
Literature Study on Model Transformations

Matthias Biehl
Embedded Control Systems
Royal Institute of Technology

Stockholm, Sweden
biehl@md.kth.se

July 2010

1

c© Copyright by Matthias Biehl, 2010
Version 20101027222900
TRITA-MMK 2010:07
ISSN 1400-1179
ISRN/KTH/MMK/R-10/07-SE

2

Abstract

Model transformation is a central concept in model-driven development ap-
proaches, as it provides a mechanism for automating the manipulation of mod-
els. In this document we survey and classify existing model transformation
technology. The classification differentiates between the problem space, i.e.
characteristics of the problem to be solved by model transformation technology,
and the mechanism, i.e. characteristics of the model transformation language.
We show typical usage scenarios for model transformations and identify charac-
teristics of the problems that can be solved with the help of model transforma-
tions. We synthesize a unifying classification scheme for model transformation
languages based on several existing classification schemes. We introduce a se-
lection of model transformation tools available today and compare them using
our classification scheme.

3

Contents

1 Introduction 6
1.1 Related Fields . 6
1.2 Overview of this Document . 7

2 Terminology 7
2.1 Definition of Model Transformation 7
2.2 Auxiliary Terminology . 7

3 Typical Uses of Model Transformation 10
3.1 Synthesis . 11
3.2 Integration . 11

3.2.1 Tool Integration . 11
3.2.2 Model Merging . 11

3.3 Analysis, Simulation and Optimization 12

4 Classification Scheme for Model Transformation Problems 12
4.1 Change of Abstraction . 13
4.2 Change of Metamodels . 13
4.3 Supported Technical Spaces . 13
4.4 Supported Number of Models . 13
4.5 Supported Target Type . 14
4.6 Preservation of Properties . 14

4.6.1 Semantics-preserving . 14
4.6.2 Behavior-preserving . 15
4.6.3 Syntax-preserving . 15

5 Classification Scheme for Model Transformation Languages 15
5.1 Paradigm . 15

5.1.1 Imperative/Operational 16
5.1.2 Declarative/Relational . 16
5.1.3 Hybrid . 16
5.1.4 Graph Transformation . 16
5.1.5 Template-Based . 16
5.1.6 Direct Manipulation . 17

5.2 Rule Application Control . 17
5.3 Rule Scheduling . 17
5.4 Rule Organization . 17
5.5 Traceability . 18
5.6 Directionality . 18
5.7 Incremental Model Transformation 18
5.8 Representation of the Transformation 19

6 Model Transformation Languages, Tools and Standards 19
6.1 EMF Henshin . 19
6.2 ATL . 19
6.3 Query/View/Transformation (QVT) 20
6.4 SmartQVT . 20
6.5 ModelMorf . 21

4

6.6 OpenArchitecureWare (OAW) . 21
6.7 Kermeta . 21
6.8 ETL . 21
6.9 XML Stylesheet Language Transformations (XSLT) 22
6.10 More... 22

7 Conclusion 22

References 24

5

1 Introduction

In model-driven development a series of models is created, refined and main-
tained. Models are the primary artifacts of the development and contain infor-
mation that supports the various stages of the development process. Models can
capture information of different lifecycle stages and development activities, such
as requirements, design, implementation, testing, quality analysis, simulation,
verification. In addition, models can represent different views of the system and
represent the system on different levels of abstraction.

Model transformations provide a mechanism for automatically creating or
updating target models based on information contained in existing source mod-
els, e.g. the creation of code from a design model or the translation of a UML
Class Diagram into an Entity Relationship Diagram. The automatic creation
of models through model transformations provides a mechanism for the system-
atic reuse of information. Assuming that the model transformation is correctly
defined, it can be used to ensure consistency between different models.

1.1 Related Fields

The theoretical foundations of model transformation are rewrite systems and
semi-Thue systems [16] from theoretical computer science. The practical foun-
dations of model transformation techniques are laid by compiler construction
[1]. Compilers translate programs written in a higher programming language
(such as C++) to assembly language or representations that are close to the
executable instructions of the processor. Model transformations solve a wider
range of problems, including integration, analysis and simulation. Thus model
transformation techniques are more universally applicable than a compiler. A
compiler can even be viewed as a special application of a model transformation.
Many of the techniques used in model transformation have a corresponding
technique in compiler construction, with a slightly different name. For example
the metamodel of model transformation corresponds to a grammar in compiler
construction. Compilers typically have a pipeline architecture of lexical analy-
sis, syntax analysis, semantic analysis, intermediate code generation and code
generation. The same steps are performed by a model transformation engine.

There is a high level of automation in compiler construction. There are
several specific tools to support each phase of compiler construction, such as
a parser generator, scanner generator and code generator. An example is the
special-purpose language Lex/YACC that is used for create parsers. Compiler
generators create a compiler based on a specification and are comparable to a
higher-order model transformation.

The research field of program transformation is related to model transfor-
mation, as it also uses techniques from compiler construction [58]. Program
transformations are usually applied for analysis or optimization of certain qual-
ity attributes. Program transformations are typically unidirectional and are
based on mathematically oriented concepts such as term rewriting, functional
programming and attributed grammars. Refactoring is a well known program
transformation technique used to improve the maintainability of source code
without changing its behavior [23].

Generative programming is a software engineering paradigm based on de-
scribing software system families. Given a particular requirements specification,

6

a highly customized and optimized product can be automatically manufactured
on demand from elementary, reusable implementation components by means
of configuration knowledge [20]. Generative programming is closely related to
model-driven development.

1.2 Overview of this Document

This document is structured as follows. In chapter 2 we define model transfor-
mation and introduce the terminology we use in this document. In chapter 3
we describe typical scenarios for the application of model transformations and
provide examples. We proceed to identify the significant characteristics of prob-
lems that can be solved by model transformation and classify them in chapter
4. In chapter 5 we identify the properties of model transformation languages.
These properties can be used to classify existing approaches and discuss a spe-
cific subsets of approaches. We introduce some state-of-the-art tools for model
transformation in chapter 6 and use the classification scheme developed in chap-
ter 5 to compare them. We conclude this report in chapter 7 with a discussion
of the advantages and disadvantages of model transformations.

2 Terminology

2.1 Definition of Model Transformation

Model transformation is a young field and there are several competing, yet
partly overlapping definitions of the terms.

Tratt [55] defines model transformation very widely as ”a program that mu-
tates one model into another”. The Object Management Group (OMG), an
industry association for standardization within software engineering, defines
model transformation in the context of the model-driven architecture (MDA) as
”the process of converting a model into another model of the same system” [42].
Kleppe et al. [32] define model transformation as the ”automatic generation of
a target model from a source model, according to a transformation description”.

Mens et al. [39] extend this definition by also allowing several models as
input or output and define model transformation as the ”automatic generation
of one or multiple target models from one or multiple source models, according
to a transformation description”. This is the definition we will use in this
document. Figure 1 illustrates the components of a model transformation.

2.2 Auxiliary Terminology

Model: A model is a simplified representation of a system that helps to gain
a better understanding of the system [50, 7]. Models are often expressed
in dedicated domain-specific languages or general purpose modeling lan-
guages such as UML [49]. Models are often represented graphically, but
do not need to be.

Metamodel: A metamodel of a model X describes the structure that model
X must follow to be valid. A metamodel can be compared to a grammar
in language design. Precisely defined metamodels are a prerequisite for

7

Figure 1: The components of a model transformation.

model transformations [40]. Figure 2 illustrates the metalevels of a model
transformation.

Metametamodel: A metametamodel of model X is the metamodel used to
describe the metamodel of model X [22]. It can be compared to the
grammar of the language that is used to describe the grammar of the
language X (e.g. EBNF). Standards and well established frameworks for
metametamodels exist, such as MOF or Ecore. MOF is a standard for
defining metamodels that is defined by the OMG [45]. MOF comes in
two versions: Complete MOF (CMOF) and Essential MOF (EMOF). A
commonly used implementation of EMOF is Ecore, defined by the Eclipse
Modeling Framework (EMF) [52].

Model Transformation Paradigm/Approach: A model transformation paradigm
or approach is the design principle on which the model transformation
language is built, e.g. imperative, operational, functional, declarative or
relational.

Model Transformation Language: A model transformation language is a vo-
cabulary and a grammar with well-defined semantics for performing model
transformations. The language is based on a certain model transformation
paradigm.

Model Transformation Description: A model transformation description ex-
presses how one or more source models are transformed into one or more
target models. It is written in a model transformation language. If the
language of a transformation description is rule-based, the transforma-
tion description is a set of model transformation rules [33]. A model
transformation description is sometimes also called model transformation
definition, model transformation code or model transformation program.

Model Transformation Rule: A model transformation rule in a description
is the smallest entity within a model transformation. It describes how
a fragment of the source model can be transformed into a fragment of
the target model [33]. A rule contains a source pattern and a target
pattern. For each occurrence of the source pattern in the source model,
a target pattern is created in the target model. In the context of graph

8

transformation the source pattern is also called the left-hand side (LHS)
and the target pattern is called right hand-side (RHS).

Model Transformation Engine/Tool: A model transformation engine or tool
executes or interprets the model transformation description. It applies
the model transformation description on the source model to produce the
target model. Transformation engines are also called rewrite engines. Ex-
amples for model transformation engines are SmartQVT (cf. section 6.4)
or ATL (cf. section 6.2). For executing a model transformation an en-
gine/tool typically needs to perform the following steps [55].

• identify elements in the source model that need to be transformed

• for each of the identified elements produce the associated target ele-
ments

• produce tracing information that links the source and target elements
affected by this rule

Source Model: In the context of a model transformation, a model can take
on the role of a source model, if it is an input to the transformation. The
source model conforms to the source metamodel. One or more source
models are the input of a model transformation.

Target Model: In the context of a model transformation, a model can take on
the role of a target model, if it is an output of the transformation. The
target model conforms to the target metamodel. A model transformation
can have one or more target models. The term target model is only used
for transformations that are model-to-model transformations.

Transformation Models: The transformation description can be represented
using a model [6]. This allows the transformation model to be the source
model or target model of another model transformation. Figure 2 illus-
trates a transformation model and its relation to elements on other met-
alevels.

Higher-order Transformation (HOT): A model transformation description hav-
ing a transformation model as source or target model [54].

Model Driven Architecture (MDA): Standard [44] for Model-driven develop-
ment by the Object Management Group (OMG), where Platform Inde-
pendent Models (see below) are transformed to Platform Specific Models
(see below).

Platform Independent Model (PIM): A PIM is a part of the standard for the
Model-driven Architecture (MDA). PIM is a role that a model can take,
where the model does not contain information about the platform used.
Note that the term platform is not very concise. Note also that a model
can be independent of one platform and dependent on another platform
at the same time [44].

Platform Specific Model (PSM): A PSM is a part of the standard for the Model-
driven Architecture (MDA). PSM is a role that a model can take, where
the model does contain information about the platform used.

9

Technical Space: The term technical space or technological space is the technol-
ogy used to represent models [37, 8]. The technology includes file formats,
data structures, parsers, and facilities to manipulate the data. Examples
for technical spaces are XML (Extensible Markup Language) [13], XMI
(XML for Metadata Interchange) [46] or EMF (Eclipse Modeling Frame-
work) [52].

Figure 2: The metalevels of a model transformation.

3 Typical Uses of Model Transformation

Model transformations can be used for various tasks in model-driven devel-
opment, e.g. for modifying, creating, adapting, merging, weaving or filtering
models. The reuse of information captured in models is common to all of these
tasks. Instead of creating artifacts from scratch, model transformations enable
the use of information that was once captured as a model and build on it. In
this chapter we will look at some specific use cases for model transformation
throughout the development process.

Model transformations can be used in different phases of the development
process. The V-model development process [56] is depicted in figure 3. The left
leg of the V depicts the process of creating a solution by incremental refinement.
This refinement starts with the requirements elicited from the user, proceeds
with the development of a concept and design until an implementation is created.
The right leg of the V depicts verification and validation.

In the following sections we study how model transformations can be used
to support the different development tasks in the V-model. In figure 3 the use
of model transformations is depicted by an arrow.

10

Figure 3: The V-model development process depicted as a grey V, the artifacts
produced during this process are depicted by black circles. The use of model
transformation the different development tasks is depicted by an arrow.

3.1 Synthesis

A transformation for synthesis is a refinement that adds details to the model.
Source and target models can have the same metamodel or different ones. The
level of detail is increased and it usually involves moving from a higher abstrac-
tion level to a lower one. In figure 3 synthesis can cover any stretch on the left
leg of the V-cycle. Usually there is a chain of several model-to-model transfor-
mations and a final model-to-code transformation. Code generation is a special
case of a synthesis transformation, where source code is produced from models
of a higher level of abstraction. A synthesis transformation can refine a model
in several ways: decomposition of concepts of a higher level, choice of algorithm,
specialization of abstractions for a certain usage context and concretization [20].

3.2 Integration

3.2.1 Tool Integration

A number of different development tools are available to create, manipulate,
analyze and simulate models. The models created are usually tool-specific, i.e.
each tool expects a model that corresponds to a different metamodel and uses
different technical spaces for representation. This is the reason why it is not
always possible for theses tools to exchange data, hampering tool interoperabil-
ity. Tool integration technology bridges the semantic and syntactic gaps between
different metamodels and their tools. In a tool integration context, model trans-
formations can be used to translate between two different metamodels or to keep
two models synchronized and consistent. Model transformations can be used to
establish a mapping between the metamodels of the different tools, allowing a
translation between valid instances of the metamodels.

3.2.2 Model Merging

Information from two or more models might need to be merged into a common
model. In the simplest case, all involved models correspond to the same meta-
model. Even merging models corresponding to different metamodels is possible.
Model merging is used in aspect oriented modeling [24] or model weaving [5].

11

3.3 Analysis, Simulation and Optimization

Model transformations can support simple and more complex analysis activi-
ties. Simple analysis can be performed by the transformation, such as model
metric calculation. An example is the computation of a metric for similarity
[17], which uses a model transformation written in ATL. More complex analysis
or simulations can be supported by model transformation as well, by tool in-
tegration of external analysis technology. In the latter approach, input models
for external analysis tools are created, as shown for example in [9, 10].

Optimization transformations are usually endogenous transformations, which
focus on improving one or several non-functional properties. For example op-
timizations performed by a compiler are usually targeted towards performance
enhancements. The optimization of models can focus on different properties
such as evolvability, dependability or modularity. A refactoring is an example
of an optimization transformation; it improves maintainability, evolvability and
understandability.

4 Classification Scheme for Model Transforma-
tion Problems

In earlier research mainly tools and languages for model transformation have
been classified and evaluated. Model transformation languages have been clas-
sified by Czarnecki et al. [15] and by Mens et al. [39]. Different model trans-
formation tools have been evaluated by Huber [27]. The study concluded that
no model transformation tool is absolutely better than another one. Instead a
suitable model transformation tool exists for almost every kind of model trans-
formation problem. This is why we propose a classification scheme for model
transformation problems.

In this document we define the term model transformation problem as a
problem that we would like to solve using a model transformation. A model
transformation problem is a specific instance of the typical scenarios for model
transformation described in section 3.

In the following we identify the characteristic properties of model transfor-
mation problems forming a classification. Such a classification can be helpful
when deciding which model transformation language and engine is suited for
solving the problem. This is useful as a large number of different alternative
model transformation languages and engines is available. We have identified the
following properties of model transformation problems:

• Change of Abstraction

• Change of Metamodels

• Supported Technical Spaces

• Supported Number of Models

• Supported Target Type

• Preservation of Properties

12

4.1 Change of Abstraction

Model transformations can change the level of abstraction between source and
target model. The level of abstraction is a measure of the amount of details in a
model. Model transformations either introduce new detail, reduce the amount
of detail or leave it unchanged. This property is independent of the change in
the metamodel (c.f. section 4.2); source and target metamodel can be the same
or different.

• A vertical transformation changes the level of abstraction. The level of
abstraction can be increased by a refinement transformation or it can be
decreased by an abstraction transformation.

– A refinement transformation produces the target model by adding
details to the source model. A change in the metamodel might be
necessary for this step. In the MDA, this type of model transfor-
mation is used to transform a platform independent model into a
platform specific model.

– An abstraction transformation produces the target model by reducing
the amount of detail.

• A horizontal transformation changes the representation of the model and
does not change the level of abstraction of the model. Examples are pretty-
printing, improving the graphical layout, refactoring, and translating the
model to a similar metamodel. Translation transformations produce the
target model by expressing the same information found in the source model
in a different metamodel, where the degree of detail remains the same.

4.2 Change of Metamodels

We can differentiate whether source and target metamodels are the same or
different [39].

• The source and target metamodels of endogenous transformations are the
same. When producing the target model, the transformation usually also
changes only a specific part of the source model, to the largest extent
source and target model are the same. This type of transformation is also
called rephrasing transformation [57].

• Exogenous transformations map concepts between different metamodels.
This type of transformation is also called translation transformation [57].

4.3 Supported Technical Spaces

Models are represented using different technical spaces [8]. The technical space
of the models limits the set of transformation engines that can be used. Crossing
the boundaries of technical spaces is not supported by all transformation tools.

4.4 Supported Number of Models

A model transformation can have several source models and several target mod-
els [39].

13

• The minimum number of models involved is one, where source and target
model are the same. In this case the target model is created by modifying
specific parts in the existing source model. The transformation assumes
that source and target model are identical, except for the parts mentioned
in the transformation description. The transformation is called in-place
transformation.

• Most transformations involve two models, with distinct source and target
models. The transformation assumes that the target model is empty and
if it contains information, the information is overwritten. After execution
of the transformation, the target model only contains information that is
explicitly generated.

• A transformation can involve several source models and combine the in-
formation found in them into the target model. A transformation can also
produce several target models, which often - but not necessarily - reference
each other.

4.5 Supported Target Type

We can distinguish model transformations with respect to the type of the target.
The target can be model or text.

• Model-to-model transformations create elements of the target model. El-
ements in the source model are mapped to elements in the target model.

• Model-to-text transformations create arbitrary text. Elements in the source
model map to arbitrary fragment of text. Since the text lacks structure,
model-to-text transformations are much harder to analyze. If the text
produced by the transformation is source code, the transformation is also
called model-to-code transformation or code transformation.

4.6 Preservation of Properties

Transformations can be built in such a way that source model and target model
have a common property, which is not changed by the transformation [39].

4.6.1 Semantics-preserving

If the source and target metamodels are similar, a mapping can be found that
is semantics preserving, i.e. the meaning of the two models is the same, even
though it is represented in a different technical space or using a different abstract
syntax.

Semantics-preserving program transformations are defined as changing the
way computations are performed without changing the values computed [61].
Examples of semantics-preserving transformations are performance improve-
ments or refactorings. In both cases the transformation does not change the
outcome of the computation, but improves quality attributes. In the case of
performance improvements the required resources and the time to output are
reduced, thereby improving execution time and performance. Refactoring is the
process of changing the internal structure of a model without simultaneously

14

changing the externally observable behavior or functionality of the correspond-
ing program. Refactoring transformations are semantics-preserving, since they
do not change the meaning of the model, but improve the structure and quality
of the model.

If source and target metamodels contain fundamentally different assump-
tions, it might be difficult to completely preserve the semantics. A model
transformation can approximate a preservation of the meaning of the model.
Approximation can preserve the essential properties of the model. An example
is the mapping from a complex state machine to a simplified state machine or the
mapping between a nonlinear mathematical function and a linear mathematical
function.

4.6.2 Behavior-preserving

A transformation is behavior-preserving if the explicit or implicit constraints of
the behavior in the source model remain fulfilled in the target model after the
transformation has been executed. An example is a transformation from a model
to code, where the code produces output values that are slightly different from
those predicted by the corresponding simulation of the model. Even though the
transformation from model to code is not semantics-preserving, it is behavior-
preserving.

4.6.3 Syntax-preserving

A syntax preserving transformation is usually an endogenous horizontal trans-
formation that does not change the abstract syntax of the model. An example
is a transformation for improving the graphical layout which preserves the ab-
stract syntax but changes the concrete syntax, e.g. by placing graphical model
elements in a new layout on the drawing canvas.

5 Classification Scheme for Model Transforma-
tion Languages

In this chapter we introduce the characteristics and properties of model trans-
formation languages. The purpose of this listing is to create a classification
framework for exploring and evaluating how model transformation languages
differ from each other. Together with the problem classification introduced in
section 4, this can be used for selecting a tool with appropriate properties for
the task.

The framework proposed in this chapter is based on the classification by
Czarnecki et al. [15] and on the taxonomy by Mens et al. [39]. Mens has
applied his classification on graph transformations [41] and Koch has used the
classification for studying transformation technology for web engineering [34].

5.1 Paradigm

Model transformation languages follow different language paradigms. We intro-
duce the different paradigms in the following sections.

15

5.1.1 Imperative/Operational

Imperative languages specify a sequential control flow and provide means to
describe how the transformation language is supposed to be executed. The
constructs and language concepts of imperative model transformation languages
are similar to those of general purpose programming languages such as Java or
C/C++. The languages offer a high level of control to the programmer. This
provides flexibility and allows for efficient implementations. The transformation
is described as a sequence of actions, which is especially useful if the order of a
set of transformation rules needs to be controlled explicitly [39].

5.1.2 Declarative/Relational

Declarative languages do not offer explicit control flow. Instead of how the
transformation should be executed, the focus is on what should be mapped by
the transformation. Declarative model transformations describe the relationship
between the source and the target metamodels and this relationship can be
interpreted bidirectional. For a declarative transformation between the models
A and B, the transformation description can be executed in both directions:
A 7→ B and B 7→ A. Graph transformation is a subcategory of declarative
languages, see section 5.1.4. Declarative languages are in general compact and
transformation descriptions are generally short and concise.

5.1.3 Hybrid

Hybrid transformation languages offer both imperative language constructs and
declarative language constructs. They leave it up to the user whether to use
imperative or declarative language constructs.

5.1.4 Graph Transformation

Graph transformation languages build on theoretical foundations of algebraic
graph grammars and are a subcategory of declarative languages. Graph trans-
formations have interesting theoretical properties and are often used in formal
approaches and proofs. Models are interpreted as graphs, and graph transfor-
mations manipulate subgraphs.

Triple Graph Grammars (TGG) are a way of describing graph transforma-
tions. They have rules that are specified by three graphs:

• Left-hand side graph: subgraph of the source graph

• Right-hand side graph: subgraph of the target graph

• Correspondence graph: describes the mapping between elements of the
left-hand side graph and elements of the right-hand side graph.

The left-hand side describes the precondition for the application of the rule, the
right-hand side describes the postcondition of the rule.

5.1.5 Template-Based

Template-based languages are used for model-to-text transformations. Tem-
plates contain fragments of the target text and a metaprogram that can access

16

the source model. Usually template-based languages are combined with the
visitor pattern [25] to traverse the internal structure of a model.

5.1.6 Direct Manipulation

General purpose programming languages can be used to implement model trans-
formations. Libraries to read and write model data can be used. As an advan-
tage, programmers do not need to learn a new language. On the other side, the
implementations tend to become large and unmaintainable.

5.2 Rule Application Control

Transformation languages offer different mechanisms for determining when and
where a transformation rule is applied.

• Implicit control does not allows specifying direct control of the order of
rule application.

• Explicit control specifies the execution order together with the rules.

• External control specifies the order separately from the rules.

• Rule application scoping restricts the transformation to affect only parts
of the model. The restriction can be either on the source model or on the
target model.

5.3 Rule Scheduling

Rule scheduling determines the order of rule application.

• Rule Selection controls when a rule is applied. Rule selection can be either
deterministic (interactive, explicit, control resolution) or non-deterministic.

• Rule Iteration uses recursion, looping or fixpoint operation.

• Phasing determines that in a certain phase only certain rules can be exe-
cuted.

5.4 Rule Organization

Large model transformations contain a number of rules that need to be orga-
nized. Model transformation languages offer different ways to group, compose
and reuse rules. Rules can be grouped according to the source model, the target
model or independently. Different techniques for modularizing rules exist, e.g.
[38].

It is desirable to reuse transformations and transformation rules, due to the
potential efficiency and quality improvements. One way of reuse is composition
of simple rules to build more complex rules [26, 60, 14].

• Transformations can be composed internally. Composition needs to be
supported by the transformation language.

• Transformations can be composed externally. Composition of transforma-
tions of different languages can be combined.

17

5.5 Traceability

A trace may be produced as a side effect of the transformation. It provides a log
of the execution of the transformation. It maps elements of the source model
that were matched by a transformation rule to the elements of the target model
that were produced by the transformation rule. Tracing functionality can be
built-in into the tool, or it can be implemented as part of the transformation
description.

The traces can be stored in the source model, in the target model or in a
separate place. Traces can be captured as separate models, i.e. trace models,
corresponding to a trace metamodel. The model transformation language QVT
(see section 6.3) defines such a trace metamodel. Traces can be used as a basis
for synchronization or incremental execution of model transformations.

5.6 Directionality

Transformations are used for mapping source models to target models. Trans-
formation languages allow interpreting the mapping unidirectionally or multi-
directionally.

• Unidirectional languages allow a mapping from source to target model.

• Multidirectional languages allow an interpretation of the rule in several
directions. The same rule can be applied from source to target and from
target to source. If a single source and a single target model are used, the
mapping is called bidirectional.

5.7 Incremental Model Transformation

When a source model is changed and a transformation has previously generated
a corresponding target model, some model transformation engines allow incre-
mental updates of the target model. That way, the target model does not need
to be regenerated completely, but just the part affected by the change. This is
especially relevant if large models are involved.

Tratt differentiates in [55] between statefull and persistent transformations.

• Non-incremental or statefull transitions regenerate the complete model,
incremental updates are not possible.

• Incremental or persistent transformations on the other hand allow updates
in the source model and propagate the changes to the target model.

Traces can be used as a foundation for realizing incremental model transfor-
mations. Note that in-place transformations (c.f. section 4.4) are inherently
incremental. An incremental model transformation can be incremental regard-
ing the source or the target model.

• A target-incremental model transformation updates the target without
rebuilding complete target.

• A source-incremental model transformation minimizes the number of source-
elements that need to be rechecked on an incremental model transforma-
tion.

18

Another aspect of incremental model transformation is the preservation of user
edits in the target model. Manual additions made by the user in the target
model are preserved even when the target is regenerated.

5.8 Representation of the Transformation

Model transformations can be represented as text or as a model. If model
transformations are models [6], it is possible to use model transformations to
manipulate other model transformations, so called higher-order transformations.

6 Model Transformation Languages, Tools and
Standards

In this section we briefly introduce different model transformation languages
and tools.

6.1 EMF Henshin

EMF Henshin [12] is a continuation of the EMF Tiger [11] transformation lan-
guage. It is an in-place model-to-model transformation language using triple
graph grammars (TGG). It is based on the Eclipse Modeling Framework EMF
[52].

The transformation description is a transformation model consisting of a
left-hand-side graph, a right-hand-side and a list of correspondence mappings.
The graph nodes are model element instances of the source metamodel and
the target metamodel, respectively. It is thus possible to create higher-order
transformations with EMF Henshin. There is no built-in support for creating
traces, no support for multi-directionality or incremental model transformation.

6.2 ATL

The ATLAS Transformation Language (ATL) [29] is a hybrid model-to-model
transformation language. ATL supports both declarative and imperative con-
structs. The preferred style is declarative, which allows a cleaner and simpler
implementation for simple mappings. However, imperative constructs are pro-
vided so that some mappings that are too complex to be handled declaratively
can still be specified. An ATL transformation program is composed of rules that
describe how to create and initialize the elements of the target models. The lan-
guage is specified both as a metamodel and as a textual concrete syntax. ATL
is integrated in the Eclipse development environment and can handle models
based on EMF. ATL also provides support for models using EMF-based UML
profiles.

ATL-code is compiled and then executed by the ATL transformation engine.
ATL supports only unidirectional transformations. ATL offers dedicated sup-
port for tracing. The order of the rule execution is determined automatically,
with the exception of lazy rules, which need to be called explicitly. Helper func-
tions provide imperative constructs. ATL does not support incremental model
transformation, so a complete source model is read and complete target model is
created. Manual changes in the target model are not preserved. ATL supports

19

a mode for in-place transformation, called the refining mode. It has limitations
and cannot be used in combination with certain constructs, e.g. with lazy rules.

6.3 Query/View/Transformation (QVT)

Query/View/Transformation (QVT) is a standardized language for model trans-
formation [47, 36] established by the Object Management Group (OMG). QVT
uses the Object Constraint Language (OCL) [48], Meta Object Facility (MOF)
[45] and is aligned with the Model Driven Architecture (MDA) [44].

QVT defines three languages for model-to-model transformations. QVT de-
fines both a textual concrete syntax and a XMI-based metamodel for creating
model representations of QVT transformations. QVT has a blackbox mecha-
nism that allows calling external code from within the transformation. For the
tool implementation of each of the three languages QVT defines four confor-
mance classes for interoperability: syntax executable (ability to execute QVT
in the concrete syntax), XMI executable (ability to execute QVT in a serial-
ized XMI model), syntax exportable (ability to export QVT into the concrete
syntax), XMI exportable (ability to export QVT into a serialized XMI model).

QVT defines three transformation languages:

• QVT Relational is a high-level declarative transformation language. Both
a graphical and a textual syntax are defined for QVT. The language
supports the specification of bidirectional transformations. When a bidi-
rectional transformation is executed, the execution direction needs to be
specified. A transformation is specified as a set of relations between the
source and target metamodel that must hold true. This transformation
can be used to check two models for consistency, to enforce consistency by
modifying the target model, to synchronize two models and for in-place
transformations. It supports complex pattern matching using OCL. Trace
models are created implicitly. The semantics is defined by a mapping to
QVT Core.

• QVT Core is a simple, low-level declarative model transformation lan-
guage. It serves as a foundation for QVT Relational and is equally ex-
pressive. It supports pattern matching over a flat set of variables, where
the variables of source, target and trace models are treated symmetrically.
Trace models must be defined explicitly.

• QVT Operational is an imperative model transformation language that
extends QVT Relational with imperative constructs. The transformations
are unidirectional. It uses implicit trace models.

Model transformation engines that are conform to the QVT standard include
for example SmartQVT (cf. section 6.4) and ModelMorf (cf. section 6.5).

6.4 SmartQVT

SmartQVT [2] is an implementation of a transformation engine for Operational
QVT. It is an imperative language for model-to-model transformation for EMF-
based models. The transformation description is compiled into Java code and
supports the QVT blackbox mechanism to call external code.

20

It offers built-in tracing support, in addition it offers reflection to access
tracing information, such as the target object corresponding to a source object
or the source object corresponding to a target object. There is support for
control parameters and higher order rules.

Incremental model transformation is not supported, as the complete source
model is read and the complete target model is created. There is currently no
support for multi-directionality.

6.5 ModelMorf

ModelMorf [53] is an implementation of the OMG standard QVT Relational. It
is a declarative model-to-model transformation. It supports multi-directionality,
so the same rule can be used to map in both directions. It supports target-
incremental model transformation (called change propagation semantics), so if
the source model changes only the changed part of the model is transformed. It
provides built-in functionality to create traces. It is possible to create in-place
transformations. Furthermore, it is possible to compose model transformations
to build and extend complex transformations from simpler ones.

There is currently no support for aspect-orientation, reflexion or source-
incremental model transformation.

6.6 OpenArchitecureWare (OAW)

OAW [18] integrates a number of tools for model transformations into a co-
herent framework. OAW provides a workflow specification language and the
transformation language Xpand. The workflow language is used to control the
transformation process and to specify the sequence of transformations between
the different models. The Xpand transformation language is a template-based,
imperative language for model-to-text transformations. OAW is distributed as
a plugin of the Eclipse platform and is able to handle EMF models (Eclipse
Modeling Framework).

6.7 Kermeta

Kermeta [21, 43] is a general purpose modeling and imperative programming
language, also able to perform transformations. It offers EMF-based metamod-
eling, constraints, checks, transformation and behavior support.

Models and metamodels need to be explicitly loaded and stored. Target
elements need to be explicitly instantiated and added to the target model, which
requires more code. Rule application control and rule scheduling needs to be
specified explicitly by the user.

Kermeta supports reflection, exception handling and aspect-orientation. There
is no built-in support for traceability and multi-directionality. Incremental
model transformation is not supported, so the complete source model is read
and complete target model is created when the transformation is executed.

6.8 ETL

The Epsilon Transformation Language (ETL) [35] is a hybrid model-to-model
transformation language. It is part of the Epsilon model management infras-

21

tructure. It can handle several source and several target models. It offers rule
scheduling functionality: lazy rules are only executed, when they are explicitly
called, guarded rules are only executed if their guard evaluates to true, greedy
rules are executed whenever possible. Rules can be reused and extended through
rule inheritance. External code can be executed from within the transformation
rule.

6.9 XML Stylesheet Language Transformations (XSLT)

XSLT [59] is a functional transformation language for manipulating XML data.
Being a functional language, rules have to be called explicitly. There is no
built-in traceability support and rules are strictly unidirectional. Transforma-
tions are stateful, so there is no support for incremental transformation. XSLT
transformation descriptions are themselves XML documents, so higher-order
transformations can be realized. Due to the fact the XSLT was initially devel-
oped to transform XML documents into HTML documents, XSLT is limited to
simple transformations [4].

6.10 More...

Many more model transformation languages exist, we list some names and ref-
erences here, without claiming to be complete: Moflon [3], mediniQVT [28],
Textual Concrete Syntax (TCS) [30], XText [19], Tefkat [51], MOLA [31],
MT, SiTra, MofLog, GreAT, GenGen, Beanbag, UMT, UMLX, ATOM, VIA-
TRA, BOTL, XDE Transformations, Codagen Architect Transformations, b+m
Generator Framework, OptimaJ Transformations, ArcStyler Transformations,
MPS Transformation, Microsoft DSL Tool Transformations, Metaedit+ Trans-
formations, AndroMDA, JET, FUUT-je, GMT, Jamda, Fujaba Transforma-
tions, TXL, Stratego

7 Conclusion

Model transformations can be used for different tasks throughout the develop-
ment process for manipulating models. Model transformation descriptions are
expressed in model transformation languages.

We clarified the terminology of model transformations and showed potential
usage scenarios for model transformations. We first identified some character-
istics of the problems that can be solved with the help of model transforma-
tions. We then synthesized a classification scheme for model transformations
from existing classifications. Several languages, tools and a standard for model
transformations have been developed in recent years. We used the classification
scheme to classify model transformation languages, to compare the properties
the languages can offer.

The field of model transformation is an active research field, and the lat-
est approaches could not be covered in this report. More information can be
found in relevant conference proceedings and journals: International Conference
on Model Transformation (ICMT), International Conference on Model Driven
Engineering Languages and Systems (MODELS), Journal for Software and Sys-
tems Modeling, Journal of Systems and Software.

22

Acknowledgements

This work has been partially funded by the FP7 project ATESST2 and the
ARTEMIS projects CESAR and iFEST. The author would like to thank Jad
El-khoury for reviewing this document.

23

References

[1] A. V. Aho, R. Sethi, and J. D. Ullman, Compilers: Principles,
Techniques, and Tools. Addison Wesley, January 1986. [Online].
Available: http://www.worldcat.org/isbn/0201100886

[2] F. Alizon, M. Belaunde, G. DuPre, B. Nicolas, S. Poivre, and J. Simonin,
“Les modèles dans l’action à france télécom avec smartqvt,” in Génie
logiciel: Congrès Journées Neptune No5, 2007. [Online]. Available:
http://smartqvt.elibel.tm.fr

[3] C. Amelunxen, A. Königs, T. Rötschke, and A. Schürr, “Metamodeling
with MOFLON,” Applications of Graph Transformations with Industrial
Relevance, pp. 573–574, 2008. [Online]. Available: http://dx.doi.org/10.
1007/978-3-540-89020-1 40

[4] G. J. Bex, S. Maneth, and F. Neven, “A formal model for an expressive
fragment of xslt,” Inf. Syst., vol. 27, no. 1, pp. 21–39, March 2002.
[Online]. Available: http://dx.doi.org/10.1016/S0306-4379(01)00033-3

[5] J. Bézivin, S. Bouzitouna, M. Del Fabro, M. P. Gervais, F. Jouault,
D. Kolovos, I. Kurtev, and R. F. Paige, “A canonical scheme
for model composition,” in Model Driven Architecture Foundations
and Applications, 2006, pp. 346–360. [Online]. Available: http:
//dx.doi.org/10.1007/11787044 26

[6] J. Bézivin, F. Büttner, M. Gogolla, F. Jouault, I. Kurtev, and A. Lindow,
“Model transformations? transformation models!” in in Proceedings of
Model Driven Engineering Languages and Systems (MODELS2006), 2006,
pp. 440–453. [Online]. Available: http://dx.doi.org/10.1007/11880240 31

[7] J. Bézivin and O. Gerbé, “Towards a precise definition of the omg/mda
framework,” in ASE ’01: Proceedings of the 16th IEEE international con-
ference on Automated software engineering. Washington, DC, USA: IEEE
Computer Society, 2001, p. 273.

[8] J. Bézivin, F. Jouault, and P. Valduriez, “On the need for
megamodels,” in Proceedings of Workshop on Best Practices for Model-
Driven Software Development at the 19th Annual ACM Conference on
Object-Oriented Programming, Systems, Languages, and Applications.,
Vancouver, British Columbia, Canada, October 2004. [Online]. Available:
http://www.softmetaware.com/oopsla2004/mdsd-workshop.html

[9] M. Biehl, C. DeJiu, and M. Törngren, “Integrating safety analysis into the
model-based development toolchain of automotive embedded systems,” in
Proceedings of the ACM SIGPLAN/SIGBED Conference on Languages,
Compilers and Tools for Embedded Systems (LCTES 2010), April 2010,
pp. 125+.

[10] M. Biehl, C.-J. Sjöstedt, and M. Törngren, “A modular tool integration
approach - experiences from two case studies,” in 3rd Workshop on Model-
Driven Tool & Process Integration (MDTPI 2010) at the European Con-
ference on Modeling Foundations and Applications (ECMFA 2010), June
2010.

24

http://www.worldcat.org/isbn/0201100886
http://smartqvt.elibel.tm.fr
http://dx.doi.org/10.1007/978-3-540-89020-1_40
http://dx.doi.org/10.1007/978-3-540-89020-1_40
http://dx.doi.org/10.1016/S0306-4379(01)00033-3
http://dx.doi.org/10.1007/11787044_26
http://dx.doi.org/10.1007/11787044_26
http://dx.doi.org/10.1007/11880240_31
http://www.softmetaware.com/oopsla2004/mdsd-workshop.html

[11] E. Biermann, K. Ehrig, C. Köhler, G. Kuhns, G. Taentzer, and E. Weiss,
“Graphical definition of in-place transformations in the Eclipse Modeling
Framework,” in MODELS 2006, vol. 4199, 2006, pp. 425–439. [Online].
Available: http://dx.doi.org/10.1007/11880240 30

[12] E. Biermann, S. Jurack, C. Krause, T. Arendt, and G. Taentzer,
“Henshin: Advanced concepts and tools for in-place EMF model
transformations,” in MODELS 2010, October 2010. [Online]. Available:
http://www.eclipse.org/modeling/emft/henshin

[13] T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, and F. Yergeau,
“Extensible markup language (XML) 1.0 (fifth edition),” W3C, Tech. Rep.,
November 2008. [Online]. Available: http://www.w3.org/TR/REC-xml

[14] J. Cuadrado and J. Molina, “Modularization of model transformations
through a phasing mechanism,” Software and Systems Modeling, 2009.
[Online]. Available: http://dx.doi.org/10.1007/s10270-008-0093-0

[15] K. Czarnecki and S. Helsen, “Feature-based survey of model transformation
approaches,” IBM Systems Journal, vol. 45, no. 3, pp. 621–645, 2006.

[16] M. Davis, R. Sigal, and E. J. Weyuker, Computability, Complexity,
and Languages, Second Edition: Fundamentals of Theoretical Computer
Science (Computer Science and Scientific Computing), 2nd ed. Morgan
Kaufmann, February 1994. [Online]. Available: http://www.worldcat.org/
isbn/0122063821

[17] M. D. Del Fabro and P. Valduriez, “Semi-automatic model integration
using matching transformations and weaving models,” in SAC ’07:
Proceedings of the 2007 ACM symposium on Applied computing. New
York, NY, USA: ACM Press, 2007, pp. 963–970. [Online]. Available:
http://dx.doi.org/10.1145/1244002.1244215

[18] S. Efftinge, P. Friese, A. Haase, C. Kadura, B. Kolb, D. Moroff, K. Thoms,
and M. Voelter, “openarchitectureware user guide,” openArchitectureWare
Community, Tech. Rep., 2007.

[19] S. Efftinge and M. Völter, “oaw xtext: A framework for textual dsls,”
in Eclipsecon Summit Europe 2006, November 2006. [Online]. Available:
http://www.eclipse.org/Xtext

[20] U. W. Eisenecker and K. Czarnecki, Generative Programming: Methods,
Tools, and Applications. Addison-Wesley, 2000.

[21] J.-r. Falleri, M. Huchard, and C. Nebut, “Towards a traceability framework
for model transformations in kermeta,” in In: ECMDA-TW Workshop,
2006. [Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/summary?
doi=10.1.1.99.6894

[22] J. M. Favre, “Towards a basic theory to model model driven engineering,”
in In Workshop on Software Model Engineering, WISME 2004, joint event
with UML2004, 2004.

25

http://dx.doi.org/10.1007/11880240_30
http://www.eclipse.org/modeling/emft/henshin
http://www.w3.org/TR/REC-xml
http://dx.doi.org/10.1007/s10270-008-0093-0
http://www.worldcat.org/isbn/0122063821
http://www.worldcat.org/isbn/0122063821
http://dx.doi.org/10.1145/1244002.1244215
http://www.eclipse.org/Xtext
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.99.6894
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.99.6894

[23] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts, Refactor-
ing: improving the design of existing code, ser. Object Technology Series.
Addison-Wesley, 1999.

[24] R. France, I. Ray, G. Georg, and S. Ghosh, “An aspect-oriented approach
to early design modeling,” in IEE Proceedings Software, vol. 151, no. 4,
2004, pp. 173–185.

[25] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns.
Addison-Wesley, 1996.

[26] S. Hidaka, Z. Hu, H. Kato, and K. Nakano, “Towards a compositional
approach to model transformation for software development,” in SAC
’09: Proceedings of the 2009 ACM symposium on Applied Computing.
New York, NY, USA: ACM, 2009, pp. 468–475. [Online]. Available:
http://dx.doi.org/http://doi.acm.org/10.1145/1529282.1529383

[27] P. Huber, “The model transformation language jungle - an evaluation and
extension of existing approaches,” Master’s thesis, Technische Universität
Wien, May 2008. [Online]. Available: http://www.big.tuwien.ac.at/
teaching/theses/ma/huber.pdf

[28] IKV++ Technologies. mediniQVT. [Online]. Available: http://projects.
ikv.de/qvt

[29] F. Jouault, F. Allilaire, J. Bézivin, and I. Kurtev, “ATL: a model transfor-
mation tool,” Science of Computer Programming, vol. 72, pp. 31–39, June
2008.

[30] F. Jouault, J. Bézivin, and I. Kurtev, “Tcs: A dsl for the specification of
textual concrete syntaxes in model engineering,” in GPCE 2006, 2006.
[Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=
10.1.1.103.1929

[31] E. Kalnina, A. Kalnins, E. Celms, and A. Sostaks, “Graphical
template language for transformation synthesis,” in Proceedings of Second
International Conference SLE 2009, 2009, pp. 244–253. [Online]. Available:
http://mola.mii.lu.lv/

[32] A. Kleppe, J. Warmer, and W. Bast, MDA Explained: The Model Driven
Architecture—Practice and Promise. Addison-Wesley, 2003.

[33] ——, MDA Explained: The Model Driven Architecture—Practice and
Promise. Addison-Wesley, 2003.

[34] N. Koch, “Classification of model transformation techniques used in
uml-based web engineering,” Software, IET, vol. 1, no. 3, pp. 98–111,
2007. [Online]. Available: http://dx.doi.org/10.1049/iet-sen:20060063

[35] D. Kolovos, R. Paige, and F. Polack, “The epsilon transformation
language,” in Theory and Practice of Model Transformations, ser. Lecture
Notes in Computer Science, A. Vallecillo, J. Gray, and A. Pierantonio, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, vol. 5063, ch. 4, pp.
46–60. [Online]. Available: http://dx.doi.org/10.1007/978-3-540-69927-9 4

26

http://dx.doi.org/http://doi.acm.org/10.1145/1529282.1529383
http://www.big.tuwien.ac.at/teaching/theses/ma/huber.pdf
http://www.big.tuwien.ac.at/teaching/theses/ma/huber.pdf
http://projects.ikv.de/qvt
http://projects.ikv.de/qvt
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.103.1929
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.103.1929
http://mola.mii.lu.lv/
http://dx.doi.org/10.1049/iet-sen:20060063
http://dx.doi.org/10.1007/978-3-540-69927-9_4

[36] I. Kurtev, “State of the art of qvt: A model transformation
language standard,” Applications of Graph Transformations, pp. 377–
393, 2008. [Online]. Available: http://www.springerlink.com/content/
2g55gw5260q2740h/fulltext.pdf

[37] I. Kurtev, J. Bézivin, and M. Aksit, “Technological spaces: An initial
appraisal,” in CoopIS, DOA 2002 Federated Conferences, Industrial track,
2002. [Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/summary?
doi=10.1.1.109.332

[38] I. Kurtev, K. van den Berg, and F. Jouault, “Rule-based modularization
in model transformation languages illustrated with atl,” Sci. Comput.
Program., vol. 68, no. 3, pp. 138–154, October 2007. [Online]. Available:
http://dx.doi.org/10.1016/j.scico.2007.05.006

[39] T. Mens and P. Van Gorp, “A taxonomy of model transformation,” Electr.
Notes Theor. Comput. Sci, vol. 152, pp. 125–142, 2006.

[40] ——, “A taxonomy of model transformation,” Electr. Notes Theor. Com-
put. Sci, vol. 152, pp. 125–142, 2006.

[41] T. Mens, P. Van Gorp, D. Varró, and G. Karsai, “Applying a
model transformation taxonomy to graph transformation technology,”
in Proceedings of the International Workshop on Graph and Model
Transformation (GraMoT 2005), vol. 152, 2006, pp. 143–159. [Online].
Available: http://dx.doi.org/10.1016/j.entcs.2005.10.022

[42] J. Miller and J. Mukerji, “Mda guide version 1.0,” Mai 2003.

[43] N. Moha, S. Sen, C. Faucher, O. Barais, and J.-M. Jézéquel, “Evaluation
of kermeta for solving graph-based problems,” International Journal on
Software Tools for Technology Transfer (STTT), April 2010. [Online].
Available: http://dx.doi.org/10.1007/s10009-010-0150-1

[44] OMG, “Model Driven Architecture (MDA) Guide,” OMG, Tech. Rep.,
2003. [Online]. Available: http://www.omg.org/mda/

[45] ——, “Meta Object Facility (MOF), v2.0,” OMG, Tech. Rep., January
2006. [Online]. Available: http://www.omg.org/spec/MOF/2.0/

[46] ——, “MOF 2.0 / XMI Mapping Specification, v2.1.1,” OMG, Tech. Rep.,
December 2007. [Online]. Available: http://www.omg.org/technology/
documents/formal/xmi.htm

[47] ——, “MOF 2.0 Query / View / Transformation,” OMG, Tech. Rep.,
December 2009. [Online]. Available: http://www.omg.org/spec/QVT

[48] ——, “Object Constraint Language (OCL),” OMG, Tech. Rep., 2010.
[Online]. Available: http://www.omg.org/spec/OCL/2.2

[49] ——. (2010) Unified Modeling Language (UML). [Online]. Available:
http://www.omg.com/uml/

27

http://www.springerlink.com/content/2g55gw5260q2740h/fulltext.pdf
http://www.springerlink.com/content/2g55gw5260q2740h/fulltext.pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.109.332
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.109.332
http://dx.doi.org/10.1016/j.scico.2007.05.006
http://dx.doi.org/10.1016/j.entcs.2005.10.022
http://dx.doi.org/10.1007/s10009-010-0150-1
http://www.omg.org/mda/
http://www.omg.org/spec/MOF/2.0/
http://www.omg.org/technology/documents/formal/xmi.htm
http://www.omg.org/technology/documents/formal/xmi.htm
http://www.omg.org/spec/QVT
http://www.omg.org/spec/OCL/2.2
http://www.omg.com/uml/

[50] E. Seidewitz, “What models mean,” IEEE Softw., vol. 20, no. 5, pp.
26–32, 2003. [Online]. Available: http://dx.doi.org/http://dx.doi.org/10.
1109/MS.2003.1231147

[51] J. Steel and M. Lawley, “Model-based test driven development of the
tefkat model-transformation engine,” Software Reliability Engineering,
International Symposium on, vol. 0, pp. 151–160, 2004. [Online]. Available:
http://dx.doi.org/10.1109/ISSRE.2004.23

[52] D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks, EMF:
Eclipse Modeling Framework (2nd Edition), 2nd ed. Addison-Wesley
Professional, January 2008. [Online]. Available: http://www.worldcat.org/
isbn/0321331885

[53] Tata Consultancy Services. ModelMorf. [Online]. Available: http:
//121.241.184.234:8000/ModelMorf/ModelMorf.htm

[54] M. Tisi, F. Jouault, P. Fraternali, S. Ceri, and J. Bézivin, “On the use
of higher-order model transformations,” in Model Driven Architecture -
Foundations and Applications, R. F. Paige, A. Hartman, and A. Rensink,
Eds., vol. 5562. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp.
18–33. [Online]. Available: http://dx.doi.org/10.1007/978-3-642-02674-4 3

[55] L. Tratt, “Model transformations and tool integration,” Software and
Systems Modeling, vol. 4, no. 2, pp. 112–122, May 2005. [Online].
Available: http://dx.doi.org/10.1007/s10270-004-0070-1

[56] VDI, “Design methodology for mechatronic systems (VDI 2206),” VDI,
Tech. Rep., 2004.

[57] E. Visser, “A survey of rewriting strategies in program transformation sys-
tems,” in 1st International Workshop on Reduction Strategies in Rewriting
and Programming, November 2001.

[58] ——, “A survey of strategies in program transformation systems,”
Electronic Notes in Theoretical Computer Science, vol. 57, 2001. [Online].
Available: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.28.
4289

[59] W3c, “Xsl transformations (xslt),” W3C, Tech. Rep., November 1999.
[Online]. Available: http://www.w3.org/TR/xslt

[60] D. Wagelaar, “Composition techniques for rule-based model transformation
languages,” Theory and Practice of Model Transformations, pp. 152–
167, 2008. [Online]. Available: http://www.springerlink.com/content/
761ru4426u037255/fulltext.pdf

[61] W. Yang, S. Horwitz, and T. Reps, “A program integration algorithm
that accommodates semantics-preserving transformations,” ACM Trans.
Softw. Eng. Methodol., vol. 1, no. 3, pp. 310–354, 1992. [Online]. Available:
http://dx.doi.org/10.1145/131736.131756

28

http://dx.doi.org/http://dx.doi.org/10.1109/MS.2003.1231147
http://dx.doi.org/http://dx.doi.org/10.1109/MS.2003.1231147
http://dx.doi.org/10.1109/ISSRE.2004.23
http://www.worldcat.org/isbn/0321331885
http://www.worldcat.org/isbn/0321331885
http://121.241.184.234:8000/ModelMorf/ModelMorf.htm
http://121.241.184.234:8000/ModelMorf/ModelMorf.htm
http://dx.doi.org/10.1007/978-3-642-02674-4_3
http://dx.doi.org/10.1007/s10270-004-0070-1
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.28.4289
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.28.4289
http://www.w3.org/TR/xslt
http://www.springerlink.com/content/761ru4426u037255/fulltext.pdf
http://www.springerlink.com/content/761ru4426u037255/fulltext.pdf
http://dx.doi.org/10.1145/131736.131756

	Introduction
	Related Fields
	Overview of this Document

	Terminology
	Definition of Model Transformation
	Auxiliary Terminology

	Typical Uses of Model Transformation
	Synthesis
	Integration
	Tool Integration
	Model Merging

	Analysis, Simulation and Optimization

	Classification Scheme for Model Transformation Problems
	Change of Abstraction
	Change of Metamodels
	Supported Technical Spaces
	Supported Number of Models
	Supported Target Type
	Preservation of Properties
	Semantics-preserving
	Behavior-preserving
	Syntax-preserving

	Classification Scheme for Model Transformation Languages
	Paradigm
	Imperative/Operational
	Declarative/Relational
	Hybrid
	Graph Transformation
	Template-Based
	Direct Manipulation

	Rule Application Control
	Rule Scheduling
	Rule Organization
	Traceability
	Directionality
	Incremental Model Transformation
	Representation of the Transformation

	Model Transformation Languages, Tools and Standards
	EMF Henshin
	ATL
	Query/View/Transformation (QVT)
	SmartQVT
	ModelMorf
	OpenArchitecureWare (OAW)
	Kermeta
	ETL
	XML Stylesheet Language Transformations (XSLT)
	More...

	Conclusion
	References

