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Implementing the Common Semantic Model 

The CSM deliberately adopts the more dynamic view of objects, which are freely created and 
deleted, with features like polymorphic aliasing, safe type downcasting and garbage 
collection.   Each of the target languages must support this model.  In certain target 
languages, such as Java, these features are already built-in to the native programming model.  
In other languages, this requires the provision of a base library of some sophistication.  An 
example of this in C++ is given below. 

1 Dynamic objects with memory management 

To implement dynamic objects with uniform reference semantics in C++ requires the use of 
object allocation on the heap, with some form of memory management to ensure that unused 
objects are deleted afterwards.  One possibility is to include a garbage collector for C++ 
(several implementations exist).  In this translation model, all field and variable types become 
C++ pointer types: 

SomeClass* ptr = new SomeClass(); 

and the garbage collector performs occasional sweeps through heap memory to determine 
whether variables are still reachable from current stack memory.  This is a good option if a 
garbage collector with predictable performance characteristics is available.  Mark-and-sweep 
collectors may execute at unpredictable intervals and may suspend normal execution while 
collecting. 

Alternatively, a reference-counted memory management policy is possible, through the 
creation of smart pointers.  In this translation model, all field and variable types become 
smart pointer types, and objects are assigned immediately to smart pointers upon creation, so 
that their lifetime may be managed: 

Ref<SomeClass> ptr = new SomeClass(); 

The smart pointer type Ref<T> is a template class, parameterised by the type T of the object 
stored in it.  In this model, all objects contain a reference count, which is incremented or 
decremented as that object is assigned to, or forgotten by, a smart pointer.  When the 
reference count reaches zero, the object is deleted.  This model is good for incremental 
garbage collection.  The only disadvantage is the need to handle circular referencing 
explicitly, to ensure that mutually-supporting objects are eventually deleted.  

2 Reference counted object Body base class 

The following is an implementation of the Handle-Body pattern for smart reference counting.  
A root Body class may be provided as the (secret) root class of a reference-counted library, in 
the header file Body.h:  

class Body { 
  private: 
    int refcount;  // reference count 
  public: 
    Body();   // sets refcount = 0 
    virtual ~Body(); // makes Body polymorphic 
    void acquire();  // increments refcount 



    int release();  // decrements refcount 
}; 

inline Body::Body() : refcount(0) { 
} 

inline Body::~Body() { 
} 

inline void Body::acquire() { 
  ++refcount; 
} 

inline int Body::release() { 
  return --refcount; 
} 

Body defines the secret refcount and provides public methods acquire() and release() to allow 
smart pointer types to modify the reference count.  Making these public also allows special 
code to handle circular referencing.  Only release() need return a value, so that smart pointers 
can detect when the reference count has reached zero.  Notice also that all methods are 
declared inline for efficiency – the code for acquire() and release() will expand inline inside 
the smart pointer code that uses these.  All other classes (e.g. the system root class Object) 
now inherit from Body.  The default constructor ensures that the reference count is properly 
initialised in every object; and the virtual destructor ~Body() is required, to indicate that Body 
and its descendants are polymorphic, subject to dynamic binding.  

3 Smart pointer Handle base class 

A smart pointer class Ref<T> may be provided to manage objects of type T, and count 
references to them.  Since this is a template class in C++, there is a risk of code-bloat when 
multiple versions of the compiled code are generated, one copy for each type that replaces the 
parameter T.  To mitigate this, it is possible to move most of the functionality of the smart 
pointer to a non-template base pointer class, for which the compiler will only generate one 
copy of the object code: 

class Handle { 
  private: 
    Body* body;   // store basic pointer 
  protected: 
    Handle();    // set body to null; 
    Handle(Body*);   // acquire basic pointer 
    ~Handle();    // release body, maybe delete 
    void assign(Body*);  // assign from basic pointer 
    Body* access() const;  // null-checked body access 
    Body* pointer() const; // fast unchecked body access 
}; 

inline Handle::Handle() : body(0) {} 

inline Body* Handle::pointer() const { 
  return body; 
} 



The base Handle class maintains a private pointer to the Body, and provides methods to 
construct, and to assign, from a primitive Body pointer.  Each of these increments the 
reference count of a (non-null) object.  The destructor for Handle decrements the reference 
count of a (non-null) object, and deletes the object on a count of zero.   

The very short methods are provided inline in the Handle.h file, while more complicated 
methods, which perform reference counting or error checking, should be provided in the 
Handle.cpp file, which will be compiled once, and for which the object code will be included 
once in the final system: 

Handle::Handle(Body* ptr) : body(ptr) { 
  if (body) body->acquire(); 
} 

Handle::~Handle() { 
  if (body && body->release() == 0) 
   delete body; 
} 

void Handle::assign(Body* ptr) { 
  if (ptr) ptr->acquire(); 
  if (body && body->release() == 0) 
   delete body; 
  body = ptr; 
} 

Body* Handle::access() const { 
  if (body) return body; 
  else throw NullPointerException(); 
} 

All reference counting is expanded inline inside these Handle methods, giving the fastest 
possible coding for separately-compiled functions. 

4 Typed smart pointer Ref<T> derived class 

The typed smart pointer Ref<T> inherits from the base Handle class and attaches type 
information to its inherited methods.  All of the methods of Ref<T> are inlined, since they 
merely delegate by super-invocation to the methods inherited from Handle.  The whole 
definition of the template class is in the header file, Ref.h: 

template <class T> class Ref : protected Handle { 
  public: 
    Ref();   // set body to null; 
    Ref(T*);   // acquire body from pointer 
    Ref(Ref<T>&);  // acquire body from reference 
    ~Ref();   // release body, maybe delete 
    T& operator=(T*);  // assign body from pointer 
    T& operator=(Ref<T>&); // assign body from reference 
    T* operator->(); // access object field 
  ...    // more to follow below 
}; 



template <class T> 
inline Ref<T>::Ref() : Handle() {} 

template <class T> 
inline Ref<T>::Ref(T* ptr) : Handle(ptr) {} 

template <class T> 
inline Ref<T>::Ref(Ref<T>& ref) : Handle(ref.pointer()) {} 

template <class T> 
inline Ref<T>::~Ref() {} 

These constructors and the destructor delegate to inherited methods.  For each type T that 
inherits from Body, the argument T* passed back in construction is converted to a Body* 
pointer for free, by type upcasting. Assignment is only slightly more complex: 

template <class T> 
inline Ref<T>& Ref<T>::operator=(T* ptr) { 
  assign(ptr); 
  return *this; 
} 

template <class T> 
Ref<T>& Ref<T>::operator=(Ref<T>& ref) { 
  assign(ref.pointer()); 
  return *this; 
} 

These both return the typed smart pointer as a result (standard in C++).  Notice how versions 
of construction and assignment must be provided both for the raw pointer type T* and for the 
smart pointer type const Ref<T>&, since construction and assignment may be from raw or 
smart pointer arguments.  Notice how the smart pointer argument-handling functions all pass 
back the raw pointer to the inherited method, using the unchecked ref.pointer() access 
method.  Handle need only deal with the raw pointer cases, as a result.  Finally, we access 
objects from smart pointers using a checked dereferencing operator: 

template <class T> 
inline T* Ref<T>::operator->() { 
  static_cast<T*>(access()); 
} 

This invokes the checked access() method to obtain the raw pointer, then performs a static 
type downcast to convert the Body* to the T* type (which is guaranteed to be correct).  This 
arrow operator now allows us to invoke the stored object’s methods, in the same style as if 
through a primitive pointer in C++: 

Ref<SomeClass> ref = new SomeClass(); 
ref->someMethod(); 

However, any attempt to access a null pointer will result in a NullPointerException (see 
definition of access() above, which checks for null). 



5 Smart type upcasting from Ref<S> to Ref<T> 

One of the hardest things to obtain is safe polymorphic aliasing among smart pointers.  The 
smart pointer as described so far will allow some degree of polymorphic aliasing, for 
example, assuming Derived is a subclass of Base, we already have safe automatic upcasting 
in some situations, but not in others: 

Ref<Base> ref = new Base(); 
Ref<Derived> sub = new Derived(); 
ref = new Derived(); // aliasing OK 
ref = sub;   // type error 

The reason ref can receive a subtype object pointer is because C++ can automatically convert 
between primitive pointer types, from Derived* to Base*.  However, automatic conversion 
between two smart pointers Ref<Derived> and Ref<Base> is still blocked, since these are 
non-scalar types.  Conversion requires a constructor having a signature of the form:  
Ref<T>::Ref(Ref<S>&), for some other type S which is a subtype of T.   

We can obtain this free upcasting, from Ref<S> to Ref<T>, if the smart pointer class Ref<T> 
provides the following additional operations: 

template <class T> class Ref : protected Handle { 
  ... 
  public: 
    operator T*();     // access T* pointer 
    template <class S> Ref(Ref<S>&);  // convert from Ref<S> 
}; 

template <class T> 
inline T* Ref<T>::operator T* () { 
 return static_cast<T*>(pointer()); 
} 

template <class T> template <class S> 
inline Ref<T>::Ref(Ref<S>& ref) : 
  Handle(static_cast<S*>(ref)) {} 

The first of these converts a smart pointer back into a basic pointer.  This is essentially the 
public typed version of pointer().  We use this inside the second operation, a special 
conversion constructor, when we ask to cast Ref<S> back to S*, which is then a suitable 
subtype of the T* body.  This now allows a Ref<S> to be converted to a Ref<T>, provided 
that S is a subtype of T. 

6 Smart type downcasting from Ref<T> to Ref<S> 

Ideally, we want type upcasting to happen for free; whereas type downcasting should be 
dynamically checked to allow safe downcasts and report an error in other cases.  The best 
approximation you can manage in C++ is free binding among identical types, but dynamic 
checking between all pairs of different types.  Unfortunately, this checks upcasts as well as 
downcasts; but has the advantage of built-in checking of all type casts of any kind.   

To implement checked downcasts, we first add an extra checking-method to the base pointer 
class Handle: 



class Handle { 
  // other members as before 
  protected: 
    Body* check(Body*, Body*); 
}; 

This has the following implementation in the Handle.cpp file: 

Body* Handle::check(Body* ptr, Body* org) { 
  if (!ptr && org)  
   throw TypeCastException(); 
  return ptr; 
} 

The notion is that the first argument, ptr, is the result of downcasting a pointer-type, which 
should be null if the cast failed, and that the second argument org is the original pointer, 
before downcasting.  The exception is only raised if the original pointer was non-null, but the 
failed conversion resulted in a null pointer.  Conversion of an original null pointer value will 
therefore always succeed. 

Now, the type conversion constructor is implemented differently in Ref<T>, using the 
dynamic_cast operator to attempt to convert from one pointer type to the other: 

template <class T> template <class S> 
inline Ref<T>::Ref(Ref<S>& ref) : Handle( 
  check(dynamic_cast<T*>(static_cast<S*>(ref)), 
   static_cast<S*>(ref))) {} 

Whereas before, the relationship between Ref<T> and Ref<S> was checked statically at 
compile-time, this time, the check is deferred until run time.  The dynamic_cast operator 
either returns a valid pointer (if the typecast succeeds) or null if it fails.  The Handle special 
constructor therefore reports an error in this case. 

A similar type-converting assignment operator may also be provided: 

template <class T> template <class S> 
inline Ref<T>& Ref<T>::operator=(Ref<S>& ref) { 
  assign(check(dynamic_cast<T*>(static_cast<S*>(ref)), 
   static_cast<S*>(ref))); 
  return *this; 
} 

This is not strictly required, since assigning a Ref<S> value to a Ref<T> pointer will 
automatically invoke the Ref<S> to Ref<T> conversion constructor.  However, providing the 
assignment operator is slightly more efficient, since it saves constructing a temporary 
Ref<T> object during the conversion. 

It is also possible to implement a version of this without the extra template for S.  In this case, 
Ref<T> supplies typed operations for Ref<T>& arguments, and “untyped” operations for 
Handle& arguments, which are subject to a dynamic_cast check, as above. 
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