target the table which is referenced. The foreign
key columns so grouped must correspond to a similar set of primary key columns found in
the referenced table. Any given column may be part of a primary key, part of a foreign key,
or both. Only one partition exists, with no outgoing references. This contains the local
columns of the table which are not part of any foreign key.

3.1 Primary and Foreign Key Constraints

The primary key consists of one or more columns whose values, taken together, uniquely
identify that entity, which corresponds to a row in a database table. A foreign key consists of
a copied set of columns that correspond to a primary key in another table. Terminology
about primary and foreign keys includes the following:

• Natural key – is a column naturally occurring in the domain of discourse, which
uniquely identifies the entity, such as the isbn of a BookTitle.

• Surrogate key – is an artificially generated column, where no natural key exists,
whose value uniquely identifies the entity, such as the copyID of a BookCopy.

15

• Compound key – is a set of columns, whose values taken together uniquely identify
the entity, such as the house and postcode of an Address.

• Primary key – may be a single natural key, a surrogate key, or a compound key,
which uniquely identifies the entity (or table row).

• Foreign key – is a (possibly renamed) copy of a primary key in another table, whose
values correspond to the values of the primary key.

A primary key is subject to two constraints (entity integrity):

• No column used as part of the primary key may have a null value.
• No two distinct table rows may have the same value for the primary key.

The first constraint can be enforced by code generation. The second constraint can only be
applied during usage of the generated database, so is out of scope here. (If violated, the
duplicated table rows with the same key would be merged).

A foreign key is subject to a constraint (referential integrity):

• If a foreign key's columns have non-null values, there must be a corresponding
primary key, whose columns have the same values, in the referenced table.

Databases seek to prevent deleting a row in a master table, while there are still foreign keys in
dependent tables which refer to it. If this were allowed, the foreign keys would become
invalid, dangling references to data that no longer exists. By default, databases prevent this
by rolling back transactions that would break referential integrity.

Normally, the rows in such dependent tables represent entities that are existence dependent
on the row in the master table. It is normally expected that their lifetime is shorter than that
of the master row. So, the behaviour of blocking early deletion of the master row is, in
general, the right constraint to enforce. But there are other possibilities.

3.2 Semantic Consistency Maintenance

There are occasions when it is desirable for a database to take a different action. In a
composition relationship, many detail entities depend for their existence on a master entity.
We may wish to delete the whole cluster of instances at the same time. When deleting a
master table row on which one or more detail table rows depend, then these should also be
deleted in a cascading fashion.

Similarly, in a generalisation relationship, a subtype entity depends for its existence on a
supertype entity. We may wish to delete the chain of subtype instances at the same time.
When deleting a supertype table row on which some subtype table row depends, the subtype
row should also be deleted in a cascading fashion (and this would proceed transitively, in
more elaborate generalisation hierarchies).

However, in an aggregation relationship, in which a whole depends upon a collection of
parts, we will not want to delete the parts along with the whole, nor the whole if one or more
parts were deleted. We may wish to disassemble an aggregate whole and reassemble it with
other parts, which exist independently. This means that it must be possible to set foreign
keys to null in a table row denoting an aggregate entity.

These considerations give rise to the following database constraints:

16

• Generalisation – in a subtype entity, the foreign key referring to the supertype entity
must have the constraint “on delete cascade” to ensure that the subtype is deleted
when the supertype is deleted.

• Composition – in a detail entity, the foreign key referring to the master entity must
have the constraint “on delete cascade” to ensure that the detail is deleted when the
master is deleted.

• Aggregation – in an aggregate entity, the foreign keys referring to the parts must have
the constraint “on delete set null” to maintain the referential integrity of the aggregate
entity.

• Association (1) – in an associative entity, no explicit constraint is placed on foreign
keys, which is equivalent to the “on delete restrict” option, which ensures that no
master entity can be deleted while the associative entity references it.

• Association (2) – in an associative entity linking an aggregate whole to a part, the
constraint “on delete cascade” is placed on both foreign keys, to ensure that if either
the part or the whole is deleted, the associative entity will also be deleted.

The difference between the two rules for associations comes from different expectations
about lifetimes. A regular associative entity is expected to have a shorter lifetime than its
masters, whereas this is not the case for an aggregation, in which either the part or whole
could be detached, resulting in a need to delete the associative entity.

3.3 SQL Database Schema Examples

We continue with the case studies introduced in section 2.3, to show how these would look in
our proposed SQL Database Schema notation. Figure 8 illustrates the SQL conversion of the
Cycle Shop case study, shown earlier as the Existence Dependency Graph in figure 2.

Figure 8: SQL Database Schema for the Cycle Shop

All EDG entities have been converted into SQL tables, with all primary and foreign keys now
explicit. All simple types are now database types. All strong entities have either a simple, or

17

a compound key, shown by the underlining of key columns. Some primary keys are natural,
such as the compound key in Address. Other primary keys are surrogate, such as the simple
key in Customer. All weak entities have primary keys that depend in part on the primary key
of a referenced entity. These key columns are both part of the foreign key referring to the
other entity, and part of the primary key of the weak entity.

In particular, the detail entity Line has a compound primary key consisting of the foreign key
orderNumber and the local key column number. The subtype entity Bicycle has a primary
key consisting of the compound foreign key {productName, productSerial} relating it to its
supertype Product. The linker entity BicycleMadeOfWheel has a compound primary key
consisting of the two compound foreign keys relating it to Bicycle and Wheel.

In figure 9, we introduce a notation for consistency maintenance rules. Where a reference to
another table has a circle adornment containing a cross, this indicates cascading deletion. If
the entity instance (viz. table row) at the head is deleted, then the corresponding entity
instance(s) (viz. table rows) at the tail of the reference must also be deleted. Where a
reference to another table has a plain circle adornment, this indicates setting the reference to
null. If the entity instance (viz. table row) at the head is deleted, then the corresponding
foreign key columns at the tail of the reference must be set to null. Where a reference has no
adornment, this indicates the default semantics, meaning that the head entity may not be
deleted while any tail entity exists.

Figure 9: SQL Database Schema for the Student Records

Figure 9 illustrates the SQL Database Schema conversion of the Student Records case study,
shown earlier as the Existence Dependency Graph in figure 3. All EDG entities have been
converted into SQL tables, with all primary and foreign keys now explicit. Basic types have
been converted into suitable SQL basic types.

In particular, the String and Integer types have been mapped respectively to the default SQL
choices VARCHAR(255) and INTEGER(11), to allow generous width strings and maximum
length integers. A mapping rule that was more sensitive to field names, as well as their types,

18

might be able to select a shorter field width for attributes such as code: String. The other
mapped types DATE(10) and TIME(8) types have been given suitable field widths, and the
enumerated type Status has been mapped to a short string-representation, VARCHAR(10).
SQL does support enumerated types, but these must be declared with all enumerated values,
which our BasicType has not captured.

Foreign keys are correctly generated in Student, Degree and LabLog, which are distinctly
renamed copies of the primary keys of the related entities. The renaming rule creates a name
for each foreign key column by prefixing it with the name of the reference to the entity
owning the copied primary key. In figure 8, this proved critical when distinguishing the
brand and serial of a FrameSet and those of a Handlebar in Bicycle. We discuss this further
in section 3.5.

Foreign keys are also correctly marked as primary keys in associative entities Approval and
Study. One point of subtlety is that the associative entity Study depends on Session and on
Module; and the detail entity Session depends in turn on Student. Session has correctly
acquired the compound key for a detail entity {studentNumber, year}, which includes one
foreign key. Study has also correctly acquired the compound key for an associative entity,
consisting of both the foreign keys {moduleCode, sessionNumber, sessionYear}. All
references from associative entities have the default restriction preventing deletion of their
related entities. The reference from the detail entity Session to Student is marked with a
cascading deletion adornment.

3.4 Metamodel for an SQL Database Schema

Figure 10, which extends over two pages, shows a metamodel for an SQL Database Schema.
Using the ReMoDeL textual syntax for metamodels [1], it describes Named things having a
name: String. Type is a kind of Named thing that is subdivided into BasicType and
TableType. The Typed concept, a kind of Named thing, refers to a type: Type. Its derived
concepts include Column (whose type is specialised as a BasicType) and SearchKey (whose
type is specialised as a TableType). The specialisations of SearchKey include PrimaryKey
and ForeignKey.

A TableType consists of a set of Columns and a set of SearchKeys, which is a heterogeneous
set containing exactly one PrimaryKey and zero or more ForeignKeys. TableType provides
filtering operations to access the only PrimaryKey, and to select a (possibly empty) set of
ForeignKeys. To aid in this, the SearchKey defines default operations isPrimary, isForeign,
which are selectively redefined in each subtype concept to discriminate keys of the
appropriate type.

The Column concept is a named and typed component of a TableType. It defines a field
width attribute, which specifies the maximum number of characters allocated to the text
representation of the column’s value. Furthermore, it defines two Boolean valued attributes:
notNull, to specify when a non-null value must be given for this column, and autoInc, to
specify when the integer value of this column should be automatically incremented.

SearchKey defines features common to PrimaryKey and ForeignKey, including a reference to
the type to which the key refers, and a reference to a set of columns that constitute the key. In
PrimaryKey, the columns refer to the primary key identifiers. In ForeignKey, the type refers
to the referenced TableType, and the columns refer to the foreign key columns. ForeignKey
also refers to a remote set of columns, the matching primary key identifiers in the referenced

19

TableType. ForeignKey defines two Boolean valued attributes: cascade, to specify that a
cascading delete is required after deleting the referenced table row, and setNull, to specify
that the local foreign key columns should have their values set to null.

Database defines the top-level root concept of this model. It consists of a set of BasicTypes
and a set of TableTypes. All of the inter-table referencing has now been captured in
ForeignKeys that are components of a given TableType.

metamodel SQL {
 concept Named {
 attribute name : String
 }
 concept Typed inherit Named {
 reference type : Type
 }
 concept Type inherit Named {
 }
 concept BasicType inherit Type {
 operation accept(visitor : Visitor) : Boolean {
 visitor.visitBasic(self)
 }
 }
 concept TableType inherit Type {
 component columns : Column{}
 component keys : SearchKey{}
 operation primary : PrimaryKey {
 keys.detect(key | key.isPrimary)
 }
 operation foreign : ForeignKey{} {
 keys.select(key | key.isForeign)
 }
 operation accept(visitor : Visitor) : Boolean {
 visitor.visitTable(self)
 }
 }
 concept Column inherit Typed {
 reference type : BasicType
 attribute width : Integer
 attribute notNull : Boolean
 attribute autoInc : Boolean
 operation accept(visitor : Visitor) : Boolean {
 visitor.visitColumn(self)
 }
 }
 concept SearchKey inherit Typed {
 reference type : TableType
 reference columns : Column{}
 operation isPrimary : Boolean {
 false
 }
 operation isForeign : Boolean {
 false
 }
 operation accept(visitor : Visitor) : Boolean {
 false
 }
 }
 concept PrimaryKey inherit SearchKey {
 operation isPrimary : Boolean {
 true
 }
 operation accept(visitor : Visitor) : Boolean {
 visitor.visitPrimary(self)
 }
 }

20

 concept ForeignKey inherit SearchKey {
 reference remote : Column{}
 attribute cascade : Boolean
 attribute setNull : Boolean
 operation isForeign : Boolean {
 true
 }
 operation accept(visitor : Visitor) : Boolean {
 visitor.visitForeign(self)
 }
 }
 concept Database inherit Named {
 component basicTypes : BasicType{}
 component tableTypes : TableType{}
 operation accept(visitor : Visitor) : Boolean {
 visitor.visitDatabase(self)
 }
 }
 concept Visitor {
 operation visitDatabase(db : Database) : Boolean {
 false
 }
 operation visitBasic(type : BasicType) : Boolean {
 false
 }
 operation visitTable(type : TableType) : Boolean {
 false
 }
 operation visitColumn(col : Column) : Boolean {
 false
 }
 operation visitPrimary(key : PrimaryKey) : Boolean {
 false
 }
 operation visitForeign(key : ForeignKey) : Boolean {
 false
 }
 }
}

Figure 10: A metamodel for the SQL Database Schema

Finally, this metamodel defines a concept called Visitor, a feature which is present in any
metamodel from which it is expected that code will be generated. This follows the Visitor
Design Pattern [8] for traversing a tree-like data structure, in this case for the sake of code
generation. This pattern is a collaboration between the metamodel elements and the Visitor.
Metamodel elements define a standard operation with the signature: accept(Visitor):
Boolean, which in turn invokes a specific operation of the Visitor to process that kind of
element. The operations are placeholders; Visitor specifies the interface to be used by the
eventual code generator, which will generate actual SQL data definitions from the model.
We return to this in section 6 which discusses code generation.

3.5 The Cycle Shop Example Model

Figure 11 encodes the Cycle Shop database schema, shown above in figure 8, in the
ReMoDeL textual syntax for models [1]. This model was translated automatically from an
Existence Dependency Graph model, using a transformation to be presented in section 5. The
database schema is presented in order of existence dependency, which aids in the legibility of
the model. All TableTypes are defined before being referenced as types in ForeignKeys. All
Columns are defined, before being referenced as columns or remote columns in PrimaryKey

21

or ForeignKey structures. This is achieved partly through ordering the source EDG model,
and partly through the ordered structure of TableType.

model sql1 : SQL {
 d1 : Database(name = "Cycle Shop", basicTypes = BasicType{
 b1 : BasicType(name = "BOOLEAN"),
 b2 : BasicType(name = "INTEGER"),
 b3 : BasicType(name = "INT UNSIGNED"),
 b4 : BasicType(name = "DOUBLE"),
 b5 : BasicType(name = "VARCHAR"),
 b6 : BasicType(name = "DATE"),
 b7 : BasicType(name = "MONEY")
 }, tableTypes = TableType{
 t1 : TableType(name = "Address", columns = Column{
 c1 : Column(name = "house", type = b5, width = 255, notNull = true),
 c2 : Column(name = "postcode", type = b5, width = 255, notNull = true),
 c3 : Column(name = "road", type = b5, width = 255),
 c4 : Column(name = "city", type = b5, width = 255)
 }, keys = SearchKey{
 p1 : PrimaryKey(columns = Column{c1, c2})
 }),
 t2 : TableType(name = "Customer", columns = Column{
 c5 : Column(name = "addressHouse", type = b5, width = 255),
 c6 : Column(name = "addressPostcode", type = b5, width = 255),
 c7 : Column(name = "customerID", type = b2, width = 11,
 notNull = true, autoInc = true),
 c8 : Column(name = "forename", type = b5, width = 255),
 c9 : Column(name = "surname", type = b5, width = 255)
 }, keys = SearchKey{
 p2 : PrimaryKey(columns = Column{c7}),
 f1 : ForeignKey(type = t1, columns = Column{c5, c6},
 remote = Column{c1, c2})
 }),
 t3 : TableType(name = "Order", columns = Column{
 c10 : Column(name = "customerID", type = b2, width = 11),
 c11 : Column(name = "number", type = b2, width = 11, notNull = true),
 c12 : Column(name = "date", type = b6, width = 10)
 }, keys = SearchKey{
 p3 : PrimaryKey(columns = Column{c11}),
 f2 : ForeignKey(type = t2, columns = Column{c10}, remote = Column{c7})
 }),
 t4 : TableType(name = "Product", columns = Column{
 c13 : Column(name = "brand", type = b5, width = 255, notNull = true),
 c14 : Column(name = "serial", type = b2, width = 11, notNull = true),
 c15 : Column(name = "name", type = b5, width = 255),
 c16 : Column(name = "price", type = b7, width = 17)
 }, keys = SearchKey{
 p4 : PrimaryKey(columns = Column{c13, c14})
 }),
 t5 : TableType(name = "FrameSet", columns = Column{
 c17 : Column(name = "productBrand", type = b5, width = 255,
 notNull = true),
 c18 : Column(name = "productSerial", type = b2, width = 11,
 notNull = true),
 c19 : Column(name = "size", type = b2, width = 11),
 c20 : Column(name = "shocks", type = b1, width = 5)
 }, keys = SearchKey{
 p5 : PrimaryKey(columns = Column{c17, c18}),
 f3 : ForeignKey(type = t4, columns = Column{c17, c18},
 remote = Column{c13, c14}, cascade = true)
 }),
 t6 : TableType(name = "Handlebar", columns = Column{
 c21 : Column(name = "productBrand", type = b5, width = 255,
 notNull = true),
 c22 : Column(name = "productSerial", type = b2, width = 11,
 notNull = true),
 c23 : Column(name = "style", type = b5, width = 255)

22

 }, keys = SearchKey{
 p6 : PrimaryKey(columns = Column{c21, c22}),
 f4 : ForeignKey(type = t4, columns = Column{c21, c22},
 remote = Column{c13, c14}, cascade = true)
 }),
 t7 : TableType(name = "Wheel", columns = Column{
 c24 : Column(name = "productBrand", type = b5, width = 255,
 notNull = true),
 c25 : Column(name = "productSerial", type = b2, width = 11,
 notNull = true),
 c26 : Column(name = "diameter", type = b2, width = 11),
 c27 : Column(name = "tyre", type = b5, width = 255)
 }, keys = SearchKey{
 p7 : PrimaryKey(columns = Column{c24, c25}),
 f5 : ForeignKey(type = t4, columns = Column{c24, c25},
 remote = Column{c13, c14}, cascade = true)
 }),
 t8 : TableType(name = "Line", columns = Column{
 c28 : Column(name = "orderNumber", type = b2, width = 11, notNull = true),
 c29 : Column(name = "itemBrand", type = b5, width = 255),
 c30 : Column(name = "itemSerial", type = b2, width = 11),
 c31 : Column(name = "number", type = b2, width = 11, notNull = true),
 c32 : Column(name = "quantity", type = b2, width = 11),
 c33 : Column(name = "cost", type = b7, width = 17)
 }, keys = SearchKey{
 p8 : PrimaryKey(columns = Column{c28, c31}),
 f6 : ForeignKey(type = t3, columns = Column{c28},
 remote = Column{c11}, cascade = true),
 f7 : ForeignKey(type = t4, columns = Column{c29, c30},
 remote = Column{c13, c14})
 }),
 t9 : TableType(name = "Bicycle", columns = Column{
 c34 : Column(name = "productBrand", type = b5, width = 255,
 notNull = true),
 c35 : Column(name = "productSerial", type = b2, width = 11,
 notNull = true),
 c36 : Column(name = "frameSetBrand", type = b5, width = 255),
 c37 : Column(name = "frameSetSerial", type = b2, width = 11),
 c38 : Column(name = "handlebarBrand", type = b5, width = 255),
 c39 : Column(name = "handlebarSerial", type = b2, width = 11)
 }, keys = SearchKey{
 p9 : PrimaryKey(columns = Column{c34, c35}),
 f8 : ForeignKey(type = t4, columns = Column{c34, c35},
 remote = Column{c13, c14}, cascade = true),
 f9 : ForeignKey(type = t5, columns = Column{c36, c37},
 remote = Column{c17, c18}, setNull = true),
 f10 : ForeignKey(type = t6, columns = Column{c38, c39},
 remote = Column{c21, c22}, setNull = true)
 }),
 t10 : TableType(name = "BicycleMadeOfWheel", columns = Column{
 c40 : Column(name = "bicycleBrand", type = b5, width = 255,
 notNull = true),
 c41 : Column(name = "bicycleSerial", type = b2, width = 11,
 notNull = true),
 c42 : Column(name = "wheelBrand", type = b5, width = 255, notNull = true),
 c43 : Column(name = "wheelSerial", type = b2, width = 11, notNull = true)
 }, keys = SearchKey{
 p10 : PrimaryKey(columns = Column{c40, c41, c42, c43}),
 f11 : ForeignKey(type = t9, columns = Column{c40, c41},
 remote = Column{c34, c35}, cascade = true),
 f12 : ForeignKey(type = t7, columns = Column{c42, c43},
 remote = Column{c24, c25}, cascade = true)
 })
 })
}

Figure 12: the SQL Database Schema for the Cycle Shop

23

One aspect worth highlighting is the need for a sophisticated renaming strategy, where
specific columns are referred to in multiple locations. The most complex example of this is
in the table Bicycle, which refers in three different ways to columns {brand, serial} originally
defined in Product. Since Bicycle is a subtype of Product, its primary key is also the foreign
key {productBrand, productSerial} referring to the supertype. The one-step renaming rule
prefixes the column names accordingly, to indicate their provenance. This is also the case for
FrameSet and Handlebar, which are also subtypes of Product.

Now, Bicycle is an aggregate of FrameSet and HandleBar, so a two-step renaming rule is
required, to distinguish the additional foreign keys {frameSetBrand, frameSetSerial}
referring to FrameSet, and {handelbarBrand, handlebarSerial} referring to Handlebar, from
each other and from{productBrand, productSerial} referring to Product. The two-step rule
derives the references to Product, but prefixes the column names according to their local
(rather than distant) provenance. This can only be achieved because we preserved the notion
of named references in the EDG right up until the transformation to SQL (rather than
expanding out foreign key columns in earlier transformations).

3.6 The Student Records Example Model

Figure 13 encodes the Student Records database schema, shown above in figure 9, in the
ReMoDeL textual syntax for models [1]. The main feature here is the way in which the linker
tables Study and Approval make use of their columns appropriately as foreign keys and again
as compound primary keys.

model sql2 : SQL {
 d1 : Database(name = "Student Records", basicTypes = BasicType{
 b1 : BasicType(name = "BOOLEAN"),
 b2 : BasicType(name = "INTEGER"),
 b3 : BasicType(name = "INT UNSIGNED"),
 b4 : BasicType(name = "DOUBLE"),
 b5 : BasicType(name = "VARCHAR"),
 b6 : BasicType(name = "DATE"),
 b7 : BasicType(name = "TIME"),
 b8 : BasicType(name = "VARCHAR")
 }, tableTypes = TableType{
 t1 : TableType(name = "Department", columns = Column{
 c1 : Column(name = "code", type = b5, width = 255, notNull = true),
 c2 : Column(name = "name", type = b5, width = 255)
 }, keys = SearchKey{
 p1 : PrimaryKey(columns = Column{c1})
 }),
 t2 : TableType(name = "Degree", columns = Column{
 c3 : Column(name = "departmentCode", type = b5, width = 255),
 c4 : Column(name = "code", type = b5, width = 255, notNull = true),
 c5 : Column(name = "name", type = b5, width = 255)
 }, keys = SearchKey{
 p2 : PrimaryKey(columns = Column{c4}),
 f1 : ForeignKey(type = t1, columns = Column{c3}, remote = Column{c1})
 }),
 t3 : TableType(name = "Module", columns = Column{
 c6 : Column(name = "code", type = b5, width = 255, notNull = true),
 c7 : Column(name = "name", type = b5, width = 255),
 c8 : Column(name = "credits", type = b2, width = 11)
 }, keys = SearchKey{
 p3 : PrimaryKey(columns = Column{c6})
 }),
 t4 : TableType(name = "Student", columns = Column{
 c9 : Column(name = "degreeCode", type = b5, width = 255),
 c10 : Column(name = "number", type = b2, width = 11, notNull = true),
 c11 : Column(name = "title", type = b5, width = 255),

24

 c12 : Column(name = "forename", type = b5, width = 255),
 c13 : Column(name = "surname", type = b5, width = 255),
 c14 : Column(name = "status", type = b8, width = 10),
 c15 : Column(name = "uCardNumber", type = b2, width = 11),
 c16 : Column(name = "uCardExpiry", type = b6, width = 10)
 }, keys = SearchKey{
 p4 : PrimaryKey(columns = Column{c10}),
 f2 : ForeignKey(type = t2, columns = Column{c9}, remote = Column{c4})
 }),
 t5 : TableType(name = "LabLog", columns = Column{
 c17 : Column(name = "studentNumber", type = b2, width = 11),
 c18 : Column(name = "date", type = b6, width = 10, notNull = true),
 c19 : Column(name = "enter", type = b7, width = 8, notNull = true),
 c20 : Column(name = "exit", type = b7, width = 8)
 }, keys = SearchKey{
 p5 : PrimaryKey(columns = Column{c18, c19}),
 f3 : ForeignKey(type = t4, columns = Column{c17}, remote = Column{c10})
 }),
 t6 : TableType(name = "Approval", columns = Column{
 c21 : Column(name = "moduleCode", type = b5, width = 255, notNull = true),
 c22 : Column(name = "degreeCode", type = b5, width = 255, notNull = true)
 }, keys = SearchKey{
 p6 : PrimaryKey(columns = Column{c21, c22}),
 f4 : ForeignKey(type = t3, columns = Column{c21}, remote = Column{c6}),
 f5 : ForeignKey(type = t2, columns = Column{c22}, remote = Column{c4})
 }),
 t7 : TableType(name = "Session", columns = Column{
 c23 : Column(name = "studentNumber", type = b2, width = 11,
 notNull = true),
 c24 : Column(name = "year", type = b6, width = 10, notNull = true),
 c25 : Column(name = "level", type = b2, width = 11)
 }, keys = SearchKey{
 p7 : PrimaryKey(columns = Column{c23, c24}),
 f6 : ForeignKey(type = t4, columns = Column{c23}, remote = Column{c10},
 cascade = true)
 }),
 t8 : TableType(name = "Study", columns = Column{
 c26 : Column(name = "sessionNumber", type = b2, width = 11,
 notNull = true),
 c27 : Column(name = "sessionYear", type = b6, width = 10, notNull = true),
 c28 : Column(name = "moduleCode", type = b5, width = 255, notNull = true),
 c29 : Column(name = "grade", type = b2, width = 11),
 c30 : Column(name = "resit", type = b2, width = 11)
 }, keys = SearchKey{
 p8 : PrimaryKey(columns = Column{c26, c27, c28}),
 f7 : ForeignKey(type = t7, columns = Column{c26, c27},
 remote = Column{c23, c24}),
 f8 : ForeignKey(type = t3, columns = Column{c28}, remote = Column{c6})
 })
 })
}

Figure 13: the SQL Database Schema for Student Records

In figures 12 and 13, every detail type (Line, Session) annotates its foreign key reference to
its master type with a cascade instruction. Likewise, every subtype (Bicycle, FrameSet,
Handlebar and Wheel) annotates its foreign key reference to its supertype with a cascade
instruction. The aggregate references from Bicycle to FrameSet and Handlebar are annotated
with a set null instruction. Associative linker tables (Approval, Study) have no annotations,
meaning that they will enforce the default restrict constraint, but the aggregating linker
BicycleMadeOfWheel has references annotated with a cascade instruction.

25

4. Normal ERM to EDG Transformation
The transformation from a normalised Entity Relationship Model to an Existence
Dependency Graph must perform a number of mappings from the ERM metamodel to the
EDG metamodel. This kind of transformation is exogeneous, also described as a translation.
The source metamodel for an Entity Relationship Model was defined in part 1 of this report
[11] in section 3; and the EDG metamodel was presented in section 2 of part 2 (the current
document). This transformation is fairly simple and straightforward.

4.1 Mapping of Types

Every ERM basic type must be mapped to a similar basic type in the EDG. This follows a
similar strategy to previous basic type transformations. Types with the same names are
created, although these are distinct and belong to the target metamodel.

Every ERM entity must be mapped to an EDG entity, which has the same name, a mapped
set of attributes, and possibly a mapped set of references. The latter are created by filtering a
subset of the ERM diagram's relationships that refer to the entity as its source, and mapping
these to references (see section 4.2), which are added to the entity.

We also wish to order the set of entities in the EDG diagram by existence dependency. This
is to make the resulting model more legible for a human reader, avoiding inline expansion of
referenced definitions, when it is presented in the ReMoDeL textual syntax for models.

4.2 Mapping of Properties

The properties of an EDG entity include its attributes and references. Every ERM attribute
must be mapped to a similar EDG attribute, with the same name and a mapped basic type.
The mapped EDG attribute must preserve whether the attribute is identifying.

Every ERM relationship must be mapped to a simpler ERM reference, which is named and
has an entity type. We already know that every relationship in the normal ERM model is
many-to-one and is ordered with the source being dependent upon the target. So, it is simply
a matter of creating an EDG reference from the mapped source entity to the mapped target
entity.

All the semantic properties of relationships must be preserved in references. This includes
whether they are identifying, and whether they are marked as part-of (detail to master), kind-
of (subtype to supertype) or made-of (aggregate to component). The mapped EDG reference
is given the same name as the ERM end-role target. This will prove important later, when
expanding references to foreign keys in the SQL metamodel.

4.3 The ReMoDeL Transformation Normal ERM to EDG

The ReMoDeL transformation for converting a normalised ERM diagram to an Existence
Dependency Graph is shown below as figure 14. The transformation is called NormToEdg
and belongs to the transformation group UmlDB (UML and databases).

transform NormToEdg : UmlDB {
 metamodel source : ERM
 metamodel target : EDG

26

 mapping ermToEdgDiagram(diagram : ERM_Diagram) : EDG_Diagram {
 create EDG_Diagram(name := diagram.name,
 basicTypes := ermToEdgBasicTypes(diagram),
 entities := ermToEdgEntities(diagram)
)
 }
 mapping ermToEdgBasicTypes(diagram : ERM_Diagram) : EDG_BasicType{} {
 diagram.basicTypes.collect(type : ERM_BasicType |
 basicToEdgBasicType(type))
 }
 mapping ermToEdgEntities(diagram : ERM_Diagram) : EDG_Entity{} {
 sortEntities(diagram.entities.collect(entity : ERM_Entity |
 entityToEdgEntity(entity, diagram)).asList,
 create EDG_Entity[]()).asSet
 }
 function sortEntities(open : EDG_Entity[],
 closed : EDG_Entity[]) : EDG_Entity[] {
 if open.isEmpty then closed
 else if entityRefers(open.first, open.rest)
 then sortEntities(open.rest.with(open.first), closed)
 else sortEntities(open.rest, closed.with(open.first))
 }
 function entityRefers(first : EDG_Entity, rest : EDG_Entity[]) : Boolean {
 first.references.exists(ref : EDG_Reference | rest.has(ref.type))
 }
 mapping basicToEdgBasicType(type : ERM_BasicType) : EDG_BasicType {
 create EDG_BasicType(name := type.name)
 }
 mapping entityToEdgEntity(entity : ERM_Entity,
 diagram : ERM_Diagram) : EDG_Entity {
 create EDG_Entity(name := entity.name,
 properties := create EDG_Property{}()
 .union(entityToEdgAttributes(entity))
 .union(entityToEdgReferences(entity, diagram))
)
 }
 mapping entityToEdgAttributes(entity : ERM_Entity) : EDG_Attribute{} {
 entity.attributes.collect(attrib : ERM_Attribute |
 attribToEdgAttribute(attrib))
 }
 mapping attribToEdgAttribute(attrib : ERM_Attribute) : EDG_Attribute {
 create EDG_Attribute(name := attrib.name,
 type := basicToEdgBasicType(attrib.type),
 id := attrib.id
)
 }
 mapping entityToEdgReferences(entity : ERM_Entity,
 diagram : ERM_Diagram) : EDG_Reference{} {
 diagram.relationships.select(rel : ERM_Relationship |
 rel.source.type = entity).collect(rel : ERM_Relationship |
 relToEdgReference(rel, diagram))
 }
 mapping relToEdgReference(rel : ERM_Relationship,
 diagram : ERM_Diagram) : EDG_Reference {
 create EDG_Reference(name := rel.target.name,
 type := entityToEdgEntity(rel.target.type, diagram),
 id := rel.id,
 kindOf := rel.kindOf,
 partOf := rel.partOf,
 madeOf := rel.madeOf
)
 }
}

Figure 14: the NormToEdg model transformation

The breakdown of this transformation shorter than others, consisting of 9 separate mapping
rules and 2 auxiliary functions, and may be summarised:

27

• To map the normal ERM diagram to an EDG diagram you create a diagram with the
same name, map the ERM basic types to corresponding EDG basic types; then map
all the ERM entities to EDG entities, while sorting the EDG entities by existence
dependency.

• To map an ERM entity to an EDG entity, you create an EDG entity of the same name,
whose properties are found as the union of mapping the ERM entity's attributes and
mapping any of the ERM diagram's relationships whose source refers to this entity.

• To map an ERM attribute to an EDG attribute, you create an EDG attribute with the
same name and mapped type, preserving whether it is identifying.

• To map an ERM relationship to an EDG reference in a given EDG entity, create an
EDG reference, whose name is that of the ERM relationship's target end-role, and
whose type is found by mapping the type of the target end-role. All identifying, part-
of, kind-of or made-of constraints are preserved.

The ordering of the set of EDG entities by existence dependency is achieved using the
recursive function sortEntities(). This has an open list of entities to sort, and a closed list of
entities in sorted order. On each recursion, the first entity from the open list is considered. If
it refers to any other entity in the open list, it is added to the tail of the open list. Otherwise, it
is moved to the closed list.

4.4 Normal ERM to EDG Examples

We have already given examples of this transformation in use. In part 1 of this report [11],
section 5.5 listed the normal ERM model for the Cycle Shop case study in figure 16; and
section 6.6 listed the normal ERM model for the Student Records case study in figure 17.

Executing the NormToEdg transformation on the source ERM model for the Cycle Shop
example creates the target EDG model listed in figure 5 in section 2.5 of the current report.
Executing the NormToEdg transformation on the source ERM model for the Student Records
example creates the target EDG model listed in figure 6 in section 2.6 of the current report.

28

5. EDG to SQL Transformation
The transformation of an Existence Dependency Graph to an SQL Database Schema must
perform a number of mappings from the EDG metamodel to the SQL metamodel. Once
again, this is an exogeneous transformation, also known as a translation. We consider
separately the mapping of types to tables, the mapping of attributes and references to
columns, and the mapping of identifiers to search keys.

5.1 Mapping of Types

EDG basic types are mapped to SQL basic types, which have different type names. Each
SQL basic type is also associated with a field width; so, there are two mappings from basic
type to basic type, and from basic type to field width.

EDG entities are mapped to SQL tables having the same names. Each table is populated with
columns that have been mapped from the EDG entity's attributes and references (see section
5.2). The tables also contain one primary key and possibly many foreign keys. These refer to
the mapped columns in the same table. The primary key refers to all columns originating
from any identifying properties; whereas a foreign key refers only to the columns originating
from one reference, whether or not this is identifying (see section 5.3).

5.2 Mapping of Properties

EDG properties are either attributes or references. All properties are eventually mapped to
columns. An EDG attribute is mapped to a single SQL column having the same name, but
with a mapped SQL basic type and also a mapped field width. Some identifying attributes
will be mapped to columns that form part of the primary key (see section 5.3).

An EDG reference is mapped to a set of one or more SQL columns, which will form part of a
foreign key. The reference refers to another EDG entity, and it is the identifiers of this target
entity that are of interest here. These identifiers are mapped to renamed columns, whose
modified names are formed by prefixing the (type-cased) old name by the reference name
(derived from an end-role name). These renamed columns are distinct from the identifying
columns created in the mapped target table. They are essentially renamed copies of these
columns, having the same mapped SQL basic type and field width.

Mapping an EDG reference may result in the transitive expansion of references into
identifiers. For example, a dependency chain of weak entities will require recursive
expansion of the identifying references referring to their respective master entities. This
requires careful construction of the mapping rules to track which referenced entity is to be
treated as the provenance of the remote attribute, when renaming.

5.3 Mapping of Identifiers

Any EDG property may be identifying, whether an attribute or a reference. An identifying
attribute will be mapped to a column forming part of a primary key in the owning table. An
identifying reference will be expanded to a set of identifying attributes, which are mapped to
one or more renamed columns forming part of the same primary key. Furthermore, any
reference (whether identifying or not) will be mapped to renamed columns forming part of a
foreign key (see section 5.2).

29

Each EDG entity is mapped to a primary key for the corresponding SQL table, by
constructing a primary key and populating it with suitable columns. These are found by
mapping the entity's identifying properties to columns, as described above.

For each primary key, the SQL entity integrity constraint is added. For each column forming
part of the primary key, the not null constraint is added. For any such column which was
derived from a surrogate identifier, the auto-increment constraint is added.

Each EDG entity is mapped to zero or more foreign keys in the corresponding SQL table,
depending on how many references it has. For each EDG reference in the entity, a new
foreign key is constructed. It refers to a remote SQL table, which is found by mapping the
target type of the EDG reference. It is populated with two sets of columns. The remote
columns are the identifying columns in the mapped target table. The local columns are
renamed copies of these.

For each foreign key, it is determined whether this should have an SQL deletion constraint;
otherwise, the SQL restrict constraint is assumed to apply by default. If the EDG reference
has the semantic tags part-of or kind-of, then a cascade constraint is added. If the EDG
reference has the semantic tag made-of, then a set null constraint is added.

5.4 The ReMoDeL EDG to SQL Transformation

The ReMoDeL transformation for converting an Existence Dependency Graph into an SQL
Database Schema is shown over the next few pages as figure 15. The transformation is called
EdgToSql and belongs to the transformation group UmlDB (UML and databases).

transform EdgToSql : UmlDB {
 metamodel source : EDG
 metamodel target : SQL

 mapping edgToSqlDatabase(diagram : EDG_Diagram) : SQL_Database {
 create SQL_Database(name := diagram.name,
 basicTypes := edgToSqlBasicTypes(diagram),
 tableTypes := edgToSqlTableTypes(diagram)
)
 }
 mapping edgToSqlBasicTypes(diagram : EDG_Diagram) : SQL_BasicType{} {
 diagram.basicTypes.collect(type : EDG_BasicType | basicToBasicType(type))
 }
 mapping edgToSqlTableTypes(diagram : EDG_Diagram) : SQL_TableType{} {
 diagram.entities.collect(entity : EDG_Entity | entityToTableType(entity))
 }
 mapping basicToBasicType(type : EDG_BasicType) : SQL_BasicType {
 create SQL_BasicType(name := typeToDataType(type.name))
 }
 function typeToDataType(name : String) : String {
 if name = "Boolean"
 then "BOOLEAN"
 else if name = "Integer"
 then "INTEGER"
 else if name = "Natural"
 then "INT UNSIGNED"
 else if name = "Real"
 then "DOUBLE"
 else if name = "String"
 then "VARCHAR"
 else if name = "Date"
 then "DATE"
 else if name = "Time"

30

 then "TIME"
 else if name = "Money"
 then "MONEY"
 else "VARCHAR"
 }
 function typeToFieldWidth(name : String) : Integer {
 if name = "Boolean"
 then 5
 else if name = "Integer"
 then 11
 else if name = "Natural"
 then 11
 else if name = "Real"
 then 17
 else if name = "String"
 then 255
 else if name = "Date"
 then 10
 else if name = "Time"
 then 8
 else if name = "Money"
 then 17
 else 10
 }
 mapping entityToTableType(entity : EDG_Entity) : SQL_TableType {
 create SQL_TableType(name := entity.name,
 columns := entityToColumns(entity),
 keys := create SQL_SearchKey{}()
 .with(entityToPrimaryKey(entity))
 .union(entityToForeignKeys(entity))
)
 }
 mapping entityToColumns(entity : EDG_Entity) : SQL_Column{} {
 create SQL_Column{}()
 .union(entity.references.collate(ref : EDG_Reference |
 referenceToColumns(ref)))
 .union(entity.attributes.collect(attrib : EDG_Attribute |
 attributeToColumn(attrib)))
 }
 mapping attributeToColumn(attrib : EDG_Attribute) : SQL_Column {
 create SQL_Column(name := attrib.name,
 type := basicToBasicType(attrib.type),
 width := typeToFieldWidth(attrib.type.name),
 notNull := attrib.id,
 autoInc := attrib.surrogate
)
 }
 mapping referenceToColumns(ref : EDG_Reference) : SQL_Column{} {
 create SQL_Column{}()
 .union(ref.type.complexIDs.collate(remote : EDG_Reference |
 remoteRefToColumns(remote, ref)))
 .union(ref.type.simpleIDs.collect(attrib : EDG_Attribute |
 remoteAttribToColumn(attrib, ref)))
 }
 mapping remoteRefToColumns(remote : EDG_Reference,
 ref : EDG_Reference) : SQL_Column{} {
 create SQL_Column{}()
 .union(remote.type.complexIDs.collate(next : EDG_Reference |
 remoteRefToColumns(next, ref)))
 .union(remote.type.simpleIDs.collect(attrib : EDG_Attribute |
 remoteAttribToColumn(attrib, ref)))
 }
 mapping remoteAttribToColumn(attrib : EDG_Attribute,
 ref : EDG_Reference) : SQL_Column {
 create SQL_Column(name := if attrib.surrogate
 then ref.name.concat("ID")
 else ref.name.concat(attrib.name.asType),
 type := basicToBasicType(attrib.type),

31

 width := typeToFieldWidth(attrib.type.name),
 notNull := ref.id
)
 }
 mapping entityToPrimaryKey(entity : EDG_Entity) : SQL_PrimaryKey {
 create SQL_PrimaryKey(
 columns := create SQL_Column{}()
 .union(entity.complexIDs.collate(ref : EDG_Reference |
 referenceToColumns(ref)))
 .union(entity.simpleIDs.collect(attrib : EDG_Attribute |
 attributeToColumn(attrib)))
)
 }
 mapping entityToForeignKeys(entity : EDG_Entity) : SQL_ForeignKey{} {
 create SQL_ForeignKey{}()
 .union(entity.references.collect(ref : EDG_Reference | refToForeignKey(ref)))
 }
 mapping refToForeignKey(ref : EDG_Reference) : SQL_ForeignKey {
 create SQL_ForeignKey(type := entityToTableType(ref.type),
 columns := referenceToColumns(ref),
 remote := entityToTableType(ref.type).primary.columns,
 cascade := ref.partOf or ref.kindOf,
 setNull := ref.madeOf
)
 }
}

Figure 15: the EdgToSql model transformation

The breakdown of this transformation is moderately complex, consisting of 13 separate short
mapping rules and 2 auxiliary functions, and may be summarised:

• To map the EDG diagram to an SQL database, you create a database with the same
name, map the EDG basic types to SQL basic types, and map the EDG entities to
SQL tables.

• To map an EDG basic type to an SQL basic type, you create an SQL basic type with
the appropriate SQL type name (using an auxiliary function).

• To map an EDG entity to an SQL table type, you create an SQL table type with the
same name, and map all the entity's attributes and references to columns, and then
map the entity to a primary key, and finally map the entity to a (possibly empty) set of
foreign keys.

• To map an EDG attribute to a column, you create an SQL column with the same
name, with the mapped basic type, and with a mapped field width (using an auxiliary
function). If the attribute was identifying, set the not null constraint; and if the
attribute was a surrogate, set the auto-increment constraint.

• To map an EDG reference to a (renamed) set of columns, you map all the identifiers
of the one-step referenced entity to columns. This involves mapping the remote
identifying references and remote identifying attributes to columns, which is different
from mapping local properties, since the columns will be renamed.

• To map a remote EDG reference to a (renamed) set of columns, you map all the
remote identifiers of the two-step referenced entity to columns. Mapping the remote
identifying references is a recursive application of this rule; mapping the remote
identifying attributes will create renamed columns.

• To map a remote EDG attribute to a (renamed) column, you create an SQL column
with a name synthesised from the name of the first traversed EDG reference and the
attribute name, with the mapped basic type and field width. If the attribute was
identifying, set the not null constraint (but never set the auto-increment constraint,
since this column is part of a foreign key).

32

• To map an EDG entity to an SQL primary key, create a primary key containing the
result of mapping all the identifying properties of the entity to columns. Columns
resulting from mapped references precede columns from mapped attributes.

• To map an EDG entity to a (possibly empty) set of foreign keys, map each of the
entity's EDG references to an SQL foreign key. To do this, create a foreign key
whose type refers to the mapped table type of the EDG reference, whose local
columns refer to the result of mapping this reference to columns, and whose remote
columns refer to the primary key columns selected from the mapped table type. If the
reference was tagged part-of or kind-of, set the cascade constraint. If the reference
was tagged made-of, set the set null constraint.

Perhaps the most difficult aspect of this transformation is dealing with column naming. If a
column is derived from a local attribute, its name is the same as that of the attribute. If a
column is derived from a local reference, its name is prefixed with the name of the reference,
which is typically the name-case version of the referenced type. Surrogate identifiers are
likewise recreated to use the local reference-name concatenated with "ID". When a column is
derived from a remote reference, the alternative rule keeps track of the first reference to be
traversed, so that this may be used in renaming.

5.5 EDG to SQL Examples

We have already given examples of this transformation in use. Section 2.5 described a
source EDG model for the Cycle Shop case study, listed in figure 5, which was depicted as a
diagram in figure 2. Section 2.6 described a source EDG model for the Student Records case
study, listed in figure 6, which was depicted as a diagram in figure 3.

Executing the EdgToSql transformation on the source EDG model for the Cycle Shop case
study, listed in figure 5, creates the target SQL model listed in figure 12, in section 3.5. This
target model was depicted as a diagram in figure 8, in section 3.3.

Executing the EdgToSql transformation on the source EDG model for the Student Records
case study, listed in figure 6, creates the target SQL model listed in figure 13, in section 3.6.
This target model was depicted as a diagram in figure 9, in section 3.3.

33

6. Code Generation
The code generation step is usually not considered part of the chain of model transformations,
which operate in the domain of models. Typically, code generation requires a bespoke
program that is not expressed in the same model transformation language. Instead, it is
considered as a separate step that converts the final model to some form of executable code.
This final step is sometimes called a model-to-text translation.

In our case, the code that we wish to generate is SQL data definition language, which may be
executed in an SQL environment to create a database. The final SQL Database Schema
model was constructed in such a way as to facilitate code generation. The approach that we
use follows the Visitor Design Pattern [8] for traversing a tree-like structure, in this case, in
order to translate it into executable SQL instructions.

We implement the code generator in Java, in order to link this with the compilation model for
the ReMoDeL language [12], which cross-compiles metamodels and model transformations
into Java, using the Java compiler to generate executable bytecodes.

6.1 The Visitor Interface

The SQL Database Schema model provided a concept called Visitor, which defined a number
of operations. Visitor was shown at the end of the metamodel in figure 10, but we repeat it
below in figure 17 for ease of reference.

 concept Visitor {
 operation visitDatabase(db : Database) : Boolean {
 false
 }
 operation visitBasic(type : BasicType) : Boolean {
 false
 }
 operation visitTable(type : TableType) : Boolean {
 false
 }
 operation visitColumn(col : Column) : Boolean {
 false
 }
 operation visitPrimary(key : PrimaryKey) : Boolean {
 false
 }
 operation visitForeign(key : ForeignKey) : Boolean {
 false
 }
}

Figure 17: The Visitor concept from the SQL Database Schema

This concept will be compiled following the usual translation scheme into Java [12], creating
a class called Visitor in the package meta.sql. Each of the operations is translated into a
trivial Java method returning the value false. This is illustrated in figure 18.

While it is tempting to think that we could implement the code generator by adding suitable
printing instructions by hand to the body of each of these methods, this strategy will not
survive recompilation of the metamodel. Every time that the ReMoDeL compiler processes
the SQL metamodel, it will regenerate the class in figure 18, with trivial methods (again),
overwriting any manually edited version of the class.

34

package meta.sql;

import remodel.util.*;

class Visitor extends Top {

 public boolean visitDatabase(db : Database) {
 return false;
 }

 public boolean visitBasic(type : BasicType) {
 return false;
 }

 public boolean visitTable(type : TableType) {
 return false;
 }

 public boolean visitColumn(col : Column) {
 return false;
 }

 public boolean visitPrimary(key : PrimaryKey) {
 return false;
 }

 public boolean visitForeign(key : ForeignKey) {
 return false;
 }
 public Visitor() {
 }
}

Figure 18: The compiled Visitor concept in Java

The Visitor is similar in purpose to an interface in Java. However, the ReMoDeL compiler
does not support the creation of interfaces with abstract methods. All compiled operations in
ReMoDeL are functions which return a result. So, each of Visitor's operations compiles to an
outline method, which returns a trivial value. We chose false arbitrarily.

Instead, it is better to think of Visitor as fulfilling the role of an abstract superclass in Java,
which we can extend with our own concrete visitor, which provides all the desired printing
methods. These will override the outline methods of Visitor.

6.2 The MySQLWriter Implementation

We may implement this derived class by hand, without fear of its being overwritten. It is
placed in the same metamodel package meta.sql as the generated Visitor. We call the class
MySQLWriter to highlight the fact that it will generate SQL code for a particular database
MySQL. We could write specialised generators for Postgres, MS Access or Oracle, which
may expect small differences in the SQL code style.

The MySQLWriter class is shown over the next few pages as figure 19.

package meta.sql;

import java.io.BufferedWriter;
import java.io.File;
import java.io.FileWriter;
import java.io.IOException;
import java.io.Writer;

public class MySQLWriter extends Visitor {

private File file;
 private Writer writer;

 public MySQLWriter() {
 }

35

 public boolean visitDatabase(Database db) {
 String dbName = db.getName().replace(' ', '_');
 String fileName = "code/" + dbName + ".sql";
 file = new File(fileName);
 try (BufferedWriter bufWriter =
 new BufferedWriter(new FileWriter(file))) {
 writer = bufWriter;
 writer.write("CREATE DATABASE " + dbName + ";\n\n");
 writer.write("USE " + dbName + ";\n\n");
 for (TableType tbl : db.getTableTypes()) {
 tbl.accept(this);
 }
 } catch (IOException e) {
 e.printStackTrace();
 }
 return false;
 }

public boolean visitBasic(BasicType type) {
 try {
 writer.write(type.getName());
 } catch (IOException e) {
 e.printStackTrace();
 }
 return false;
 }

public boolean visitTable(TableType type) {
 String tblName = type.getName();
 try {
 writer.write("CREATE TABLE " + tblName + " (\n");
 boolean comma = false;
 for (Column col : type.getColumns()) {
 if (comma)
 writer.write(",\n");
 writer.write(" ");
 col.accept(this);
 comma = true;
 }
 for (SearchKey key : type.getKeys()) {
 if (comma)
 writer.write(",\n");
 writer.write(" ");
 key.accept(this);
 }
 writer.write("\n);\n\n");
 } catch (IOException e) {
 e.printStackTrace();
 }
 return false;
 }

public boolean visitColumn(Column col) {
 try {
 writer.write(col.getName() + " ");
 col.getType().accept(this);
 writer.write("(" + col.getWidth() + ")");
 if (col.getNotNull())
 writer.write(" NOT NULL");
 if (col.getAutoInc())
 writer.write(" AUTO_INCREMENT");
 } catch (IOException e) {
 e.printStackTrace();
 }
 return false;
 }
 public boolean visitPrimary(PrimaryKey key) {
 try {
 writer.write("PRIMARY KEY (");
 boolean comma = false;
 for (Column col : key.getColumns()) {

36

 if (comma)
 writer.write(", ");
 writer.write(col.getName());
 comma = true;
 }
 writer.write(")");
 } catch (IOException e) {
 e.printStackTrace();
 }
 return false;
 }
 public boolean visitForeign(ForeignKey key) {
 try {
 writer.write("FOREIGN KEY (");
 boolean comma = false;
 for (Column col : key.getColumns()) {
 if (comma)
 writer.write(", ");
 writer.write(col.getName());
 comma = true;
 }
 writer.write(") REFERENCES ");
 writer.write(key.getType().getName() + " (");
 comma = false;
 for (Column col : key.getRemote()) {
 if (comma)
 writer.write(", ");
 writer.write(col.getName());
 comma = true;
 }
 writer.write(")");
 if (key.getCascade())
 writer.write("\n ON DELETE CASCADE");
 else if (key.getSetNull())
 writer.write("\n ON DELETE SET NULL");
 } catch (IOException e) {
 e.printStackTrace();
 }
 return false;
 }
 public String toString() {
 return file.toString();
 }
}

Figure 19: The MySQLWriter Code Generator

This class extends Visitor and reimplements all of Visitor's methods, so is a compatible kind
of visitor. That is, we can pass an object of this kind to any method with the Java type
signature: boolean accept(Visitor visitor). This method is present in each of the relevant
Java classes that were compiled from concepts in the SQL metamodel (see figure 10).

To execute the MySQLWriter, an instance is created and is passed to the accept() method of
the root Database node of an SQL model. This triggers the first visitDatabase() method.
Thereafter, code generation proceeds as follows:

• visitDatabase – creates a file in a standard location, code/dbname.sql, where dbname
is the name of the Database node, and then opens a buffered output stream onto this
file. It prints the semicolon-terminated CREATE DATABASE and USE dbname
instructions to set up the database, then delegates to each TableType node, to receive
the visitor. When this is finished, the output stream is automatically closed, flushing
the file to disk.

37

• visitTable – prints a CREATE TABLE instruction, with opening parenthesis, and then
delegates to each Column node to receive the visitor, inserting comma separators.
After this, it delegates to each SearchKey node to receive the visitor, inserting comma
separators. After this, it prints a closing parenthesis and terminating semicolon.

• visitColumn – prints the column's name, delegates to the BasicType node to receive
the visitor and print the type, then prints a field width in parentheses. If the column
has the relevant constraints, prints NOT NULL and AUTO_INCREMENT.

• visitType – prints the SQL basic type name.
• visitPrimary – prints the PRIMARY KEY instruction and an opening parenthesis, then

prints the names of the local columns, with comma separators. Prints a closing
parenthesis.

• visitForeign – prints the FOREIGN KEY instruction and an opening parenthesis, then
prints the names of the local columns, with comma separators, ending with a closing
parenthesis. Prints the REFERENCES instruction, followed by the name of the
referenced table, and then a similar list of remote column names, separated by
commas, inside parentheses. If the foreign key has the relevant constraints, prints ON
DELETE CASCADE or ON DELETE SET NULL.

We chose a certain Java coding style. We adopt a try-catch style that catches all exceptions
(in the event of output failure) so that the methods are not obliged to declare that they throw
IOException, since this cannot be predicted by the ReMoDeL compiler that generated the
code for Visitor. Instead, we print the stack trace anyway in the event of failure. We also use
a try-with-resources style to open the output stream in a protected try-block, to ensure that
this is automatically closed on exit from the visitDatabase() method. This visitor has its own
toString() method that prints out the name of the output file.

6.3 The Generated Cycle Shop Database

Figure 20 illustrates the MySQL data definition language instructions generated for the Cycle
Shop case study. This is a direct model-to-text translation of the SQL database schema model
listed in figure 12 and depicted in figure 8. It needs no further comment.

CREATE DATABASE Cycle_Shop;

USE Cycle_Shop;

CREATE TABLE Address (
 house VARCHAR(255) NOT NULL,
 postcode VARCHAR(255) NOT NULL,
 road VARCHAR(255),
 city VARCHAR(255),
 PRIMARY KEY (house, postcode)
);

CREATE TABLE Customer (
 addressHouse VARCHAR(255),
 addressPostcode VARCHAR(255),
 customerID INTEGER(11) NOT NULL AUTO_INCREMENT,
 forename VARCHAR(255),
 surname VARCHAR(255),
 PRIMARY KEY (customerID),
 FOREIGN KEY (addressHouse, addressPostcode)
 REFERENCES Address (house, postcode)
);

CREATE TABLE Order (
 customerID INTEGER(11),

38

 number INTEGER(11) NOT NULL,
 date DATE(10),
 PRIMARY KEY (number),
 FOREIGN KEY (customerID) REFERENCES Customer (customerID)
);

CREATE TABLE Product (
 brand VARCHAR(255) NOT NULL,
 serial INTEGER(11) NOT NULL,
 name VARCHAR(255),
 price MONEY(17),
 PRIMARY KEY (brand, serial)
);

CREATE TABLE FrameSet (
 productBrand VARCHAR(255) NOT NULL,
 productSerial INTEGER(11) NOT NULL,
 size INTEGER(11),
 shocks BOOLEAN(5),
 PRIMARY KEY (productBrand, productSerial),
 FOREIGN KEY (productBrand, productSerial)
 REFERENCES Product (brand, serial)
 ON DELETE CASCADE
);

CREATE TABLE Handlebar (
 productBrand VARCHAR(255) NOT NULL,
 productSerial INTEGER(11) NOT NULL,
 style VARCHAR(255),
 PRIMARY KEY (productBrand, productSerial),
 FOREIGN KEY (productBrand, productSerial)
 REFERENCES Product (brand, serial)
 ON DELETE CASCADE
);

CREATE TABLE Wheel (
 productBrand VARCHAR(255) NOT NULL,
 productSerial INTEGER(11) NOT NULL,
 diameter INTEGER(11),
 tyre VARCHAR(255),
 PRIMARY KEY (productBrand, productSerial),
 FOREIGN KEY (productBrand, productSerial) |
 REFERENCES Product (brand, serial)
 ON DELETE CASCADE
);

CREATE TABLE Line (
 orderNumber INTEGER(11) NOT NULL,
 itemBrand VARCHAR(255),
 itemSerial INTEGER(11),
 number INTEGER(11) NOT NULL,
 quantity INTEGER(11),
 cost MONEY(17),
 PRIMARY KEY (orderNumber, number),
 FOREIGN KEY (orderNumber) REFERENCES Order (number)
 ON DELETE CASCADE,
 FOREIGN KEY (itemBrand, itemSerial)
 REFERENCES Product (brand, serial)
);

CREATE TABLE Bicycle (
 productBrand VARCHAR(255) NOT NULL,
 productSerial INTEGER(11) NOT NULL,
 frameSetBrand VARCHAR(255),
 frameSetSerial INTEGER(11),
 handlebarBrand VARCHAR(255),
 handlebarSerial INTEGER(11),
 PRIMARY KEY (productBrand, productSerial),

39

 FOREIGN KEY (productBrand, productSerial)
 REFERENCES Product (brand, serial)
 ON DELETE CASCADE,
 FOREIGN KEY (frameSetBrand, frameSetSerial)
 REFERENCES FrameSet (productBrand, productSerial)
 ON DELETE SET NULL,
 FOREIGN KEY (handlebarBrand, handlebarSerial)
 REFERENCES Handlebar (productBrand, productSerial)
 ON DELETE SET NULL
);

CREATE TABLE BicycleMadeOfWheel (
 bicycleBrand VARCHAR(255) NOT NULL,
 bicycleSerial INTEGER(11) NOT NULL,
 wheelBrand VARCHAR(255) NOT NULL,
 wheelSerial INTEGER(11) NOT NULL,
 PRIMARY KEY (bicycleBrand, bicycleSerial, wheelBrand, wheelSerial),
 FOREIGN KEY (bicycleBrand, bicycleSerial)
 REFERENCES Bicycle (productBrand, productSerial)
 ON DELETE CASCADE,
 FOREIGN KEY (wheelBrand, wheelSerial)
 REFERENCES Wheel (productBrand, productSerial)
 ON DELETE CASCADE
);

Figure 20: The MySQL Code for the Cycle Shop

6.4 The Generated Student Records Database

Figure 21 illustrates the MySQL data definition language instructions generated for the
Student Records case study. This is a direct model-to-text translation of the SQL database
schema model listed in figure 13 and depicted in figure 9. It needs no further comment.

CREATE DATABASE Student_Records;

USE Student_Records;

CREATE TABLE Department (
 code VARCHAR(255) NOT NULL,
 name VARCHAR(255),
 PRIMARY KEY (code)
);

CREATE TABLE Degree (
 departmentCode VARCHAR(255),
 code VARCHAR(255) NOT NULL,
 name VARCHAR(255),
 PRIMARY KEY (code),
 FOREIGN KEY (departmentCode) REFERENCES Department (code)
);

CREATE TABLE Module (
 code VARCHAR(255) NOT NULL,
 name VARCHAR(255),
 credits INTEGER(11),
 PRIMARY KEY (code)
);

CREATE TABLE Student (
 degreeCode VARCHAR(255),
 number INTEGER(11) NOT NULL,
 title VARCHAR(255),
 forename VARCHAR(255),

40

 surname VARCHAR(255),
 status VARCHAR(10),
 uCardNumber INTEGER(11),
 uCardExpiry DATE(10),
 PRIMARY KEY (number),
 FOREIGN KEY (degreeCode) REFERENCES Degree (code)
);

CREATE TABLE LabLog (
 studentNumber INTEGER(11),
 date DATE(10) NOT NULL,
 enter TIME(8) NOT NULL,
 exit TIME(8),
 PRIMARY KEY (date, enter),
 FOREIGN KEY (studentNumber) REFERENCES Student (number)
);

CREATE TABLE Approval (
 moduleCode VARCHAR(255) NOT NULL,
 degreeCode VARCHAR(255) NOT NULL,
 PRIMARY KEY (moduleCode, degreeCode),
 FOREIGN KEY (moduleCode) REFERENCES Module (code),
 FOREIGN KEY (degreeCode) REFERENCES Degree (code)
);

CREATE TABLE Session (
 studentNumber INTEGER(11) NOT NULL,
 year DATE(10) NOT NULL,
 level INTEGER(11),
 PRIMARY KEY (studentNumber, year),
 FOREIGN KEY (studentNumber) REFERENCES Student (number)
 ON DELETE CASCADE
);

CREATE TABLE Study (
 sessionNumber INTEGER(11) NOT NULL,
 sessionYear DATE(10) NOT NULL,
 moduleCode VARCHAR(255) NOT NULL,
 grade INTEGER(11),
 resit INTEGER(11),
 PRIMARY KEY (sessionNumber, sessionYear, moduleCode),
 FOREIGN KEY (sessionNumber, sessionYear)
 REFERENCES Session (studentNumber, year),
 FOREIGN KEY (moduleCode) REFERENCES Module (code)
);

Figure 21: The MySQL Code for the Student Records

6.5 The Chain of Compiled Transformations
The entire chain of model transformations presented in parts 1 and 2 of this report [11] can be
built using a simple Java program. To summarise, the four linked transformations and fifth
code generation step were:

1. from a UML Class Diagram to a pre-normal Entity Relationship Model;
2. from a pre-normal ERM to a normal (3NF+) Entity Relationship Model;
3. from a normal ERM to an Existence Dependency Graph;
4. from an Existence Dependency Graph to an SQL Database Schema;
5. from an SQL Database Schema to MySQL data definition language.

41

The program describing this chain is called UmlToSqlChain.java, listed in figure 22. For
convenience, we have placed it in the same package rule.umldb that is used for each of the
four described model transformation programs.

package rule.umldb;

import java.io.File;
import java.io.IOException;

import meta.sql.MySQLWriter;
import meta.sql.Visitor;
import remodel.meta.Model;

/**
 * UmlToSqlChain is a transformation chain from a UML Class
 * Diagram, to a prenormal Entity-Relationship Model, to a
 * normalised Entity-Relationship Model, to a SQL Database
 * Model, followed by a code-generation step to MySQL code.
 */
public class UmlToSqlChain {

private static File file = new File("models/uml1.mod");

public static void main(String[] args) throws IOException {

 Model<meta.uml.Diagram> model1 = new Model<>("uml", "UML");
 model1.read(file);
 System.out.println("Successfully read: " + file);

 UmlToErm transform1 = new UmlToErm();
 Model<meta.erm.Diagram> model2 = transform1.apply(model1);
 model2.write(new File("models/erm1.mod"));

 ErmToNorm transform2 = new ErmToNorm();
 Model<meta.erm.Diagram> model3 = transform2.apply(model2);
 model3.write(new File("models/norm1.mod"));

 NormToEdg transform3 = new NormToEdg();
 Model<meta.edg.Diagram> model4 = transform3.apply(model3);
 model4.write(new File("models/edg1.mod"));

 EdgToSql transform4 = new EdgToSql();
 Model<meta.sql.Database> model5 = transform4.apply(model4);
 model5.write(new File("models/sql1.mod"));

 Visitor visitor = new MySQLWriter();
 model5.getRoot().accept(visitor);

 System.out.println("Successfully written: " + visitor);
 }
}

Figure 22: The UmlToSqlChain Transformation Chain.

While the figure shows how each transformation can be invoked as a client, applying it to one
model to generate the next model in the chain , it is also possible to invoke a transformation
as a standalone program on an input model file [12]. Here, we use a model's ability to
serialise itself to a file in order to capture all the in-between models.

42

7. References
[1] A J H Simons. ReMoDeL Explained (rev. 2.1): An Introduction to ReMoDeL by

Example. Technical Report, 12 July (University of Sheffield, 2022).

[2] M Fowler. UML Distilled: A Brief Guide to the Standard Object Modeling Language,
3rd ed. (Addison-Wesley, 2003).

[3] G Everest. “Basic data structures explained with a common example”, Proc. 5th
Texas Conf. Computing Systems (1976), 39-46. Chapter 4 in: Database
Management: Objectives, System Functions, and Administration (McGraw-Hill,
1986).

[4] A Zhao. SQL Pocket Guide. A guide to SQL usage, 4th ed. (O’Reilly Media, 2021).

[5] E Downs, P Claire and I Coe. Structured Systems Analysis and Design Method:
Application and Context, 2nd Ed., (Prentice Hall, 1991).

[6] M A Jackson. Principles of Program Design, (Academic Press, 1975).

[7] H R Myler. “Flowcharts”, Chapter 2.3 in: Fundamentals of Engineering
Programming with C and Fortran, (Cambridge University Press, 1998), 32–36.

[8] E Gamma, R Helm, R Johnson and J Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software, (Addison-Wesley, 1994).

[9] M Snoeck and G Dedene. "Existence dependency: the key to semantic integrity
between structural and behavioural aspects of object types", IEEE Transactions on
Software Engineering 24(4), (IEEE, 1998), 233–251.

[10] M Snoeck. Enterprise Information Systems Engineering: The MERODE approach
(Springer, 2014).

[11] A J H Simons. ReMoDeL Data Refinement (rev. 1.0): Data Transformations in
Remodel, Part 1. Technical Report, 25 July (University of Sheffield, 2022).

[12] A J H Simons. ReMoDeL Compiled (rev. 2.1): The Cross-Compilation of ReMoDeL
to Java by Example. Technical Report, 12 July (University of Sheffield, 2022).

	1. Introduction
	1.1 Software Engineering Models
	1.2 Transformation Chains
	1.3 Data Refinement

	2. Existence Dependency Graph
	2.1 Existence Dependency
	2.2 Dependencies and Attributes
	2.3 Existence Dependency Graph Examples
	2.4 Metamodel for an Existence Dependency Graph
	2.5 Cycle Shop Example Model
	2.6 Student Records Example Model

	3. SQL Database Schema
	3.1 Primary and Foreign Key Constraints
	3.2 Semantic Consistency Maintenance
	3.3 SQL Database Schema Examples
	3.4 Metamodel for an SQL Database Schema
	3.5 The Cycle Shop Example Model
	3.6 The Student Records Example Model

	4. Normal ERM to EDG Transformation
	4.1 Mapping of Types
	4.2 Mapping of Properties
	4.3 The ReMoDeL Transformation Normal ERM to EDG
	4.4 Normal ERM to EDG Examples

	5. EDG to SQL Transformation
	5.1 Mapping of Types
	5.2 Mapping of Properties
	5.3 Mapping of Identifiers
	5.4 The ReMoDeL EDG to SQL Transformation
	5.5 EDG to SQL Examples

	6. Code Generation
	6.1 The Visitor Interface
	6.2 The MySQLWriter Implementation
	6.3 The Generated Cycle Shop Database
	6.4 The Generated Student Records Database
	6.5 The Chain of Compiled Transformations

	7. References

