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Abstract. This article proposes a taxonomy of model transformation,
based on the discussions of a working group on model transformation of
the Dagstuhl seminar on Language Engineering for Model-Driven Soft-
ware Development. This taxonomy can be used to help developers in
deciding which model transformation approach is best suited to deal
with a particular problem. We validate the taxonomy by applying it to
graph transformation, a promising technology to deal with model trans-
formation.

1 Introduction

In this paper we propose a taxonomy of model transformation. Such a taxonomy
is particularly useful to help a software developer choosing a particular model
transformation approach that is best suited for his needs.

The taxonomy is based on the discussions of a working group of the Dagstuhl
seminar on Language Engineering for Model-Driven Software Development. The
working group was composed of: J. Bézivin, A. Cherchago, K. Czarnecki, T.
Gardner, T. Girba, M. Gogolla, J.-M. Jézequel, F. Jouault, A. Königs, J. Küster,
T. Mens, L. Tratt, P. Van Gorp, D. Varro, H. Wehrheim, and M. Wermelinger.
The working group addressed a variety of important issues with model transfor-
mation, undoubtedly the most profound aspect of model-driven software devel-
opment [1, 2]. The group started with a discussion on the essential characteristics
of model transformations, as well as their supporting languages and tools. The
group also discussed the commonalities and variabilities between existing model
transformation approaches.

As an initial validation of this taxonomy, we apply it to the technique of
graph transformation to find out what are the merits and drawbacks of this
technique with respect to model transformation.



2 T. Mens and P. Van Gorp

2 Definitions and Examples

Before classifying model transformation techniques, one should understand some
model driven engineering definitions. We will clarify the definition of a model
and a model transformation by means of two running examples.

Several sources acknowledge that a model is a simplified representation of a
part of the world named the system [3, 4]. A model is useful if it helps to gain a
better understanding of the system. In an engineering context, a model is useful
if it helps deciding the appropriate actions that need to be taken to reach and
maintain the system’s goal.

The goal of software is to automate some tasks in the real world. Models
of software requirements, structure and behavior at different levels of abstrac-
tion help all stakeholders deciding how this goal should be accomplished and
maintained. According to this definition, source code is a model too since it is
a simplified representation of the lower-level machine structures and operations
that are required to automate the tasks in the real world. Moreover, correct
source code is a very useful model since it tells the machine what actions need
to be taken to maintain the system’s goal. Design representations of the source
code (e.g., UML diagrmas) are useful models if they make the source code more
understandable.

When building modeling tools, one needs to model the structure and well-
formedness rules of the language in which the models are expressed. Such models
are called metamodels [5]. Having a precise metamodel is a prerequisite for per-
forming automated model transformations.

Consider the UML class diagrams in Fig. 1. The diagrams visualise the static
structure of a Local Area Network (LAN) application [6] before and after exe-
cuting a model transformation. The method bill is pulled up from the subclass
PrintServer (see Fig. 1 (a)) to the superclass Node (see Fig. 1 (b)).

As another example, consider the problem of translating hierarchical state-
charts into flat ones [7]. A part of the translation process consists of redirecting
transitions starting from composite states to make these transitions start from
the contained states. If a contained state already has an outgoing transition with
the same label as the outer transition, that contained state will not get an extra
outgoing transition. This prevents non-determinism. Fig. 2 visualises one step of
the flattening algorithm. To complete the flattening, the transition to Delivered
needs to be flattened as well and the Active state should ultimately be removed.

3 Model transformation taxonomy

In order to decide which model transformation approach is most appropriate
for addressing a particular problem, a number of crucial questions need to be
answered. Each of the following subsections investigate a particular question,
and suggest a number of objective criteria to be taken into consideration to
provide a concrete answer to the question. Based on the answers, the developer
can then select the model transformation approach that is most suited for his
needs.
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(a)

(b)

Fig. 1. Class diagram before and after executing the pull up method transformation.
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Fig. 2. A hierarchical statechart being transformed into a more flat one. The example
of a delivery process is inspired by a popular UML book [8]. We have adapted the
example such that an order can only be cancelled if it has not been dispatched yet.

3.1 What needs to be transformed into what?

The first important question concerns the source and target artifacts of the
model transformation. If these artifacts are programs (i.e., source code, bytecode,
or machine code), one uses the term program transformation. If the software
artifacts are models, we use the term model transformation. According to the
definitions presented in Section 2, the latter term encompasses the former one
since a model can range from abstract analysis representations of the system,
over more concrete design models, to very concrete models of source code. Hence,
model transformations also include transformations from a more abstract to a
more concrete model (e.g., from design to code) and vice versa (e.g., in a reverse
engineering context). Model transformations are obviously needed in common
tools such as code generators and parsers.

Given that all program transformations can be performed as model trans-
formations, one can classify the source and target models of a transformation
in terms of their structure. More specifically, some systems can be represented
as a strict tree whereas others require a graph representation. Note that every
graph can be encoded as a tree with references from certain nodes to nodes
different from their child nodes. However, navigating a graph encoded as a tree
requires (potentially tedious) join operations. Encoding a graph in a relational
datastructure leads to even more join operations since the relations between tree
nodes and their children need to be represented by means of references as well.
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Therefore, one should choose the technology that matches the system as closely
as possible without sacrificing too much runtime performance.

Number of source and target models. A first distinguishing characteristic
of a model transformation is its number of source and target models. Kleppe et
al. [9] provided the following definition of model transformation. A transforma-
tion is the automatic generation of a target model from a source model, according
to a transformation definition. A transformation definition is a set of trans-
formation rules that together describe how a model in the source language can
be transformed into a model in the target language. A transformation rule
is a description of how one or more constructs in the source language can be
transformed into one or more constructs in the target language. We suggest that
this should be generalised, in that a model transformation should also be ap-
plicable to multiple source models and/or multiple target models. An
example of the former is model merging, where we want to combine or merge
multiple source models that have been developed in parallel into one resulting
target model. An example of the latter is a transformation that takes a platform-
independent model (PIM), and transforms it into a number of platform-specific
models (PSM). Both examples are schematically represented in Fig. 3.

PIM

PSM1 PSM2 PSMn

A vertical one-to-many model transformation

merged 
model

Model1

Model2

Modeln

A horizontal many-to-one model transformation

Fig. 3. Examples of model transformations

Technological space. The source and target models of a model transforma-
tion may belong to one and the same or to different technological spaces [10].
A technological space is determined by the meta-metamodel that is used (M3-
level). For example, the world-wide web consortium (W3C) promotes the XML
technological space, which uses XML Schema as meta-metamodel. This space
includes support for languages such as HTML, XML, XMI, XSLT, and XQuery.
As another example, the Object Management Group (OMG) promotes the MDA
technological space, which uses the MOF as meta-metamodel, and supports lan-
guages such as UML.
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If we want to have transformations between models in different technological
spaces, transformation tools need to provide exporters and importers to bridge
the technological spaces while the actual transformation is executed in the tech-
nological space of either the source or target model.

For example, when translating XML documents into UML diagrams one can
choose to execute the actual transformation in either the XML or the MDA
technological space. To perform the transformation in the XML technological
space, one would use an XSLT or XQuery program translating the general XML
document into an XML document conforming to the syntax of the XMI standard
(XML metadata interchange) and conforming to the semantics of the MOF-
XMI document for the UML standard. An XMI parser can then be used to
import the resulting XMI document in a UML CASE tool, residing in the MDA
technological space.

Performing the transformation in the MDA technological space would require
a MOF metamodel for XML. After parsing the XML document into instances
of this metamodel, the actual transformation could be performed as a MOF
transformation. The QVT request for proposals [11] aims to standardise a pro-
gramming language for implementing this kind of model transformations.

Endogenous versus exogenous transformations. In order to transform
models, these models need to be expressed in some modeling language (e.g.,
UML for design models, and programming languages for source code models).
The syntax and semantics of the modeling language itself is expressed by a meta-
model. For example, the syntax of the UML metamodel is expressed using class
diagrams, whereas its semantics is described by a mixture of well-formedness
rules (expressed as OCL constraints) and natural language [12].

Based on the language in which the source and target models of a trans-
formation are expressed, a distinction can be made between endogenous and
exogenous transformations. Endogenous transformations are transformations be-
tween models expressed in the same language. Exogenous transformations are
transformations between models expressed using different languages.3

This distinction is essentially the same as the one that was proposed in the
“Taxonomy of Program Transformation” [13], but ported to a model transforma-
tion setting. In that taxonomy, the term rephrasing was used for an endogenous
transformation, whereas the term translation was used for an exogenous trans-
formation.
Typical examples of exogenous transformation (i.e., translation) are:

– Synthesis of a higher-level, more abstract, specification (e.g., an analysis
or design model) into a lower-level, more concrete, one (e.g, a model of a
Java program). A typical example of synthesis is code generation, where the
source code is translated into bytecode (that runs on a virtual machine) or
executable code, or where the design models are translated into source code.

3 If we have to deal with transformations with multiple source models and/or multiple
target models, there can even be more than 2 different languages involved.
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– Reverse engineering is the inverse of synthesis and extracts a higher-level
specification from a lower-level one.

– Migration from a program written in one language to another, but keeping
the same level of abstraction.

Typical examples of endogenous transformation (i.e., rephrasing) are:

– Optimisation, a transformation aimed to improve certain operational quali-
ties (e.g., performance), while preserving the semantics of the software.

– Refactoring, a change to the internal structure of software to improve cer-
tain software quality characteristics (such as understandability, modifiability,
reusability, modularity, adaptability) without changing its observable be-
haviour [14]. The pull up method transformation of Figure 1 is an example
of such a refactoring.

– Simplification and normalisation, used to decrease the syntactic complexity,
e.g., by translating syntactic sugar into more primitive language constructs.
The statechart flattening transformation of Figure 2 is an example of such
a simplification.

One can further classify endogenous model transformations in terms of the
number of models involved. If this number is only one, the source and target
model are the same and all changes are made in-place. Other endogenous trans-
formations create model elements in one model based on properties of another
model (regardless of the fact that both models conform to the same metamodel).
Such transformations are called out-place. Note that exogenous transformations
are always out-place. We do not incorporate this distinction in the proposed
taxonomy since for most applications it doesn’t matter whether a transforma-
tion is implemented in- or out-place. Still, the terms have shown to be useful in
technical discussions on model transformation.

Horizontal versus vertical transformations. A horizontal transformation is
a transformation where the source and target models reside at the same abstrac-
tion level. Typical examples are refactoring (an endogenous transformation) and
migration (an exogenous transformation). A vertical transformation is a trans-
formation where the source and target models reside at different abstraction
levels. A typical example is refinement, where a specification is gradually refined
into a full-fledged implementation, by means of successive refinement steps that
add more concrete details [15, 16].

Table 1 illustrates that the dimensions horizontal versus vertical and endoge-
nous versus exogenous are truly orthogonal, by giving a concrete example of all
possible combinations. As a clarification for the Formal refinement mentioned
in the table, a specification in first-order predicate logic or set theory can be
gradually refined such that the end result uses exactly the same language as the
original specification (e.g., by adding more axioms).
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Table 1. Orthogonal dimensions of model transformations

horizontal vertical

endogenous Refactoring Formal refinement

exogenous Language migration Code generation

3.2 Important characteristics of a model transformation

Level of automation. A distinction can and should be made between model
transformations that can be automated and transformations that need to be
performed manually (or at least need a certain amount of manual intervention).

An example of the latter is a transformation from a requirements document
to an analysis model. For such a transformation, manual intervention is needed
to address and resolve ambiguity, incompleteness and inconsistency in the re-
quirements that are (partially) expressed in natural language.

Complexity of the transformation. Some transformations, such as model
refactorings, can be considered as small, while others are considerably more
heavy-duty. Examples of the latter are parsers, compilers and code generators.
The difference in complexity between small transformations and heavy-duty
transformations is so big that they require an entirely different set of techniques
and tools.

Preservation. Although there is a wide range of different types of transfor-
mations that are useful during model-driven development, each transformation
preserves certain aspects of the source model in the transformed target model.
The properties that are preserved can differ significantly depending on the type
of transformation. For example, with refactorings or restructurings, the (exter-
nal) behaviour needs to be preserved, while the structure is modified. With
refinements, the program correctness needs to be preserved [17].

3.3 Success criteria for a transformation language or tool

In the previous discussion, we restricted ourselves to characteristics of the model
transformation or of the models being transformed. Equally important, or per-
haps even more important, are the characteristics of a transformation language
or transformation tool. Below we enumerate a number of important functional
requirements that contribute to the success of such a language or tool.

Ability to create/read/update/delete transformations (CRUD). While
this is a trivial requirement for a transformation language, it is not that obvious
for a transformation tool. For example, if we consider a typical program refactor-
ing tool, it comes with a predefined set of refactoring transformations that can
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be applied, but there is often no way to define new refactoring transformations,
or to fine-tune existing transformations to specific needs of the user. As such,
having the possibility to create new transformations or update existing ones is
an important criterion.

Ability to suggest when to apply transformations. For certain applica-
tion scenarios, dedicated tools can be built that suggest to the user which model
transformations might be appropriate in a given context. For example, a refac-
toring tool might not only apply refactoring transformations, but also suggest
in which context a particular refactoring should be applied [18, 19].

Ability to customise or reuse transformations. For example, if we adopt
an object-oriented transformation language, we may be able to use the inher-
itance mechanism to reuse the specifications of model transformations. Other
customisation or reuse mechanisms include parameterisation and templates.

Ability to verify and guarantee correctness of the transformations.
The simplest notion of correctness is syntactic correctness: given a well-formed
source model, can we guarantee that the target model produced by the trans-
formation is well-formed? Another notion is syntactic completeness: for each
element in the source model, there should be a corresponding element in the
target model that can be created by a model transformation.
A significantly more complex notion is semantic correctness: does the produced
target model have the expected semantic properties? This is for example a crucial
requirement for refactoring transformations, were we want to be able to ensure
that these transformations preserve certain behavioural properties. Other impor-
tant semantic properties are termination and confluence: given a set of trans-
formations, they should always lead to a result (i.e., they should terminate) and
this result should be unique (confluence).

Ability to test and validate transformations. Since transformations can be
considered as a special kind of programs (e.g., the XSLT transformation language
is a Turing-equivalent programming language), we need to apply systematic
testing and validation techniques to transformations to ensure that they have
the desired behaviour.

Ability to deal with incomplete or inconsistent models. It is important
to be able to transform models early in the software development life-cycle,
when requirements may not yet be fully understood or are described in natural
language. This often gives rise to ambiguous, incomplete or inconsistent models,
which implies that we need to have mechanisms for inconsistency management.
These mechanisms may be used to detect, and possibly resolve, inconsistencies
in the transformations themselves, or in the models being transformed.
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Ability to group, compose and decompose transformations. The ability
to combine existing transformations into new composite ones is useful to increase
the readability, modularity and maintainability of a transformation language.
Decomposition of a complex transformation into smaller steps may also require
a control mechanism to specify how these smaller transformations need to be
combined. This control mechanism may be implicit or explicit.

Ability to specify generic and higher-order transformations. Ideally,
transformations should be first class entities in a transformation language. If we
can represent transformations as models too, we can apply transformations to
these models, thus achieving a notion of higher-order transformations. A con-
crete example of this would be to refactor a given set of transformations (e.g.,
a family of code generators), to reduce the amount of code duplication in these
transformations. In order to achieve this, we need to transform the transforma-
tions themselves.

Ability to specify bidirectional transformations. Languages or tools that
have the property of bidirectionality require fewer transformation rules, since
each transformation can be used in two different directions: to transform the
source model(s) into target model(s), and the inverse transformation to trans-
form the target model(s) into source model(s).

Support for traceability and change propagation. To support traceability,
the transformation language or tool needs to provide mechanisms to maintain
an explicit link between the source and target models of a model transformation.
To support change propagation, the transformation language or tool may have
a consistency checking mechanism and an incremental update mechanism [20].
Note that some transformation approaches require to translate the source model
first into some standardised format (e.g., XML), then apply the transformation,
and then do another translation to obtain the target model. A clear disadvantage
of such an approach is that it is difficult to synchronise source and target models
when changes are made to them.

3.4 Quality requirements for a transformation language or tool

Besides all the functional requirements enumerated above, a transformation lan-
guage or tool should also satisfy a number of non-functional or quality require-
ments.

Usability and usefulness. The language or tool should be useful, which means
that it has to serve a practical purpose. On the other hand, it has to be usable
too, which means that it should be intuitive and efficient to use. Obviously, this
issue is directly related to developer training and experience. Instead of using a
full-fledged transformation language, developers may prefer a more direct model
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manipulation approach, where the internal model is directly accessed by means
of an API. The advantage is that developers can keep on using their preferred
language and require virtually no extra training. The disadvantage is that the
API may restrict the kinds of transformations that can be performed [2].

Verbosity versus conciseness. Conciseness means that the transformation
language should have as few syntactic constructs as possible. From a practical
point of view, however, this often requires more work to specify complex trans-
formations. Hence, the language should be more verbose by introducing extra
syntactic sugar for frequently used syntactic constructs. It is always a difficult
task to find the right balance between these two conflicting goals. Referring to
the previous example of direct model manipulation via an API, the developers
will typically use a general purpose programming language to specify the trans-
formations. This leads to considerably more verbose code than with dedicated
model transformation languages [2].

Performance and scalability. The language or tool should be able to cope
with large and complex transformations or transformations of large and complex
software models without sacrificing performance.

Extensibility. The flexibility of a tool depends on how easy it is to extend
it with new functionality. For example, the tool could offer a built-in plug-in
mechanism.

Mathematical properties. If the transformation language or tool has a math-
ematical underpinning, it may be possible, under certain circumstances, to prove
theoretical properties of the transformation such as termination, soundness, com-
pleteness, (syntactic and semantic) correctness, etc.

Acceptability by user community. The best transformation language from a
theoretical point of view may not necessarily be the best from a pragmatic point
of view. For example, it the target community is an object-oriented audience,
a transformation language based on a logic or functional paradigm may not be
acceptable.

Standardisation. The transformation tool should be compliant to all rele-
vant standards (such as XML, MOF, UML). For example, the tool may need
to support XMI for importing or exporting the source or target models of a
transformation.

3.5 Which mechanisms can be used for model transformation?

Mechanisms should be interpreted here in a broad sense. They include tech-
niques, languages, methods, and so on. To specify and apply a transformation,
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ideas from any of the major programming paradigms can be used. One can de-
cide to use a procedural, an object-oriented, a functional or a logic approach, or
a hybrid approach combining any of the former ones.

The major distinction between transformation mechanisms is whether they
rely on a declarative or an operational (or imperative) approach. Declarative
approaches focus on the what aspect, i.e., they focus on what needs to be trans-
formed into what by defining a relation between the source and target models.
Operational approaches focus on the how aspect, i.e., they focus on how the
transformation itself needs to be performed by specifying the steps that are
required to derive the target models from the source models.

Declarative approaches (e.g., [21]) are attractive because particular services
such as source model traversal, traceability management and automatic bidirec-
tionality can be offered by an underlying reasoning engine. There are several
aspects that can be made implicit in a transformation language: (1) navigation
of a source model, (2) creation of target model and (3) order of rule execution.
As such, declarative transformations tend to be easier to write and understand
by software engineers.

Operational (or constructive) approaches (e.g., [22]) may be required to im-
plement transformations for which declarative approaches fail to guarantee their
services. Especially when the application order of a set of transformations needs
to be controlled explicitly, an imperative approach is more appropriate thanks
to its built-in notions of sequence, selection and iteration. Such explicit control
may be required to implement transformations that reconcile source and target
models after they were both heavily manipulated outside that transformation
tool.

One particular flavour of a declarative approach is functional programming.
Such an approach towards model transformation is appealing, since any trans-
formation can be regarded as a function that transforms some input (the source
model) into some output (the target model). In most functional languages, func-
tions are first class, implying that transformations can be manipulated as models
too. An important disadvantage of the functional approach is that it becomes
awkward to maintain state during transformation.

Another flavour of a declarative approach is logic programming. A logic lan-
guage (e.g., Prolog or Mercury) has many features that are of direct interest for
model transformation: backtracking, constraint propagation (in the case of con-
straint logic programming languages), and unification. Unification may either be
partial (which is easier to use and understand) or full (which is more powerful).
Additionally, logic languages always offer a query mechanism, which means that
no separate query language needs to be provided.

4 Case study: Graph transformation

In this section we will apply the model transformation taxonomy to the tech-
nique of graph transformation [23]. In fact, graph transformation is more a pro-
gramming paradigm than a technique, since it consists of a large set of different
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theories, languages and tools. Some of these, such as Fujaba [24] and AGG [25],
are general-purpose. Tools such as GReAT [22] and MOLA [26] are specifically
tuned for the activity of model transformation. Tools such as VIATRA [27] and
GROOVE [28] are used for the activity of model checking.

4.1 What needs to be transformed into what?

In traditional compiler technology, programs are typically represented as an ab-
stract syntax tree. In program analysis research, on the other hand, programs
are frequently represented as graphs, e.g., to specify the control-flow or data-
flow dependence relationships of programs. Compared to a graph structure, a
tree structure is less intuitive, since it deals with cross-references (such as vari-
able assignments and method invocations) in a suboptimal way. On the other
hand, tree structures outperform graph structures when it comes to performance
and scalability.

Number of source and target models. Graph transformation theory allows
us to express one-to-one model transformations directly as a graph production
(a.k.a. graph transformation rule) with a left-hand side (LHS) representing the
source model, and a right-hand side (RHS) representing the target model. In
other words, a graph transformation T : G→ H is defined as the application of
a graph production P : L → R to an initial graph G by finding an occurrence
(or more formally, a match m : L → G) of the production’s LHS in the initial
graph G, and applying the production P in the context of G, which leads to a
result graph H. This process is schematically depicted in Fig. 4.

L R

G H

P

T

m

Fig. 4. Schematic representation of a graph transformation

Whether a graph-transformation tool can be used to express one-to-many,
many-to-one or many-to-many transformations depends on whether it is possi-
ble to manipulate models having different metamodels. In graph-transformation
theory, the metamodel is expressed as a so-called type graph. The AGG tool pro-
vides support for a single type graph, so it can only support one-to-one model
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transformations. Other tools, such as GREAT and VIATRA, or more flexible,
since they can deal with multiple metamodels at once.

Technological space. AGG is a general-purpose graph transformation tool
that uses GXL, a standard graph exchange format [29] as meta-metamodel.
However, since GXL is based on XML, it is relatively easy to provide a mapping
to the XML technological space. VIATRA [27], a model transformation tool that
is based on graph-transformation technology, belongs to the MDA technological
space. The VIATRA tool uses an XMI input/output format that conforms to the
MOF model. The Fujaba tool suite [24] is a CASE tool for UML development
and automatic generation of Java code. The underlying technology to represent
UML diagrams is based on graph transformations. Fujaba uses a vendor-specific
version of UML, so it can be considered as part of the MDA technological space.
Agrawal et al. [22] introduced GReAT, a graph-transformation tool and associ-
ated language to specify model transformations using UML notation. As such,
it belongs to the MDA technological space.

To summarise, most graph transformation tools allow us to deal with models
in the XML or MDA technological space directly, or using some translators.

Endogenous versus exogenous transformations. In graph transformation,
the structure of a metamodel is described by means of a type graph. In an en-
dogenous graph transformation, the source and target graphs are instances of
the same type graph. Exogenous transformations, where the source and target
are expressed in a different domain (i.e., have a different metamodel) can also
be expressed using graph transformations, provided that one specifies a different
type graph for source and target model. This is precisely what has been done
in GReAT [22], where a specific graph transformation language is used for this
purpose.

Horizontal versus vertical transformations. Graph transformation tech-
nology can be, and has been, used for all activities mentioned in Table 1. As
an example of vertical exogenous model transformation, Karsai et al. show how
to transform a platform-independent model (PIM) into a more platform-specific
model (PSM) using GReAT [30]. As another example, Baresi et al. illustrate the
use of graph transformation for refinement of software architectures [31]. As an
example of horizontal endogenous model transformation, graph transformations
have been used to specify refactorings in [32, 33]. As an example of horizontal
exogenous transformation, graph transformations have been used for migration
from one domain-specific language to another using GReAT [22]. Finally, Große-
Rhode et al. [34] illustrates vertical endogenous transformations by specifying
formal refinements as typed graph transformations.

As an example of a horizontal endogenous transformation, Fig. 5 shows how
the pull up method refactoring that was introduced in Figure 1 can be expressed
as a graph transformation in the UML profile for Fujaba’s Story Driven Model-
ing (SDM) language [35, 36]. In this profile, graph transformations are modeled
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as methods of special classes. This structure is modeled in a class diagram with
stereotypes on the classes representing transformations and the operations rep-
resenting rules. Because of their correspondence to operations, the visual trans-
formation specifications can access their formal parameters. Moreover, Java pro-
grams can call Java methods generated from the SDM specifications without
knowing about the graph transformation concepts.

Fig. 5 (a) specifies the control flow of the actions that need to be executed to
perform the transformation. First the preconditions have to be checked. In case
of success, the transformation primitive doPullUpMethod is applied to actually
transform the source graph. The specification of doPullUpMethod is shown in
Fig. 5 (b). Links and objects without a stereotype are to be matched in the host
graph. Those with a �create� stereotype have to be created while those with
a �destroy� stereotype need to be destroyed.

In the example of the pull up method transformation for UML models, the
�bound� node method represents the argument of the transformation. The
type of node method is the UML metaclass Operation. The edges owner, child
and parent between method, container and superclass specify a pattern that
checks if the containing class has a superclass. If so, the link to this class is
destroyed and a link to the superclass is created.

(a) (b)

Fig. 5. Parts of the specification of the pull up method refactoring as a graph transfor-
mation in Fujaba’s Story Driven Modeling language.

Note that the Generalisation node is counter intuitive since it is not directly
mapped to a concept in the UML class diagram syntax. Instead, one would like
to reason in terms of the inheritance relationship by means of UML’s arrow
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with a hollow end between container and superclass. The following example
illustrates that nothing prevents tool builders to automate the mapping from
concrete UML syntax to a typed graph instance.

Fig. 6 represents a graph transformation on UML statecharts within the
UML statecharts syntax. The example rule is part of an endogenous vertical
transformation for flattening a nested statechart. It takes those source states
nested in a composite state that do no have an outgoing transition whose label
aLabel is equal to the label of a transition originating from the composite state.
For those states, the transformation will create a transition from the source
state to the outer target state and remove the transition originating from
the composite state. Nodes that are denoted by a double rounded rectangle
(e.g., source) can match to multiple nodes in the host graph. Nodes denoted
by a crossed-out rounded rectangle (e.g., inner target) should not occur in
the host graph. In graph transformation terminology this is called a negative
application condition.

Fig. 6. Part of the specification of statechart flattening as a graph transformation using
concrete syntax to improve understandability.

Before the transformation can be executed by a general purpose graph trans-
formation engine, such rules need to be translated into graph transformations on
instances of a type graph (i.e., a metamodel structure). In the example rule, the
edge from source to inner target needs to be translated to a node which is
instance of Transition and has source (instance of State) and inner target
(also instance of State) as values for its src and trg attributes. Similarly, the
nesting of the source and inner target states into composite needs to be
translated into two instances of the State metaclass which are connected to an
instance of the CompositeState metaclass. Fig. 7 shows what the resulting rule
would look like.

4.2 Important characteristics of a model transformation

Level of automation. In most graph transformation tools, individual graph
productions can be selected by the user and applied to an initial graph, possibly
after selecting a match of the LHS in the initial graph (in the case where there
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Fig. 7. Part of the specification of statechart flattening as a graph transformation
translated to abstract syntax.

are multiple matches of the graph production). Alternatively, one may resort
to a fully automatic graph grammar approach. Starting from an initial graph,
all possible applicable graph productions are applied repeatedly, and in parallel.
This iterative process is repeated as long as possible. The set of result graphs
obtained by this process is called the language generated by the graph grammar.
Such a grammar can be seen as a one-to-many transformation.

A graph grammar may also be executed non-deterministically. In this case,
for each iteration an applicable production and match is selected at random.

Complexity of the transformation. Complex transformations require more
complex mechanisms such as control structures to govern the execution order of
rules. Graph transformation languages may vary significantly in the strength of
these control structures or the way they are specified. In PROGRES, sequence,
branch and loop constructs can be used to control the application of graph
transformations [37]. The same is true for the Fujaba tool suite. In GReAT,
the control structure is based on hierarchical dataflow-like diagrams, but an
explicit loop control structure is missing. Loops can be expressed as transitions
to previous states in a dataflow.

Even with these advanced control structure mechanisms it remains to be seen
whether graph transformation alone suffices to express complex transformations.
For example, experience with PROGRES suggests that, for practical purposes,
a hybrid approach combining the virtues of a graph transformation language
and a textual constraint language is required. Given that many of the graph
transformation tools rely on UML notation in one way or another, OCL seems
to be a viable alternative to specify textual constraints of graph transformations.
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Preservation. Graph transformation theory seems promising to formally spec-
ify refactorings and to show that these refactorings preserve behavioural prop-
erties. An initial feasibility study has shown, however, that current graph trans-
formation formalisms still have an number of limitations in order to accomplish
this goal [32]. Therefore, Van Eetvelde and Janssens [33] proposed a number of
extensions to graph transformations in order to enhance their expressive power.
Incorporating these extensions in graph transformation tools remains to be done.

4.3 Success criteria for a transformation language or tool

Ability to create/read/update/delete transformations (CRUD). This
ability is present in all of the graph transformation tools we studied, as it forms
the essence of any graph transformation approach.

Ability to suggest when to apply transformations. Most graph trans-
formation languages and tools provide a mechanism and language to express
constraints on the graphs that need to be transformed. Graph constraints con-
sist of path expressions that state that particular links and / or node values
should be present or not. The latter constraints are called negative application
conditions [38]. In AGG, one can use the graphical user interface to map con-
straints to the pre- and postconditions of graph transformation rules [39]. In
Fujaba, control constructs can be used to combine graph constraints and graph
transformations in arbitrary ways.

Ability to customise or reuse transformations. A simple yet crucial way
to customise graph transformations is by means of parameterisation. In fact, a
parameterised graph production represents an infinite set of possible graph pro-
ductions, each one obtained by providing concrete values for the parameters. A
parameterisation mechanism is available in most available graph transformation
tools.

Some graph transformation tools are integrated into an object-oriented devel-
opment environment, thus allowing to exploit well-known object-oriented mech-
anisms such as inheritance to enable reuse. For example, in Fujaba, graph pro-
ductions are used as specifications of methods, and inheritance can be used to
reuse these methods in subclasses.

VPM, the metamodelling framework used by the VIATRA tool, also supports
the reusability of transformations by means of rule inheritance [40].

Ability to verify and guarantee correctness of the transformations. A
model is syntactically correct if it conforms to its metamodel structure and well-
formednes rules. In graph transformation, structure conformance is enforced by
means of type graphs, and well-formedness rules can be expressed and checked by
means of graph constraints. Heckel et al. have explored how such well-formedness
rules can be combined. They used critical pair analysis to check the termination
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and confluence of graph grammars [41]. Two graph productions may form a
critical pair if they are in conflict, in the sense that they do not preserve the
confluence property. This property is needed to guarantee that a rewriting system
has a functional behaviour. AGG is the only graph transformation tool that
implements a critical pair analysis algorithm.

VIATRA [27] and GROOVE [28] are two graph transformation tools that
check models for semantic correctness. In VIATRA, graph transformations (of
UML statecharts) are verified by projecting model transformation rules into the
SAL intermediate language, which provides access to an automated combination
of symbolic analysis tools (like model checkers and theorem provers) [27].

In order to guarantee syntactic correctness of a graph transformation, one
should first ensure that the transformation itself is type correct. This can be
done by considering a transformation itself as a model and checking whether
it conforms to the metamodel of the graph transformation language. Next, by
ensuring that the postcondition of a graph transformation rule does not conflict
with the well-formedness rules of the target graph, one can remove the necessity
of checking the type correctness of the output graph on each rule application.

Ability to test and validate transformations. While systematic testing ap-
proaches such as unit testing are commonplace in traditional (object-oriented)
software development, this is much less the case for graph transformations. Ide-
ally, each graph production specification should come with a suite of tests that
verify that the graph production has the desired behaviour. Geiger et al. inves-
tigate testing and debugging in the context of graph transformation [42, 43].

To a certain extent, AGG’s critical pair analysis can also be considered as
validation of transformations since it allows the developer to test whether a give
set of graph transformations (i.e., a graph grammar) is consistent.

Probably the most advanced graph transformation tool when it comes to
verification and validation is VIATRA (VIsual Automated model TRAnsforma-
tions), a transformation-based verification and validation environment for im-
proving the quality of systems designed using the UML by automatically check-
ing consistency, completeness, and dependability requirements [27].

Ability to deal with incomplete or inconsistent models. In all the graph
transformation approaches we studied, the models (i.e., graphs) under consid-
eration have to be well-formed. In other words, none of the approaches allow
for inconsistent models. Incompleteness poses less of a problem, as long as the
well-formedness constraints are guaranteed.

Ability to group, compose and decompose transformations. Composi-
tion of graph transformations can be achieved by using controlled or programmed
graph transformation, i.e., a set of control mechanisms to govern the execution
order of rules [44]. Typical control mechanisms are sequencing, branching and
looping. In Fujaba, transformations are implemented as method bodies, so com-
position of transformations can be achieved by performing method calls. Another
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mechanism that has been proposed to group and compose graph transformation
is the structuring mechanism of graph transformation units [45, 46]. In the graph
grammar variant of graph transformation (e.g., AGG), one can use layered graph
grammars as a primitive kind of structuring mechanism. The layers fix the or-
der in which rules are applied. Rules of layer 0 are applied as long as possible,
followed by rules of layer 1, and so on.

Ability to specify generic and higher-order transformations. The only
graph transformation tool that supports higher-order transformations is VIA-
TRA [47]. Higher-order transformations enable a very compact description of
certain transformation problems in MDA. A possible disadvantage is a degra-
dation in performance. But this problem is addressed by automatically deriv-
ing efficient first-order transformations from generic higher-order ones. To this
extent, meta transformations are used, i.e., transformations whose source and
target models are transformations themselves!

Ability to specify bidirectional transformations. All the graph transfor-
mation mechanisms we studied were unidirectional. This means that a graph
transformation can be applied in only one direction.

Support for traceability and change propagation. Most of the considered
graph transformation tools have no or poor support for traceability and change
propagation and do not provide an incremental update mechanism. Meta trans-
formations can be very helpful here in order to maintain or upgrade existing
model transformations.

4.4 Quality requirements for a transformation language or tool

Usability and usefulness. That graph transformation technology is useful for
the purpose of model transformation has been amply illustrated by experiments
performed with transformation languages such as GReAT and VIATRA. That
graph transformations are also usable is more difficult to assess, as this depends
on several factors. Abstracting away from factors such as developer training and
experience, most graph transformation tools still need to mature to make them
more performant and intuitive in use, but this is probably just a matter of time.

Verbosity versus conciseness. Compared to XML-based transformation tech-
nology, graph transformation seems to give rise to more concise and better read-
able code. Whether this code is also easier to produce and maintain is not clear
and should be investigated further.

Within the realm of graph transformation tools, a distinction should be made
between general-purpose tools and dedicated model transformation tools. Due to
their dedicated nature, the latter tend to produce more concise code. This goes
at the expense of verbosity, since it requires the introduction of extra syntactic
constructs that are specifically tuned to model transformation.
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Performance and scalability. Graph transformations are sometimes accused
of generating inefficient programs. While this may be the case for some tools,
this is not an inherent limitation of the paradigm per se. For example, Varró
et al. show how to transform higher-order model transformations automatically
in efficient first-order transformations [47]. As another example, Vizhanyo et al.
have illustrated significant performance gains by optimising traditional graph
matching algorithms on the one hand and bypassing the generic transformation
engine of GReAT by native transformation code on the other hand [48].

When applying graph transformation technology for the purpose of model
checking, there are certainly scalability problems. But this has nothing to do with
restrictions of the graph transformation approach, but with inherent limitations
in model checking. In fact, a comparison of GROOVE with SPIN – a well-known
model checking tool that does not rely on graph transformation – showed that
for a certain type of applications GROOVE even outperforms SPIN since it was
able to deal with significantly larger state spaces [49].

Extensibility. Some graph transformation tools, such as Fujaba, offer a built-in
plug-in mechanism for extending the tool with new functionality.

Mathematical properties. The formal foundation of graph transformation
technology is one of its main advantages. Research literature on theoretical issues
of graph transformation is abundant.

Acceptability by user community. In order to get accepted by an existing
user community, a language should not diverge too much from what people
are accustomed to. For example, for people trained in procedural programming,
the “structured procedural” style in MOLA is probably more readable than
the declarative grammar approach of AGG. Similarly, for people accustomed
to UML notation, Fujaba provides a very natural notation to express graph
transformations without the user even being aware of it.

Standardisation. Another way to make graph transformation technology ac-
cepted is by supporting existing standards such as UML and XML. This is al-
ready the case for most graph transformation tools. They either support UML or
XML directly, or provide some translators (e.g., XMI export facilities) to bridge
between technological spaces.

Graph transformation tools can also be applied using MDA standards like
UML, MOF and XMI. Type graphs can defined as class diagrams in UML edi-
tors with proper XMI export facilities. The resulting model can be transformed
into a MOF metamodel [50]. Existing MDA frameworks can be used to monitor
the OCL well-formedness rules of this metamodel on models residing in a MOF
repository [51]. Model transformations can be developed as graph transforma-
tions expressed in UML statechart and class diagram editors that export the
transformation models to XMI. The transformation models can be transformed
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into executable MOF transformation code that can transform any model that is
an instance of the original type graph [35, 36].

Finally, although there is no formal concensus yet on a standard graph trans-
formation language or exchange format, there is an ongoing initiative in this
direction. Based on the relative success of GXL, a standard graph exchange for-
mat [29] that is used in the AGG tool, work is in progress to come to GTXL, a
standard exchange format for graph transformations [52].

4.5 Comparison

In this section we apply the above discussion in practice to compare three state-
of-the-art graph transformation tools. To cover as wide a spectrum as possible,
we have chosen three different kinds of graph transformation tools:

– AGG is a general-purpose graph transformation tool
– Fujaba is a tool for round-trip engineering (between UML and Java)
– VIATRA is a tool dedicated to model transformation

Table 4.5 summarises the results of our comparison. Note that not all criteria in
our taxonomy appear in the table, since we only display those criteria where a
difference could be discerned between the considered tools.

5 Conclusion

In this paper, we provided a taxonomy of model transformation. To goal is to help
the developer choosing a particular transformation language, tool, method or
technology for his specific needs. This is important, since the application domains
of model transformation technology can be very diverse. Therefore, there is no
unique answer to the question which approach to model transformation is the
best. Nevertheless, we have shown that it is possible to come up with a set of
concrete criteria that need to be taken into consideration when dealing with the
following crucial questions:

– What needs to be transformed into what?
– What are the important characteristics of a model transformation?
– What are the success criteria for a transformation language or tool?
– Which mechanisms can be used for model transformations?

Based on the answers to these questions, a particular model transformation
approach may be selected and adopted to address a particular problem.

We validated our taxonomy by applying it to graph transformation tech-
nology, which comprises a set of techniques and associated formalisms that are
directly applicable to model transformation. Based on this, we were able to con-
clude that graph transformation is a promising approach to deal with model
transformation. It is a visual notation: the source, target and the transformation
itself can be expressed in a visual way. It is formally founded: one can resort



A Taxonomy of Model Transformation 23

Table 2. Comparison of graph transformation tools for model transformation

criterion AGG Fujaba VIATRA

number of source
and target models

one-to-one many-to-many many-to-many

kind of transfor-
mation

endogenous endogenous endogenous + exoge-
nous

technological
space

GXL MDA4 MDA

level of automa-
tion

graph grammars graph transforma-
tions

high

complexity layered grammars controlled graph
transformations

higher-order and
meta transforma-
tions

reusability parameterised trans-
formations

parameterised trans-
fos / inheritance of
transfos

rule inheritance
and higher-order
transformations

verification and
validation

critical pair analysis graph-
transformation-
based JUnit tests

full-fledged verifica-
tion and validation
mechanism[49]

composition layered graph gram-
mar

method calls in story
driven modelling

?

usability low high high

extensibility None plug-in mechanism None

acceptability low medium high

standardisation GXL UML, Java, XMI,
MOF

UML, XMI, MOF
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to many theorems to prove certain properties of the transformation. It offers a
mechanism to compose smaller transformations into more complex ones.

A possible disadvantage is that the various techniques for graph transfor-
mations are not necessarily compatible with one another. With respect to stan-
dardisation, there is a tendency to combine graph transformation technology
with XML and UML notation. This tendency favours acceptability by the user
community because of their familiarity with these languages. Compared to AGG
and Fujaba, the VIATRA tool is more usable and acceptable since it was specif-
ically built for the purpose of model transformation. VIATRA seems to be the
most advanced tool, even compared with other model transformation tools that
are not based on graph transformation, since it offers very advanced features
such as rule inheritance, higher-order transformations, meta transformations,
and verification and validation of transformations.
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40. Varró, D., Pataricza, A.: VPM: A visual, precise and multilevel metamodeling
framework for describing mathematical domains and UML. Software and Systems
Modeling 2 (2003) 187–210
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